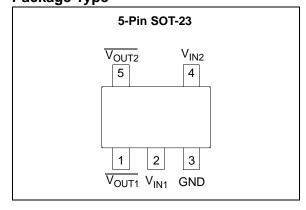


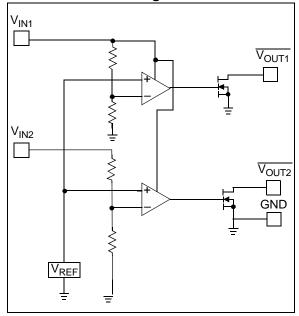
Dual-Channel Voltage Detector


Features

- Two Independent Voltage Detectors in One Package
- Highly Accurate: ±2%
- Low-Power Consumption: 2.0 μA, typical
- Channel 1 Detect Voltage: 3.0V, 4.5V
- · Channel 2 Detect Voltage: 2.7V
- Operating Voltage: 1.5V to 10.0V
- Output Configuration: N-Channel Open-Drain
- · Space-Saving 5-Pin SOT-23 Package

Typical Applications

- Battery Life Monitors and Recharge Voltage Monitors
- · Memory Battery Backup Circuitry
- · Power-On Reset Circuits
- · Power Failure Detection
- · Delay Circuitry


Package Type

Description

The TC52 consists of two independent low-power voltage detectors in a space-saving 5-pin SOT-23 package. Typical supply current consumption is only 2 μA at an input voltage of 2V. The voltage detection threshold settings are factory-programmed and ensured to $\pm 2\%$ accuracy. The TC52 is available with open drain (NMOS) configurations. Small-size, high-precision, low-supply current, and low installed cost makes the TC52 the ideal voltage detector for a wide variety of voltage monitoring applications.

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Input Voltage	+12V
Output Current	50 mA
Output VoltageV _{IN} +	$0.3V$ to $V_{SS} - 0.3V$
Power Dissipation	
5-Pin SOT-23	100 mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	40°C to +125°C

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: T _A = 25°C, unless otherwise specified. (Note 1)						
Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions
Operating Voltage	V _{IN}	1.5	_	10.0	V	$V_{DF}(T) = 1.5 \text{ to } 5.0 \text{V}$
Supply Current	I _{SS}	_	1.35	3.90	μΑ	V _{IN1} = 1.5V
		_	1.50	4.50		V _{IN1} = 2.0V
		_	1.95	5.10		V _{IN1} = 3.0V
		_	2.40	5.70		V _{IN1} = 4.0V
		_	3.00	6.30		V _{IN1} = 5.0V
Input Current V _{IN2}	I _{IN2}	_	0.45	1.30	μА	V _{IN1} = 1.5V
		_	0.50	1.50		V _{IN1} = 2.0V
		_	0.65	1.70		V _{IN1} = 3.0V
		_	0.80	1.90		V _{IN1} = 4.0V
		_	1.00	2.10		V _{IN1} = 5.0V
Channel 1 Detect Voltage	V _{DET1} -	V _{T1} x 0.98	V _{T1} ± 0.5%	V _{T1} x 1.02	٧	Note 2
Channel 2 Detect Voltage	V _{DET2} -	V _{T2} x 0.98	V _{T2} ± 0.5%	V _{T2} x 1.02	V	Note 2
Hysteresis Range 1	V _{HYS1}	V _{DET1} - x 0.02	V _{DET1} - x 0.05	V _{DET1} - x 0.08	V	
Hysteresis Range 2	V _{HYS2}	V _{DET2} - x 0.02	V _{DET2} - x 0.05	V _{DET2} - x 0.08	V	
Output Current	I _{OUT}	0.3	2.2	_	mA	$V_{OL} = 0.5V, V_{IN1} = 1.0V$
		3.0	7.7	_		$V_{OL} = 0.5V, V_{IN1} = 2.0V$
		5.0	10.1	_		$V_{OL} = 0.5V, V_{IN1} = 3.0V$
		6.0	11.5	_		$V_{OL} = 0.5V, V_{IN1} = 4.0V$
		7.0	13.0	_		$V_{OL} = 0.5V, V_{IN1} = 5.0V$
Temperature Characteristics	ΔV_{DET} -/ (ΔT_{OPR} V_{DET} -)	_	±100	_	ppm/°C	
Detection Time	t _{DLY}	_	_	0.2	msec	Time from $V_{IN} = V_{DET}$ - to $V_{OUT} = V_{OL}$

Note 1: Additional resistance between the V_{IN1} pin and the supply voltage may alter the electrical characteristics.

^{2:} V_{T1} , V_{T2} are the factory-programmed voltage detection thresholds.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin No. (5-Pin SOT-23)	Symbol	Description
1	V _{OUT1}	Detector #1 output.
2	V_{IN}	Supply voltage input, detect voltage 1.
3	GND	Ground terminal.
4	V _{IN2}	Detect voltage 2.
5	V _{OUT2}	Detector #2 output.

3.0 DETAILED DESCRIPTION

In normal steady-state operation and for either channel, when $V_{IN} > V_{DET}$ -, the output is high, see Figure 3-1. (In the case of the TC52N, this is an opendrain condition.) If and when the input falls below V_{DET} -, the output pulls down (Logic 0) to V_{SS} . Generally, V_{OUT} can pull down to within 0.5V of V_{SS} at rated output current and input voltages. (Also see Section 1.0, Electrical Characteristics.)

The output, V_{OUT} , stays valid until the input voltage falls below the minimum operating voltage, V_{INMIN} , of 0.7V. Below this minimum operating voltage, the output is undefined. During power-up or anytime V_{IN} has fallen below V_{INMIN} , V_{OUT} will remain undefined until V_{IN} rises above V_{INMIN} , at which time the output becomes valid. V_{OUT} is maintained in its active-low state while $V_{INMIN} < V_{IN} < V_{DET}+$. ($V_{DET}+=V_{DET}+V_{HYST}$). If and when the input rises above $V_{DET}+$, the output will assume its inactive state (open-drain for TC52N).

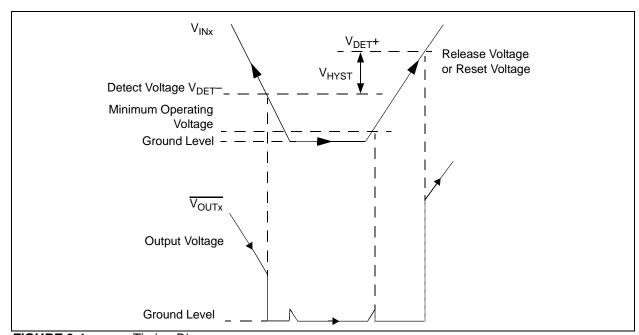
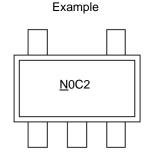


FIGURE 3-1: Timing Diagram.

4.0 APPLICATIONS INFORMATION

Pin 2 (V_{IN1}) acts as both the input to Voltage Detector #1 and the power supply input for the chip. As such, always assign V_{IN1} to monitor voltages between 1.5V and 10V. Failure to do this will result in unreliable detector operation due to an out-of-tolerance supply voltage. In high-noise environments, it may be necessary to install a small input bypass capacitor (0.01 μF to 0.1 μF) from V_{IN1} to ground to minimize on-chip power supply noise.


5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Standard Markings for SOT-23		
Part Number	Code	
TC52N3027ECTTR	<u>N</u> 0C#	
TC52N4527ECTTR	<u>N</u> 0P#	

N-Channel Indication and Integer Part of Output Voltage

Symbol	Output
<u>N</u>	Nch

Registration Serial Number

Symbol	Detected Voltage 1	Detected Voltage 2
0C	3.0	2.7
0P	4.5	2.7

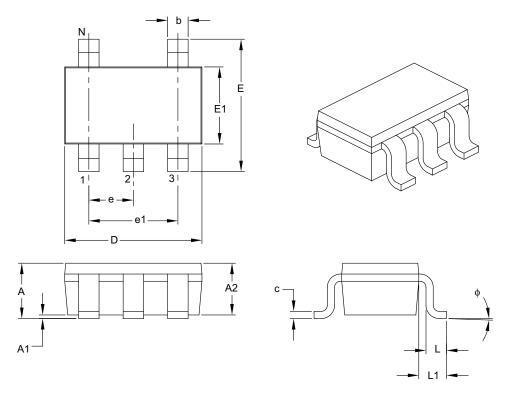
Legend: XX...X Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

(e3) Pb-free JEDEC designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator ((e3))


can be found on the outer packaging for this package.

Note:

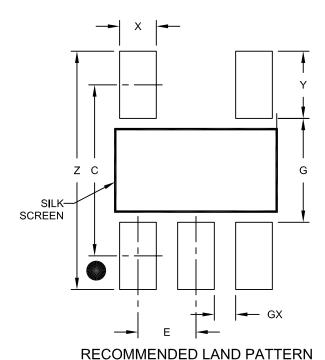
In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

5-Lead Plastic Small Outline Transistor (CT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3
Dimensi	on Limits	MIN	NOM	MAX
Number of Pins	N		5	
Lead Pitch	е		0.95 BSC	
Outside Lead Pitch	e1		1.90 BSC	
Overall Height	Α	0.90	_	1.45
Molded Package Thickness	A2	0.89	-	1.30
Standoff	A1	0.00	-	0.15
Overall Width	Е	2.20	_	3.20
Molded Package Width	E1	1.30	-	1.80
Overall Length	D	2.70	_	3.10
Foot Length	L	0.10	_	0.60
Footprint	L1	0.35	_	0.80
Foot Angle	ф	0°	_	30°
Lead Thickness	С	0.08	_	0.26
Lead Width	b	0.20	_	0.51

Notes:


- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-091B

5-Lead Plastic Small Outline Transistor (CT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.95 BSC	
Contact Pad Spacing	С		2.80	
Contact Pad Width (X5)	Х			0.60
Contact Pad Length (X5)	Υ			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091A

_	_	\smallfrown		
		-	h	-,
			_ 1	
	,	_	~	

NOTES:

APPENDIX A: REVISION HISTORY

Revision D (September 2013)

The following is the list of modifications:

- 1. Updated the detect voltage values in the **Section "Features"**.
- 2. Updated the Package Type.
- 3. Updated Section 5.0, Packaging Information with the latest package specification drawings.
- 4. Updated Product Identification System.

Revision C (December 2012)

• Added a note to each package outline drawing.

Revision B (May 2002)

• Undocumented changes.

Revision A (March 2001)

• Original Release of this Document.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

ART NO. X Device Output Configuration	XX
Device:	TC52N3027ECTTR: 3.0V and 2.7V Dual Channel Voltage Detector (Tape and Reel) TC52N4527ECTTR: 4.5V and 2.7V Dual Channel Voltage Detector (Tape and Reel) Detector (Tape and Reel) TC52N4527ECTTR: 4.5V and 2.7V Dual Channel Voltage Detector, 5LD SOT-23 Package, Tape and Reel
Output Configuration:	N = Open Drain
Detected Voltage 1:	30 = 3.0V 45 = 4.5V
Detected Voltage 2:	27 = 2.7V
Temperature Range:	E = -40°C to +125°C
Package:	CT = Plastic Small Outline Transistor (CT), 5-Lead

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2001-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-472-4

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/

support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869

Fax: 44-118-921-5820

08/20/13