EFM32G Reference Manual

Gecko Series

32-bit ARM Cortex-M3 processor running at up to 32
Up to 128 kB Flash and 16 kB RAM memory

Energy efficient and autonomous peripherals

Ultra low power Energy Modes with Sub p operation
Fast wake-up time of only 2 us

The EFM32G microcontroller series revolutionizes the 8- to 32-bit market with a
combination of unmatched performance and ultra low power consumption in both
active- and sleep modes. EFM32G devices consume as little as 180 pA/MHz in run
mode, and as little as 900 nA with a Real Time Counter running, Brown-out and full
RAM and register retention.

EFM32G's low energy consumption outperforms any other available 8-, 16-, and 32-
bit solution. The EFM32G includes autonomous and energy efficient peripherals,
high overall chip- and analog integration, and the performance of the industry
standard 32-bit ARM Cortex-M3 processor.

®

m 9
ARM Cortex-M3 ARM Cortex-#3

SILICON LABS

...the world's most energy friendly microcontrollers

1 Energy Friendly Microcontrollers

1.1 Typical Applications

The EFM32G Gecko is the ideal choice for demanding 8-, 16-, and 32-bit energy sensitive applications.
These devices are developed to minimize the energy consumption by lowering both the power and the
active time, over all phases of MCU operation. This unique combination of ultra low energy consumption
and the performance of the 32-bit ARM Cortex-M3 processor, help designers get more out of the
available energy in a variety of applications.

Ultra low energy EFM32G microcontrollers are perfect for:

» Gas metering
* Energy metering
» Water metering

3 @
e Alarm and security systems

* Smart metering
» Health and fithess applications
* Industrial and home automation

1.2 EFM32G Development

Because EFM32G use the Cortex-M3 CPU, embedded designers benefit from the largest development
ecosystem in the industry, the ARM ecosystem. The development suite spans the whole design
process and includes powerful debug tools, and some of the world’s top brand compilers. Libraries with
documentation and user examples shorten time from idea to market.

The range of EFM32G devices ensure easy migration and feature upgrade possibilities.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

2 About This Document

This document contains reference material for the EFM32G series of microcontrollers. All modules and
peripherals in the EFM32G series devices are described in general terms. Not all modules are present
in all devices, and the feature set for each device might vary. Such differences, including pin-out, are
covered in the device-specific datasheets.

2.1 Conventions

Register Names

Register names are given as a module name prefix followed by the short register name:
TIMERNn_CTRL - Control Register

The "n" denotes the numeric instance for modules that might have more than one instance.
Some registers are grouped which leads to a group name following the module prefix:
GPIO_Px_DOUT - Port Data Out Register,

where x denotes the port instance (A,B,...).

Bit Fields

Registers contain one or more bit fields which can be 1 to 32 bits wide. Multi-bit fields are denoted with
(x:y), where x is the start bit and y is the end bit.

Address

The address for each register can be found by adding the base address of the module (found in the
Memory Map), and the offset address for the register (found in module Register Map).

Access Type
The register access types used in the register descriptions are explained in Table 2.1 (p. 3) .

Table 2.1. Register Access Types

R Read only. Writes are ignored.

RW Readable and writable.

RW1 Readable and writable. Only writes to 1 have effect.

RW1H Readable, writable and updated by hardware. Only writes to
1 have effect.

w1 Read value undefined. Only writes to 1 have effect.

w Write only. Read value undefined.

RWH Readable, writable and updated by hardware.

Number format
Ox prefix is used for hexadecimal numbers.
Ob prefix is used for binary numbers.

Numbers without prefix are in decimal representation.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Reserved

Registers and bit fields marked with reserved are reserved for future use. These should be written to O
unless otherwise stated in the Register Description. Reserved bits might be read as 1 in future devices.

Reset Value
The reset value denotes the value after reset.

Registers denoted with X have an unknown reset value and need to be initialized before use. Note
that, before these registers are initialized, read-modify-write operations might result in undefined register
values.

Pin Connections
Pin connections are given as a module prefix followed by a short pin name:
USn_TX (USARTnN TX pin)

The pin locations referenced in this document are given in the device-specific datasheet.

2.2 Related Documentation

Further documentation on the EFM32G family and the ARM Cortex-M3 can be found at the Silicon
Laboratories and ARM web pages:

www.silabs.com

www.arm.com

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

3 System Overview

3.1 Introduction

The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination
of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from
energy saving modes, and a wide selection of peripherals, the EFM32G microcontroller is well suited for
any battery operated application, as well as other systems requiring high performance and low-energy
consumption, see Figure 3.1 (p. 7) .

3.2 Features

* ARM Cortex-M3 CPU platform
» High Performance 32-bit processor @ up to 32 MHz
* Memory Protection Unit
» Wake-up Interrupt Controller
* Flexible Energy Management System
20 nA @ 3V Shutoff Mode

* 0.6 pA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU
retention

* 0.9 YA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on
Reset, Brown-out Detector, RAM and CPU retention
e 45 pyA/MHz @ 3 V Sleep Mode
e 180 pA/MHz @ 3 V Run Mode, with code executed from flash
» 128/64/32/16 KB Flash
» 16/8 KB RAM
» Up to 90 General Purpose I/O pins
» Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
» Configurable peripheral 1/0 locations
» 16 asynchronous external interrupts
» 8 Channel DMA Controller
 Alternate/primary descriptors with scatter-gather/ping-pong operation
» 8 Channel Peripheral Reflex System
» Autonomous inter-peripheral signaling enables smart operation in low energy modes
» External Bus Interface (EBI)
» Up to 4x64 MB of external memory mapped space
* Integrated LCD Controller for up to 4x40 Segments
» Voltage boost, adjustable contrast adjustment and autonomous animation feature
» Hardware AES with 128/256-bit Keys in 54/75 cycles
e Communication interfaces
» 3x Universal Synchronous/Asynchronous Receiver/Transmitter
» UART/SPI/SmartCard (ISO 7816)/IrDA
» Triple buffered full/half-duplex operation
* 4-16 data bits
» 1x Universal Asynchronous Receiver/Transmitter
» Triple buffered full/half-duplex operation
» 8-9 data bits
* 2x Low Energy UART
» Autonomous operation with DMA in Deep Sleep Mode
« 1x I°C Interface with SMBus support
» Address recognition in Stop Mode
* Timers/Counters

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

3x 16-bit Timer/Counter
e 3 Compare/Capture/PWM channels
» Dead-Time Insertion on TIMERO
16-bit Low Energy Timer
24-bit Real-Time Counter
3x 8-bit Pulse Counter
» Asynchronous pulse counting/quadrature decoding
» Watchdog Timer with dedicated RC oscillator @ 50 nA
» Ultra low power precision analog peripherals
e 12-bit 1 Msamples/s Analog to Digital Converter
» 8 input channels and on-chip temperature sensor
» Single ended or differential operation
» Conversion tailgating for predictable latency
» 12-bit 500 ksamples/s Digital to Analog Converter
» 2 single ended channels/1 differential channel
» 2x Analog Comparator
» Programmable speed/current
» Capacitive sensing with up to 8 inputs
» Supply Voltage Comparator
» Ultra efficient Power-on Reset and Brown-Out Detector
e 2-pin Serial Wire Debug interface
e 1-pin Serial Wire Viewer
» Temperature range -40 - 85°C
» Single power supply 1.85-3.8V
» Packages
* QFN32
* QFN64
* TQFP48
« TQFP64
* LQFP100
* LFBGA112

3.3 Block Diagram

Figure 3.1 (p. 7) shows the block diagram of EFM32G. The color indicates peripheral availability in
the different energy modes, described in Section 3.4 (p. 7) .

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 3.1. Block Diagram of EFM32G

-

®)
EFNMN Gecko
Core and Memory Clock Manageament Energy Manageament
[High Frequency] [High Frequency]
Crystal RC
Memory : ; Voltage Voltage
: Oscilktor Oscilktor
ARM Cortex™- M3 processor Pmﬁtﬂon Regulator Comparator

Pgaf:m Debug Power-on Brown-out
M 9 Interface Watchdog Reset Detector
S Oscillator

-

Peripheral Reflex System
| |

Serial Interfaces 1/0 Ports Timers and Trigge's Analog Interfaces Security
General Timer/ Peripheral
External PUrDOSE Counter Reflex
USART UART Bus |?o System ADC DAC AES
Interface

Analog §
Pulse Watchdog Comparator
Counter Timer

External

Interrupts

S

Figure 3.2. Energy Mode Indicator

©

Note
In the energy mode indicator, the numbers indicates Energy Mode, i.e EMO-EMA4.

3.4 Energy Modes

There are five different Energy Modes (EMO-EM4) in the EFM32G, see Table 3.1 (p. 8). The
EFM32G is designed to achieve a high degree of autonomous operation in low energy modes. The
intelligent combination of peripherals, RAM with data retention, DMA, low-power oscillators, and short

wake-up time, makes it attractive to remain in low energy modes for long periods and thus saving energy
consumption.

Tip

Throughout this document, the first figure in every module description contains an Energy Mode
Indicator showing which energy mode(s) the module can operate (see Table 3.1 (p. 8)).

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Table 3.1. Energy Mode Description

EMO — Energy Mode 0

(Run mode)

In EMO, the CPU is running and consuming as little as 180 pA/MHz, when
running code from flash. All peripherals can be active.

5 3® EM1 — Energy Mode 1
(Sleep Mode)

In EM1, the CPU is sleeping and the power consumption is only 45 pA/MHz.
All peripherals, including DMA, PRS and memory system, are still available.

3® EM2 — Energy Mode 2
(Deep Sleep Mode)

In EM2 the high frequency oscillator is turned off, but with the 32.768 kHz
oscillator running, selected low energy peripherals (LCD, RTC, LETIMER,
PCNT, LEUART, IZC, WDOG and ACMP) are still available. This gives a high
degree of autonomous operation with a current consumption as low as 0.9 pA
with RTC enabled. Power-on Reset, Brown-out Detection and full RAM and
CPU retention is also included.

5 @ EM3 - Energy Mode 3
(Stop Mode)

In EM3, the low-frequency oscillator is disabled, but there is still full CPU
and RAM retention, as well as Power-on Reset, Pin reset and Brown-
out Detection, with a consumption of only 0.6 yA The low-power ACMP,
asynchronous external interrupt, PCNT, and I°C can wake-up the device.
Even in this mode, the wake-up time is a few microseconds.

EM4 — Energy Mode 4
.
(Shutoff Mode)

In EM4, the current is down to 20 nA and all chip functionality is turned off
except the pin reset and the Power-On Reset. All pins are put into their reset
state.

3.5 Product Overview

Table 3.2 (p. 9) shows a device overview of the EFM32G Microcontroller Series, including peripheral
functionality. For more information, the reader is referred to the device specific datasheets.

2013-10-03 - Gecko Family - d0001_Rev1.20

www.silabs.com

EFNVI'32 ...the world's most energy friendly microcontrollers

Table 3.2. EFM32G Microcontroller Series

Z 5

& @ S g e S v z

% = Ele| EE S

™ o} X < = S £ & o

= = <) ~ O = () (@) =

i 5 938 ¢ £ 4 EF £8 3 ¢
200F16 16 | 8 | 24 . 2 | 1 1 ((25) 11| 1 1 (‘11) 1| 26 | - - | oFN32
200F32 32 8 24 - 2 1 1 (g) 1 1 1 1 (i) 1(1) | 2(5) - - QFN32
200F64 64 16 24 - 2 1 1 (g) 1 1 1 1 (i) 1(1) | 2(5 - - QFN32
210F128 128 | 16 | 24 - 2 1 1 ((25) 1 1 1 1 (‘11) 1) | 263 | Y - | oFN32
230F32 32 8 56 - 3 2 1 (S) 1 1 3 1 (é) 2(2) (126) Y - QFN64
230F64 64 | 16 | 56 . 3| 2 1 (g) 1] 1| 3 1 (é) 2(2) (126) Y | - | QFNe4
230F128 128 16 56 - 3 2 1 (g) 1 1 3 1 (é) 2(2) (126) Y - QFN64
280F32 32 8 85 - 3+1 2 1 (g) 1 1 3 1 (é) 2(2) (126) Y Y LQFP100
280F64 64 | 16 | 85 - |se1] 2 1 (g) 1 1 3 1 (513) 2(2) (126) Y | Y |LQFP100
280F128 128 16 85 - 3+1 2 1 (g) 1 1 3 1 (é) 2(2) (126) Y Y LQFP100
290F32 32 8 90 - 3+1 2 1 (g) 1 1 3 1 (é) 2(2) (126) Y Y LFBGAl112
290F64 64 16 90 - 3+1 2 1 (g) 1 1 3 1 (é) 2(2) (126) Y Y LFBGA112
290F128 128 16 90 - 3+1 2 1 (g) 1 1 3 1 (é) 2(2) (126) Y Y LFBGAl112
840F32 322 | 8 | 56 |4x24| 3 | 2 1 (g) 1|1 3 1 (;) 2@ | 2@ | Y | - | oFnes
840F64 64 16 56 4x24 3 2 1 (g) 1 1 3 1 (é) 2(2) | 2(8) Y - QFN64
840F128 128 16 56 4x24 3 2 1 (S) 1 1 3 1 (é) 2(12) | 2(8) Y - QFN64
880F32 32 | 8 | 85 |4xd0 |3+1| 2 1 (g) 1 | 1] 3 1 (é) 2(2) (126) Y | v* | LQFP100
830F64 64 | 16 | 85 | 4x40 |3+1| 2 1 (g) 1 1 3 1 (513) 2(2) (126) Y | Y' | LOFP100
880F128 128 16 85 4x40 | 3+1 2 1 (S) 1 1 3 1 (é) 2(2) (126) Y ' LQFP100
890F32 32 8 90 4x40 | 3+1 2 1 (g) 1 1 3 1 (é) 2(2) (126) Y y! LFBGA112
890F64 64 16 90 4x40 | 3+1 2 1 (g) 1 1 3 1 (é) 2(2) (126) Y vt LFBGA112
890F128 128 16 90 4x40 | 3+1 2 1 (g) 1 1 3 1 (é) 2(2) (126) Y y! LFBGAl112

'EBI and LCD share pins in the part. Only a reduced pin count LCD driver can be used simultaneously with the EBI.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

4 System Processor

What?
1(2 3@
The industry leading Cortex-M3 processor

from ARM is the CPU in the EFM32G
microcontrollers.

sinininininininlnls Why?

CM3 Core

The ARM Cortex-M3 is designed for
exceptional short response time, high
code density, and high 32-bit throughput
while maintaining a strict cost and power
consumption budget.

32- bit ALU

Single cycle

Hardware divider 32- bit multiplier

Thumb & Thumb- 2

Control Logic Decode

How?

Combined with the ultra low energy
peripherals available, the Cortex-M3 makes
the EFM32G devices perfect for 8- to 32-bit
applications. The processor is featuring a
Harvard architecture, 3 stage pipeline, single
cycle instructions, Thumb-2 instruction set
support, and fast interrupt handling.

Instruction Interface Data Interface

Y

OO0 Oononoon

A

NVIC Interface Memory Protection Uni

IO rrirr

v
OO0 D000 OO

4.1 Introduction

The ARM Cortex-M3 32-bit RISC processor provides outstanding computational performance and
exceptional system response to interrupts while meeting low cost requirements and low power
consumption.

The ARM Cortex-M3 implemented is revision r2p0.

4.2 Features

» Harvard Architecture
» Separate data and program memory buses (No memory bottleneck as for a single-bus system)
» 3-stage pipeline
* Thumb-2 instruction set
* Enhanced levels of performance, energy efficiency, and code density
» Single-cycle multiply and efficient divide instructions
» 32-bit multiplication in a single cycle
» Signed and unsigned divide operations between 2 and 12 cycles
» Atomic bit manipulation with bit banding
» Direct access to single bits of data
» Two 1MB bit banding regions for memory and peripherals mapping to 32MB alias regions
» Atomic operation which cannot be interrupted by other bus activities
» 1.25 DMIPS/MHz
* Memory Protection Unit
» Up to 8 protected memory regions
» 24-bit System Tick Timer for Real-Time Operating System (RTOS)
» Excellent 32-bit migration choice for 8/16 bit architecture based designs
» Simplified stack-based programmer's model is compatible with traditional ARM architecture and
retains the programming simplicity of legacy 8- and 16-bit architectures

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

» Unaligned data storage and access
» Continuous storage of data requiring different byte lengths
» Data access in a single core clock cycle
* Integrated power modes
» Sleep Now mode for immediate transfer to low power state
» Sleep on Exit mode for entry into low power state after the servicing of an interrupt
 Ability to extend power savings to other system components
» Optimized for low latency, nested interrupts

4.3 Functional Description

For a full functional description of the ARM Cortex-M3 (r2p0) implementation in the EFM32G family, the
reader is referred to the EFM32G Cortex-M3 Reference Manual.

4.3.1 Interrupt Operation

Figure 4.1. Interrupt Operation

Module Cortex- M3 NVIC

[s | [rem | e] K

[SETENA[n)/ CLRENA[N] |

A 4 Active interrupt

Interrupt

Interrupt set clear :\—\ IRQ *
condition IF[n] __i/ » - .2 raquoat
' SETPENDIn}/ CLRPEND]

Software generated interrupt

The EFM32G devices have up to 30 interrupt request lines (IRQ) which are connected to the Cortex-M3.
Each of these lines (shown in Table 4.1 (p. 11)) are connected to one or more interrupt flags in one
or more modules. The interrupt flags are set by hardware on an interrupt condition. It is also possible
to set/clear the interrupt flags through the IFS/IFC registers. Each interrupt flag is then qualified with its
own interrupt enable bit (IEN register), before being OR'ed with the other interrupt flags to generate the
IRQ. A high IRQ line will set the corresponding pending bit (can also be set/cleared with the SETPEND/
CLRPEND bits in ISPRO/ICPRO) in the Cortex-M3 NVIC. The pending bit is then qualified with an enable
bit (set/cleared with SETENA/CLRENA bits in ISERO/ICERO) before generating an interrupt request to
the core. Figure 4.1 (p. 11) illustrates the interrupt system. For more information on how the interrupts
are handled inside the Cortex-M3, the reader is referred to the EFM32G Cortex-M3 Reference Manual.

Table 4.1. Interrupt Request Lines (IRQ)

0 DMA

1 GPIO_EVEN

2 TIMERO

3 USARTO_RX

4 USARTO_TX

5 ACMPO/ACMP1
6 ADCO

7 DACO

8 12C0O

9 GPIO_ODD

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

IRQ # Source ‘
10 TIMER1

11 TIMER2

12 USART1_RX
13 USART1_TX
14 USART2_RX
15 USART2_TX
16 UARTO_RX
17 UARTO_TX
18 LEUARTO

19 LEUART1

20 LETIMERO
21 PCNTO

22 PCNT1

23 PCNT2

24 RTC

25 CMU

26 VCMP

27 LCD

28 MSC

29 AES

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

5 Memory and Bus System

What?
A low latency memory system, including low
‘ energy flash and RAM with data retention,
@ makes extended use of low-power energy-
modes possible.
Why?

RAM retention reduces the need for storing
data in flash and enables frequent use of the
ultra low energy modes EM2 and EM3 with

Flash . ;
ARM Cortex- M3 as little as 0.6 YA current consumption.
RAM
How?
EBI .
Low energy and non-volatile flash memory
DMA Controller stores program and application data

Peripherals in all energy modes and can easily be
reprogrammed in system. Low leakage RAM,
with data retention in EMO to EM3, removes
the data restore time penalty, and the DMA
ensures fast autonomous transfers with
predictable response time.

5.1 Introduction

The EFM32G contains an AMBA AHB Bus system allowing bus masters to access the memory mapped
address space. A multilayer AHB bus matrix, using a Round-robin arbitration scheme, connects the
master bus interfaces to the AHB slaves (Figure 5.1 (p. 14)). The bus matrix allows several AHB
slaves to be accessed simultaneously. An AMBA APB interface is used for the peripherals, which are
accessed through an AHB-to-APB bridge connected to the AHB bus matrix. The AHB bus masters are:

» Cortex-M3 ICode: Used for instruction fetches from Code memory (0x00000000 - OX1FFFFFFF).
» Cortex-M3 DCode: Used for debug and data access to Code memory (0x00000000 - OxX1FFFFFFF).

» Cortex-M3 System: Used for instruction fetches, data and debug access to system space
(0x20000000 - OXDFFFFFFF).

« DMA: Can access EBI, SRAM, Flash and peripherals (0x00000000 - OXDFFFFFFF).

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 5.1. EFM32G Bus System

Cortex AHB Multilayer €—»| Fash
Bus Matrix
¢ ICode) | RAM
¢ DCode, > B
<< AES
¢ System,
AHB/APB [€—»{ Peripheral 0
Bridge
<>
DMA
A A
—)p»| Peripheral n

5.2 Functional Description

The memory segments are mapped together with the internal segments of the Cortex-M3 into the system
memory map shown by Figure 5.2 (p. 15)

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 5.2. System Address Space

0x400€0400 = OxTFTFTTTe
0o 0x20100000
0x4006<000 PRS \ 0xe00T FTTF | ~
x400cc CM3 Peripherals /\
0x400ca400
RMU 0xe0000000
0x400ca000 OXTTTTTIT hy
0x400c8400 = \ ~
0x400c8000
040066000 MY \ OXBTFTTITT
EBI Region 3 0xe0100000
0x400c4000 S 0x8C080000 CM3 ROM Table
0x400c2000 N 0xe00ff000
40002400 \ OXBbTFIFTT
MSC EBI Region 2 0xe0041000
0x400c0000
o \ 0x88000000 TPIU
x40082400 ————————————————x80900009 0xe0040000
10082000 [Xeh) — OXBITITTIT
0x40088400 EBI Region 1 \ 0xe000f000
0x40088000 WDOG \ 0x84000000 System Control Space
OXB3FFFFIT < 0xe000€000
0x40086c00
PCNT2 EBI Region 0
0x40086800 \ 0xe0003000
PCNT1 0x80000000
0x40086400 PCNTO Ox7TTFFFFT i
0x40086000 \ — 0xe0002000
0x40084800 et \ (VTR 0xe0001000
— 0x44000000] \
0x40084400 LEUARTO Ox43FFTTFf ™
0x40084000 Peripherals (bit-band) 0xe0000000
0x40082400 TETIMERD 0x42000000
0x40082000 OXALTTTTIT
0x40080400 Eie X /
0x40080000 \ 0x10004000
0x41000000 /
0x40010c00 TIMERD OXAOTFFTTT SRAM (16 kB)
0x40010800 Peripherals / (code space)
TIMERT p
0x40010400 TIMERO 0x40000000
0x40010000 0x10000000
OX3TIFFFT
0x4000e400 SRS / OX0fe05400
XOfel
bisseio e ;
0x4000¢800 USART2 7 0x221FFFTT 0x0fe08000
oo USARTL f SRAM (bit-band) /
x USARTO 0x22000000 0x0fe04400
0x4000c000 / -
bs / OX2LFFFFT Lock bits
*4000a400 12C0 0x0fe04000
0x4000a000 / /,
0x40008400 b 0x20004000
0x40008000 EBl SRAM (16 kB) OX20003FFF User Data 0x0fe00400
t:
0x40007000 =0 7 (data space) o 0900000 0x0fe00000
0x40006000
0x40004400 / OXLFFFFTee 0x00020000
0x40004000 2act
0440002000 ADCO /
0x40001800 / Code Flash (128 kB)
ACMP1 (main block)
0x40001400 e
0x40001000
0x40000400 i /
0x40000000 vewe VL 0xP6000000 | 0x00000000

The embedded SRAM is located at address 0x20000000 in the memory map of the EFM32G. When
running code located in SRAM starting at this address, the Cortex-M3 uses the System bus to fetch
instructions. This results in reduced performance as the Cortex-M3 accesses stack, other data in SRAM
and peripherals using the System bus. To be able to run code from SRAM efficiently, the SRAM is also
mapped in the code space at address 0x10000000. When running code from this space, the Cortex-M3
fetches instructions through the 1/D-Code bus interface, leaving the System bus for data access. The
SRAM mapped into the code space can however only be accessed by the CPU, i.e. not the DMA.

5.2.1 Bit-banding

The SRAM bit-band alias and peripheral bit-band alias regions are located at 0x22000000 and
0x42000000 respectively. Read and write operations to these regions are converted into masked single-
bit reads and atomic single-bit writes to the embedded SRAM and peripherals of the EFM32G.

The standard approach to modify a single register or SRAM bit in the aliased regions, requires software
to read the value of the byte, half-word or word containing the bit, modify the bit, and then write the byte,
half-word or word back to the register or SRAM address. Using bit-banding, this read-modify-write can
be done in a single atomic operation. As read-writeback, bit-masking and bit-shift operations are not
necessary in software, code size is reduced and execution speed improved.

The bit-band regions allows addressing each individual bit in the SRAM and peripheral areas of the
memory map. To set or clear a bit in the embedded SRAM, write a 1 or a 0 to the following address:

Memory SRAM Area Set/Clear Bit

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

bit_address = 0x22000000 + (address — 0x20000000) x 32 + bit x 4, (5.1)

where address is the address of the 32-bit word containing the bit to modify, and bit is the index of the
bit in the 32-bit word.

To modify a bit in the Peripheral area, use the following address:

Memory Peripheral Area Bit Modification
bit_address = 0x42000000 + (address — 0x40000000) x 32 + bit x 4, (5.2)

where address and bit are defined as above.

Note that the AHB-peripheral AES does not support bit-banding.

5.2.2 Peripherals

The peripherals are mapped into the peripheral memory segment, each with a fixed size address range
according to Table 5.1 (p. 16) , Table 5.2 (p. 17) and Table 5.3 (p. 18) .

Table 5.1. Memory System Core Peripherals

0x400E0400 — Ox41FFFFFF Reserved
0x400E0000 — Ox400E03FF AES
0x400CC400 — 0x400FFFFF Reserved
0x400CCO000 — 0x400CC3FF PRS
0x400CA400 — 0x400CBFFF Reserved
0x400CA000 — 0x400CA3FF RMU
0x400C8400 — 0x400C9FFF Reserved
0x400C8000 — 0x400C83FF CcMU
0x400C6400 — 0x400C7FFF Reserved
0x400C6000 — 0x400C63FF EMU
0x400C4000 — 0x400C5FFF Reserved
0x400C2000 — 0x400C3FFF DMA
0x400C0400 — 0x400C1FFF Reserved
0x400C0000 — 0x400C03FF MSC

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

EFNVI'32 ...the world's most energy friendly microcontrollers

Table 5.2. Memory System Low Energy Peripherals

Low energy peripherals

Address range Peripheral
0x4008A400 — 0x400BFFFF Reserved
0x4008A000 — 0x4008A3FF LCD
0x40088400 — 0x40089FFF Reserved
0x40088000 — 0x400883FF WDOG
0x40086C00 — 0x40087FFF Reserved
0x40086800 — 0x40086BFF PCNT2
0x40086400 — 0x400867FF PCNT1
0x40086000 — 0x400863FF PCNTO
0x40084800 — 0x40085FFF Reserved
0x40084400 — 0x400847FF LEUART1
0x40084000 — 0x400843FF LEUARTO
0x40082400 — 0x40083FFF Reserved
0x40082000 — 0x400823FF LETIMERO
0x40080400 — 0x40081FFF Reserved
0x40080000 — 0x400803FF RTC

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Table 5.3. Memory System Peripherals

0x40010C00 — 0x4007FFFF Reserved
0x40010800 — 0x40010BFF TIMER2
0x40010400 — 0x400107FF TIMER1
0x40010000 — 0x400103FF TIMERO
0x4000E400 — 0x4000FFFF Reserved
0x4000E000 — 0x4000E3FF UARTO
0x4000CCO00 — 0x4000DFFF Reserved
0x4000C800 — 0x4000CBFF USART2
0x4000C400 — 0x4000C7FF USART1
0x4000C000 — 0x4000C3FF USARTO
0x4000A400 — 0x4000BFFF Reserved
0x4000A000 — 0x4000A3FF 12C0
0x40008400 — 0x40009FFF Reserved
0x40008000 — 0x400083FF EBI
0x40007000 — 0x40007FFF Reserved
0x40006000 — 0x40006FFF GPIO
0x40004400 — 0x40005FFF Reserved
0x40004000 — 0x400043FF DACO
0x40002400 — 0x40003FFF Reserved
0x40002000 — 0x400023FF ADCO
0x40001800 — 0x40001FFF Reserved
0x40001400 — 0x400017FF ACMP1
0x40001000 — 0x400013FF ACMPO
0x40000400 — 0x40000FFF Reserved
0x40000000 - 0x400003FF VCMP

5.2.3 Bus Matrix

The Bus Matrix connects the memory segments to the bus masters:

e Code: CPU instruction or data fetches from the code space
» System: CPU read and write to the SRAM, EBI and peripherals
« DMA: Access to EBI, SRAM, Flash and peripherals

5.2.3.1 Arbitration

The Bus Matrix uses a round-robin arbitration algorithm which enables high throughput and low latency
while starvation of simultaneous accesses to the same bus slave are eliminated. Round-robin does not
assign a fixed priority to each bus master. The arbiter does not insert any bus wait-states.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

5.2.3.2 Access Performance

The Bus Matrix is a multi-layer energy optimized AMBA AHB compliant bus with an internal bandwidth
equal to 4 times a single AHB-bus.

The Bus Matrix accepts new transfers initiated by each master in every clock cycle without inserting
any wait-states. The slaves, however, may insert wait-states depending on their internal throughput and
the clock frequency.

The Cortex-M3, the DMA Controller, and the peripherals run on clocks that can be prescaled separately.
When accessing a peripheral which runs on a frequency equal to or faster than the HFCORECLK, the
number of wait cycles per access, in addition to master arbitration, is given by:

Memory Wait Cycles with Clock Equal or Faster than HFCORECLK

Ncycles =2+ Nslave cycles» (5-3)
where Ngjave cycles 1S the wait cycles introduced by the slave.
When accessing a peripheral running on a clock slower than the HFCORECLK, wait-cycles are

introduced to allow the transfer to complete on the peripheral clock. The number of wait cycles per
access, in addition to master arbitration, is given by:

Memory Wait Cycles with Clock Slower than CPU

Ncycles = (2 + Nslave cycles) X fHFCORECLK/fHFPERCLKa (5-4)
where Ngjave cycles IS the number of wait cycles introduced by the slave.
For general register access, Ngjave cycles = 1

More details on clocks and prescaling can be found in Chapter 11 (p. 95) .

5.3 Access to Low Energy Peripherals (Asynchronous Registers)

5.3.1 Introduction

The Low Energy Peripherals are capable of running when the high frequency oscillator and core system
is powered off, i.e. in energy mode EM2 and in some cases also EM3. This enables the peripherals to
perform tasks while the system energy consumption is minimal.

The Low Energy Peripherals are:

* Liquid Crystal Display driver - LCD
e Low Energy Timer - LETIMER

* Low Energy UART - LEUART

* Pulse Counter - PCNT

* Real Time Counter - RTC

* Watchdog - WDOG

All Low Energy Peripherals are memory mapped, with automatic data synchronization. Because the Low
Energy Peripherals are running on clocks asynchronous to the core clock, there are some constraints
on how register accesses can be done, as described in the following sections.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

5.3.1.1 Writing

Every Low Energy Peripheral has one or more registers with data that needs to be synchronized
into the Low Energy clock domain to maintain data consistency and predictable operation. Due to
synchronization, the write operation requires 3 positive edges of the clock of the Low Energy Peripheral
being accessed. Such registers are marked "Asynchronous" in their description header.

See Figure 5.3 (p. 20) for a more detailed overview of the writing operation.

After writing data to a register which value is to be synchronized into the Low Energy clock domain, a
corresponding busy flag in the <module_name>_SYNCBUSY register (e.g. RTC_SYNCBUSY) is set.
This flag is set as long as synchronization is in progress and is cleared upon completion.

Note
Subsequent writes to the same register before the corresponding busy flag is cleared is not
supported. Write before the busy flag is cleared may result in undefined behavior.

In general, the SYNCBUSY register only needs to be observed if there is a risk of multiple
write access to a register (which must be prevented). It is not required to wait until the
relevant flag in the SYNCBUSY register is cleared after writing a register. E.g EM2 can be
entered immediately after writing a register.

Figure 5.3. Write operation to Low Energy Peripherals

Core Clock Domain Low Frequency Clock Domain

Freeze

|
|
|
|
Core‘CIock | : Low Frequ‘ency Clock Low Frequ‘ency Clock
» i R I i - i -
Register 0 ™ Synchronizer 0 Register 0 Sync

> Register 1 - o Synchronizer 1 > Register 1 Sync >
|
|
|

. | . .

> Register n » o Synchronizer n »- Register n Sync »
|
|

1 Synchronization Done

Write[0:n] :
|
| Set 0y, Syncbusy Register 0 |-¢-Clear 0. :
Set 1, syncbusy Register 1 |a-Clear 1. |
|
|
|
Setn — Clear n I
== Syncbusy Register n [I |
|
|
|
1

5.3.1.2 Reading

When reading from Low Energy Peripherals, the data is synchronized regardless of the originating clock
domain. Registers updated/maintained by the Low Energy Peripheral are read directly from the Low
Energy clock domain. Registers residing in the core clock domain, are read from the core clock domain.
See Figure 5.4 (p. 21) for a more detailed overview of the read operation.

Note
Writing a register and then immediately reading back the value of the register may give the
impression that the write operation is complete. This is not necessarily the case. Please
refer to the SYNCBUSY register for correct status of the write operation to the Low Energy
Peripheral.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 5.4. Read operation from Low Energy Peripherals

Core Clock Domain Low Frequency Clock Domain

Freeze

[
|
|
|
Core Clock : Low Frequency Clock Low Frequency Clock
\
Register 0 : Synchronizer 0 Register 0 Sync
-y Register 1 { Synchronizer 1 Register 1 Sync
|
|
|
. | . .
-t Register n | Synchronizer n Register n Sync
|
|
| | |
|
|
- : HW Status Register 0 -
Read . - | HW Status Register 1 |« Low Energy
Synchronizer | Peripheral
| Main
! Function
| .
- | HW Status Register m -
Read Data :
|
|
I

5.3.2 FREEZE register

For Low Energy Peripherals there is a <module_name> FREEZE register (e.g. RTC_FREEZE),
containing a bit named REGFREEZE. If precise control of the synchronization process is required,
this bit may be utilized. When REGFREEZE is set, the synchronization process is halted, allowing
the software to write multiple Low Energy registers before starting the synchronization process, thus
providing precise control of the module update process. The synchronization process is started by
clearing the REGFREEZE bit.

5.4 Flash

The Flash retains data in any state and typically stores the application code, special user data and
security information. The Flash memory is typically programmed through the debug interface, but can
also be erased and written to from software.

e Up to 128 kB of memory

» Page size of 512 bytes (minimum erase unit)
e Minimum 20 000 erase cycles

» More than 10 years data retention at 85°C

» Lock-bits for memory protection

» Data retention in any state

5.5 SRAM

The primary task of the SRAM memory is to store application data. Additionally, it is possible to execute
instructions from SRAM, and the DMA may used to transfer data between the SRAM, Flash and
peripherals.

* Upto 16 kB memory
 Bit-band access support
» 4 kB blocks may be individually powered down when not in use

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

» Data retention of the entire memory in EMO to EM3

5.6 Device Information (DI) Page

The DI page contains calibration values, a unigue identification number and other useful data. See the
table below for a complete overview.

Table 5.4. Device Information Page Contents

0xOFE08020 CMU_LFRCOCTRL Register reset value.

O0xOFE08028 CMU_HFRCOCTRL Register reset value.

O0xOFE08030 CMU_AUXHFRCOCTRL Register reset value.

O0xOFE08040 ADCO_CAL Register reset value.

OxOFE08048 ADCO_BIASPROG Register reset value.

0xOFE08050 DACO_CAL Register reset value.

OxOFE08058 DACO_BIASPROG Register reset value.

O0xOFE08060 ACMPO_CTRL Register reset value.

0xOFE08068 ACMP1_CTRL Register reset value.

OxOFE08078 CMU_LCDCTRL Register reset value.

O0xOFE081B0 DI_CRC [15:0]: DI data CRC-16.

OxOFE081B2 CAL_TEMP_O [7:0] Calibration temperature (°C).

OxOFEO081B4 ADCO_CAL_1Vv25 [14:8]: Gain for 1V25 reference, [6:0]: Offset for 1V25
reference.

OxOFE081B6 ADCO_CAL_2V5 [14:8]: Gain for 2V5 reference, [6:0]: Offset for 2V5
reference.

OxOFE081B8 ADCO_CAL_VDD [14:8]: Gain for VDD reference, [6:0]: Offset for VDD
reference.

OxOFEO81BA ADCO_CAL_5VDIFF [14:8]: Gain for 5VDIFF reference, [6:0]: Offset for 5VDIFF
reference.

OxOFEO081BC ADCO_CAL_2XVvDD [14:8]: Reserved (gain for this reference cannot be
calibrated), [6:0]: Offset for 2XVDD reference.

OxOFEO81BE ADCO_TEMP_O_READ_1V25 [15:4] Temperature reading at 1V25 reference, [3:0]
Reserved.

OxOFE081C8 DACO_CAL_1Vv25 [22:16]: Gain for 1V25 reference, [13:8]: Channel 1 offset for
1V25 reference, [5:0]: Channel 0 offset for 1V25 reference.

OxOFEO81CC DACO_CAL_2V5 [22:16]: Gain for 2V5 reference, [13:8]: Channel 1 offset for
2V5 reference, [5:0]: Channel 0 offset for 2V5 reference.

0xOFEO081D0 DACO_CAL_VDD [22:16]: Reserved (gain for this reference cannot be
calibrated), [13:8]: Channel 1 offset for VDD reference, [5:0]:
Channel 0 offset for VDD reference.

OXOFE081D4 RESERVED [31:0] Reserved

OxOFE081D8 RESERVED [31:0] Reserved

OxOFE081DC HFRCO_CALIB_BAND_1 [7:0]: Tuning for the 1.2 MHZ HFRCO band.

OxOFE081DD HFRCO_CALIB_BAND_7 [7:0]: Tuning for the 6.6 MHZ HFRCO band.

OXOFE081DE HFRCO_CALIB_BAND_11 [7:0]: Tuning for the 11 MHZ HFRCO band.

2013-10-03 - Gecko Family - d0001_Rev1.20

www.Silabs.com

...the world's most energy friendly microcontrollers

OxOFEO81DF HFRCO_CALIB_BAND_14 [7:0]: Tuning for the 14 MHZ HFRCO band.

OxOFEO81EO HFRCO_CALIB_BAND_21 [7:0]: Tuning for the 21 MHZ HFRCO band.

OxOFEO81E1 HFRCO_CALIB_BAND_28 [7:0]: Tuning for the 28 MHZ HFRCO band.

OXOFEO81E7 MEM_INFO_PAGE_SIZE [7:0] Flash page size in bytes coded as 2 »
((MEM_INFO_PAGE_SIZE + 10) & OxFF). le. the value
OxFF =512 bytes.

OxOFEO81F0 UNIQUE_O [31:0] Unique number.

OxOFEO81F4 UNIQUE_1 [63:32] Unique number.

OxOFEO81F8 MEM_INFO_FLASH [15:0]: Flash size, kbyte count as unsigned integer (eg.
128).

OxOFEO81FA MEM_INFO_RAM [15:0]: Ram size, kbyte count as unsigned integer (eg. 16).

OXOFEO81FC PART_NUMBER [15:0]: EFM32 part number as unsigned integer (eg. 230).

OXOFEO81FE PART_FAMILY [7:0]: EFM32 part family number (Gecko = 71, Giant Gecko
=72, Tiny Gecko = 73, Leopard Gecko=74, Wonder
Gecko=75).

OxOFEO81FF PROD_REV [7:0]: EFM32 Production ID.

2013-10-03 - Gecko Family - d0001_Rev1.20

www.silabs.com

...the world's most energy friendly microcontrollers

6 DBG - Debug Interface

What?
3
The DBG (Debug Interface) is used to

program and debug EFM32G devices.

Why?
IO e

The Debug Interface makes it easy to re-
program and update the system in the field,
and allows debugging with minimal 1/O pin
usage.

ARM Cortex- M3

How?

The Cortex-M3 supports advanced
debugging features. EFM32G devices
only use two port pins for debugging or
programming. The internal and external state
of the system can be examined with debug
OO0 oOoOd extensions supporting instruction or data
access break- and watch points.

OO0 mmrrrr
uluuuuuuuu

¥

6.1 Introduction

The EFM32G devices include hardware debug support through a 2-pin serial-wire debug (SWD)
interface. In addition, there is also a Serial Wire Viewer pin which can be used to output profiling
information, data trace and software-generated messages.

For more technical information about the debug interface the reader is referred to:

* ARM Cortex-M3 Technical Reference Manual
* ARM CoreSight Components Technical Reference Manual
* ARM Debug Interface v5 Architecture Specification

6.2 Features

» Flash Patch and Breakpoint (FPB) unit

* Implement breakpoints and code patches
» Data Watch point and Trace (DWT) unit

» Implement watch points, trigger resources and system profiling
 Instrumentation Trace Macrocell (ITM)

» Application-driven trace source that supports printf style debugging

6.3 Functional Description

There are three debug pins and four trace pins available on the device. Operation of these pins are
described in the following section.

6.3.1 Debug Pins

The following pins are the debug connections for the device:

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

» Serial Wire Clock input (SWCLK): This pin is enabled after reset and has a built-in pull down.
« Serial Wire Data Input/Output (SWDIO): This pin is enabled after reset and has a built-in pull-up.
» Serial Wire Viewer (SWV): This pin is disabled after reset.

The debug pins can be enabled and disabled through GPIO_ROUTE, see Section 28.3.2.1 (p. 404)
. Please remeberer that upon disabling, debug contact with the device is lost. Also note that, because
the debug pins have pull-down and pull-up enabled by default, leaving them enabled might increase the
current consumption with up to 200 pA if left connected to supply or ground.

6.3.2 Debug and EM2/EM3

Leaving the debugger connected when issuing a WFI or WFE to enter EM2 or EM3 will make the system
enter a special EM2. This mode differs from regular EM2 and EMS3 in that the high frequency clocks
are still enabled, and certain core functionality is still powered in order to maintain debug-functionality.
Because of this, the current consumption in this mode is closer to EM1 and it is therefore important to
disconnect the debugger before doing current consumption measurements.

6.4 Debug Lock and Device Erase

The debug access to the Cortex-M3 is locked by clearing the Debug Lock Word (DLW) and resetting
the device, see Section 7.3.2 (p. 31) .

When debug access is locked, the debug interface remains accessible but the connection to the Cortex-
M3 core and the whole bus-system is blocked as shown in Figure 6.2 (p. 26). This mechanism is
controlled by the Authentication Access Port (AAP) as illustrated by Figure 6.1 (p. 25). The AAP is
only accessible from a debugger and not from the core.

Figure 6.1. AAP - Authentication Access Port

» DEVICEERASE

ERASEBUSY

Cortex
DLW[3:0] == OxF

v

SerialWire
debug « » SW-DP
interface

\ 4

AHB- AP

The debugger can access the AAP-registers, and only these registers just after reset, for the time of the
AAP-window outlined in Figure 6.2 (p. 26). If the device is locked, access to the core and bus-system
is blocked even after code execution starts, and the debugger can only access the AAP-registers. If the
device is not locked, the AAP is no longer accessible after code execution starts, and the debugger can
access the core and bus-system normally.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 6.2. Device Unlock

Reset

Program
execution
:

Locked No access >< AAP

—
150 us Program
exeqution
Unlocked No access >< AAP > Cortex
47 us

If the device is locked, it can be unlocked by writing a valid key to the AAP_CMDKEY register and then
setting the DEVICEERASE bit of the AAP_CMD register via the debug interface. The commands are not
executed before AAP_CMDKEY is invalidated, so this register should be cleared to to start the erase
operation. This operation erases the main block of flash, all lock bits are reset and debug access through
the AHB-AP is enabled. The operation takes 40 ms to complete. Note that the SRAM contents will also
be deleted during a device erase, while the UD-page is not erased.

Even if the device is not locked, the can device can be erased through the AAP, using the above
procedure during the AAP window. This can be useful if the device has been programmed with code that,
e.g., disables the debug interface pins on start-up, or does something else that prevents communication
with a debugger.

If the device is locked, the debugger may read the status from the AAP_STATUS register. When the
ERASEBUSY bit is set low after DEVICEERASE of the AAP_CMD register is set, the debugger may
set the SYSRESETREQ bit in the AAP_CMD register. After reset, the debugger may resume a normal
debug session through the AHB-AP. If the device is not locked, the device erase starts when the AAP
window closes, so it is not possible to poll the status.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

EFNVI'32

...the world's most energy friendly microcontrollers

6.5 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 AAP_CMD w1 Command Register

0x004 AAP_CMDKEY w1 Command Key Register
0x008 AAP_STATUS R Status Register

O0xOFC AAP_IDR R AAP Identification Register

6.6 Register Description

6.6.1 AAP_CMD - Command Register

Offset Bit Position

0x000 S|3 || |K|QQ|I|IQ |V |J|RI&E|F|g |83 |8 Y¥|2|8|o | S e “|e

Reset o | o

Access g
oY
£ <

Name m i
@ lw
A
bla

Bit NET[Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1 SYSRESETREQ 0 w1 System Reset Request

A system reset request is generated when set to 1. This register is write enabled from the AAP_CMDKEY register.
0 DEVICEERASE 0 w1 Erase the Flash Main Block, SRAM and Lock Bits

When set, all data and program code in the main block is erased, the SRAM is cleared and then the Lock Bit (LB) page is erased.
This also includes the Debug Lock Word (DLW), causing debug access to be enabled after the next reset. The information block
User Data page (UD) is left unchanged, but the User data page Lock Word (ULW) is erased. This register is write enabled from
the AAP_CMDKEY register.

6.6.2 AAP_CMDKEY - Command Key Register

Bit Position
0x004 S |83/ |IJI|Q(V|J |3 |5 |8 |Q|3 | (d|8|o|o|~jow|s|o N0
o
o
]
Reset 8
]
3
Access g
>
]
Name]
|_
x
2
Bit Name Reset Access Description
31:.0 WRITEKEY 0x00000000 w1 CMD Key Register

www.silabs.com

2013-10-03 - Gecko Family - d0001_Rev1.20

EFNVI'32 ...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

The key value must be written to this register to write enable the AAP_CMD register. After AAP_CMD is written, this register should
be cleared to excecute the command.

Value Mode Description
O0xCFACC118 WRITEEN Enable write to AAP_CMD

6.6.3 AAP_STATUS - Status Register

Offset Bit Position

0x008 S8 |||V |IJI|Q(V|J RIS |5 |82 |33 |d|S|o|o|~|ow|s|o|l~|d]|0

Reset o

Access 4
>
2

Name @
L
)
<
o
W

Bit Name Reset Access Description

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 ERASEBUSY 0 R Device Erase Command Status

This bit is set when a device erase is executing.

6.6.4 AAP_IDR - AAP Identification Register

Bit Position
O0xOFC S |83/ |IJI|Q(N|J RIS |5 |83 |d|8|o|o|~|ow|s|o|lN|d]|o
-
o
o
o
Reset]
o
-
x
o
Access x
Name o
Bit Name Reset Access Description
31:.0 ID 0x16E60001 R AAP Identification Register

Access port identification register in compliance with the ARM ADI v5 specification (JEDEC Manufacturer ID) .

2013-10-03 - Gecko Family - | : www.silabs.com

...the world's most energy friendly microcontrollers

©

01000101011011100110010101110010
01100111011110010010000001001101
01101001011000110111001001101111
00100000011100100111010101101100
01100101011100110010000001110100
01101000011001010010000001110111
01101111011100100110110001100100
00100000011011110110011000100000
01101100011011110111011100101101

7 MSC - Memory System Controller

What?

The user can perform Flash memory read,
read configuration and write operations
through the Memory System Controller
(MSC) .

Why?

The MSC allows the application code, user
data and flash lock bits to be stored in non-
volatile Flash memory. Certain memory
system functions, such as program memory
wait-states and bus faults are also configured
from the MSC peripheral register interface,
giving the developer the ability to dynamically
customize the memory system performance,
security level, energy consumption and error
handling capabilities to the requirements at
hand.

How?

\ 01100101011011100110010101110010
01100111011110010010000001101101
01101001011000110111001001101111
01100011011011110110111001110100
01110010011011110110110001101100
01100101011100100010000001100100
01100101011100110110100101100111
01101110001000010100010101101110

The MSC integrates a low-energy Flash

IP with a charge pump, enabling minimum
energy consumption while eliminating the
need for external programming voltage to
erase the memory. An easy to use write and
erase interface is supported by an internal,
fixed-frequency oscillator and autonomous
flash timing and control reduces software
complexity while not using other timer
resources.

Application code may dynamically scale
between high energy optimization and
high code execution performance through
advanced read modes.

7.1 Introduction

The Memory System Controller (MSC) is the program memory unit of the EFM32G microcontroller. The
flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided
into two blocks; the main block and the information block. Program code is normally written to the main
block. Additionally, the information block is available for special user data and flash lock bits. There is
also a read-only page in the information block containing system and device calibration data. Read and
write operations are supported in the energy modes EMO and EM1.

7.2 Features

* AHB read interface
» Scalable access performance to optimize the Cortex-M3 code interface
» Zero wait-state access up to 16 MHz and one wait-state for 16 MHz and above
» Advanced energy optimization functionality

www.Silabs.com

2013-10-03 - Gecko Family - d0001_Rev1.20

...the world's most energy friendly microcontrollers

» Conditional branch target prefetch suppression
« Cortex-M3 disfolding of if-then (IT) blocks
» DMA read support in EMO and EM1
* Command and status interface
» Flash write and erase
» Accessible from Cortex-M3 in EMO
* DMA write support in EMO and EM1
» Core clock independent Flash timing
* Internal oscillator and internal timers for precise and autonomous Flash timing
¢ General purpose timers are not occupied during Flash erase and write operations
« Need for special time scaling registers eliminated
» Configurable interrupt erase abort
» Improved interrupt predictability
» Memory and bus fault control
» Security features
» Lockable debug access
» Page lock bits
» User data lock bits
» End-of-write and end-of-erase interrupts

7.3 Functional Description

The size of the main block is device dependent. The largest size available is 128 kB (256 pages).
The information block has 512 bytes available for user data. The information block also contains chip
configuration data located in a reserved area. The main block is mapped to address 0x00000000 and
the information block is mapped to address OXxOFE00000. Table 7.1 (p. 30) outlines how the Flash
is mapped in the memory space. All Flash memory is organized into 512 byte pages.

Table 7.1. MSC Flash Memory Mapping

Main® 0 0x00000000 Software, debug | Yes User code and data 16 KB - 128 kB
Software, debug | Yes
255 0x0001FEO0O Software, debug | Yes
Reserved 0x00020000 - Reserved for flash ~24 MB
expansion
Information | 0 0xOFEO0000 Software, debug | Yes User Data (UD) 512B
0xOFE00200 - Reserved
1 0xOFE04000 Debug only Yes Lock Bits (LB) 512 B
0xOFE04200 - Reserved
2 OxOFEO8000 Yes Device Information 512B
(D)
0xOFE08200 - Reserved
Reserved 0xOFE10000 - Reserved for flash Rest of code
expansion space

1Block/page erased by a device erase

2013-10-03 - Gecko Family - d0001_Rev1.20

www.Silabs.com

...the world's most energy friendly microcontrollers

7.3.1 User Data (UD) Page Description

This is the user data page in the information block. The page can be erased and written by software. The
page is erased by the ERASEPAGE command of the MSC_WRITECMD register. Note that the page is
not erased by a device erase operation. The device erase operation is described in Section 6.4 (p. 25) .

7.3.2 Lock Bits (LB) Page Description
This page contains the following information:

* Debug Lock Word (DLW)
* User data page Lock Word (ULW)
» Main block Page Lock Words (PLWSs)

The words in this page are organized as shown in Table 7.2 (p. 31) :

Table 7.2. Lock Bits Page Structure

127 DLW
126 ULW

N PLWI[N]
1 PLW[1]
0 PLW[O]

Word 127 is the debug lock word (DLW). Bit 0 of this word is the debug lock bit. If this bit is 1, then
debug access is enabled. Debug access to the core is disabled from power-on reset until the DLW is
evaluated immediately before the Cortex-M3 starts execution of the user application code. If the bit is
0, then debug access to the core remains blocked.

Word 126 is the user page lock word (ULW). Bit O of this word is the page lock bit. The lock bits can
be reset by a device erase operation initiated from the Authentication Access Port (AAP) registers. The
AAP is described in more detail in Section 6.4 (p. 25) . Note that the AAP is only accessible from the
debug interface, and cannot be accessed from the Cortex-M3 core.

There are 32 page lock bits per page lock word (PLW). Bit O refers to the first page and bit 31 refers to
the last page within a PLW. Thus, PLW[0] contains lock bits for page 0-31 in the main block. Similarly,
PLWI[1] contains lock bits for page 32-63 and so on. A page is locked when the bit is 0. A locked page
cannot be erased or written.

The lock bits can be reset by a device erase operation initiated from the Authentication Access Port
(AAP) registers. The AAP is described in more detail in Section 6.4 (p. 25) . Note that the AAP is only
accessible from the debug interface, and cannot be accessed from the Cortex-M3 core.

7.3.3 Device Information (DI) Page

This read-only page holds the calibration data for the oscillator and other analog peripherals from the
production test as well as a unique device ID. The page is further described in Section 5.6 (p. 22) .

7.3.4 Device Revision

The device revision number is read from the ROM Table. The major revision number and the chip family
number is read from PIDO and PIDL1 registers. The minor revision number is extracted from the PID2 and
PID3 registers, as illustrated in Figure 7.1 (p. 32). The Fam[5:2] and Fam[1:0] must be combined

to complete the chip family number, while the Minor Rev[7:4] and Minor Rev[3:0] must be combined to
form the complete revision number.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 7.1. Revision Number Extraction

PID2 (OXEQOFFFE8) PID3 (0xEOQFFFEC)
31:8 7:4 3.0 31:8 7:4 3.0
Minor Rev[7:4] Minor Rev[3:0]
PIDO (OXxEOOFFFEQ) PID1 (OXEOOFFFE4)
31:7 6:5 5:0 31:4 3.0
Fam[1:0] |Major Rev[5:0] Fam[5:2]

For the Gecko family, the chip family number is 0x0 and the major revision number is Ox1. The minor
revision number is to be interpreted according to Table 7.3 (p. 32) .

Table 7.3. Revision Number Interpretation

0x00 A
0x01 B
0x02 C

7.3.5 Post-reset Behavior

Calibration values are automatically written to registers by the MSC before application code startup. The
values are also available to read from the DI page for later reference by software. Other information
such as the device ID and production date is also stored in the DI page and is readable from software.

7.3.5.1 One Wait-state Access

After reset, the HFCORECLK is normally 14 MHz from the HFRCO and the MODE field of the
MSC_READCTRL register is set to WS1 (one wait-state). The reset value must be WS1 as an
uncalibrated HFRCO may produce a frequency higher than 16 MHz. Software must not select a zero
wait-state mode unless the clock is guaranteed to be 16 MHz or below, otherwise the resulting behavior
is undefined. If a HFCORECLK frequency above 16 MHz is to be set by software, the MODE field of
the MSC_READCTRL register must be set to WS1 or WS1SCBTP before the core clock is switched to
the higher frequency clock source.

When changing to a lower frequency, the MODE field of the MSC_READCTRL register can be set to
WSO0 or WSOSCBTP, but only after the frequency transition is completed. If the HFRCO is used, wait
until the oscillator is stable on the new frequency. Otherwise, the behavior is unpredictable.

7.3.5.2 Zero Wait-state Access

At 16 MHz and below, read operations from flash may be performed without any wait-states. Zero wait-
state access greatly improves code execution performance at frequencies from 16 MHz and below.
By default, the Cortex-M3 uses speculative prefetching and If-Then block folding to maximize code
execution performance at the cost of additional flash accesses and energy consumption.

7.3.5.3 Suppressed Conditional Branch Target Prefetch (SCBTP)

MSC offers a special instruction fetch mode which optimizes energy consumption by cancelling Cortex-
M3 conditional branch target prefetches. Normally, the Cortex-M3 core prefetches both the next
sequential instruction and the instruction at the branch target address when a conditional branch
instruction reaches the pipeline decode stage. This prefetch scheme improves performance while one

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

extra instruction is fetched from memory at each conditional branch, regardless of whether the branch is
taken or not. To optimize for low energy, the MSC can be configured to cancel these speculative branch
target prefetches. With this configuration, energy consumption is more optimal, as the branch target
instruction fetch is delayed until the branch condition is evaluated.

The performance penalty with this mode enabled is source code dependent, but is normally less than
1% for core frequencies from 16 MHz and below. To enable the mode at frequencies from 16 MHz and
below write WSOSCBTP to the MODE field of the MSC_READCTRL register. For frequencies above 16
MHz, use the WS1SCBTP mode. An increased performance penalty per clock cycle must be expected
compared to WSOSCBTP mode. The performance penalty in WS1SCBTP mode depends greatly on the
density and organization of conditional branch instructions in the code.

7.3.5.4 Cortex-M3 If-Then Block Folding

The Cortex-M3 offers a mechanism known as if-then block folding. This is a form of speculative
prefetching where small if-then blocks are collapsed in the prefetch buffer if the condition evaluates to
false. The instructions in the block then appear to execute in zero cycles. With this scheme, performance
is optimized at the cost of higher energy consumption as the processor fetches more instructions from
memory than it actually executes. To disable the mode, write a 1 to the DISFOLD bit in the NVIC Auxiliary
Control Register; see the Cortex-M3 Technical Reference Manual for details. Normally, it is expected
that this feature is most efficient at core frequencies above 16 MHz. Folding is enabled by default.

7.3.6 Erase and Write Operations

Both page erase and write operations require that the address is written into the MSC_ADDRSB register.
For erase operations, the address may be any within the page to be erased. Load the address by
writing 1 to the LADDRIM bit in the MSC_WRITECMD register. The LADDRIM bit only has to be written
once when loading the first address. After each word is written the internal address register ADDR
will be incremented automatically by 4. The INVADDR bit of the MSC_STATUS register is set if the
loaded address is outside the flash and the LOCKED bit of the MSC_STATUS register is set if the page
addressed is locked. Any attempts to command erase of or write to the page are ignored if INVADDR
or the LOCKED bits of the MSC_STATUS register are set.

When a word is written to the MSC_WDATA register, the WDATAREADY bit of the MSC_STATUS
register is cleared. When this status bit is set, software or DMA may write the next word.

A single word write is commanded by setting the WRITEONCE bit of the MSC_WRITECMD register.
The operation is complete when the BUSY bit of the MSC_STATUS register is cleared and control of
the flash is handed back to the AHB interface, allowing application code to resume execution.

For a DMA write the software must write the first word to the MSC_WDATA register and then set the
WRITETRIG bit of the MSC_WRITECMD register. DMA triggers when the WDATAREADY bit of the
MSC_STATUS register is set.

Itis possible to write words twice between each erase by keeping at 1 the bits that are not to be changed.
Let us take as an example writing two 16 bit values, OXAAAA and 0x5555. To safely write them in the
same flash word this method can be used:

* Write OXFFFFAAAA (word in flash becomes OXFFFFAAAA)
* Write Ox5555FFFF (word in flash becomes O0x5555AAAA)

Note
The WRITEONCE, WRITETRIG and ERASEPAGE bits in the MSC_WRITECMD register
cannot safely be written from code in Flash. It is recommended to place a small code
section in RAM to set these bits and wait for the operation to complete. Also note that
DMA transfers to or from any other address in Flash while a write or erase operation is in
progress will produce unpredictable results.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Note
The MSC_WDATA and MSC_ADDRB registers are not retained when entering EM2 or
lower energy modes.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

EFNVI'32

...the world's most energy friendly microcontrollers

7.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 MSC_CTRL RW Memory System Control Register
0x004 MSC_READCTRL RW Read Control Register

0x008 MSC_WRITECTRL RW Write Control Register

0x00C MSC_WRITECMD w1 Write Command Register

0x010 MSC_ADDRB RW Page Erase/Write Address Buffer
0x018 MSC_WDATA RW Write Data Register

0x01C MSC_STATUS R Status Register

0x02C MSC_IF R Interrupt Flag Register

0x030 MSC_IFS w1 Interrupt Flag Set Register
0x034 MSC_IFC w1 Interrupt Flag Clear Register
0x038 MSC_IEN RW Interrupt Enable Register

0x03C MSC_LOCK RW Configuration Lock Register

7.5 Register Description

7.5.1 MSC_CTRL - Memory System Control Register

Offset Bit Position

0x000 SIS IRXIQIKIQQII |V |V[J |38 |5 |2 |23 |G8/Y |2 |S|o|o|~|ow |t |o|n|-d]|o0

Reset

Access E
'_
-

Name 2
[T
%}
>
m

Bit Name Reset Access Description

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 BUSFAULT 1 RW Bus Fault Response Enable

When this bit is set, the memory system generates bus error response.

Value Mode Description
0 GENERATE A bus fault is generated on access to unmapped code and system space.
1 IGNORE Accesses to unmapped address space is ignored.

7.5.2 MSC_READCTRL - Read Control Register

Offset

Bit Position

J4 oo |o |~ |ow m|lN|[d|lo|o|o|~|w©|w olN 4o

0x004 > 8| QIQIF|IL|JI QNIRRT |58 |2 |33y |d|S|o|o|~|jowv [T |m a0
o

Reset X
S

Access 2
a4
a

Name
o
=

2013-10-03 - Gecko Family - d0001_Rev1.20

www.silabs.com

...the world's most energy friendly microcontrollers

SiES

Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2:0

MODE 0x1 RW Read Mode

If software wants to set a core clock frequency above 16 MHz, this register must be set to WS1 or WS1SCBTP before the core
clock is switched to the higher frequency. When changing to a lower frequency, this register can be set to WSO or WSOSCBTP
after the frequency transition has been completed. After reset, the core clock is 14 MHz from the HFRCO but the MODE field of
MSC_READCTRL register is set to WS1. This is because the HFRCO may produce a frequency above 16 MHz before it is calibrated.
If the HFRCO is used as clock source, wait until the oscillator is stable on the new frequency to avoid unpredictable behavior.

Value Mode
0 WS0
1 Ws1

Description

Zero wait-states inserted in fetch or read transfers.

One wait-state inserted for each fetch or read transfer. This mode is required for a core
frequency above 16 MHz.

2 WSO0SCBTP Zero wait-states inserted with the Suppressed Conditional Branch Target Prefetch
(SCBTP) function enabled. SCBTP saves energy by delaying the Cortex' conditional
branch target prefetches until the conditional branch instruction is in the execute stage.
When the instruction reaches this stage, the evaluation of the branch condition is
completed and the core does not perform a speculative prefetch of both the branch
target address and the next sequential address. With the SCBTP function enabled,
one instruction fetch is saved for each branch not taken, with a negligible performance
penalty.

3 WS1SCBTP One wait-state access with SCBTP enabled.

7.5.3 MSC_WRITECTRL - Write Control Register

oo |5|8|g|8|s|gals|a|n|n|r|ge]x]e]a]a[alaaa]o]e]~]da] o]0]-]o
Reset
Access = E
'_
S
zZ
Name 2|y
W @
Q=2
X
L
o
x
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1 IRQERASEABORT 0 RW Abort Page Erase on Interrupt
When this bit is set to 1, any Cortex interrupt aborts any current page erase operation. Executing that interrupt vector from Flash
will halt the CPU.
0 WREN 0 RW Enable Write/Erase Controller

When this bit is set, the MSC write and erase functionality is enabled.

7.5.4 MSC_WRITECMD - Write Command Register

— — —
Reset o o|o | o
Access g g s E E
Name

WRITETRIG
WRITEONCE
WRITEEND
ERASEPAGE
LADDRIM

2013-10-03 - Gecko Family - d0001_Rev1.20

www.Silabs.com

EFNVI'32 ...the world's most energy friendly microcontrollers

Bit Name Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4 WRITETRIG 0 w1 Word Write Sequence Trigger

Functions like MSC_CMD_WRITEONCE, but will set MSC_STATUS_WORDTIMEOUT if no new data is written to MSC_WDATA
within the 30 ps timeout.

3 WRITEONCE 0 w1 Word Write-Once Trigger

Start write of the first word written to MSC_WDATA, then add 4 to ADDR and write the next word if available within a 30 ps timeout.
When ADDR is incremented past the page boundary, ADDR is set to the base of the page.

2 WRITEEND 0 w1 End Write Mode
Write 1 to end write mode when using the WRITETRIG command.

1 ERASEPAGE 0 w1 Erase Page

Erase any user defined page selected by the MSC_ADDRSB register. The WREN bit in the MSC_WRITECTRL register must be set
in order to use this command.

0 LADDRIM 0 W1 Load MSC_ADDRB into ADDR

Load the internal write address register ADDR from the MSC_ADDRB register. The internal address register ADDR is incremented
automatically by 4 after each word is written. When ADDR is incremented past the page boundary, ADDR is set to the base of the page.

7.5.5 MSC_ADDRSB - Page Erase/Write Address Buffer

Offset Bit Position
0x010 S| |J|QYQ IV |J |85 |8 |83 QY| |S|o|o|~|ojw | |o|~|c|0
o
o
o
o
Reset 8
o
R
o
Access E
om
Name g
a
<
Bit Name Reset Access Description
31:.0 ADDRB 0x00000000 RW Page Erase or Write Address Buffer

This register holds the page address for the erase or write operation. This register is loaded into the internal MSC_ADDR register
when the LADDRIM field in MSC_WRITECMD is set. The MSC_ADDR register is not readable. This register is not retained when
entering EM2 or lower energy modes.

7.5.6 MSC_WDATA - Write Data Register

Offset Bit Position
0x018 5|8 |||V IQQ|II|Q(V|J |3 |58 (2|3 Qs |d|8|o|o|~|ow|s o ln|d]|o

o

o

o

8
Reset 8

o

(=]

x

o

2
Access 5

<
Name '5;

a

2

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

EFNVI'32 ...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

31:0 WDATA 0x00000000 RW Write Data

The data to be written to the address in MSC_ADDR. This register must be written when the WDATAREADY bit of MSC_STATUS
is set, otherwise the data is ignored. This register is not retained when entering EM2 or lower energy modes.

7.5.7 MSC_STATUS - Status Register

Offset Bit Position

A A R N N N M N R I R B A R R A A R R I B
Reset o|lo|d|o|o|o
Access r ||| |x|x

2152
= < |x|o
Name clelLlglg|a
[a) El<|<|O|=2
<t E|S |0 | ™
w | < |
nlx |52
R
RS
Bit Name Reset Access Description
31.6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 ERASEABORTED 0 R The Current Flash Erase Operation Aborted
When set, the current erase operation was aborted by interrupt.
4 WORDTIMEOUT 0 R Flash Write Word Timeout
When this bit is set, MSC_WDATA was not written within the timeout. The flash write operation timed out and access to the
flash is returned to the AHB interface. This bit is cleared when the ERASEPAGE, WRITETRIG or WRITEONCE commands in
MSC_WRITECMD are triggered.
3 WDATAREADY 1 R WDATA Write Ready
When this bit is set, the content of MSC_WDATA is read by MSC Flash Write Controller and the register may be updated with the
next 32-bit word to be written to flash. This bit is cleared when writing to MSC_WDATA.
2 INVADDR 0 R Invalid Write Address or Erase Page
Set when software attempts to load an invalid (unmapped) address into ADDR.
1 LOCKED 0 R Access Locked
When set, the last erase or write is aborted due to erase/write access constraints.
0 BUSY 0 R Erase/Write Busy

When set, an erase or write operation is in progress and new commands are ignored.

7.5.8 MSC_IF - Interrupt Flag Register

Bit Position
0x02C SI3IRXIQ|IXIQQII|Q|V[J[R[g& |5 |2 |23 |8Y |2 |S|o|o|~|ow |t | o|n|-d]|o
Reset o | o
Access x|
] 1]
Name E2
i
2w
Bit NE] Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

EFNVI'32

...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

1 WRITE 0 R Write Done Interrupt Read Flag
Set when a write is done.

0 ERASE 0 R Erase Done Interrupt Read Flag

Set when erase is done.

7.5.9 MSC_IFS - Interrupt Flag Set Register

Offset Bit Position
0x030 5|83 |Q|J QI |Q(J|J|RISI3 |5 |9 |a|3 |8 |32]|@ Wit |o || |0
Reset o | o
Access E
w
Name g 2
lx
2 | W
Bit Name Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1 WRITE 0 w1 Write Done Interrupt Set

Set the write done bit and generate interrupt.

0 ERASE 0 w1 Erase Done Interrupt Set

Set the erase done bit and generate interrupt.

7.5.10 MSC_IFC - Interrupt Flag Clear Register

Bit Position

0x034 5|87 |IJI ||V |J |3 |5 |8 |a|3 |38 |3 |28]|@ wl s |m oA |0
Reset o o
Access g
Name ui:J I‘Z:J)

s &
Bit NE] Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1 WRITE 0 w1 Write Done Interrupt Clear

Clear the write done bit.

0 ERASE 0 w1 Erase Done Interrupt Clear

Clear the erase done bit.

2013-10-03 - Gecko Family -

www.silabs.com

EFNVI'32

...the world's most energy friendly microcontrollers

7.5.11 MSC_IEN - Interrupt Enable Register

Offset Bit Position

O A N R N R N N E B A A B R A D A R A A R R

Reset

Access 5

Name IEJ I:IQJ
s &

Bit NETg[] Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1 WRITE 0 RW Write Done Interrupt Enable

Enable the write done interrupt.
0 ERASE 0 RW Erase Done Interrupt Enable

Enable the erase done interrupt.

7.5.12 MSC_LOCK - Configuration Lock Register

Offset Bit Position
0x03C SI13I|IQ IR IQEII|Q|V[(J|RIZ&8 |5 |2 |23 |82 |S|o|o|~|ojw |t |m|n|d]|o0
o
o
Reset 8
x
o
Access E
>-
1N}
Name ¥
o
o]
-
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0 LOCKKEY 0x0000 RW Configuration Lock

Write any other value than the unlock code to lock access to MSC_CTRL, MSC_READCTRL and MSC_WRITECTRL. Write the

unlock code to enable access. When reading the register, bit O is set when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 MSC registers are unlocked.
LOCKED 1 MSC registers are locked.
Write Operation

LOCK 0 Lock MSC registers.
UNLOCK 0x1B71 Unlock MSC registers.

2013-10-03 - Gecko Family - d0001_Rev1.20

www.silabs.com

...the world's most energy friendly microcontrollers

8 DMA - DMA Controller

What?
3
The DMA controller can move data without

CPU intervention, effectively reducing the
energy consumption for a data transfer.

Why?

The DMA can perform data transfers more
energy efficiently than the CPU and allows
autonomous operation in low energy modes.
The LEUART can for instance provide full

Hash

l

RAM UART communication in EM2, consuming
————— only a few pA by using the DMA to move data
DVMA [between the LEUART and RAM.
controller |g
- p.| External Bus How?
Interface
The DMA controller has multiple highly
configurable, prioritized DMA channels.
el Advanced transfer modes such as ping-pong

and scatter-gather make it possible to tailor
the controller to the specific needs of an
application.

8.1 Introduction

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables
the system to stay in low energy modes for example when moving data from the USART to RAM or
from the External Bus Interface (EBI) to the DAC. The DMA controller uses the PL230 uDMA controller
licensed from ARM™. Each of the PL230s channels on the EFM32 can be connected to any of the EFM32
peripherals.

8.2 Features

» The DMA controller is accessible as a memory mapped peripheral
» Possible data transfers include

 RAM/EBI/Flash to peripheral

* RAM/EBI to Flash

» Peripheral to RAM/EBI

* RAM/EBI/Flash to RAM/EBI
» The DMA controller has 8 independent channels
« Each channel has one (primary) or two (primary and alternate) descriptors
» The configuration for each channel includes

» Transfer mode

* Priority

» Word-count

» Word-size (8, 16, 32 hit)
» The transfer modes include

» Basic (using the primary or alternate DMA descriptor)

1ARM PL230 homepage [http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html]

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html

...the world's most energy friendly microcontrollers

» Ping-pong (switching between the primary or alternate DMA descriptors, for continuous data flow
to/from peripherals)
» Scatter-gather (using the primary descriptor to configure the alternate descriptor)
» Each channel has a programmable transfer length
* Channels 0 and 1 support looped transfers
e Channel 0 supports 2D copy
* A DMA channel can be triggered by any of several sources:
e Communication modules (USART, UART, LEUART)
* Timers (TIMER)
* Analog modules (DAC, ACMP, ADC)
» External Bus Interface (EBI)
» Software
e Programmable mapping between channel number and peripherals - any DMA channel can be
triggered by any of the available sources
* Interrupts upon transfer completion
« Data transfer to/from LEUART in EM2 is supported by the DMA, providing extremely low energy
consumption while performing UART communications

8.3 Block Diagram

An overview of the DMA and the modules it interacts with is shown in Figure 8.1 (p. 42) .

Figure 8.1. DMA Block Diagram

Interrupts

Cortex
AHB
APB block AHB block
Configuration APB . DMA data
AHB to control memory AHB- Lite transfer
APB mapped master
bridge PP interface
\ registers
Configuration
Error
Peripheral
Channel DMA Core
select REQ/ Channel
I ACK done
— Peripheral
DMA control block

The DMA Controller consists of four main parts:

* An APB block allowing software to configure the DMA controller

* An AHB block allowing the DMA to read and write the DMA descriptors and the source and destination
data for the DMA transfers

» A DMA control block controlling the operation of the DMA, including request/acknowledge signals for
the connected peripherals

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

» A channel select block routing the right peripheral request to each DMA channel

8.4 Functional Description

The DMA Controller is highly flexible. It is capable of transferring data between peripherals and memory
without involvement from the processor core. This can be used to increase system performance by
off-loading the processor from copying large amounts of data or avoiding frequent interrupts to service
peripherals needing more data or having available data. It can also be used to reduce the system energy
consumption by making the DMA work autonomously with the LEUART for data transfer in EM2 without
having to wake up the processor core from sleep.

The DMA Controller contains 8 independent channels. Each of these channels can be connected to any
of the available peripheral trigger sources by writing to the configuration registers, see Section 8.4.1 (p.
43) . In addition, each channel can be triggered by software (for large memory transfers or for
debugging purposes).

What the DMA Controller should do (when one of its channels is triggered) is configured through channel
descriptors residing in system memory. Before enabling a channel, the software must therefore take
care to write this configuration to memory. When a channel is triggered, the DMA Controller will first read
the channel descriptor from system memory, and then it will proceed to perform the memory transfers
as specified by the descriptor. The descriptor contains the memory address to read from, the memory
address to write to, the number of bytes to be transferred, etc. The channel descriptor is described in
detail in Section 8.4.3 (p. 53) .

In addition to the basic transfer mode, the DMA Controller also supports two advanced transfer modes;
ping-pong and scatter-gather. Ping-pong transfers are ideally suited for streaming data for high-speed
peripheral communication as the DMA will be ready to retrieve the next incoming data bytes immediately
while the processor core is still processing the previous ones (and similarly for outgoing communication).
Scatter-gather involves executing a series of tasks from memory and allows sophisticated schemes to
be implemented by software.

Using different priority levels for the channels and setting the number of bytes after which the DMA
Controller re-arbitrates, it is possible to ensure that timing-critical transfers are serviced on time.

8.4.1 Channel Select Configuration

The channel select block allows selecting which peripheral's request lines (dma_req, dma_sreq) to
connect to each DMA channel.

This configuration is done by software through the control registers DMA_CHO CTRL-
DMA CH7_CTRL, with SOURCESEL and SIGSEL components. SOURCESEL selects which peripheral
to listen to and SIGSEL picks which output signals to use from the selected peripheral.

All peripherals are connected to dma_req. When this signal is triggered, the DMA performs a number
of transfers as specified by the channel descriptor (2R). The USARTSs are additionally connected to the
dma_sreq line. When only dma_sreq is asserted but not dma_req, then the DMA will perform exactly
one transfer only (given that dma_sreq is enabled by software).

8.4.2 DMA control

8.4.2.1 DMA arbitration rate

You can configure when the controller arbitrates during a DMA transfer. This enables you to reduce the
latency to service a higher priority channel.

The controller provides four bits that configure how many AHB bus transfers occur before it re-arbitrates.
These bits are known as the R_power bits because the value you enter, R, is raised to the power of two

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

and this determines the arbitration rate. For example, if R =4 then the arbitration rate is 2* that is, the
controller arbitrates every 16 DMA transfers.

Table 8.1 (p. 44) lists the arbitration rates.

Table 8.1. AHB bus transfer arbitration interval

R_power Arbitrate after x DMA transfers
b0000 x=1
b0001 x=2
b0010 xX=4
b0011 x=8
b0100 x=16
b0101 x=32
b0110 X =64
b0111 x=128
b1000 x =256
b1001 x=512

b1010-b1111 x=1024

Note
You must take care not to assign a low-priority channel with a large R_power because this
prevents the controller from servicing high-priority requests, until it re-arbitrates.

The number of dma transfers N that need to be done is specified by the user. When N > 2R and is not an
integer multiple of 2R then the controller always performs sequences of 2R transfers until N < 2% remain
to be transferred. The controller performs the remaining N transfers at the end of the DMA cycle.

You store the value of the R_power bits in the channel control data structure. See Section 8.4.3.3 (p.
56) for more information about the location of the R_power bits in the data structure.

8.4.2.2 Priority

When the controller arbitrates, it determines the next channel to service by using the following
information:

* the channel number
« the priority level, default or high, that is assigned to the channel.

You can configure each channel to use either the default priority level or a high priority level by setting
the DMA_CHPRIS register.

Channel number zero has the highest priority and as the channel number increases, the priority of a
channel decreases. Table 8.2 (p. 44) lists the DMA channel priority levels in descending order of
priority.

Table 8.2. DMA channel priority

Channel Priority level Descending order of

number setting channel priority

0 High Highest-priority DMA channel
1 High

2 High

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Channel Priority level Descending order of
number setting channel priority

3 High -

4 High -

5 High -

6 High -

7 High -

0 Default -

1 Default -

2 Default -

3 Default -

4 Default -

5 Default -

6 Default -

7 Default Lowest-priority DMA channel

After a DMA transfer completes, the controller polls all the DMA channels that are available. Figure 8.2 (p.
45) shows the process it uses to determine which DMA transfer to perform next.

Figure 8.2. Polling flowchart

(Start polling)

&
<

Y

Is there
a channel
request ?

Yes

Are any
channel requests
using a high priority-
level ?

Yes

| ,

Select channel that has
the lowest channel
number and is set to

high priority- level

Select channel that has
the lowest channel
number

v
(Start DMA transfer)

8.4.2.3 DMA cycle types

The cycle_ctrl bits control how the controller performs a DMA cycle. You can set the cycle_ctrl bits as
Table 8.3 (p. 46) lists.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Table 8.3. DMA cycle types

cycle_ctrl Description

b000 Channel control data structure is invalid

b001 Basic DMA transfer

b010 Auto-request

b011 Ping-pong

b100 Memory scatter-gather using the primary data structure

b101 Memory scatter-gather using the alternate data structure

b110 Peripheral scatter-gather using the primary data structure

b111 Peripheral scatter-gather using the alternate data structure
Note

The cycle_ctrl bits are located in the channel_cfg memory location that Section 8.4.3.3 (p.
56) describes.

For all cycle types, the controller arbitrates after 2% DMA transfers. If you set a low-priority channel with
alarge 2% value then it prevents all other channels from performing a DMA transfer, until the low-priority
DMA transfer completes. Therefore, you must take care when setting the R_power, that you do not
significantly increase the latency for high-priority channels.

8.4.2.3.1 Invalid

After the controller completes a DMA cycle it sets the cycle type to invalid, to prevent it from repeating
the same DMA cycle.

8.4.2.3.2 Basic

In this mode, you configure the controller to use either the primary or the alternate data structure. After
you enable the channel C and the controller receives a request for this channel, then the flow for this
DMA cycle is as follows:

1. The controller performs 2R transfers. If the number of transfers remaining becomes zero, then the
flow continues at step 3 (p. 46) .

2. The controller arbitrates:
« if a higher-priority channel is requesting service then the controller services that channel
« if the peripheral or software signals a request to the controller then it continues at step 1 (p. 46) .

3. The controller sets dnma_done[C] HIGH for one HFCORECLK cycle. This indicates to the host
processor that the DMA cycle is complete.

8.4.2.3.3 Auto-request

When the controller operates in this mode, it is only necessary for it to receive a single request to enable
it to complete the entire DMA cycle. This enables a large data transfer to occur, without significantly
increasing the latency for servicing higher priority requests, or requiring multiple requests from the
processor or peripheral.

You can configure the controller to use either the primary or the alternate data structure. After you enable
the channel C and the controller receives a request for this channel, then the flow for this DMA cycle
is as follows:

1. The controller performs 2R transfers for channel C. If the number of transfers remaining is zero the
flow continues at step 3 (p. 47) .

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

2. The controller arbitrates. When channel C has the highest priority then the DMA cycle continues at
step 1 (p. 46) .

3. The controller sets dma_done[C] HIGH for one HFCORECLK cycle. This indicates to the host
processor that the DMA cycle is complete.

8.4.2.3.4 Ping-pong
In ping-pong mode, the controller performs a DMA cycle using one of the data structures (primary or
alternate) and it then performs a DMA cycle using the other data structure. The controller continues to
switch from primary to alternate to primary... until it reads a data structure that is invalid, or until the
host processor disables the channel.
Figure 8.3 (p. 47) shows an example of a ping-pong DMA transaction.

Figure 8.3. Ping-pong example

Task A: Primary, cycle_ctrl = b011, 2R= 4,N=6

Task A
Request—»
Request—»
qu - dma_done[C]
Task B: Alternate, cycle_ctrl = b011, 2R = 4, N = 1\2\
Task B
Request—»
Request—»
Request—»
dma_done[C]
R —
Task C: Primary, cycle_ctrl = b011, 2%= 2, N= 2 V/
Request—» Task €
q - dma_done[C]
Task D: Alternate, cycle_ctrl = b011, 2%= 4, N = \
Task D
Request—»
R —>
equest dma_done[C]
Task E: Primary, cycle_ctrl = b011,28=4,N= 7 v/
Task E
Request—»
Request—»
- dma_done[C]

End: Alternate, cycle_ctrl = b000

In Figure 8.3 (p. 47) :

Task A 1. The host processor configures the primary data structure for task A.

2. The host processor configures the alternate data structure for task B. This enables the
controller to immediately switch to task B after task A completes, provided that a higher
priority channel does not require servicing.

. The controller receives a request and performs four DMA transfers.

4. The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.

w

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

5. The controller performs the remaining two DMA transfers.
6. The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

After task A completes, the host processor can configure the primary data structure for task C. This
enables the controller to immediately switch to task C after task B completes, provided that a higher
priority channel does not require servicing.

After the controller receives a new request for the channel and it has the highest priority then task B
commences:

Task B 7. The controller performs four DMA transfers.

8. The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.

9. The controller performs four DMA transfers.

10The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.

11The controller performs the remaining four DMA transfers.

12The controller sets dnma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

After task B completes, the host processor can configure the alternate data structure for task D.

After the controller receives a new request for the channel and it has the highest priority then task C
commences:

Task C 13The controller performs two DMA transfers.
14The controller sets dnma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

After task C completes, the host processor can configure the primary data structure for task E.

After the controller receives a new request for the channel and it has the highest priority then task D
commences:

Task D 15The controller performs four DMA transfers.
16The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.
17The controller performs the remaining DMA transfer.
18The controller sets dna_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

After the controller receives a new request for the channel and it has the highest priority then task E
commences:

Task E 19The controller performs four DMA transfers.
20The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.
21The controller performs the remaining three DMA transfers.
22The controller sets dnma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

If the controller receives a new request for the channel and it has the highest priority then it attempts to
start the next task. However, because the host processor has not configured the alternate data structure,

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

and on completion of task D the controller set the cycle_ctrl bits to b000, then the ping-pong DMA
transaction completes.

Note
You can also terminate the ping-pong DMA cycle in Figure 8.3 (p. 47) , if you configure
task E to be a basic DMA cycle by setting the cycle_ctrl field to 3'b001.

8.4.2.3.5 Memory scatter-gather

In memory scatter-gather mode the controller receives an initial request and then performs four DMA
transfers using the primary data structure. After this transfer completes, it starts a DMA cycle using the
alternate data structure. After this cycle completes, the controller performs another four DMA transfers
using the primary data structure. The controller continues to switch from primary to alternate to primary...
until either:

« the host processor configures the alternate data structure for a basic cycle
* it reads an invalid data structure.

Note
After the controller completes the N primary transfers it invalidates the primary data
structure by setting the cycle_ctrl field to b00O.

The controller only asserts dna_done[C] when the scatter-gather transaction completes using an auto-
request cycle.

In scatter-gather mode, the controller uses the primary data structure to program the alternate data
structure. Table 8.4 (p. 49) lists the fields of the channel_cfg memory location for the primary data
structure, that you must program with constant values and those that can be user defined.

Table 8.4. channel_cfg for a primary data structure, in memory scatter-gather mode

Bit Field Value Description

Constant-value fields:

[31:30} dst_inc b10 Configures the controller to use word increments for the address

[29:28] dst_size b10 Configures the controller to use word transfers

[27:26] src_inc b10 Configures the controller to use word increments for the address

[25:24] src_size b10 Configures the controller to use word transfers

[17:14] R_power b0010 Configures the controller to perform four DMA transfers

[3] next_useburst 0 For a memory scatter-gather DMA cycle, this bit must be set to zero
[2:0] cycle_ctrl b100 Configures the controller to perform a memory scatter-gather DMA cycle

User defined values:

[23:21] dst_prot_ctrl - Configures the state of HPROT when the controller writes the destination data
[20:18] src_prot_ctrl - Configures the state of HPROT when the controller reads the source data
[13:4] n_minus_1 NE Configures the controller to perform N DMA transfers, where N is a multiple of four

'Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times
that you must configure the alternate data structure.

See Section 8.4.3.3 (p. 56) for more information.

Figure 8.4 (p. 50) shows a memory scatter-gather example.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 8.4. Memory scatter-gather example

Initialization: 1. Configure primary to enable the copy A, B, C, and D operations: cycle_ctrl = b100, 28 = 4, N = 16.
2. Write the primary source data to memory, using the structure shown in the following table.

src_data_end_ptr |dst_data_end_ptr |channel_cfg Unused
Data for Task A |0x0OA000000 0x0AED0000 cycle_ctrl = b101, 2R= 4, N= 3 | OXXXXXXXXX
Data for Task B [0x0B000000 0x0BEO0000O cycle_ctrl = b101, 28 = 2, N'= 8 [OXXXXXXXXX
Data for Task C |0x0C000000 0x0CED0000 cycle_ctrl = b101, 2R=8,N=5 |OXXXXXXXXX
Data for Task D |0x0D000000 0xO0DEO0000 cycle_ctrl = b010, 2R= 4, N =4 | OXXXXXXXXX

Memory scatter- gather transaction:

Primary Alternate
Copy from Ain
memory, to Alternate
Request —»
— Auto Task A
request®* R
} N=3,2"=4
Auto __ L |
-«
Copy from Bin request
memory, to Alternate
— Auto Task B
request™
Auto request—»
Auto request—» N=8,2%=2
Auto request—»
Auto __
«
Copy from Cin request
memory, to Alternate
— Auto Task C
request®
} N=52%=8
Auto __ L |
P
Copy from D in request
memory, to Alternate
— Auto Task D
request™

— R _
}N =427=4 dma_done[C]
- >

In Figure 8.4 (p. 50) :

Initialization 1. The host processor configures the primary data structure to operate in memory
scatter-gather mode by setting cycle_ctrl to b100. Because a data structure for a
single channel consists of four words then you must set 2Rt0 4. In this example,
there are four tasks and therefore N is set to 16.

2. The host processor writes the data structure for tasks A, B, C, and D to the
memory locations that the primary src_data_end_ptr specifies.

3. The host processor enables the channel.

The memory scatter-gather transaction commences when the controller receives a request on
dma_req[] or a manual request from the host processor. The transaction continues as follows:

Primary, copy A 1. After receiving a request, the controller performs four DMA transfers. These
transfers write the alternate data structure for task A.

2. The controller generates an auto-request for the channel and then arbitrates.
Task A 3. The controller performs task A. After it completes the task, it generates an
auto-request for the channel and then arbitrates.
The controller performs four DMA transfers. These transfers write the alternate
data structure for task B.

5. The controller generates an auto-request for the channel and then arbitrates.
Task B 6. The controller performs task B. After it completes the task, it generates an
auto-request for the channel and then arbitrates.
The controller performs four DMA transfers. These transfers write the alternate
data structure for task C.

Primary, copy B 4,

Primary, copy C 7.

www.Silabs.com

2013-10-03 - Gecko Family - d0001_Rev1.20

...the world's most energy friendly microcontrollers

8. The controller generates an auto-request for the channel and then arbitrates.

Task C 9. The controller performs task C. After it completes the task, it generates an
auto-request for the channel and then arbitrates.
Primary, copy D 10The controller performs four DMA transfers. These transfers write the alternate

data structure for task D.
11The controller sets the cycle_ctrl bits of the primary data structure to b00O, to
indicate that this data structure is now invalid.
12The controller generates an auto-request for the channel and then arbitrates.
Task D 13The controller performs task D using an auto-request cycle.
14The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters
the arbitration process.

8.4.2.3.6 Peripheral scatter-gather

In peripheral scatter-gather mode the controller receives an initial request from a peripheral and then it
performs four DMA transfers using the primary data structure. It then immediately starts a DMA cycle
using the alternate data structure, without re-arbitrating.

Note
These are the only circumstances, where the controller does not enter the arbitration
process after completing a transfer using the primary data structure.

After this cycle completes, the controller re-arbitrates and if the controller receives a request from the
peripheral that has the highest priority then it performs another four DMA transfers using the primary
data structure. It then immediately starts a DMA cycle using the alternate data structure, without re-
arbitrating. The controller continues to switch from primary to alternate to primary... until either:

« the host processor configures the alternate data structure for a basic cycle
* it reads an invalid data structure.

Note
After the controller completes the N primary transfers it invalidates the primary data
structure by setting the cycle_ctrl field to b00O.

The controller asserts dma_done[C] when the scatter-gather transaction completes using a basic cycle.
In scatter-gather mode, the controller uses the primary data structure to program the alternate data
structure. Table 8.5 (p. 51) lists the fields of the channel_cfg memory location for the primary data
structure, that you must program with constant values and those that can be user defined.

Table 8.5. channel_cfg for a primary data structure, in peripheral scatter-gather mode

Bit Field Value Description

Constant-value fields:

[31:30] dst_inc b10 Configures the controller to use word increments for the address

[29:28] dst_size b10 Configures the controller to use word transfers

[27:26] src_inc b10 Configures the controller to use word increments for the address

[25:24] src_size b10 Configures the controller to use word transfers

[17:14] R_power b0010 Configures the controller to perform four DMA transfers

[2:0] cycle_ctrl b110 Configures the controller to perform a peripheral scatter-gather DMA cycle

User defined values:

[23:21] dst_prot_ctrl - Configures the state of HPROT when the controller writes the destination data

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Bit Field Value Description

[20:18] src_prot_ctrl - Configures the state of HPROT when the controller reads the source data

[13:4] n_minus_1 NE Configures the controller to perform N DMA transfers, where N is a multiple of four
[3] next_useburst - When set to 1, the controller sets the chnl_useburst_set [C] bit to 1 after the

alternate transfer completes

!Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times
that you must configure the alternate data structure.

See Section 8.4.3.3 (p. 56) for more information.

Figure 8.5 (p. 52) shows a peripheral scatter-gather example.

Figure 8.5. Peripheral scatter-gather example

Initialization: 1. Configure primary to enable the copy A, B, C, and D operations: cycle_ctrl = b110, 2°= 4, N = 16.
2. Write the primary source data in memory, using the structure shown in the following table.

src_data_end_ptr |dst_data_end_ptr |channel_cfg Unused
Data for Task A [0x0OA000000 0x0AE00000 cycle_ctrl = b111, 2R= 4, N =3 [OXXXXXXXXX
Data for Task B [0x0B000000 0x0BEO0000O cycle_ctrl = b111, 2R=2,N =8 [0xXX00XXX
Data for Task C [0x0C000000 0x0CE00000 cycle_ctrl = b111, 2%= 8, N =5 [OXXXXXXXXX
Data for Task D |0x0D000000 0x0DEO000O cycle_ctrl = b001, 2R= 4, N= 4 [OXXXXXXXXX
Peripheral scatter- gather transaction:
Primary Alternate

For all primary to alternate transitions,
the controller does not enter the
arbitration process and immediately

performs the DMA transfer that the
alternate channel control data structure
\—/_\ specifies.
Task A

} N=3,2%=24
<Request—

Copy from Ain

memory, to Alternate
Request—»

Copy from Bin
memory, to Alternate

~—— — A

Request—»
Request—»
Request—»

N=8,2%=2

<Request—

Copy from Cin
memory, to Alternate

}N:S,ZR:S

& Request—

Copy from D in
memory, to Alternate

\—/—\T;skb

— R _
}N =427=4 dma_done[C]
—

In Figure 8.5 (p. 52) :

Initialization 1. The host processor configures the primary data structure to operate in peripheral
scatter-gather mode by setting cycle_ctrl to b110. Because a data structure for a
single channel consists of four words then you must set 2% to 4. In this example,
there are four tasks and therefore N is set to 16.

2. The host processor writes the data structure for tasks A, B, C, and D to the
memory locations that the primary src_data_end_ptr specifies.

3. The host processor enables the channel.

The peripheral scatter-gather transaction commences when the controller receives a request on
dma_req[] . The transaction continues as follows:

www.Silabs.com

2013-10-03 - Gecko Family - d0001_Rev1.20

...the world's most energy friendly microcontrollers

Primary, copy A 1. After receiving a request, the controller performs four DMA transfers. These
transfers write the alternate data structure for task A.
Task A 2. The controller performs task A.

3. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy B 4. The controller performs four DMA transfers. These transfers write the alternate
data structure for task B.
Task B 5. The controller performs task B. To enable the controller to complete the task,

the peripheral must issue a further three requests.
6. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy C 7. The controller performs four DMA transfers. These transfers write the alternate
data structure for task C.
Task C 8. The controller performs task C.

9. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy D 10The controller performs four DMA transfers. These transfers write the alternate
data structure for task D.
11The controller sets the cycle_ctrl bits of the primary data structure to b00O, to
indicate that this data structure is now invalid.
Task D 12The controller performs task D using a basic cycle.
13The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters
the arbitration process.

8.4.2.4 Error signaling
If the controller detects an ERROR response on the AHB-Lite master interface, it:

« disables the channel that corresponds to the ERROR
e setsdnma_err HIGH.

After the host processor detects that dna_er r is HIGH, it must check which channel was active when
the ERROR occurred. It can do this by:

1. Reading the DMA_CHENS register to create a list of disabled channels.

When a channel asserts drma_done[] then the controller disables the channel. The program running
on the host processor must always keep a record of which channels have recently asserted their
dma_done[] outputs.

2. It must compare the disabled channels list from step 1 (p. 53), with the record of the channels that
have recently set their dma_done[] outputs. The channel with no record of dnma_done[C] being
set is the channel that the ERROR occurred on.

8.4.3 Channel control data structure

You must provide an area of system memory to contain the channel control data structure. This system
memory must:

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

» provide a contiguous area of system memory that the controller and host processor can access
« have a base address that is an integer multiple of the total size of the channel control data structure.

Figure 8.6 (p. 54) shows the memory that the controller requires for the channel control data structure,
when all 8 channels and the optional alternate data structure are in use.

Figure 8.6. Memory map for 8 channels, including the alternate data structure

Alternate data structure Primary data structure

0x100 - 0x080
Alternate_Ch_7 Primary_Ch_7

0xO0F0 - 0x070
Alternate_Ch_6 Primary_Ch_6

O0xO0ED - 0x060
Alternate_Ch_5 Primary_Ch_5

0x0DO0 - 0x050
Alternate_Ch_4 Primary_Ch_4

0x0CO0 - 0x040
Alternate_Ch_3 Primary_Ch_3 Unused

0x0B0 - 0x030 0x00C
Alternate_Ch_2 Primary_Ch_2 Control

0x0A0 - 0x020 —— - 0x008
Alternate_Ch_1 Primary_Ch_1 Destination End Pointer

0x090 - 0x010 - 0x004
Alternate_Ch_0 Primary_Ch_0 Source End Pointer

0x080 0x000 0x000

This structure in Figure 8.6 (p. 54) uses 256 bytes of system memory. The controller uses the lower
8 address bits to enable it to access all of the elements in the structure and therefore the base address
must be at Ox XXXXXX00.

You can configure the base address for the primary data structure by writing the appropriate value in
the DMA_CTRLBASE register.

You do not need to set aside the full 256 bytes if all dma channels are not used or if all alternate
descriptors are not used. If, for example, only 4 channels are used and they only need the primary
descriptors, then only 64 bytes need to be set aside.

Table 8.6 (p. 54) lists the address bits that the controller uses when it accesses the elements of the
channel control data structure.

Table 8.6. Address bit settings for the channel control data structure

Address bits

(7] (6] (5] (4] (3:0]
A c[2] cll clo] 0x0, 0x4, or 0x8
Where:
A Selects one of the channel control data structures:
A=0 Selects the primary data structure.
A =1 Selects the alternate data structure.
C[2:0] Selects the DMA channel.
Address|[3:0] Selects one of the control elements:
0x0 Selects the source data end pointer.
0x4 Selects the destination data end pointer.
0x8 Selects the control data configuration.
0xC The controller does not access this address location. If required, you can
enable the host processor to use this memory location as system memory.
Note

It is not necessary for you to calculate the base address of the alternate data structure
because the DMA_ALTCTRLBASE register provides this information.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 8.7 (p. 55) shows a detailed memory map of the descriptor structure.

Figure 8.7. Detailed memory map for the 8 channels, including the alternate data structure

—
Unused OXO0FC
Alternate fo Control 0xOF8
channel 7 Destination End Pointer | oy gFa
Source End Pointer 0Xx0FO
Alternate
— data
Unused 0x09C | structure
Alternate foy Control 0x098
channel 1 Destination End Pointer | oy (g4
- Source End Pointer 0x090
Unused 0x08C
Alternate foy Control 0x088
channel 0 Destination End Pointer | oy g4
Source End Pointer
- 0x080 _
Unused 0x07C
Primary for Control 0x078
channel 7 Destination End Pointer | y74
- Source End Pointer 0x070
Primary
— data
Unused 0x01C | structure
Primary for Control 0x018
channel 1 Destination End Pointer| 4014
Source End Pointer
. 0x010
Unused 0x00C
Primary for Control 0x008
channel 0 Destination End Pointer | oy 004
- Source End Pointer 0x000_)

The controller uses the system memory to enable it to access two pointers and the control information
that it requires for each channel. The following subsections will describe these 32-bit memory locations
and how the controller calculates the DMA transfer address.

8.4.3.1 Source data end pointer

The src_data_end_ptr memory location contains a pointer to the end address of the source data.
Figure 8.7 (p. 55) lists the bit assignments for this memory location.

Table 8.7. src_data_end_ptr bit assignments

Bit Name Description

[31:0] src_data_end_ptr Pointer to the end address of the source data

Before the controller can perform a DMA transfer, you must program this memory location with the end
address of the source data. The controller reads this memory location when it starts a 2R DMA transfer.

Note
The controller does not write to this memory location.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

8.4.3.2 Destination data end pointer

The dst_data_end_ptr memory location contains a pointer to the end address of the destination data.
Table 8.8 (p. 56) lists the bit assignments for this memory location.

Table 8.8. dst_data_end_ptr bit assignments

Bit Name

Description

[31:0] dst_data_end_ptr

Pointer to the end address of the destination data

Before the controller can perform a DMA transfer, you must program this memory location with the end
address of the destination data. The controller reads this memory location when it starts a 2% DMA

transfer.

Note

The controller does not write to this memory location.

8.4.3.3 Control data configuration

For each DMA transfer, the channel_cfg memory location provides the control information for the
controller. Figure 8.8 (p. 56) shows the bit assignments for this memory location.

Figure 8.8. channel_cfg bit assignments

313029282726252423 2120 1817 1413 4 3 2 0
R _power n_minus_1
| _ | I—src_prot_ctrl I—cycle_ctrl
dst_inc src_inc dst_prot_ctrl next_useburst

dst_size src_size

Table 8.9 (p. 56) lists the bit assignments for this memory location.

Table 8.9. channel_cfg bit assignments

Bit Name

Description

[31:30] dst_inc

Destination address incre

ment.

The address increment depends on the source data width as follows:

Source data width = byte

b00 = byte.
b01 = halfword.
b10 = word.

b11 = no increment. Address remains set to the value that
the dst_data_end_ptr memory location contains.

Source data width = halfword b00 = reserved.

Source data width = word

2013-10-03 - Gecko Family - d0001_Rev1.20

b01 = halfword.
b10 = word.

b11 = no increment. Address remains set to the value that
the dst_data_end_ptr memory location contains.

b00 = reserved.
b01 = reserved.

b10 = word.

www.Silabs.com

...the world's most energy friendly microcontrollers

Bit Name

Description

b1l = no increment. Address remains set to the value that
the dst_data_end_ptr memory location contains.

[29:28] dst_size

Destination data size.

Note

You must set dst_size to contain the same value that src_size contains.

[27:26] src_inc

Set the bits to control the source address increment. The address increment depends on the
source data width as follows:

Source data width = byte b00 = byte.
b01 = halfword.
b10 = word.

b1l = no increment. Address remains set to the value that
the src_data_end_ptr memory location contains.
Source data width = halfword b00 = reserved.

b01 = halfword.
b10 = word.

b1l = no increment. Address remains set to the value that
the src_data_end_ptr memory location contains.
Source data width = word b00 = reserved.

b01 = reserved.
b10 = word.

b11 = no increment. Address remains set to the value that
the src_data_end_ptr memory location contains.

[25:24] src_size

Set the bits to match the size of the source data:

b00 = byte
b01 = halfword
b10 = word

b1l = reserved.

[23:21] dst_prot_ctrl

Set the bits to control the state of HPROT when the controller writes the destination data.

Bit [23] This bit has no effect on the DMA.
Bit [22] This bit has no effect on the DMA.
Bit [21] Controls the state of HPROT as follows:

0 = HPROT is LOW and the access is non-privileged.

1 = HPROT is HIGH and the access is privileged.

[20:18] src_prot_ctrl

Set the bits to control the state of HPROT when the controller reads the source data.

Bit [20] This bit has no effect on the DMA.
Bit [19] This bit has no effect on the DMA.
Bit [18] Controls the state of HPROT as follows:

0 = HPROT is LOW and the access is non-privileged.

1 = HPROT is HIGH and the access is privileged.

[17:14] R_power

2013-10-03 - Gecko Family - d

Set these bits to control how many DMA transfers can occur before the controller re-arbitrates.
The possible arbitration rate settings are:

b0000 Arbitrates after each DMA transfer.
b0001 Arbitrates after 2 DMA transfers.
b0010 Arbitrates after 4 DMA transfers.
b0011 Arbitrates after 8 DMA transfers.
b0100 Arbitrates after 16 DMA transfers.
b0101 Arbitrates after 32 DMA transfers.
b0110 Arbitrates after 64 DMA transfers.
b0111 Arbitrates after 128 DMA transfers.

www.silabs.com

...the world's most energy friendly microcontrollers

Bit Name Description
b1000 Arbitrates after 256 DMA transfers.
b1001 Arbitrates after 512 DMA transfers.

b1010-b1111 Arbitrates after 1024 DMA transfers. This means that no arbitration occurs
during the DMA transfer because the maximum transfer size is 1024.

[13:4] n_minus_1 Prior to the DMA cycle commencing, these bits represent the total number of DMA transfers
that the DMA cycle contains. You must set these bits according to the size of DMA cycle that
you require.

The 10-bit value indicates the number of DMA transfers, minus one. The possible values are:
b000000000 = 1 DMA transfer

b000000001 = 2 DMA transfers

b000000010 = 3 DMA transfers

b000000011 = 4 DMA transfers

b000000100 = 5 DMA transfers

b111111111 = 1024 DMA transfers.

The controller updates this field immediately prior to it entering the arbitration process. This
enables the controller to store the number of outstanding DMA transfers that are necessary to
complete the DMA cycle.

[3] next_useburst Controls if the chnl_useburst_set [C] bit is set to a 1, when the controller is performing a
peripheral scatter-gather and is completing a DMA cycle that uses the alternate data structure.

Note
Immediately prior to completion of the DMA cycle that the alternate data structure
specifies, the controller sets the chnl_useburst_set [C] bit to 0 if the number of
remaining transfers is less than 2R The setting of the next_useburst bit controls if the
controller performs an additional modification of the chnl_useburst_set [C] bit.

In peripheral scatter-gather DMA cycle then after the DMA cycle that uses the alternate data
structure completes, either:

0 = the controller does not change the value of the chnl_useburst_set [C] bit. If the
chnl_useburst_set [C] bit is 0 then for all the remaining DMA cycles in the peripheral scatter-
gather transaction, the controller responds to requests on dma_r eq[] and dme_sreq|[],
when it performs a DMA cycle that uses an alternate data structure.

1 = the controller sets the chnl_useburst_set [C] bit to a 1. Therefore, for the remaining DMA
cycles in the peripheral scatter-gather transaction, the controller only responds to requests on
dme_r eq[], when it performs a DMA cycle that uses an alternate data structure.

[2:0] cycle_ctrl The operating mode of the DMA cycle. The modes are:

b000 Stop. Indicates that the data structure is invalid.

b001 Basic. The controller must receive a hew request, prior to it entering the arbitration
process, to enable the DMA cycle to complete.

b010 Auto-request. The controller automatically inserts a request for the appropriate channel
during the arbitration process. This means that the initial request is sufficient to enable
the DMA cycle to complete.

b011 Ping-pong. The controller performs a DMA cycle using one of the data structures. After
the DMA cycle completes, it performs a DMA cycle using the other data structure. After
the DMA cycle completes and provided that the host processor has updated the original
data structure, it performs a DMA cycle using the original data structure. The controller
continues to perform DMA cycles until it either reads an invalid data structure or the
host processor changes the cycle_ctrl bits to b0O01 or b010. See Section 8.4.2.3.4 (p.
47) .

b100 Memory scatter/gather. See Section 8.4.2.3.5 (p. 49) .

When the controller operates in memory scatter-gather mode, you must only use this
value in the primary data structure.
b101 Memory scatter/gather. See Section 8.4.2.3.5 (p. 49) .

When the controller operates in memory scatter-gather mode, you must only use this
value in the alternate data structure.
b110 Peripheral scatter/gather. See Section 8.4.2.3.6 (p. 51) .

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Bit Name Description

When the controller operates in peripheral scatter-gather mode, you must only use this
value in the primary data structure.
b111 Peripheral scatter/gather. See Section 8.4.2.3.6 (p. 51) .

When the controller operates in peripheral scatter-gather mode, you must only use this
value in the alternate data structure.

At the start of a DMA cycle, or 27 DMA transfer, the controller fetches the channel_cfg from system
memory. After it performs 2% or N, transfers it stores the updated channel_cfg in system memory.

The controller does not support a dst_size value that is different to the src_size value. If it detects a
mismatch in these values, it uses the src_size value for source and destination and when it next updates
the n_minus_1 field, it also sets the dst_size field to the same as the src_size field.

After the controller completes the N transfers it sets the cycle_ctrl field to b000, to indicate that the
channel_cfg data is invalid. This prevents it from repeating the same DMA transfer.

8.4.3.4 Address calculation

To calculate the source address of a DMA transfer, the controller performs a left shift operation on the
n_minus_1 value by a shift amount that src_inc specifies, and then subtracts the resulting value from the
source data end pointer. Similarly, to calculate the destination address of a DMA transfer, it performs a
left shift operation on the n_minus_1 value by a shift amount that dst_inc specifies, and then subtracts
the resulting value from the destination end pointer.

Depending on the value of src_inc and dst_inc, the source address and destination address can be
calculated using the equations:

src_inc=b00 and dst_inc=b00 e« source address = src_data_end_ptr - n_minus_1
+ destination address = dst_data_end_ptr - n_minus_1.
src_inc=b01 and dst_inc=b01 < source address = src_data_end_ptr - (n_minus_1 << 1)
 destination address = dst_data_end_ptr - (h_minus_1 << 1).
src_inc=b10 and dst_inc=b10 < source address = src_data_end_ptr - (n_minus_1 << 2)
 destination address = dst_data_end_ptr - (n_minus_1 << 2).
src_inc=bll and dst_inc=bl11l < source address = src_data_end_ptr
» destination address = dst_data_end_ptr.

Table 8.10 (p. 59) lists the destination addresses for a DMA cycle of six words.

Table 8.10. DMA cycle of six words using a word increment

Initial values of channel_cfg, prior to the DMA cycle

src_size =b10, dst_inc=b10, n_minus_1=b101, cycle_ctrl=1

End Pointer Count Difference * Address
0x2AC 5 0x14 0x298
0x2AC 4 0x10 0x29C
0x2AC 3 oxC 0x2A0
DMA transfers
0x2AC 2 0x8 0x2A4
0x2AC 1 0x4 0x2A8
0x2AC 0 0x0 0x2AC

Final values of channel_cfg, after the DMA cycle

src_size =b10, dst_inc =b10, n_minus_1 =0, cycle_ctrl=0

 This value is the result of count being shifted left by the value of dst_inc.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Table 8.11 (p. 60) lists the destination addresses for a DMA transfer of 12 bytes using a halfword
increment.

Table 8.11. DMA cycle of 12 bytes using a halfword increment

Initial values of channel_cfg, prior to the DMA cycle

src_size =b00, dst_inc =b01, n_minus_1=b1011, cycle_ctrl=1, R_power=b11

End Pointer Count Difference * Address
Ox5E7 11 0x16 0x5D1
Ox5E7 10 0x14 0x5D3
DMA transfers Ox5E7 9 0x12 0x5D5
Ox5E7 8 0x10 0x5D7
OX5E7 7 OxXE 0x5D9
Ox5E7 6 0xC 0x5DB
Ox5E7 5 OxA 0x5DD
Ox5E7 4 0x8 0x5DF

Values of channel_cfg after 2% DMA transfers

src_size =b00, dst_inc =b01, n_minus_1=b011, cycle_ctrl=1, R_power=b11l

End Pointer Count Difference Address

Ox5E7 3 0x6 Ox5E1

OX5E7 2 ox4 Ox5E3

OX5E7 1 0x2 Ox5E5
DMA transfers

OX5E7 0 0x0 Ox5E7

Final values of channel_cfg, after the DMA cycle

src_size =b00, dst_inc =b01, n_minus_1=0, cycle_ctrl=0 2 R_power=b11

 This value is the result of count being shifted left by the value of dst_inc.
2pfter the controller completes the DMA cycle it invalidates the channel_cfg memory location by clearing the cycle_ctrl field.

8.4.4 Interaction with the EMU

The DMA interacts with the Energy Management Unit (EMU) to allow transfers from , e.g., the LEUART
to occur in EM2. The EMU can wake up the DMA sufficiently long to allow data transfers to occur. See
section "DMA Support" in the LEUART documentation.

8.4.5 Interrupts

The PL230 dma_done[n:0] signals (one for each channel) as well as the dma_err signal, are available as
interrupts to the Cortex-M3 core. They are combined into one interrupt vector, DMA_INT. If the interrupt
for the DMA is enabled in the ARM Cortex-M3 core, an interrupt will be made if one or more of the
interrupt flags in DMA_IF and their corresponding bits in DMA_IEN are set.

8.5 Examples

A basic example of how to program the DMA for transferring 42 bytes from the USART1 to
memory location 0x20003420. Assumes that the channel 0 is currently disabled, and that the
DMA_ALTCTRLBASE register has already been configured.

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

Example 8.1. DMA Transfer

1. Configure the channel select for using USART1 with DMA channel O
a. Write SOURCESEL=0b001101 and SIGSEL=XX to DMA_CHCTRLO
2. Configure the primary channel descriptor for DMA channel 0
a. Write XX (read address of USART1) to src_data_end_ptr
b. Write 0x20003420 + 40 to dst_data_end_ptr c
c. Write these values to channel_cfg for channel O:
i. dst_inc=b01 (destination halfword address increment)
ii. dst_size=b01 (halfword transfer size)
iii. src_inc=b11 (no address increment for source)
iv. src_size=01 (halfword transfer size)
v. dst_prot_ctrl=000 (no cache/buffer/privilege)
vi. src_prot_ctrl=000 (no cache/buffer/privilege)
vii.R_power=b0000 (arbitrate after each DMA transfer)
viiin_minus_1=d20 (transfer 21 halfwords)
ix. next_useburst=b0 (not applicable)
X. cycle_ctrl=b001 (basic operating mode)
3. Enable the DMA
a. Write EN=1 to DMA_CONFIG
4. Disable the single requests for channel 0 (i.e., do not react to data available, wait for buffer full)
a. Write DMA_CHUSEBURSTS[0]=1
5. Enable buffer-full requests for channel 0
a. Write DMA_CHREQMASKCJ[0]=1
6. Use the primary data structure for channel 0
a. Write DMA_CHALTCJ[0]=1
7. Enable channel O
a. Write DMA_CHENS|0]=1

2013-10-03 - Gecko Family - d0001_Rev1.20 www.silabs.com

...the world's most energy friendly microcontrollers

8.6 Register Map

The offset register address is relative to the registers base address.

0x000 DMA_STATUS R DMA Status Registers

0x004 DMA_CONFIG W DMA Configuration Register

0x008 DMA_CTRLBASE RW Channel Control Data Base Pointer Register
0x00C DMA_ALTCTRLBASE R Channel Alternate Control Data Base Pointer Register
0x010 DMA_CHWAITSTATUS R Channel Wait on Request Status Register
0x014 DMA_CHSWREQ w1 Channel Software Request Register
0x018 DMA_CHUSEBURSTS RW1H Channel Useburst Set Register

0x01C DMA_CHUSEBURSTC w1 Channel Useburst Clear Register
0x020 DMA_CHREQMASKS RwW1 Channel Request Mask Set Register
0x024 DMA_CHREQMASKC w1 Channel Request Mask Clear Register
0x028 DMA_CHENS RwW1 Channel Enable Set Register

0x02C DMA_CHENC w1 Channel Enable Clear Register

0x030 DMA_CHALTS RW1 Channel Alternate Set Register

0x034 DMA_CHALTC w1 Channel Alternate Clear Register
0x038 DMA_CHPRIS RW1 Channel Priority Set Register

0x03C DMA_CHPRIC w1 Channel Priority Clear Register

0x04C DMA_ERRORC RW Bus Error Clear Register

OXE10 DMA_CHREQSTATUS R Channel Request Status

OxE18 DMA_CHSREQSTATUS R Channel Single Request Status
0x1000 DMA_IF R Interrupt Flag Register

0x1004 DMA_IFS w1 Interrupt Flag Set Register

0x1008 DMA_IFC w1 Interrupt Flag Clear Register

0x100C DMA_IEN RW Interrupt Enable register

0x1100 DMA_CHO_CTRL RW Channel Control Register

0x1104 DMA_CH1_CTRL RW Channel Control Register

0x1108 DMA_CH2_CTRL RW Channel Control Register

0x110C DMA_CH3_CTRL RW Channel Control Register

0x1110 DMA_CH4_CTRL RW Channel Control Register

0x1114 DMA_CH5_CTRL RW Channel Control Register

0x1118 DMA_CH6_CTRL RW Channel Control Register

0x111C DMA_CH7_CTRL RW Channel Control Register

2013-10-03 - Gecko Family - d0001_Rev1.20

www.silabs.com

EFNVI'32

...the world's most energy friendly microcontrollers

8.7 Register Description

8.7.1 DMA_STATUS - DMA Status Registers

Bit Position
0000 | F |8 (%8 |~|€&|3|Q|N|I|R|3 |59 I|gy|=|s o v |o oo
Reset S = o
la) o
Access 14 14 o
>3 w
Name 2 > z
P =
[$))
Bit Name Reset Access Description
31:21 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
20:16 CHNUM 0x07 R Channel Number
Number of available DMA channels minus one.
15:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
74 STATE 0x0 R Control Current State
State can be one of the following. Higher values (11-15) are undefined.
Value Mode Description
0 IDLE Idle
1 RDCHCTRLDATA Reading channel controller data
2 RDSRCENDPTR Reading source data end pointer
3 RDDSTENDPTR Reading destination data end pointer
4 RDSRCDATA Reading source data
5 WRDSTDATA Writing destination data
6 WAITREQCLR Waiting for DMA request to clear
7 WRCHCTRLDATA Writing channel controller data
8 STALLED Stalled
9 DONE Done
10 PERSCATTRANS Peripheral scatter-gather transition
31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 EN 0 R DMA Enable Status

When this bit is 1, the DMA is enabled.

8.7.2 DMA_CONFIG - DMA Configuration Register

Offset Bit Position
0x004 5|8 |JIQQ|I|QV|J |3 |5|8|2 |32 32| Wit |o ||
Reset o (=}
Access = =
5
Name x &
I
O
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CHPROT 0 W Channel Protection Control

www.silabs.com

2013-10-03 - Gecko Family - d0001_Rev1.20

EFNVI'32 ...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

Control whether accesses done by the DMA controller are privileged or not. When CHPROT = 1 then HPROT is HIGH and the access
is privileged. When CHPROT = 0 then HPROT is LOW and the access is non-privileged.

4:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 EN 0 w Enable DMA

Set this bit to enable the DMA controller.

8.7.3 DMA_CTRLBASE - Channel Control Data Base Pointer Register

Bit Position

0x008 5|13 IQ|IQIRIQLII|QIN[J|RIZ&8 |5 |2 |23 |g/Y |2 |S|o|o|~|ow |t |m|n|d]|o0

o

o

o

o
Reset 8

o

o

x

o
Access 5

1]

]
Name o

—l

a4

l_

8)
Bit Name Reset Access Description
31:.0 CTRLBASE 0x00000000 RW Channel Control Data Base Pointer

The base pointer for a location in system memory that holds the channel control data structure. This register must be written to point
to a location in system memory with the channel control data structure before the DMA can be used. Note that ctrl_base_ptr[8:0]
must be 0.

8.7.4 DMA_ALTCTRLBASE - Channel Alternate Control Data Base Pointer
Register

Bit Position

oooc 1318 |% 8|8 |Q8 |3 ||| [R|ge|5|gle|s gy |a|S o ||~ |ow | |o|a]a]o

o

[¢4]

o

o
Reset 8

o

(=}

x

o
Access @

L

[}

<
Name o

x

'_

)

|_

-

<
Bit Name Reset Access Description
31.0 ALTCTRLBASE 0x00000080 R Channel Alternate Control Data Base Pointer

The base address of the alternate data structure. This register will read as DMA_CTRLBASE + 0x80.

2013-10-03 - Gecko Family - d | : www.silabs.com

EFNVI'32

...the world's most energy friendly microcontrollers

8.7.5 DMA_CHWAITSTATUS - Channel Wait on Request Status Register

Bit Position

0x010 SI3IRXIQIXIQQII|Q|V[J[R[g& |5 |2 |23 |G8Y |2 |S|o|o|~|ow s |mo|n|-d]|o

Reset A A A A A A=A

Access r e ||l |e ||
o loo|lolaoa|lo|vw v
S35 |2|2|2|21]2
Tles|c|&|k |k |k

Name ElEE|IE|IE|E|E|E
nwlno|lolo|ln|n|n
ElElE|E|E|E|E|E
<|glgs | ||| <<
I I I I I i
~ | 1 < ™ N - o
I || I I I I I I
O |ojo|o|o|C |0 |0

Bit Name Reset Access Description

31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

7 CH7WAITSTATUS 1 R

Status for wait on request for channel 7.

Channel 7 Wait on Request Status

6 CH6WAITSTATUS 1 R

Status for wait on request for channel 6.

Channel 6 Wait on Request Status

5 CH5WAITSTATUS 1 R

Status for wait on request for channel 5.

Channel 5 Wait on Request Status

4 CH4AWAITSTATUS 1 R

Status for wait on request for channel 4.

Channel 4 Wait on Request Status

3 CH3WAITSTATUS 1 R

Status for wait on request for channel 3.

Channel 3 Wait on Request Status

2 CH2WAITSTATUS 1 R

Status for wait on request for channel 2.

Channel 2 Wait on Request Status

1 CHIWAITSTATUS 1 R

Status for wait on request for channel 1.

Channel 1 Wait on Request Status

0 CHOWAITSTATUS 1 R

Status for wait on request for channel 0.

Channel 0 Wait on Request Status

8.7.6 DMA_CHSWREQ - Channel Software Request Register

Bit Position

0x014 SI3IRXIQIXIQQII|Q|V[F|R[g& |5 |2 |23 |8Y |2 |S|o|o|~|ow s |mo|n|-d]|o0
Reset o |lojlo|o|o|o|o|o
- Al - - - - - -
Access SHEEHEEHEE
oloo|lo|lo|lo|o|o
w |w|w w w] L w
N ¥l |le|le|e ||
ame I S N e
o no|lo|lo|o |60
~ | v < [s2) N - o
I|TjT |||z |I|ZI
o|ojo|o|o|o |0 |0
Bit NET) Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

7 CH7SWREQ 0 w1

Write 1 to this bit to generate a DMA request for this channel.

Channel 7 Software Request

6 CH6SWREQ 0 w1

Write 1 to this bit to generate a DMA request for this channel.

Channel 6 Software Request

2013-10-03 - Gecko Family - d0001_Rev1.20

www.silabs.com

...the world's most energy friendly microcontrollers

5 CH5SWREQ 0 w1 Channel 5 Softw