| AL | | | | | | | | | _ | | | | | | | | | |-------------------------|---|--|---|--|---|--|--|---|---|---------|--|---|---|---------------------------------------|----------------------------------|-------------|---------| | <u> </u> | | | | | | | | | <u>A</u> | | | | | | | | | | Δ | | | | | | | | | 4 | | | | | | | | | | \PF | PLICAE | BLE STAND | ARD | PC C | ard | Stand | dard | | | | | | | | | | | | | | OPERATING
TEMPERATURE | DANICE | | -55 | °C . | TO | +85 ° | Č. | STOR | | DANCE | -40 | O°C | TO | +70 ° | С | | DΔ | RATING VOLTAGE | | | | | 20. | | | | | MPERATURE RANGE ERATING | | 95%MAXIMU | | | IR <i>A</i> | | | CURREN | | | - | | | | HUN | | | HUMIC | MIDITY RANGE | | | | | | | | | | | Γ 1∼68: 0.5A | | | | | | | | (NON-CONDENSING) | | | | | | | | | | | | | | S | SPE | CIFIC | CAT | ION | IS | | • | | | | | | | IT | EM | | | TES | T ME | | | | T | | REQ | UIREMEN | NTS | | QT | AT | | 20 | | UCTION | | | | | | | | <u></u> | | | <u> </u> | | | | 1, ,, | | GENERAL EXAMINATION | | | VISUALLY AND BY MEASURING INSTRUMENT. ACCORDING TO DRAWING. | | | | | | | | | | | 10 | 0 | | | | MARKING | | | CONFIR | CONFIRMED VISUALLY. | | | | | | | | | | | Ö | <u> </u> | | | =1 E | CTDI | C CHARAC | TEDIO | ETICS | | | | | | | | | | | | \perp | | | | | SISTANCE | | | 20.5 | N/ AC 8 | MAY - | TEST CU | DOENIT | - | | | | | | | 1 | | (LOW LEVEL) | | 1mA. | OLIAGE | 2011 | IV AC I | vi.~~, | TEST COI | VIVEIN I | | | | | | | | _ | | | | | D-1344A] | 1110 | | | | | | | | | | | | | | | | A #T1 | | DD 3002.1 | 500 \ / | - 4010 (| DDI IE | D.FOD | 4 8 4 18 | | | | | | | | | | | | VIII | | NG VOLTAGE | 500 Vrm | S AC IS | APPLIE | DFUR | CIIVIII | WIE. | | | | | | | | - | _ | | NSU | | RESISTANCE | MEASU | RE WITH | IIN 1 M | INUTE | AFTE | R APPI Y | ING | | | | | | | +- | | | METHOD 302 | | | MEASURE WITHIN 1 MINUTE AFTER APPLYING 500 V DC. | | | | | | | | | | | | | | | | ΛE | CHAN | ICAL CHAI | RACTE | RISTI | cs | | | | | | | *************************************** | »————————————————————————————————————— | | | | | | | LE PIN F | PULLING | PULL TH | IE STEE | L GAU | GE PIN | l: | | | T | | | | | | T | _ | | OR | CE | Habana and the same of sam | GAUGE | SIZE: φ0 | .420± | 0.005m | nm | | | | | | | | | | ļ | | | | RTION FORCE | MEASU | RED BY | APPLIC | CABLE | CON | NECTOR. | | | | | | | ,, | | _ | | OTA | AL PULLI | NG FORCE | | | | | | | | | | | | | | _ | | | /IEC | | LOPERATION | 10000 TI | MES INS | ERTIC | NS AN | IDEX | TRACTIO | NS. | | ① CONTACT RESISTANCE | | | | | 0 | | | [OFFICE
ENVIRONMENT] | | | | | | | | | | | :AFTER TEST 20 mΩ MAXIMUM CHANGE. ② NO MECHANICAL DAMAGE SHALL OCCUR | | | | | | | | | ENVIRO | INIVIEN | | | | | | | | | - | E PARTS | | SHALL | OCCUR | | | | /IBR | ATION A | ND HIGH | FREQUI | ENCY 10 | TO 20 | 00 Hz, / | AMPL | ITUDE1.5 | 2 mm, | 147 | 1) MUST | NOT CAL | JSE CURREN | 1T | | 10 | | | FREQUENCY | | | m/s ² PEAK AT 4 h, FOR 3 DIRECTIONS. INTERRUPTION GREATER | | | | | | | | | I GREATER T | THAN 10 | 00 ns. | | | | | | | OD 204D | | | 100 | 1200 | | 55 HOLE | 11.10.77 | | _ | | AL DAMAGE | SHALL | | <u> </u> | | | SHO | CK | | | ERATION
SEMI-SIN | | | | RD HOLD
S | ING H | ME | OCCU | R ON THE | . PARTS. | | | | _ | | | METHO | OD 213B | | RECTIO | | | , | _ | | | | | | | | | | | | | | | CTEF | RISTI | CS | | | | | | | | | | | | | ΞN | | IMENTAL (| CHARA | | (OL E | 241101 | 10011 | | | | | ACT DECL | | | | | | | | VIRON | | 10 CYCI | ES (1 C) | rCLE= | 24 HU | 3K2)V | VITH COI | NNECT | ORS | D CONT | | | | | 10 | _ | | | VIRON
STURE R | IMENTAL (
ESISTANCE | 10 CYCL
ENGAG | .ES (1 C\
ED. | | | | | | | :AFT | ER TEST : | 20 mΩ MAXIN | MUM CI | HANGE. | 0 | | | | VIRON
STURE R | IMENTAL (| 10 CYCL
ENGAG
AFTER | .ES (1 C`
ED.
THE TES | ST,THE | ETEST | SAM | VITH CON
PLE SHA
OR 1 TO | LL BE | | :AFT
2) INSUL | ER TEST :
ATION RE | 20 mΩ MAXIN
ESISTANCE | | HANGE. | 0 | - | | | VIRON
STURE R | IMENTAL (
ESISTANCE | 10 CYCL
ENGAG
AFTER | .ES (1 C`
ED.
THE TES | ST,THE | ETEST | SAM | PLE SHA | LL BE | JRS. | :AFT
2) INSUL
:AFT | ER TEST :
ATION RE
ER TEST | 20 mΩ MAXIN | | HANGE. | 0 | | | MOIS | VIRON
STURE R | IMENTAL (
ESISTANCE
OD 106E | 10 CYCL
ENGAG
AFTER
LEFT / | LES (1 C)
ED.
THE TES
AT THE A | ST,THE | TEST
NT TEI
+5~3 | SAM
MP. F | PLE SHA
OR 1 TO
+85 → +5 | LL BE
2 HOU
5~35 ≈ | JRS. | :AFT
2 INSUL
:AFT
3 NO HE
1 CONT | ER TEST:
ATION RE
ER TEST
EAVY COR
ACT RESI | 20 mΩ MAXINESISTANCE
100 MΩ MINII
RROSION.
ISTANCE | MUM. | | 0 | | | MOIS | VIRON
STURE R
METHO
RMAL SH | IMENTAL (ESISTANCE OD 106E HOCK | 10 CYCL
ENGAG
AFTER
LEFT /
TEMPER
TIME | ES (1 C) ED. THE TES AT THE / | ST,THE | TEST
NT TEI
+5~3 | SAM
MP. F | PLE SHA
OR 1 TO | LL BE
2 HOU
5~35 ≈ | JRS. | :AFT
2 INSUL
:AFT
3 NO HE
1 CONTA
:AFT | ER TEST: ATION RE ER TEST EAVY COR ACT RESI ER TEST: | 20 mΩ MAXINESISTANCE
100 MΩ MINII
RROSION.
ISTANCE
20 mΩ MAXIN | MUM. | | | | | MOIS | VIRON
STURE R
METHO
RMAL SH | IMENTAL (
ESISTANCE
OD 106E | 10 CYCL
ENGAG
AFTER
LEFT
TEMPER
TIME
5MAX. n | LES (1 CY
ED.
THE TES
AT THE A
RATURE | ST,THE
AMBIE
-55 → | +5~3 | SAM
MP.F
5 → · | PLE SHA
OR 1 TO
+85 → +5 | LL BE
2 HOU
5~35 °
30 → | JRS. | AFT 2 INSUL AFT 3 NO HE 1 CONT AFT 2 INSUL | ER TEST : ATION RE ER TEST EAVY COR ACT RESI ER TEST : ATION RE | 20 mΩ MAXIM
ESISTANCE
100 MΩ MINII
RROSION.
ISTANCE
20 mΩ MAXIM
ESISTANCE | MUM.
MUM CI | | | | | NOIS | VIRON
STURE R
METHO
RMAL SH | IMENTAL (ESISTANCE OD 106E HOCK | TEMPER
TIME
5MAX. n
UNDER
AFTER | LES (1 C) ED. THE TES AT THE / RATURE nin. 5 CYC THE TES | ST,THE | +5~3
30 - | SAM
MP. F
5 → 5 M
ONNE | PLE SHA
OR 1 TO
+85 → +5
MAX. →
ECTORS E
PLE SHA | LL BE
2 HOU
5~35 °
30 →
ENGAG
LL BE | JRS. | :AFT 2 INSUL :AFT 3 NO HE 1 CONT. :AFT 2 INSUL | ER TEST: ATION RE ER TEST EAVY COR ACT RESI ER TEST: ATION RE ER TEST | 20 mΩ MAXINESISTANCE
100 MΩ MINII
RROSION.
ISTANCE
20 mΩ MAXIN | MUM.
MUM CH | HANGE. | | | | HEF | VIRON
STURE R
METHO
RMAL SH
METHO | IMENTAL (ESISTANCE OD 106E HOCK | TEMPER
TIME
5MAX. n
UNDER
AFTER | LES (1 C) ED. THE TES AT THE / RATURE nin. 5 CYC THE TES | ST,THE | +5~3
30 - | SAM
MP. F
5 → 5 M
ONNE | PLE SHA
OR 1 TO
+85 → +5
MAX. → | LL BE
2 HOL
5~35 °
30 →
ENGAG
LL BE
2 HOL | JRS. | AFT 2 INSUL AFT 3 NO HE 1 CONT AFT 2 INSUL AFT 3 NO PH DURIN | ER TEST: ATION RE ER TEST ACT RESI ER TEST: ATION RE ER TEST IYSICAL E ING TEST | 20 mΩ MAXIMESISTANCE 100 MΩ MINIII RROSION. ISTANCE 20 mΩ MAXIMESISTANCE 100 MΩ MINIII DAMAGE SHANG. | MUM.
MUM CH
MUM.
ALL OCK | HANGE. | 0 | | | HEF | VIRON
STURE R
METHO
RMAL SH | IMENTAL (ESISTANCE OD 106E HOCK | TEMPER
TIME
5MAX. n
UNDER
AFTER | LES (1 C) ED. THE TES AT THE / RATURE nin. 5 CYC THE TES | ST,THE | +5~3
30 - | SAM
MP. F
5 → 5 M
ONNE | PLE SHA
OR 1 TO
+85 → +5
MAX. →
ECTORS E
PLE SHA | LL BE
2 HOL
5~35 °
30 →
ENGAG
LL BE
2 HOL | JRS. | AFT 2 INSUL AFT 3 NO HE 1 CONT AFT 2 INSUL AFT 3 NO PH DURIN | ER TEST: ATION RE ER TEST EAVY COR ACT RESI ER TEST: ATION RE ER TEST IYSICAL [| 20 mΩ MAXIMESISTANCE 100 MΩ MINIII RROSION. ISTANCE 20 mΩ MAXIMESISTANCE 100 MΩ MINIII DAMAGE SHA | MUM.
MUM CH
MUM.
ALL OCK | HANGE. | | ASED | | HEF | VIRON
STURE R
METHO
RMAL SH
METHO | IMENTAL (ESISTANCE OD 106E HOCK | TEMPER
TIME
5MAX. n
UNDER
AFTER | LES (1 C) ED. THE TES AT THE / RATURE nin. 5 CYC THE TES | ST,THE | +5~3
30 - | SAM
MP. F
5 → 5 M
ONNE | PLE SHA OR 1 TO +85 → +5 MAX. → ECTORS E PLE SHA OR 1 TO | LL BE
2 HOU
5~35 °
30 →
ENGAG
LL BE
2 HOU | JRS. | AFT 2 INSUL AFT 3 NO HE 1 CONT AFT 2 INSUL AFT 3 NO PH DURIN DES | ER TEST: ATION RE ER TEST EAVY COF ACT RESI ER TEST: ATION RE ER TEST HYSICAL D IGNED | 20 mΩ MAXINESISTANCE 100 MΩ MININEROSION. ISTANCE 20 mΩ MAXINESISTANCE 100 MΩ MININEDAMAGE SHANG. CHECKED | MUM CH
MUM.
ALL OCC | HANGE. CUR | RELEA | ASED | | HEF | VIRON
STURE R
METHO
RMAL SH
METHO | IMENTAL (ESISTANCE OD 106E HOCK | TEMPER
TIME
5MAX. n
UNDER
AFTER | LES (1 C) ED. THE TES AT THE / RATURE nin. 5 CYC THE TES | ST,THE | +5~3
30 - | SAM
MP. F
5 → 5 M
ONNE | PLE SHA OR 1 TO +85 → +5 MAX. → ECTORS E PLE SHA OR 1 TO | LL BE
2 HOU
5~35 °
30 →
ENGAG
LL BE
2 HOU | JRS. | AFT 2 INSUL AFT 3 NO HE 1 CONT AFT 2 INSUL AFT 3 NO PH DURIN DES | ER TEST: ATION RE ER TEST EAVY COF ACT RESI ER TEST: ATION RE ER TEST HYSICAL D IGNED | 20 mΩ MAXINESISTANCE 100 MΩ MININEROSION. ISTANCE 20 mΩ MAXINESISTANCE 100 MΩ MININEDAMAGE SHANG. CHECKED | MUM CH
MUM.
ALL OCC | HANGE. CUR | RELEA | ASED | | HEF | VIRON
STURE R
METHO
RMAL SH
METHO | IMENTAL (ESISTANCE OD 106E HOCK OD 107G | 10 CYCL
ENGAG
AFTER
LEFT /
TEMPER
TIME
5MAX.n
UNDER
AFTER | LES (1 CY
ED.
THE TES
AT THE A
RATURE
nin.
5 CYC
THE TES
AT THE A | ST,THE
AMBIE
-55 →
CLES V
ST,THE
AMBIE | +5~3
30 —
WITH CA
E TEST
NT TE | SAM
MP. F
5 → 5 M
ONNE
SAM
MP. F | PLE SHA OR 1 TO +85 → +5 MAX. → ECTORS E PLE SHA OR 1 TO | LL BE
2 HOU
5~35 °
30 →
ENGAG
LL BE
2 HOU | JRS. | AFT 2 INSUL AFT 3 NO HE 1 CONT AFT 2 INSUL AFT 3 NO PH DURIN DES | ER TEST: ATION RE ER TEST EAVY COF ACT RESI ER TEST: ATION RE ER TEST HYSICAL D IGNED | 20 mΩ MAXINESISTANCE 100 MΩ MININEROSION. ISTANCE 20 mΩ MAXINESISTANCE 100 MΩ MININEDAMAGE SHANG. CHECKED | MUM CH
MUM.
ALL OCC | HANGE. CUR | RELEA | ASED | | THEF | VIRON
STURE R
METHO
METHO
MARKS | IMENTAL (ESISTANCE OD 106E HOCK OD 107G erwise speci | 10 CYCL
ENGAG
AFTER
LEFT /
TEMPER
TIME
5MAX. IN
UNDER
AFTER
LEFT / | LES (1 CY
ED.
THE TES
AT THE A
RATURE
nin.
5 CYC
THE TES
AT THE A | ST,THE
AMBIE
-55 →
CLES V
ST,THE
AMBIE | +5~3
30 -
WITH CO
E TEST
NT TE | SAM
MP. F
5 → ·
5 N
ONNE
SAM
MP. F | PLE SHA OR 1 TO +85 → +5 MAX. → ECTORS E PLE SHA OR 1 TO | LL BE
2 HOU
5~35 °
30 →
ENGAG
LL BE
2 HOU | JRS. | AFT 2 INSUL AFT 3 NO HE 1 CONT AFT 2 INSUL AFT 3 NO PH DURIN DES | ER TEST: ATION RE ER TEST EAVY COF ACT RESI ER TEST: ATION RE ER TEST HYSICAL D IGNED | 20 mΩ MAXIMESISTANCE 100 MΩ MINIII RROSION. ISTANCE 20 mΩ MAXIMESISTANCE 100 MΩ MINIII DAMAGE SHANG. | MUM CH
MUM.
ALL OCC | HANGE. CUR | RELEA | ASED | | MOIS
THEF
REM | VIRON
STURE R
METHO
METHO
MARKS | IMENTAL (ESISTANCE OD 106E HOCK OD 107G | 10 CYCL
ENGAG
AFTER
LEFT /
TEMPER
TIME
5MAX. IN
UNDER
AFTER
LEFT / | LES (1 CY
ED.
THE TES
AT THE A
RATURE
nin.
5 CYC
THE TES
AT THE A | ST,THE
AMBIE
-55 →
CLES V
ST,THE
AMBIE | +5~3
30 -
WITH CO
E TEST
NT TE | SAM
MP. F
5 → ·
5 N
ONNE
SAM
MP. F | PLE SHA OR 1 TO +85 → +5 MAX. → ECTORS E PLE SHA OR 1 TO | LL BE
2 HOU
5~35 °
30 →
ENGAG
LL BE
2 HOU | JRS. | AFTI 2 INSUL AFTI 3 NO HE 1 CONT. AFTI 2 INSUL AFTI 3 NO PH DURIN DES | ER TEST: ATION RE ER TEST EAVY COF ACT RESI ER TEST: ATION RE ER TEST: IYSICAL E NG TEST! IGNED | 20 mΩ MAXIMESISTANCE 100 MΩ MINIMEROSION. ISTANCE 20 mΩ MAXIMESISTANCE 100 MΩ MINIMESISTANCE CHECKED M. Johich. 98 11.04 | MUM CH
MUM.
ALL OCC | HANGE. CUR | RELEA | ASED | | THEF REM Unle | VIRON STURE R METHO RMAL SH METHO MARKS ARKS | IMENTAL (ESISTANCE OD 106E HOCK OD 107G erwise speci | 10 CYCL
ENGAG
AFTER
LEFT /
TEMPER
TIME
5MAX. IN
UNDER
AFTER
LEFT / | LES (1 CY
ED.
THE TES
AT THE A
RATURE
nin.
5 CYC
THE TES
AT THE A | ST,THE
AMBIE
-55 →
CLES V
ST,THE
AMBIE | +5~3 30 - WITH CA E TEST NT TEI | SAMMP. F 5 → 5 N ONNE SAMMP. F | PLE SHA OR 1 TO +85 → +5 MAX. → ECTORS E PLE SHA OR 1 TO | LL BE 2 HOL 30 → ENGAG LL BE 2 HOL DF | JRS. | AFTI 2 INSUL AFTI 3 NO HE D CONT. AFTI 2 INSUL AFTI 3 NO PH DURIN DES | ER TEST: ATION RE ER TEST EAVY COF ACT RESI ER TEST: ATION RE ER TEST HYSICAL D IGNED | 20 mΩ MAXIMESISTANCE 100 MΩ MINIMEROSION. ISTANCE 20 mΩ MAXIMESISTANCE 100 MΩ MINIMESISTANCE 100 MΩ MINIMESISTANCE OHECKED M. Johiclio 98 11.04 | MUM CHALL OCC | HANGE. CUR ROVED Cyata 11.06 | RELEA | ASED | | THEF REM Unle | VIRON
STURE R
METHO
METHO
MARKS | IMENTAL (ESISTANCE OD 106E HOCK OD 107G erwise speci | TEMPER TIME 5MAX. n UNDER AFTER LEFT fied, ref | LES (1 CY ED. THE TES AT THE A RATURE inin. 5 CYC THE TES AT THE A er to M ance Test | ST,THE AMBIE -55 → CLES V CLE | +5~3 30 - WITH CA E TEST NT TEI | SAMMP. F 5 → 5 N ONNE SAMMP. F | PLE SHA OR 1 TO +85 → +5 MAX. → ECTORS E PLE SHA OR 1 TO | LL BE 2 HOL 30 → ENGAG LL BE 2 HOL DF | JRS. | AFTI 2 INSUL AFTI 3 NO HE D CONT. AFTI 2 INSUL AFTI 3 NO PH DURIN DES | ER TEST: ATION RE ER TEST EAVY COF ACT RESI ER TEST: ATION RE ER TEST: IYSICAL E NG TEST! IGNED | 20 mΩ MAXIMESISTANCE 100 MΩ MINIMEROSION. ISTANCE 20 mΩ MAXIMESISTANCE 100 MΩ MINIMESISTANCE CHECKED M. Johich. 98 11.04 | MUM CHALL OCC | HANGE. CUR ROVED Cyata 11.06 | RELEA | ASED | | THEF | VIRON STURE R METHO RMAL SH METHO MARKS ARKS | IMENTAL (ESISTANCE OD 106E HOCK OD 107G erwise specialification Test | TEMPER TIME SMAX. IN UNDER AFTER LEFT AFTER AFTER LEFT AT:Assura | ES (1 CY ED. THE TES AT THE A RATURE nin. 5 CYC THE TES AT THE A er to M ance Test IC CO., DRAWING | ST,THE AMBIE -55 → CLES V CL | +5~3 30 - WITH COE TEST NT TEI | SAMMP. F 5 → 5 N ONNE SAMMP. F | PLE SHA OR 1 TO +85 → +5 MAX. → ECTORS E PLE SHA OR 1 TO | S-35 % 30 | JRS. | AFT INSUL AFT NO HE CONT. AFT INSUL AFT NO PH DURIN DES W. S HEET | ER TEST: ATION RE ER TEST EAVY COF ACT RESI ER TEST: ATION RE ER TEST: YSICAL E NG TEST! IGNED PART NO | 20 mΩ MAXIMESISTANCE 100 MΩ MINIMEROSION. ISTANCE 20 mΩ MAXIMESISTANCE 100 MΩ MINIMESISTANCE MINIMESIS | MUM CHALL OCC | HANGE. CUR ROVED (11.06 | RELEA | ASED 1 | | THEF REM Unle | METHOMETHOMETHOMETHOMETHOMETHOMETHOMETHO | IMENTAL (ESISTANCE OD 106E HOCK OD 107G erwise specialification Test | TEMPER TIME SMAX. IN UNDER AFTER LEFT AFTER AFTER LEFT AT:Assura | ES (1 CY ED. THE TES AT THE A RATURE nin. 5 CYC THE TES AT THE A er to M ance Test IC CO., DRAWING | ST,THE AMBIE -55 → CLES V CL | +5~3 30 - WITH COE TEST NT TEI | SAMMP. F 5 → 5 N ONNE SAMMP. F | PLE SHA OR 1 TO +85 → +5 MAX. → ECTORS E PLE SHA OR 1 TO | S-35 % 30 | JRS. | AFT INSUL AFT NO HE CONT. AFT INSUL AFT NO PH DURIN DES W. S HEET | ER TEST: ATION RE ER TEST EAVY COF ACT RESI ER TEST: ATION RE ER TEST: YSICAL E NG TEST! IGNED PART NO | 20 mΩ MAXIMESISTANCE 100 MΩ MINIMEROSION. ISTANCE 20 mΩ MAXIMESISTANCE 100 MΩ MINIMESISTANCE 100 MΩ MINIMESISTANCE OHECKED M. Johiclio 98 11.04 | MUM. MUM. ALL OCC APP APP A-BU 5 7 | HANGE. CUR ROVED (11.06 | RELEA | 1 2 | TO PCK **ITEM** METHOD 108A [JIS C 0020] (NORMAL CONDITION) ENGAGED. ENGAGED. CONNECTORS ENGAGED. (HIGH TEMPERATURE) COLD RESISTANCE DURABILITY HUMIDITY **SPECIFICATIONS** REQUIREMENTS AFTER TEST 20 mΩ MAXIMUM CHANGE. :AFTER TEST 20 mΩ MAXIMUM CHANGE. :AFTER TEST 20 mΩ MAXIMUM CHANGE. 2 NO PHYSICAL DAMAGE SHALL OCCUR 2 NO PHYSICAL DAMAGE SHALL OCCUR ① CONTACT RESISTANCE **DURING TESTING.** **DURING TESTING.** ① CONTACT RESISTANCE ① CONTACT RESISTANCE QT AT 0 TEST METHOD EXPOSED AT 85 °C,250 HOURS WITH CONNECTORS LEFT AT THE AMBIENT TEMP, FOR 1 TO 2 HOURS. EXPOSED AT -55 °C.96 HOURS WITH CONNECTORS LEFT AT THE AMBIENT TEMP, FOR 1 TO 2 HOURS. EXPOSED AT 40±2 ℃,90 TO 95 % RH 96 HOURS WITH AFTER THE TEST, THE TEST SAMPLE SHALL BE AFTER THE TEST, THE TEST SAMPLE SHALL BE DRAWING FOR REFERENCE: This is subject to change without notice