| \wedge | | | | L | | | | | | | | | |---|--|--|---|--|---|---|--|--|--|--------|------------------|-----| | / V: I | | **** | | | | \triangle | | | 1 | | | | | APPI ICAI | BLE STAN | DARD | | I | | l | | I | | | | | | 711 7 21071 | OPERATING | 57 11 (12 | | | | , STO | RAGE | 10.00 | | | 20 (2 | 2) | | | TEMPERATURE RANGE | | -40 °C | ; TC | 85 °C ⁽¹ | | PERATURE RANGE | -10 °C | TO | 60 | °C (2 | , | | PATING | | | 100 V | | AC | | RATING HUMIDITY | 40 % | TO | 80 ' | % | | | IVATING | VOLTAGE | | 1.22 | | | | ORAGE HIMIDITY | | | | | | | | CURRENT | | | | | NGE 40 % TO 70 | | | | % (2) | ļ | | | | | | | | SPECIFIC | ATION | IS | | | | | | | | EM | | TEC | | THOD | | · - | UIREMENTS | | | QT | Δ~ | | | | | IEO | I IVIE | INOD | | I ILLU | ONCLIVILIATE | | | Q. | | | CONSTRU | | <u> </u> | | | | | ACCORDING TO | DRAMING | | | | | | GENERAL E | XAMINATION | VISUALLY | AND BY M | EASUF | RING INSTRU | MENT. | ACCORDING TO | DRAWING. | | | × | × | | MARKING | | CONFIRMED VISUALLY. | | | | | | | | | X | × | | LECTRIC | CHARACT | ERISTIC | S | | - 100 | | · | | | | | | | CONTACT RESISTANCE | | | | | | | 60 mΩ M | IAX. (3) | | | | | | INSULATION RESISTANCE | | | | | | | | | | | × | | | NSULATION R | RESISTANCE | 100 V | / DC | | | | 500 MΩ M | liN | | | × | | | VOLTAGE PROOF | | 300 V AC FOR 1 min. | | | | | NO FLASHOVER | OR BREAKDO | Λ/N | | X | | | | | | | 1111111 | · · · · · · · · · · · · · · · · · · · | | HO I ENGINOVER | OK BILLANDO | | | | | | | CAL CHAR | | | 1015 | - 00111=±- | 00 | III iomministra | OP**. 46.5 | NI NATA | | | | | INSERTION AND | | MEASURED BY APPLICABLE CONNECTOR. | | | | | INSERTION FOR | | N MAX | " I | × | | | WITHDRAWAL FORCES MECHANICAL | | 50 TIMES INSERTIONS AND EXTRACTIONS. | | | | | ① CONTACT RE | | | | | | | OPERATION | | THES INSERTIONS AND EXTRACTIONS. | | | | | ② NO DAMAGE, | | | | × | | | | | [| | | 74 | | OF PARTS | OLYCK AND E | OOGEN | _00 | | | | /IBRATION | | FREQUEN | CY 10 TC | 55 H: | Z , | | ① NO ELECTRIC | AL DISCONTIN | IUITY O | F | × | | | | | AMPLITUD | | | | | 1 μs. | , ie biodoittii | | . | ^ | | | | | AT2h FO | OR 3 DIREC | CTION. | | | ② NO DAMAGE, | CRACK AND L | OOSEN | ESS | | | | SHOCK | | 490 m/s ² , DURATION OF PULSE 11 ms | | | | | OF PARTS. | | | | X | | | | | | | | DIRECTIONS | | | | | | | | | | MENTAL CI | HARACTE | ERISTICS | 3 | | | | | | | | | | DAMP HEAT | | EXPOSED | AT 40± | 2 °C, 9 | 90 ~ 95 %, | 96 h. | ① CONTACT RE | | | | × | | | ロガビ ハロン ウエ | ATF) | l | | | | | la | | | 1 | - | | | | | | | | | | ② INSULATION F | | | | | | | RAPID CHAN | IGE OF | | | | 35→+85→+15 | | ③ NO DAMAGE, | | | | × | | | RAPID CHAN | IGE OF
JRE | TIME : | 30 → 2~ | 3 → 3 | 35→+85→+15
30 → 2~3 | | | | | | × | | | RAPID CHAN
EMPERATU | IGE OF
JRE | TIME : | 30 → 2~
5 CYCLE | 3 → 3
S. | 30 → 2~3 | min | ③ NO DAMAGE,
OF PARTS. | CRACK AND LO | | | | | | RAPID CHAN
EMPERATU
CORROSION | IGE OF
IRE
I SALT MIST | TIME :
UNDER
EXPOSED | 30 → 2∼
5 CYCLE:
IN 5% SAL | 3 → 3
S.
T WATI | $30 \rightarrow 2\sim 3$ ER SPRAY FO | min | ③ NO DAMAGE, | CRACK AND LO | | | × | | | RAPID CHAN
TEMPERATU
CORROSION | IGE OF
IRE
I SALT MIST | TIME :
UNDER
EXPOSED
EXPOSED | 30 → 2~
5 CYCLE
IN 5% SAL
IN 10 PPI | 3 → 3
S.
TWATI
M FOR | 30 → 2~3
ER SPRAY FO
96 h. | min | ③ NO DAMAGE,
OF PARTS. | CRACK AND LO | | | × | | | RAPID CHAN
TEMPERATU
CORROSION
SULFUR DIO | IGE OF
IRE
I SALT MIST
XIDE | TIME
UNDER
EXPOSED
EXPOSED
(TEST STA | 30 → 2∼
5 CYCLE
IN 5% SAL
IN 10 PPI
NDARD: JI | 3 → 3
S.
TWATI
M FOR
S-C-009 | 30 → 2~3
ER SPRAY FO
96 h. | min
OR 48 h. | ③ NO DAMAGE,
OF PARTS.
NO HEAVY CORR | CRACK AND LO | DOSEN | | | | | RAPID CHAN TEMPERATU CORROSION SULFUR DIO RESISTANCE | IGE OF JRE I SALT MIST XIDE | TIME
UNDER
EXPOSED
EXPOSED
(TEST STA
1) REFLOW | 30 → 2∼
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI | 3 → 3
S.
T WATI
M FOR
S-C-009
NG : | 30 → 2~3
ER SPRAY F0
96 h.
90) | min
OR 48 h. | ③ NO DAMAGE,
OF PARTS. NO HEAVY CORR NO DEFORMATIO | CRACK AND LO | DOSEN | | × | | | RAPID CHAN TEMPERATU CORROSION SULFUR DIO RESISTANCE | IGE OF JRE I SALT MIST XIDE | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW | 30 → 2∼
5 CYCLE:
IN 5% SAL
IN 10 PPI
INDARD: JI
V SOLDERI
/ 2 TIMES U | 3 → 3
S.
T WATI
M FOR
S-C-009
NG:
JNDER | 30 → 2~3 ER SPRAY FO 96 h. 90) THE TEMPE | min
OR 48 h. | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC | CRACK AND LO | DOSEN | | × | | | RAPID CHAN TEMPERATU CORROSION SULFUR DIO RESISTANCE | IGE OF JRE I SALT MIST XIDE | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW | 30 → 2∼
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI | 3 → 3
S.
TWATI
M FOR
S-C-009
NG:
JNDER
BELOW | 30 → 2~3 ER SPRAY FO 96 h. 90) THE TEMPE | min
OR 48 h. | ③ NO DAMAGE,
OF PARTS. NO HEAVY CORR NO DEFORMATIO | CRACK AND LO | DOSEN | | × | | | RAPID CHAN TEMPERATU CORROSION SULFUR DIO RESISTANCE | IGE OF JRE I SALT MIST XIDE | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW | 30 → 2∼
5 CYCLE:
IN 5% SAL
IN 10 PPI
INDARD: JI
V SOLDERI
/ 2 TIMES U | 3 → 3
S.
TWATI
M FOR
S-C-009
NG:
JNDER
BELOW | 30 → 2~3 ER SPRAY FO 96 h. 90) THE TEMPE . 50s(MAX) | min
OR 48 h.
RATURE | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC | CRACK AND LO | DOSEN | | × | | | RAPID CHAN TEMPERATU CORROSION SULFUR DIO RESISTANCE | IGE OF JRE I SALT MIST XIDE | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
V 2 TIMES U
E SHOWN E | 3 → 3
S.
TWATI
M FOR
S-C-009
NG:
JNDER
BELOW | 30 → 2~3 ER SPRAY FO 96 h. 90) THE TEMPE . 50s(MAX) | min
OR 48 h. | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC | CRACK AND LO | DOSEN | | × | | | RAPID CHAN TEMPERATU CORROSION SULFUR DIO RESISTANCE | IGE OF JRE I SALT MIST XIDE | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E | 3 → 3
S.
T WATI
M FOR
S-C-009
NG:
JNDER
BELOW | 30 → 2~3 ER SPRAY FO 96 h. 90) THE TEMPE . 50s(MAX) | min
OR 48 h.
RATURE | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC | CRACK AND LO | DOSEN | | × | | | RAPID CHAN TEMPERATU CORROSION SULFUR DIO RESISTANCE | IGE OF JRE I SALT MIST XIDE | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E | 3 → 3
S.
T WATI
M FOR
S-C-009
NG:
JNDER
BELOW | 30 → 2~3 ER SPRAY FO 96 h. 90) THE TEMPE . 50s(MAX) | min
OR 48 h.
RATURE | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC | CRACK AND LO | DOSEN | | × | | | RAPID CHAN
TEMPERATU
CORROSION
SULFUR DIO
RESISTANCE | IGE OF JRE I SALT MIST XIDE | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
INDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E | 3 → 3
S.
T WATI
M FOR
S-C-009
NG:
JNDER
BELOW | 30 → 2~3 ER SPRAY FO 96 h. 90) THE TEMPE | min
OR 48 h.
RATURE | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC | CRACK AND LO | DOSEN | | × | | | RAPID CHAN EMPERATU CORROSION BULFUR DIO | IGE OF JRE I SALT MIST XIDE | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E | 3 → 3
S.
T WATI
M FOR
S-C-009
NG:
JNDER
BELOW | 30 → 2~3 ER SPRAY FO 96 h. 90) THE TEMPE . 50s(MAX) | min
OR 48 h.
RATURE | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC | CRACK AND LO | DOSEN | | × | | | RAPID CHAN EMPERATU CORROSION BULFUR DIO | IGE OF IRE I SALT MIST XIDE E TO HEAT | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E | 3 → 3
S.
T WATI
M FOR
S-C-009
NG:
JNDER
BELOW | 96 h. 90) THE TEMPE 50s(MAX) 60s(MAX) | min OR 48 h. RATURE C(PEAK) | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC | CRACK AND LO | DOSEN | | × | | | RAPID CHAN TEMPERATU CORROSION SULFUR DIO RESISTANCE | IGE OF IRE I SALT MIST XIDE E TO HEAT | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E | 3 → 3
S.
T WATI
M FOR
S-C-009
NG:
JNDER
BELOW | 30 → 2~3 ER SPRAY FO 96 h. 90) THE TEMPE | min OR 48 h. RATURE C(PEAK) | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC | CRACK AND LO | DOSEN | | × | | | RAPID CHAN
EMPERATU
CORROSION
SULFUR DIO
RESISTANCE
SOLDERING | IGE OF
IRE
I SALT MIST
XIDE
E TO
HEAT | TIME : UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E | 3 → 3
S.
T WATI
M FOR
S-C-009
NG:
JNDER
BELOW
230°C | 96 h. 90) THE TEMPE 50s(MAX) 60s(MAX) | min OR 48 h. RATURE C (PEAK) | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC | CRACK AND LO | OOSEN | ESS | ×
×
× | | | RAPID CHAN
EMPERATU
CORROSION
SULFUR DIO
RESISTANCE
SOLDERING | IGE OF IRE I SALT MIST XIDE E TO HEAT | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
INDARD: JI
V SOLDERI
Z TIMES U
E SHOWN E | 3 → 3
S.
T WATI
M FOR
S-C-009
NG:
JNDER
BELOW
230°C | 96 h. 90) THE TEMPE 50s(MAX) 60s(MAX) CC MAX. FOR 5 40 ± 3°C | min OR 48 h. RATURE C (PEAK) 5 sec. | (3) NO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOCATER LOCAT | COATING OF S | SOLDER
5 % OF | ESS | ×
× | | | CORROSION CORROSION CULFUR DIO RESISTANCE COLDERING | IGE OF JRE I SALT MIST XIDE E TO HEAT | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E
LING IRONS
EMPERATURSION DUF | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C | 2~3
ER SPRAY FO
96 h.
90)
THE TEMPE
50s(MAX)
260°C
60s(MAX)
C MAX. FOR €
40 ± 3°C
1: 3 sec. | min OR 48 h. RATURE C (PEAK) 5 sec. | (3) NO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A I THE SURFACE BE | COATING OF S | SOLDER
5 % OF | ESS | ×
×
× | | | CORROSION CORROSION CULFUR DIO RESISTANCE COLDERING OLDERABIL | IGE OF JRE I SALT MIST XIDE E TO HEAT ITY | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E
E SHOWN E
EMPERATURES OF CUR | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C 220°C 120s JRE: 24 RATION RENT C. | 20 → 2~3 ER SPRAY FO 96 h. 90) THE TEMPE 50s(MAX) 60s(MAX) C MAX. FOR 5 40 ± 3°C 1: 3 sec. ARRYING. | min OR 48 h. RATURE C (PEAK) 5 sec. | (3) NO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOCATER LOCAT | COATING OF S | SOLDER
5 % OF | ESS | ×
×
× | SED | | CAPID CHAN EMPERATU CORROSION EULFUR DIO RESISTANCE COLDERING OLDERABIL REMARKS (1) (2) | IGE OF IRE I SALT MIST XIDE E TO HEAT INCLUDE TEMF "STORAGE" MI BEFORE ASSE | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TEFOR IMMER PERATURE REANS LONG- MBLY TO PC | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E
EMPERATURES IN THE STORY OF ST | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C | 96 h. 90) THE TEMPE 50s(MAX) 60s(MAX) C MAX. FOR 5 40 ± 3°C 1: 3 sec. ARRYING. ATE | min OR 48 h. RATURE C(PEAK) 5 sec. | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A I THE SURFACE BE DESIGNED | COATING OF S | SOLDER
SOLDER
SOLDER
SOLDER
SOLDER | ESS | ×
×
×
× | SED | | APID CHAN EMPERATU ORROSION ULFUR DIO ESISTANCE OLDERING OLDERABIL EMARKS (1) (2) | IGE OF IRE I SALT MIST XIDE E TO HEAT INCLUDE TEMF "STORAGE" MI BEFORE ASSE NCLUDE COND | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER EANS LONG- MBLY TO PC UCTOR RESI | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
INDARD: JI
V SOLDERI
V | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C | ER SPRAY FO
96 h.
90) THE TEMPE: 50s(MAX) 60s(MAX) C MAX. FOR 5 1: 3 sec. ARRYING. ATE IN CASE | min OR 48 h. RATURE C (PEAK) 5 sec. | (3) NO DAMAGE, OF PARTS. NO HEAVY CORR NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A I THE SURFACE BE DESIGNED | COATING OF S | SOLDER
SOLDER
SOLDER
SOLDER
SOLDER | ESS | ×
×
×
× | SED | | APID CHAN EMPERATU ORROSION ULFUR DIO ESISTANCE OLDERING CLOBERING CANADA (3)11 (3)11 | IGE OF IRE I SALT MIST XIDE E TO HEAT INCLUDE TEMP "STORAGE" MI BEFORE ASSE NCLUDE COND THE MATED CO | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER PERATURE RE EANS LONG- MBLY TO PC UCTOR RESI | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
INDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E
E SHOWN E
EMPERATURES OF CUR
TERM STORE
IS CABLE TYPE
3 CABLE TYPE | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C 120°C 120s JIRE: 24 RATION RENT C. AGE ST. CABLE PE. (L=12 | 2~3 ER SPRAY FO 96 h. 96 h. 90) THE TEMPE 50s(MAX) 260°C 60s(MAX) C MAX. FOR € 40 ± 3°C 1: 3 sec. ARRYING. ATE IN CASE 2mm) | min OR 48 h. RATURE C(PEAK) 5 sec. DRAWN | MO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A THE SURFACE BE DESIGNED J. J | COATING OF SMINIMUM OF SEING IMMERSE CHECKED A | SOLDER
THE
SOLDER
5 % OF
D.
PPROVE | ESS FA | ×
×
×
× | SED | | CAPID CHAN EMPERATU CORROSION ULFUR DIO ESISTANCE OLDERING OLDERABIL EMARKS (1) (2) (3) II | IGE OF JRE I SALT MIST XIDE E TO HEAT INCLUDE TEMF "STORAGE" MI BEFORE ASSE NCLUDE COND THE MATED CO | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER EANS LONG- MBLY TO PC UCTOR RESI NNECTOR IS ified, refer | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
S SHOWN E
EMPERATURESION DUF
TERM STORE
B. ISTANCE OF
S CABLE TYPE
T to JIS C | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C 220°C 3: 360° JRE: 24 RATION RENT C. AGE ST. CABLE PE. (L=12 5402. | ER SPRAY FO
96 h.
96 h.
90) THE TEMPE
50s(MAX) 260°C 60s(MAX) CC MAX. FOR \$ 40 ± 3°C 1: 3 sec. ARRYING. ATE IN CASE 2mm) | min OR 48 h. RATURE C(PEAK) 5 sec. | MO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A I THE SURFACE BE DESIGNED A W. Shubuya M. | COATING OF SMINIMUM OF SEING IMMERSE CHECKED A | SOLDER
SOLDER
SOLDER
SOLDER
SOLDER | ESS FA | ×
×
×
× | SED | | CAPID CHAN EMPERATU CORROSION SULFUR DIO RESISTANCE COLDERING OLDERABIL REMARKS (1) (2) (3) (1) (1) (2) (3) (1) (1) (1) (2) (3) (1) (1) (1) (2) (3) (1) (1) (1) (2) (3) (1) (1) (1) (2) (3) (4) (4) (5) (6) (6) (7) (7) (7) (8) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9 | IGE OF IRE I SALT MIST XIDE E TO HEAT INCLUDE TEMP "STORAGE" MI BEFORE ASSE NCLUDE COND THE MATED CO | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER EANS LONG- MBLY TO PC UCTOR RESI NNECTOR IS ified, refer | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
S SHOWN E
EMPERATURESION DUF
TERM STORE
B. ISTANCE OF
S CABLE TYPE
T to JIS C | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C 220°C 3: 360° JRE: 24 RATION RENT C. AGE ST. CABLE PE. (L=12 5402. | 2~3 ER SPRAY FO 96 h. 96 h. 90) THE TEMPE 50s(MAX) 260°C 60s(MAX) C MAX. FOR € 40 ± 3°C 1: 3 sec. ARRYING. ATE IN CASE 2mm) | min OR 48 h. RATURE C(PEAK) 5 sec. DRAWN | MO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A I THE SURFACE BE DESIGNED O 05,02,10 (1) | COATING OF SMINIMUM OF SEING IMMERSE CHECKED A | SOLDER
THE
SOLDER
5 % OF
D.
PPROVE | ESS FA | ×
×
×
× | SED | | CORROSION CORROSION CULFUR DIO CRESISTANCE COLDERING OLDERABIL REMARKS (1) (2) (3) (1) (1) (1) (1) (2) (3) (1) (1) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (7) (7) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | IGE OF IRE I SALT MIST XIDE TO HEAT INCLUDE TEMP "STORAGE" MI BEFORE ASSE NCLUDE COND THE MATED CO PWISE SPECIAlification Test | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER PERATURE RE EANS LONG- MBLY TO PC UCTOR RESI NNECTOR IS IFIED, TE AT: Assure | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E
SHOWN E | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C - 220°C - 3 120s 3:360° AGE ST. CABLE E. (L=12 5402. ×:App | ER SPRAY FO
96 h.
96 h.
90) THE TEMPE
50s(MAX) 260°C 60s(MAX) C MAX. FOR € 40 ± 3°C 1: 3 sec. ARRYING. ATE IN CASE 2mm) | min OR 48 h. RATURE C(PEAK) 5 sec. DRAWN J. Shubwy 05,02,10 | MO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A I THE SURFACE BE DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED | COATING OF SMINIMUM OF SEING IMMERSE CHECKED A | SOLDER
THE
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDE | ESS R | ×
×
×
× | SED | | SOLDERABIL REMARKS (1) (2) (3) (1) (3) (1) (1) (1) (2) (3) (4) (4) (5) (5) (6) (7) (7) (7) (7) (8) (8) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | IGE OF IRE I SALT MIST XIDE E TO HEAT INCLUDE TEMP "STORAGE" MI BEFORE ASSE NCLUDE COND THE MATED CO PTWISE SPECI- alification Test | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER PERATURE RE EANS LONG- MBLY TO PC UCTOR RESI NNECTOR IS IFIED, TE AT: Assure | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E
SHOWN E | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C - 220°C - 3 120s 3:360° AGE ST. CABLE E. (L=12 5402. ×:App | ER SPRAY FO
96 h.
96 h.
90) THE TEMPE
50s(MAX) 260°C 60s(MAX) CC MAX. FOR \$ 40 ± 3°C 1: 3 sec. ARRYING. ATE IN CASE 2mm) | min OR 48 h. RATURE C(PEAK) 5 sec. DRAWN J. Shubwy 05,02,10 | MO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A I THE SURFACE BE DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED | COATING OF SMINIMUM OF SEING IMMERSE CHECKED A | SOLDER
THE
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDE | ESS R | ×
×
×
× | SED | | CORROSION SULFUR DIO RESISTANCE SOLDERING COLDERABIL REMARKS (3) (3) (3) (1) (2) (3) (1) (2) (4) (5) (5) (6) (7) (7) (7) (7) (7) (8) (8) (9) (9) (9) (1) (1) (1) (1) (1) (1) (2) (3) (4) (5) (6) (6) (7) (7) (7) (7) (8) (8) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | IGE OF IRE I SALT MIST XIDE E TO HEAT INCLUDE TEMP "STORAGE" MI BEFORE ASSE NCLUDE COND THE MATED CO PTWISE SPECI- alification Test | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER EANS LONG- MBLY TO PC UCTOR RESI NNECTOR IS fied, refer AT:Assura | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
NDARD: JI
V SOLDERI
/ 2 TIMES U
E SHOWN E
SHOWN E | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C - 220°C - 3 120s 3:360° AGE ST. CABLE E. (L=12 5402. ×:App | ER SPRAY FO
96 h.
96 h.
90) THE TEMPE
50s(MAX) 260°C 60s(MAX) C MAX. FOR € 40 ± 3°C 1: 3 sec. ARRYING. ATE IN CASE 2mm) | min OR 48 h. RATURE C(PEAK) 5 sec. DRAWN J. Shubwy 05,02,10 | MO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A I THE SURFACE BE DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED DESIGNED | COATING OF SMINIMUM OF SEING IMMERSE CHECKED A | SOLDER
THE
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDE | ESS R | ×
×
×
× | SED | | CORROSION SULFUR DIO RESISTANCE SOLDERING COLDERABIL REMARKS (1) (2) (3) (3) (4) (1) (1) (2) (4) (5) (6) (6) (7) (7) (7) (8) (9) (1) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | IGE OF IRE I SALT MIST XIDE E TO HEAT INCLUDE TEMP "STORAGE" MI BEFORE ASSE NCLUDE COND THE MATED CO PTWISE SPECI- alification Test | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER EANS LONG- MBLY TO PC UCTOR RESI NNECTOR IS fied, refer AT:Assura | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
INDARD: JI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
S SHOWN E
ESHOWN E
E | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C - 220°C - 320°C | ER SPRAY FO
96 h.
96 h.
90) THE TEMPE
50s(MAX) 260°C 60s(MAX) C MAX. FOR € 40 ± 3°C 1: 3 sec. ARRYING. ATE IN CASE 2mm) | min OR 48 h. RATURE C(PEAK) 5 sec. DRAWN J. Shubwy 05,02,10 | MO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A I THE SURFACE BE DESIGNED O 15,02,10 (1) THEET DEENO. | COATING OF SMINIMUM OF SEING IMMERSE CHECKED A COS-02-14 C | SOLDER
THE
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDER
SOLDE | ESS R | ×
×
×
× | SED | | CORROSION CORROSION CULFUR DIO RESISTANCE COLDERING OLDERABIL REMARKS (1) (2) (3) (4) (4) (2) (5) (7) (7) (7) (7) (7) (8) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (5) (6) (7) (7) (7) (7) (7) (8) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | IGE OF IRE I SALT MIST XIDE E TO HEAT INCLUDE TEMP "STORAGE" MI BEFORE ASSE NCLUDE COND THE MATED CO PTWISE SPECI- alification Test | TIME UNDER EXPOSED EXPOSED (TEST STA 1) REFLOW REFLOW PROFILE 180°C 150°C 2) SOLDER SOLDER TE FOR IMMER EANS LONG- MBLY TO PC UCTOR RESI NNECTOR IS fied, refer AT:Assura | 30 → 2~
5 CYCLE:
IN 5% SAL
IN 10 PPI
INDARD: JI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
V SOLDERI
S SHOWN E
ESHOWN E
E | 3 → 3 S. T WATI M FOR S-C-009 NG: JNDER BELOW 230°C - 220°C - 320°C | ER SPRAY FO 96 h. 96 h. 90) THE TEMPE 50s(MAX) 60s(MAX) C MAX. FOR € 40 ± 3°C 1: 3 sec. ARRYING. ATE IN CASE 2mm) CIFICAT | min OR 48 h. RATURE C(PEAK) 5 sec. DRAWN J. Shubwy 05,02,10 | MO DAMAGE, OF PARTS. NO HEAVY CORE NO DEFORMATIC EXCESSIVE LOC TERMINALS. A NEW UNIFORM SHALL COVER A I THE SURFACE BE DESIGNED O 15,02,10 (1) THEET DEENO. | COATING OF SMINIMUM OF SEING IMMERSE CHECKED A | SOLDER
THE
SOLDER
SWOF
D.
PPROVE
S-0.5 | ESS R | × × × × × × 1 | | CHKD DATE ΒY **DESCRIPTION OF REVISIONS** COUNT COUNT BY **DESCRIPTION OF REVISIONS** CHKD DATE