Ordering number : ENA2159

LV5696P

Bi-CMOS LSI

Multi-Power Supply IC for Car Audio Systems

http://onsemi.com

Overview

LV5696P is a multiple voltage regulator for car audio system. This IC has 6 system of voltage regulators, 3.3/5.0Voutput for a microcontroller, 8.0V output for CD driver, 3V-8V (Adjustable) output for illuminations, 8.5V output for audio control, 5V output for SYS control, 3.3V output for DSP control and 1 high side switch output for ANT output.

About protection circuits, it has Over-current-protection, Over-voltage-protection and Thermal-shut-down.

Features

• Low current consumption : typ 50µA

• 6 system of regulators

V_{DD} (Micon): V_{OUT} 3.3/5.0V, I_{OUT} MAX 200mA CD: V_{OUT} 8.0V, I_{OUT} MAX 1000mA

Illumination : VOUT 3.0V to 8.0V (Adjustable external resistors), IOUT MAX 200mA

Audio : V_{OUT} 8.5V, I_{OUT} MAX 300mA SYS : V_{OUT} 5.0V, I_{OUT} MAX 500mA DSP : V_{OUT} 3.3V, I_{OUT} MAX 800mA

• 1 high-side switch coupled V_{CC}

ANT : I_{OUT} MAX 200mA, V_{CC} - V_{OUT} = 0.5V

- Over current protection
- Over voltage protection typ 21V (All outputs except for V_{DD} are turned off)
- Thermal shut down circuit typ 175°C
- Applied P-LDMOS to output stage

(Warning) The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the conditions out of safety range or ratings. Use of the IC such as use under overcurrent protection range, thermal shutdown state may degrade the IC's reliability and eventually damage the IC.

Specifications Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		36	V
Power dissipation	Pd max	IC Unit	1.5	W
		At using AI heat sink of (50×50×1.5mm³)	5.6	W
		Infinite large heat sink	32.5	W
Peak voltage	V _{CC} peak	See below about Pulse wave	50	V
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +150	°C
Junction maximum temperature	Tj max		150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at Ta = 25°C

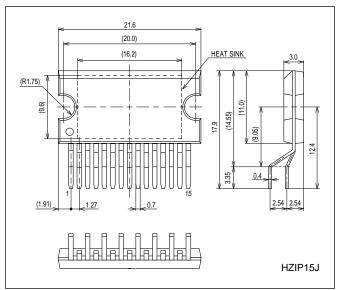
Parameter	Conditions Ratings		Unit
Power supply voltage rating 1	V _{DD} output, ANT output	7.5 to 16	V
Power supply voltage rating 2	AUDIO output	10.5 to 16	V
Power supply voltage rating 3	CD output, ILM output, SYS output, DSP output	10 to 16	V

^{*}Make sure that $V_{CC}1$ is as follows: $V_{CC}1 > V_{CC} - 0.7V$

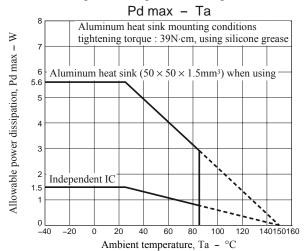
Electrical Characteristics at Ta = 25 °C, $V_{CC} = V_{CC}1 = 14.4$ V

Parameter	Symbol	Conditions		Ratings		Unit		
Farameter	Symbol	Conditions	min	typ	max	Offic		
Quiescent current	Icc	V _{DD} No Load, CTRL1/2/3 = L/L/L J		50	100	μΑ		
CTRL1 (ANT)								
Low input voltage	V _{IL} 1	ANT: OFF	0		0.3	V		
High input voltage	V _{IH} 1	ANT: ON	2.7	3.3	5.5	V		
Input impedance	R _{IN} 1	input voltage ≤ 3.3V	280	400	520	kΩ		
CTRL2 (ILM)				<u>.</u>				
Low input voltage	V _{IL} 2	ILM: OFF	0		0.3	V		
High input voltage	V _{IH} 2	ILM: ON	2.7	3.3	5.5	V		
Input impedance	R _{IN} 2	input voltage ≤ 3.3V	280	400	520	kΩ		
CTRL3								
Low input voltage	V _{IL} 3	CD, AUDIO, SYS5V, DSP: OFF	0		0.3	V		
Middle input voltage	V _{IM} 3	CD, DSP:OFF	1.3	1.65	2.0	٧		
		SYS5V, AUDIO: ON						
High input voltage	V _{IH} 3	CD, AUDIO, SYS5V, DSP: ON	2.7	3.3	5.5	V		
Input impedance	R _{IN} 3	input voltage ≤ 3.3V	280	400	520	kΩ		
V _{DD} output 5.0V/3.3V -ON ;	IKV _{DD} = V _{CC} 1 : V	$DD = 5V/IKV_{DD} = GND : V_{DD} = 3.3V$						
V _{DD} output voltage 1	V _O 1	$I_{O}1 = 200 \text{mA}, IKV_{DD} = V_{CC}1$	4.75	5.0	5.25	٧		
V _{DD} output voltage 2	V _O 1'	$I_O1 = 200 \text{mA}, IKV_{DD} = GND$	3.13	3.3	3.47	>		
V _{DD} output current	I _O 1		200			mA		
Line regulation	ΔV _{OLN} 1	7.5V < V _{CC} < 16V, I _O 1 = 200mA		30	100	mV		
Load regulation	ΔV _{OLD} 1	1mA < I _O 1 < 200mA		70	150	mV		
Dropout voltage 1	V _{DROP} 1	I _O 1 = 200mA		1.0	1.5	V		
Dropout voltage 2	V _{DROP} 1'	I _O 1 = 100mA		0.5	0.75	V		
Ripple rejection	R _{REJ} 1	f = 120Hz, I _O 1 = 200mA	40	50		dB		
CD output 8.0V-ON ; CTRL3	=[H]			<u>.</u>				
CD output voltage	V _O 2	I _O 2 = 1000mA	7.6	8.0	8.4	V		
CD output current	I _O 2		1000			mA		
Line regulation	ΔV _{OLN} 2	10.5V < V _{CC} < 16V, I _O 3 = 1000mA		50	100	mV		
Load regulation	ΔV _{OLD} 2	10mA < I _O 2 < 1000mA		100	200	mV		
Dropout voltage 1	V _{DROP} 2	I _O 2 = 1000mA		1.0	1.5	V		
Dropout voltage 2	V _{DROP} 2'	I _O 2 = 500mA		0.5	0.75	V		
Ripple rejection	R _{REJ} 2	f = 120Hz, I _O 2 = 1000mA	40	50		dB		

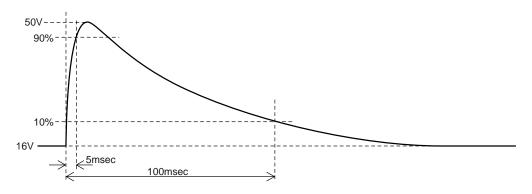
LV5696P


Continued	from	preceding	nage

Parameter Symbol Conditions Conditions Conditions Con	1.222 -1 7.65 2.86 200 40 8.07 300	1.260 8.0 3.0 30 70 0.7 0.35 50 8.5 30 70 0.7 0.35	90 1.05 0.53 8.93 90 150	Unit V μA V V mA mV V dB V mA mV V V V V V V V V V V V V
LM_ADJ current I _{IN} 3 LM_ADJ current I _{IN} 3 LM output voltage1 V _O 3 I _O 3 = 200mA, R1 = 300kΩ, R2 = 56kΩ LM output voltage2 V _O 3' I _O 3 = 200mA, R1 = 51kΩ, R2 = 36kΩ LM output current I _O 3 R1 = 300kΩ, R2 = 56kΩ Line regulation ΔV _O LN3 10.5V < V _C C < 16V, I _O 4 = 200mA Line regulation ΔV _O LD3 1mA < I _O 3 < 200mA Dropout voltage 1 V _{DROP3} I _O 3 = 200mA Dropout voltage 1 V _{DROP3} I _O 3 = 100mA Dropout voltage 2 V _{DROP3} I _O 3 = 100mA RREJ3 f = 120Hz, I _O 4 = 200mA AUDIO output 8.5V-ON ; CTRL3 = [M or H] I _O 4 = 300mA AUDIO output voltage V _O 4 I _O 4 = 300mA AUDIO output current I _O 4 Line regulation ΔV _O LN4 10.5V < V _C C < 16V, I _O 4 = 300mA Dropout voltage 1 V _{DROP4} I _O 4 = 200mA Dropout voltage 2 V _{DROP4} I _O 4 = 100mA Propout voltage 2 V _{DROP4} I _O 4 = 100mA Propout voltage 3 I _O 5 = 500mA <	-1 7.65 2.86 200 40 8.07 300	8.0 3.0 30 70 0.7 0.35 50 8.5 30 70 0.7	1 8.35 3.14 90 150 1.05 0.53 8.93 90 150 1.05	μΑ V V MA MV V V dB V mA MV V V V MA
LM_ADJ current LM_ADJ current LM_Output voltage1 VO3 $I_{O3} = 200mA, R1 = 300kΩ, R2 = 56kΩ$ LM output voltage2 VO3' $I_{O3} = 200mA, R1 = 51kΩ, R2 = 36kΩ$ LM output current I_{O3} R1 = 300kΩ, R2 = 56kΩ LM output current I_{O3} R1 = 300kΩ, R2 = 56kΩ Line regulation ΔV_{OLN3} 10.5V < V _{CC} < 16V, $I_{O4} = 200mA$ Dropout voltage 1 VDROP3 $I_{O3} = 200mA$ Propout voltage 2 VDROP3' $I_{O3} = 100mA$ RREJ3 $I_{O3} = 100mA$ ROPOUT voltage 2 VDROP3' $I_{O3} = 100mA$ ROPOUT voltage 3 AUDIO output 8.5V-ON; CTRL3 = \begin{array}{cccccccccccccccccccccccccccccccccccc	-1 7.65 2.86 200 40 8.07 300	8.0 3.0 30 70 0.7 0.35 50 8.5 30 70 0.7	1 8.35 3.14 90 150 1.05 0.53 8.93 90 150 1.05	μΑ V V MA MV V V dB V mA MV V V V MA
LM output voltage1 V_{O3} $I_{O3} = 200 \text{mA}, R1 = 300 \text{k}\Omega, R2 = 56 \text{k}\Omega$ LM output voltage2 V_{O3} ' $I_{O3} = 200 \text{mA}, R1 = 51 \text{k}\Omega, R2 = 36 \text{k}\Omega$ LM output current I_{O3} $R1 = 300 \text{k}\Omega, R2 = 56 \text{k}\Omega$ Line regulation ΔV_{OLN3} $10.5 \text{V} < \text{V}_{CC} < 16 \text{V}, I_{O4} = 200 \text{mA}$ Line regulation ΔV_{OLD3} $1 \text{mA} < I_{O3} < 200 \text{mA}$ $1 \text{mA} < I_{O4} < 300 \text{mA}$ 1mA	7.65 2.86 200 40 8.07 300	3.0 30 70 0.7 0.35 50 8.5 30 70 0.7	8.35 3.14 90 150 1.05 0.53 8.93 90 150 1.05	V V MA MV V V V dB MV MV MV MV
LM output voltage2 V_O3° $I_O3 = 200 \text{mA}, R1 = 51 \text{k}\Omega, R2 = 36 \text{k}\Omega$ LM output current I_O3 $R1 = 300 \text{k}\Omega, R2 = 56 \text{k}\Omega$ Line regulation $\Delta V_{OLN}3$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 200 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 200 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 200 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 200 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 200 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 200 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 200 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 200 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 200 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < V_{CC} < 16 \text{V}, I_O4 = 300 \text{mA}$ $10.5 \text{V} < 10.5 \text{V} < $	2.86 200 40 8.07 300	3.0 30 70 0.7 0.35 50 8.5 30 70 0.7	90 150 1.05 0.53 8.93 90 150 1.05	V mA mV V dB V mA mV
LM output current I_{O3} $R1 = 300k\Omega$, $R2 = 56k\Omega$ Line regulation ΔV_{OLN3} $10.5V < V_{CC} < 16V$, $I_{O4} = 200mA$ Load regulation ΔV_{OLD3} $1mA < I_{O3} < 200mA$ Dropout voltage 1 V_{DROP3} $I_{O3} = 200mA$ Dropout voltage 2 V_{DROP3} , $I_{O3} = 100mA$ Ripple rejection R_{REJ3} $f = 120Hz$, $I_{O4} = 200mA$ AUDIO output 8.5V-ON; CTRL3 = $[M \text{ or } H]$ AUDIO output voltage V_{O4} $I_{O4} = 300mA$ AUDIO output current I_{O4} Line regulation ΔV_{OLN4} $10.5V < V_{CC} < 16V$, $I_{O4} = 300mA$ Dropout voltage 1 V_{DROP4} $I_{O4} = 200mA$ Dropout voltage 1 V_{DROP4} $I_{O4} = 200mA$ Dropout voltage 2 V_{DROP4} $I_{O4} = 200mA$ Dropout voltage 2 V_{DROP4} $I_{O4} = 100mA$ Ripple rejection R_{REJ4} $f = 120Hz$, $I_{O4} = 300mA$ R_{SYS} output 5.0V-ON; CTRL3 = $[M \text{ or } H]$ SYS output voltage V_{O5} $I_{O5} = 500mA$ Line regulation ΔV_{OLN5} $I_{O5} = 500mA$	40 8.07 300	30 70 0.7 0.35 50 8.5 30 70	90 150 1.05 0.53 8.93 90 150	mA mV mV V dB V mA mV
Line regulation ΔV _{OLN} 3 10.5V < V _{CC} < 16V, I _O 4 = 200mA	8.07 300	70 0.7 0.35 50 8.5 30 70 0.7	150 1.05 0.53 8.93 90 150 1.05	mV v v dB v mA mV
Load regulation ΔV _{OLD} 3 1mA < I _O 3 < 200mA Dropout voltage 1 V _{DROP} 3 I _O 3 = 200mA Dropout voltage 2 V _{DROP} 3' I _O 3 = 100mA Ripple rejection R _{REJ} 3 f = 120Hz, I _O 4 = 200mA AUDIO output 8.5V-ON; CTRL3 = [M or H] I _O 4 AUDIO output voltage V _O 4 I _O 4 = 300mA AUDIO output current I _O 4 Line regulation ΔV _{OLN} 4 10.5V < V _{CC} < 16V, I _O 4 = 300mA Load regulation ΔV _{OLD} 4 1mA < I _O 4 < 300mA	8.07	70 0.7 0.35 50 8.5 30 70 0.7	150 1.05 0.53 8.93 90 150 1.05	mV V V dB V mA mV
Oropout voltage 1 VDROP3 IO3 = 200mA Oropout voltage 2 VDROP3' IO3 = 100mA Ripple rejection RREJ3 f = 120Hz, IO4 = 200mA AUDIO output 8.5V-ON; CTRL3 = [M or H] AUDIO output voltage VO4 AUDIO output current IO4 IO4 = 300mA Line regulation ΔVOLN4 10.5V < VCC < 16V, IO4 = 300mA	8.07	0.7 0.35 50 8.5 30 70 0.7	1.05 0.53 8.93 90 150 1.05	V V dB V mA mV
Oropout voltage 2 VDROP3' IQ3 = 100mA Ripple rejection RREJ3 f = 120Hz, IQ4 = 200mA AUDIO output 8.5V-ON; CTRL3 = [M or H] VQ4 IQ4 = 300mA AUDIO output voltage VQ4 IQ4 = 300mA AUDIO output current IQ4 Line regulation ΔVQLN4 10.5V < VCC < 16V, IQ4 = 300mA	8.07	0.35 50 8.5 30 70 0.7	0.53 8.93 90 150 1.05	V dB V mA mV
Ripple rejection RREJ3 f = 120Hz, I _O 4 = 200mA AUDIO output 8.5V-ON ; CTRL3 = [M or H.] AUDIO output voltage V _O 4 I _O 4 = 300mA AUDIO output current I _O 4 Line regulation ΔV _{OLN} 4 10.5V < V _{CC} < 16V, I _O 4 = 300mA Load regulation ΔV _{OLN} 4 10.5V < V _{CC} < 16V, I _O 4 = 300mA Dropout voltage 1 V _{DROP} 4 I _O 4 = 200mA Dropout voltage 2 V _{DROP} 4' I _O 4 = 100mA Ripple rejection R _{REJ} 4 f = 120Hz, I _O 4 = 300mA SYS output 5.0V-ON ; CTRL3 = [M or H.] SYS output voltage V _O 5 I _O 5 = 500mA SYS output current I _O 5 Line regulation ΔV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA Load regulation ΔV _{OLN} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mB < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mB < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mB < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mB < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mB < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mB < I _O 5 < 500mA Load regulation ΔV _{OLD} 5 1mB < I _O 5 < 500mA Load regulation 1mB < I _O 5	8.07	8.5 30 70 0.7	8.93 90 150 1.05	V mA mV
AUDIO output 8.5V-ON; CTRL3 = M or H AUDIO output voltage V _O 4 I _O 4 = 300mA AUDIO output current I _O 4 Line regulation ΔV _{OLN} 4 10.5V < V _{CC} < 16V, I _O 4 = 300mA Dropout voltage 1 V _{DROP} 4 V _{DROP} 4 I _O 4 = 200mA Dropout voltage 2 V _{DROP} 4 I _O 4 = 100mA R _{REJ} 4 F = 120Hz, I _O 4 = 300mA BYS output 5.0V-ON; CTRL3 = M or H SYS output voltage V _O 5 I _O 5 Line regulation ΔV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA Dropout voltage AV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA Dropout voltage AV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA Dropout voltage AV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA Dropout voltage AV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA Dropout voltage AV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA Dropout voltage AV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA Dropout voltage AV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA Dropout voltage AV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA	8.07	8.5 30 70 0.7	90 150 1.05	V mA mV
AUDIO output voltage V _O 4 I _O 4 = 300mA AUDIO output current I _O 4 Line regulation ΔV _{OLN} 4 10.5V < V _{CC} < 16V, I _O 4 = 300mA Load regulation ΔV _{OLD} 4 1mA < I _O 4 < 300mA	300	30 70 0.7	90 150 1.05	mA mV mV
AUDIO output current I_{O4} Line regulation ΔV_{OLN4} ΔV_{OLD4} ΔV_{OLD5}	300	30 70 0.7	90 150 1.05	mA mV mV
Line regulation ΔV_{OLN4} 10.5V < V _{CC} < 16V, I _O 4 = 300mA 10.5V < V _{CC} < 16V, I _O 4 = 300mA 10.5V < V _{CC} < 16V, I _O 4 = 300mA 10.5V < V _{CC} < 16V, I _O 4 = 300mA 10.5V < V _{CC} < 16V, I _O 4 = 300mA 10.5V < V _{CC} < 16V, I _O 4 = 300mA 10.5V < V _{CC} < 16V, I _O 4 = 300mA 10.5V < V _{CC} < 16V, I _O 4 = 300mA 10.5V < 0.5V <		70 0.7	150 1.05	mV mV
Load regulation ΔV _{OLD} 4 1mA < I _O 4 < 300mA Dropout voltage 1 V _{DROP} 4 I _O 4 = 200mA Dropout voltage 2 V _{DROP} 4' I _O 4 = 100mA Ripple rejection R _{REJ} 4 f = 120Hz, I _O 4 = 300mA SYS output 5.0V-ON; CTRL3 = [M or H] SYS output voltage V _O 5 SYS output voltage V _O 5 I _O 5 = 500mA Line regulation ΔV _{OLN} 5 10.5V < V _{CC} < 16V, I _O 5 = 500mA Load regulation ΔV _{OLD} 5 1mA < I _O 5 < 500mA	40	70 0.7	150 1.05	mV
Oropout voltage 1 VDROP4 IQ4 = 200mA Oropout voltage 2 VDROP4' IQ4 = 100mA Ripple rejection RREJ4 f = 120Hz, IQ4 = 300mA SYS output 5.0V-ON; CTRL3 = [M or H] SYS output voltage VQ5 SYS output current IQ5 Line regulation ΔVOLN5 10.5V < VCC < 16V, IQ5 = 500mA	40	0.7	1.05	
Propout voltage 2 V_{DROP4} I_{O4} = 100mA Ripple rejection R_{REJ4} f = 120Hz, I_{O4} = 300mA I_{O5} SYS output 5.0V-ON; CTRL3 = I_{O5} I_{O5} = 500mA	40	-		V
Ripple rejection R_{REJ4} $f = 120$ Hz, $I_{O}4 = 300$ mA $R_{REJ}4$ $f = 120$ Hz, $I_{O}4 = 300$ mA $R_{REJ}4$	40	0.35	0.50	ı
SYS output 5.0V-ON; CTRL3 = $\lceil M \text{ or } H \rfloor$ SYS output voltage V_{O5} I_{O5} = 500mA SYS output current I_{O5} Line regulation ΔV_{OLN5} ΔV_{OLN5} ΔV_{OLD5}	40	0.00	0.53	V
SYS output voltage V_{O5} $I_{O5} = 500 \text{mA}$ SYS output current I_{O5} Line regulation ΔV_{OLN5} $10.5 V < V_{CC} < 16 V$, $I_{O5} = 500 \text{mA}$ Load regulation ΔV_{OLD5} $1 \text{mA} < I_{O5} < 500 \text{mA}$	40	50		dB
SYS output current I _O 5 Line regulation $\Delta V_{OLN}5$ 10.5V < V_{CC} < 16V, I _O 5 = 500mA Load regulation $\Delta V_{OLD}5$ 1mA < I _O 5 < 500mA				
ine regulation $\Delta V_{OLN}5$ $10.5V < V_{CC} < 16V, I_{O}5 = 500 mA$ Load regulation $\Delta V_{OLD}5$ $1mA < I_{O}5 < 500 mA$	4.75	5.0	5.25	V
Load regulation $\Delta V_{OLD}5$ 1mA < I _O 5 < 500mA	500			mA
		30	90	mV
)ropout voltage Voncop5 Io5 = 500mA		70	150	mV
Nobor torrage INKOPO 100 = 20011114		1.3	2.5	V
Ripple rejection R_{REJ} 5 $f = 120Hz$, I_{O} 5 = 500mA	40	50		dB
DSP output 3.3V-ON; CTRL3 = [H]	•			
DSP output voltage V_{O6} $I_{O6} = 800 \text{mA}$	3.13	3.3	3.47	V
DSP output current I _O 6	800			mA
ine regulation $\Delta V_{OLN}6$ 10.5V < V_{CC} < 16V, $I_{O}6$ = 800mA		30	90	mV
Load regulation $\Delta V_{OLD}6$ 1mA < $I_{O}6$ < 800mA		70	150	mV
Oropout voltage V _{DROP} 6 I _O 6 = 800mA		1.5	3.0	V
Ripple rejection R_{REJ6} $f = 120Hz$, $I_{O6} = 800mA$	40	50		dB
ANT Remote-ON ; CTRL1 = [H]		W.		
Output voltage $V_{O}7$ $I_{O}7 = 200 \text{mA}$	V _{CC} -1.0	V _{CC} -0.5		V
Dutput current I_{07} $V_{07} \ge V_{CC}-1.0$	200			mA


Package Dimensions

unit: mm (typ)


3395A

• Allowable power dissipation derating curve

• Peak Voltage testing pulse wave

CTRL logic truth table

CTRL1	ANT
L	OFF
Н	ON

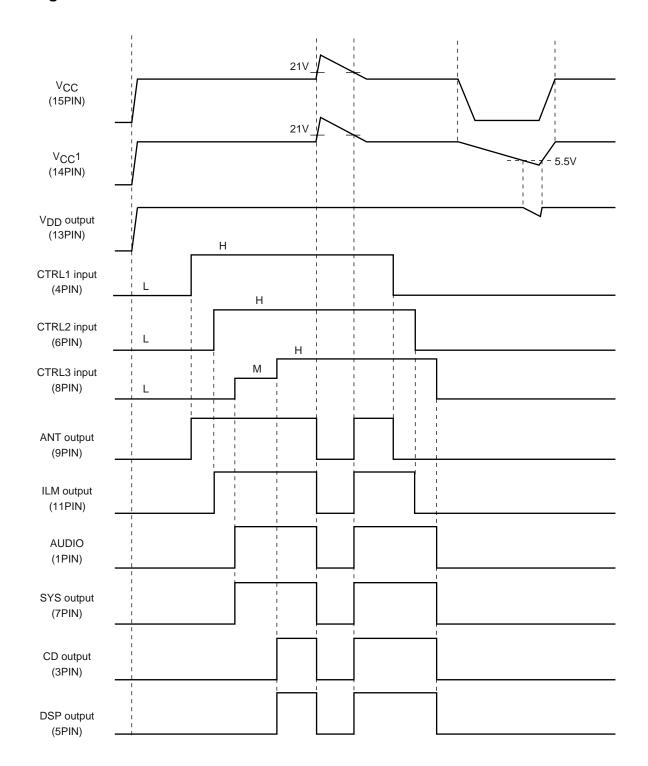
CTRL2	ILM
L	OFF
Н	ON

CTRL3	AUDIO	SYS	CD	DSP
L	OFF	OFF	OFF	OFF
М	ON	ON	OFF	OFF
Н	ON	ON	ON	ON

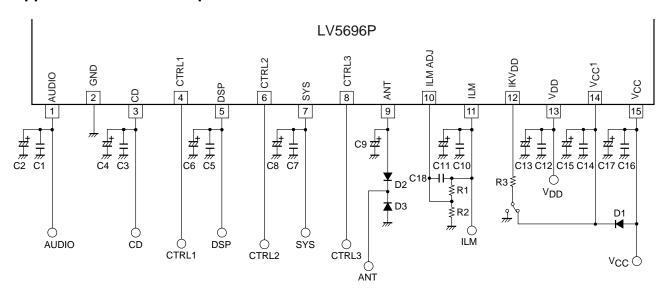
Block Diagram

LV5696P

Pin Function


Pin No.	Pin name	Description	Equivalent Circuit
1	AUDIO	AUDIO output pin CTRL3 = M, H-ON 8.5V/0.3A	15 VCC 2 2 45kΩ 1 1 KΩ GND
2	GND	GND pin	
3	CD	CD output pin CTRL3 = H-ON 8.0V/1.0A	$\begin{array}{c} 15 \\ \hline \\ 3 \\ \hline \\ 45 \mathrm{k}\Omega \end{array}$
4	CTRL1	CTRL1 input pin Input of two values	$\begin{array}{c} 15 \\ \hline 4 \\ \hline \end{array}$
5	DSP	DSP output pin CTRL3 = H-ON 3.3V/0.8A	15 VCC

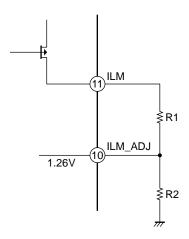
Pin No.	rom preceding pag Pin name	Description	Equivalent Circuit
6	CTRL2	CTRL2 input pin Input of two values	10kΩ VCC 6 W H H H H H H H H H H H H H H H H H H
7	SYS	SYS output pin CTRL3 = M, H-ON 5.0V/0.5A	15 VCC
8	CTRL3	CTRL3 input pin Input of three values	15 VCC 8 10kΩ 10kΩ 10kΩ GND
9	ANT	ANT output pin CTRL1 = H-ON VCC-0.5V/0.2A	15 VCC VCC VCC VCC VCC VCC VCC VCC VCC VC


Continued from preceding page.

Pin No.	rom preceding page	Description	Equivalent Circuit
10	ILM ADJ	ILM feedback pin	15 Vcc
11	ILM	ILM output pin CTRL2 = H-ON 3.0 to 8.0V/0.2A	$\begin{array}{c c} & & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline &$
12	IKV _{DD}	V _{DD} Voltage switch control input pin V _{CC} 1/GND	14 VCC1 5V 4.75ΜΩ 65kΩ GND
13	VDD	V _{DD} output pin 5.0V/0.2A (IKV _{DD} = V _{CC} 1) 3.3V/0.2A (IKCD = GND)	13 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VC
14	V _{CC} 1	V _{DD} power supply pin	V _{CC} (15) → ► 14) V _{CC} 1
15	Vcc	Power supply pin	2 GND

Timing Chart

Application circuit example


External Parts Lineup

Part name	Description	Recommended value	Note
C2, C4, C6, C8,	Output stabilization capacitor	10μF or more (*1)	Electrolytic capacitor
C11, C13			
C1, C3, C5, C7,	Output stabilization capacitor	0.22μF or more (*1)	Ceramic capacitor
C10, C12			
C18	Output stabilization capacitor	20pF	Ceramic capacitor
C15, C17	Bypass capacitor	100μF or more	Connect a capacitor as close as
C14, C16	Prevent oscillation capacitor	0.22μF or more	possible to V _{CC} pin and GND pin.
C9	Output stabilization capacitor	2.2μF or more	
		ILM output voltage	A resistor with resistance
R1, R2	Feedback resister	R1/R2: $300k\Omega/56k\Omega = 8.0V$	accuracy as low as less
		R1/R2: $51k\Omega/36k\Omega = 3.0V$	±1% must be used.
R3	Protective resister	10 to 100kΩ	
D1	Backflow prevention diode		
D2, D3	Internal element Protection diode	SB1003M3	

^(*1) Make sure that output capacitors is 10μ F or more and ESR 10Ω or less in total, in which voltage and temperature fluctuation and unit differences are taken into consideration. Moreover, high frequency characteristics of electrolytic capacitor should be sufficient.

Furthermore, the values listed above do not guarantee stabilization during the over current protection operations of the regulator, so oscillation may occur during an over current protection operation.

ILM output voltage setting method

ILM_ADJ is equal to bandqap reference voltage (typ = 1.26V).

ILM calculating formula

$$ILM = \frac{1.26[V]}{R_2} \times R_1 + 1.26[V]$$

$$\frac{R_1}{R_2} = \frac{(ILM - 1.26)}{1.26}$$

Please design so that the ratio of R1 and R2 may fill the above-mentioned expression for the set ILM voltage.

(Ex.) Setup to
$$ILM = 8.0V$$

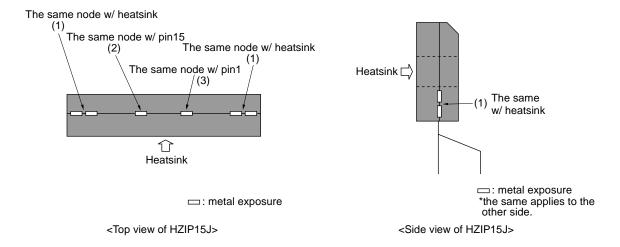
$$\frac{R_1}{R_2} = \frac{(8.0 - 1.26)}{1.26} \cong 5.349$$

$$\frac{R_1}{R_2} = \frac{300k\Omega}{56k\Omega} \cong 5.357$$

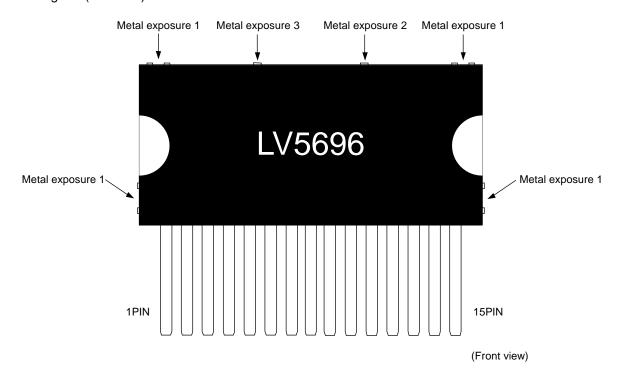
$$ILM = 1.26V \times 5.357 + 1.26V \cong \boxed{8.010V}$$

Note: The above-mentioned are all the values at the typical. The error margin of output voltage is caused by the influence of the manufacturing variations of IC and external resistance.

CTRL3 Application Circuit


Input 3.3V : $R1 = R2 = 47k\Omega$

А	В	CTRL3
0V	0V	0V
0V	3.3V	1.56V
3.3V	0V	1.56V
3.3V	3.3V	3.12V


Warning: Implementing LV5696P to the set board

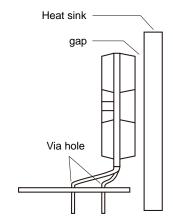
The package of LV5696P is HZIP15J which has some metal exposures other than connection pins and heatsink as shown in the diagram below. The electrical potentials of (2) and (3) are the same as those of pin15 and pin1, respectively. (2) (= pin15) is the V_{CC} pin and (3) (= pin1) is the AUDIO (regulator) output pin. When you implement the IC to the set board, make sure that the bolts and the heatsink are out of touch from (2) and (3). If the metal exposures touch the bolts which has the same electrical potential with GND, GND short occurs in AUDIO output and V_{CC} . The exposures of (1) are connected to heatsink which has the same electrical potential with substrate of the IC chip (GND). Therefore, (1) and GND electrical potential of the set board can contact each other.

HZIP15J outline

Frame diagram (HZIP15J)

HZIP15J Heat sink attachment

Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat.


a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs.

b. Heat sink attachment

- Use flat-head screws to attach heat sinks.
- Use also washer to protect the package.
- Use tightening torques in the ranges 39-59Ncm (4-6kgcm).
- If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself.
- Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
- Take care a position of via hole.
- Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
- Verify that there are no press burrs or screw-hole burrs on the heat sink.
- Warping in heat sinks and printed circuit boards must be no more than 0.05 mm between screw holes, for either concave or convex warping.
- Twisting must be limited to under 0.05 mm.
- Heat sink and semiconductor device are mounted in parallel.

 Take care of electric or compressed air drivers
- The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm.

Binding head machine screw Countersunk head mashine screw

c. Silicone grease

- Spread the silicone grease evenly when mounting heat sinks.
- Our company recommends YG-6260 (Momentive Performance Materials Japan LLC)

d. Mount

- First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board.
- When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang.
- e. When mounting the semiconductor device to the heat sink using jigs, etc.,
 - Take care not to allow the device to ride onto the jig or positioning dowel.
 - Design the jig so that no unreasonable mechanical stress is not applied to the semiconductor device.

f. Heat sink screw holes

- Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used.
- When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable.
- When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable.
- g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa