

IPL-ST7
inDART

Programming
Library

Programmer’s Manual

Copyright © 2003 SofTec Microsystems®

DC00629

SofTec Microsystems
E-mail (general information): info@softecmicro.com
E-mail (technical support): support@softecmicro.com
Web: http://www.softecmicro.com

Important
SofTec Microsystems reserves the right to make improvements to the IPL-ST7
Programming Library, its documentation and software routines, without notice.
Information in this manual is intended to be accurate and reliable. However, SofTec
Microsystems assumes no responsibility for its use; nor for any infringements of rights of
third parties which may result from its use.
SOFTEC MICROSYSTEMS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM
LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
Trademarks
Microsoft and Windows are trademarks or registered trademarks of Microsoft
Corporation.
PC is a registered trademark of International Business Machines Corporation.
Other products and company names listed are trademarks or trade names of their
respective companies.

IPL-ST7 Programming Library

Contents

Overview 4
Introduction 4
The IPL-ST7 DLL 4
Installation 4

1. Copying the Files to the Hard Disk 5
2. Installing the inDART Communication Driver 7
3. Installing the SmartKey Driver 8
4. Copying the required DLLs to your application’s executable
directory 8

Programming Library Reference 9
Using the Interface Library Functions 9
Return Values of the Programming Library Functions 9
Function Reference 10

IPL_BlankCheck 10
IPL_CheckDeviceProtection 11
IPL_CloseCommunication 11
IPL_EndProgramming 12
IPL_Erase 12
IPL_GetInfo 14
IPL_OpenCommunication 14
IPL_Program 16
IPL_Read 17
IPL_Run 18
IPL_StartProgramming 19

Overview

Page 4

Overview

Introduction

This documentation deals with low-level interfacing between user written PC
applications and the inDART-ST7 Series In-Circuit Debuggers/Programmers.
This section assumes you have already read the instrument’s user’s manual and
got acquainted with the instrument. All of the examples provided in this
documentation are written in C, unless otherwise reported.

The IPL-ST7 DLL

Dynamic-link libraries (DLL) are modules that contain functions and data. A
DLL is loaded at run time by its calling modules (.exe or .dll). When a DLL is
loaded, it is mapped into the address space of the calling process.
The IPL-ST7 Programming Library is a DLL which includes all of the low-level
functions that allow you to set up the instrument and perform, from within your
own application, most of the programming commands and functions of the
DataBlaze user interface.
The IPL-ST7 Programming Library contains C written routines, and can be used
to interface the instrument from within, for example, a Microsoft Visual C or
Visual Basic application, as well as any other programming language that
supports the DLL mechanism. For details on how to call DLL functions from
within your application, please refer to the your programming language’s
documentation.

Installation

Before to start working with the IPL-ST7 Programming Library, you must set up
your system with all the required files and drivers. You must perform the
following installation steps:

1. Copy the IPL-ST7 Programming Library files to the hard disk.

IPL-ST7 Programming Library

Page 5

2. Install the inDART communication driver (LPT or USB driver, depending
on the inDART model).

3. Install the SmartKey driver (the SmartKey is the provided USB dongle
which must be connected to a USB port in order for the IPL-ST7
Programming Library to work—it’s an anti-piracy protection system).

4. Copy the IPL_ST7.dll file and the appropriate inDART_ST7.dll file to your
application’s executable directory.

1. Copying the Files to the Hard Disk
The IPL-ST7 Programming Library comes as a zipped archive. You can unzip it
to any hard disk location. After unzipping, the IPL-ST7 directory structure will
be the following:

Overview

Page 6

Directory Description

DLLs\inDART_ST7 Contains the inDART_ST7.dll file for inDART-ST7 models

(inDART-ST7C, inDART-ST7F, inDART-ST72F264, inDART-
ST7FLITE0). This file must be copied to your application’s
directory.

DLLs\inDART_STX Contains the inDART_ST7.dll file for inDART-STX. This file
must be copied to your application’s directory.

DLLs\IPL_ST7 Contains the IPL_ST7.dll file. This file must be copied to your
application’s directory. Also contains .lib and .h files for Visual
C applications.

Docs Documentation.

Drivers\LPT Contains the driver needed by LPT-based inDARTs in order to
communicate with the PC. Note: this driver is automatically
installed by the inDART system software that came with the
instrument. If you choose not to install the inDART system
software, you can manually install this driver following the
instructions provided in the readme.txt file in this directory.

Drivers\USB\inDART-STX Contains the driver needed by the USB-based inDART-STX in
order to communicate with the PC. Note: this driver is
automatically installed by the inDART system software that
came with the instrument. If you choose not to install the
inDART system software, you can manually install this driver
following the instructions provided in the readme.txt file in this
directory.

Drivers\USB\inDART-ST7F Contains the driver needed by the USB-based inDART-ST7F in
order to communicate with the PC. Note: this driver is
automatically installed by the inDART system software that
came with the instrument. If you choose not to install the
inDART system software, you can manually install this driver
following the instructions provided in the readme.txt file in this
directory.

Examples Contains a Visual C sample project which uses the IPL-ST7
programming library.

SmartKey Contains the driver for the SmartKey dongle, which must be
connected to a USB port in order for the IPL-ST7 programming
interface to work.

Interface Library Contents

IPL-ST7 Programming Library

Page 7

2. Installing the inDART Communication Driver
Depending on the inDART model you are using, you must install either the LPT
driver or the USB driver.

Note: if you ran the inDART system software that came with the instrument,
the appropriate communication driver is already present in your system. If
you haven’t done so, and you wish to install the driver yourself, follow the
instructions below.

To install the LPT driver (for LPT-based inDART models):

1. If you are working under Windows 9x/Me, just copy the file TVicLPT.vxd

from the Drivers\LPT directory to the <WINDOWS>\SYSTEM directory.
2. If you are working under Windows NT/2000/XP, you must do the

following:

a. Log in as Administrator;
b. Copy the file TVicLPT.sys from the Drivers\LPT directory to the

<WINDOWS>\SYSTEM32\DRIVERS directory;
c. Create the following keys in the Registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
TVicLPT, Key = “ErrorControl”, Value = 0x00000001, Type =
DWORD

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
TVicLPT, Key = “Type”, Value = 0x00000001, Type = DWORD

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
TVicLPT, Key = “Start”, Value = 0x00000002, Type = DWORD

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
TVicLPT, Key = “Group”, Value = “Extended Base”, Type =
String

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
TVicLPT, Key = “Parameters”, Value = “”, Type = String

d. Reboot the PC.

To install the USB driver for the inDART-ST7F model:

Overview

Page 8

1. Copy the st7fusb.inf file from the Drivers\USB\inDART-ST7F directory

to the <WINDOWS>\Inf directory.
2. Copy the sftst7f.sys and sftst7fl.sys files from the

Drivers\USB\inDART-ST7F directory to the
<WINDOWS>\System32\Drivers directory.

To install the USB driver for the inDART-STX model:

1. Copy the stxusb.inf file from the Drivers\USB\inDART-STX directory to

the <WINDOWS>\Inf directory.
2. Copy the sftstx.sys file from the Drivers\USB\inDART-STX directory to

the <WINDOWS>\System32\Drivers directory.

3. Installing the SmartKey Driver
To install the SmartKey driver, please follow these steps:

1. Plug the SmartKey USB in a USB port.
2. When Windows asks for the driver, select the SmartKey directory (which

contains the skeyusb.inf file) and Windows will automatically install the
driver.

4. Copying the required DLLs to your application’s executable directory
Finally, you must copy the IPL_ST7.dll file and the appropriate
inDART_ST7.dll file to your application’s executable directory.

1. Copy the IPL_ST7.dll file from the DLL\IPL_ST7 directory to your

application’s executable directory.
2. There are two version of the inDART_ST7.dll file: one for inDART-ST7

models (inDART-ST7C, inDART-ST7F, inDART-ST72F264, inDART-
ST7FLITE0) and one for the inDART-STX model.
Depending on which inDART model you are working with, you must copy
the inDART_ST7.dll file (either from the DLLs\inDART_ST7 directory or
from the DLLs\inDART_STX directory) to your application’s executable
directory.

IPL-ST7 Programming Library

Page 9

Programming Library Reference

Using the Interface Library Functions

When you control inDART within your own application, you will typically follow
the steps indicated below:

1. Initialize the instrument.

To communicate with inDART you need to open a parallel port or USB
resource and initialize the inDART board with target device information.
This initialization procedure must be done every time the instrument is
powered on. To initialize the instrument, call the IPL_OpenCommunication
function.

2. Program.
Once the instrument has been set up, you can begin programming. Each
programming operation (blank check, erase, read, program, etc.) must be
called within a IPL_StartProgramming and IPL_EndProgramming block.

3. Close the communication with the instrument.
Closing the communication with the instrument frees the parallel port or
USB resource used during communication.

Return Values of the Programming Library Functions

Most of the IPL-ST7 Programming Library functions return a BOOL value
which indicates whether the function has been successfully executed (return
value = TRUE) or not (return value = FALSE). In the latter case it is possible to get
extended error information by calling the function IPL_GetErrorMessage:

void IPL_GetErrorMessage (char *msg);

The msg parameter will be filled with a text message explaining the cause of the
problem.

Programming Library Reference

Page 10

Function Reference

IPL_BlankCheck

Include file:

#include “IPL_ST7.h”
Function prototype:

BOOL IPL_BlankCheck
 (int mem_type,
 unsigned long start_addr,
 unsigned long len,
 BOOL *result,
 IPL_ProgressProc *callback);

Parameters:
mem_type: the type of memory affected. Can be one of the

following values:
IPL_MEMORY_CODE
IPL_MEMORY_DATA
IPL_MEMORY_OPTION

start_addr: the start address. When blank checking the Option
Bytes, set this parameter to 0.

len: the number of bytes (starting from start_addr) to
blank check. When blank checking the Option Bytes,
this parameter is 2 for devices with 2 Option Bytes,
and 1 for devices with 1 Option Byte.

result: returns TRUE if the checked memory if blank, FALSE
otherwise.

callback: specifies the address of a callback function which will
get the progress (a value from 0 to 100) of the blank
check operation. You can use this feature to display a
progress bar while the target’s memory is being blank
checked. If this feature is not used, the callback
parameter must be NULL. The callback function
prototype must be defined as follows:

IPL-ST7 Programming Library

Page 11

void IPL_ProgressProc (unsigned long);

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetErrorMessage function

to get extended error information.
Description:

Checks if a memory portion of the target device is blank.
Note: this function must be called within an IPL_StartProgramming/
IPL_EndProgramming block.

IPL_CheckDeviceProtection

Include file:

#include “IPL_ST7.h”
Function prototype:

BOOL IPL_CheckDeviceProtection (BOOL *dev_protected);

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetErrorMessage function

to get extended error information.
Description:

Returns (in the dev_protected variable) whether the code memory of
the target device is protected or not.
Note: this function must be called within an IPL_StartProgramming/
IPL_EndProgramming block.

IPL_CloseCommunication

Include file:

#include “IPL_ST7.h”
Function prototype:

BOOL IPL_CloseCommunication (void);

Programming Library Reference

Page 12

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetErrorMessage function

to get extended error information.
Description:

Closes the communication with the instrument and frees the parallel port
or USB resource used during communication.

IPL_EndProgramming

Include file:

#include “IPL_ST7.h”
Function prototype:

BOOL IPL_EndProgramming (void);

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetErrorMessage function

to get extended error information.
Description:

Each programming operation (blank check, erase, read, program, etc.)
must be called within a IPL_StartProgramming and
IPL_EndProgramming block. The IPL_EndProgramming function signals
the inDART board not to expect any more programming operations, and
turns off the “BUSY” LED (if present on the inDART board).
An user application can have as many IPL_StartProgramming/
IPL_EndProgramming blocks as desired, as long as every programming
operation is called within them.

IPL_Erase

Include file:

#include “IPL_ST7.h”

IPL-ST7 Programming Library

Page 13

Function prototype:
BOOL IPL_Erase
(int mem_type,
unsigned long start_addr,
unsigned long len,
BOOL *result,
IPL_ProgressProc *callback);

Parameters:
mem_type: the type of memory affected. Can be one of the

following values:
IPL_MEMORY_CODE
IPL_MEMORY_DATA
IPL_MEMORY_OPTION

start_addr: the start address. When erasing the Option Bytes, set
this parameter to 0.

len: the number of bytes (starting from start_addr) to
erase. When erasing the Option Bytes, this parameter
is 2 for devices with 2 Option Bytes, and 1 for devices
with 1 Option Byte.

result: returns TRUE if the erasing was successful, FALSE
otherwise.

callback: specifies the address of a callback function which will
get the progress (a value from 0 to 100) of the erasing
operation. You can use this feature to display a
progress bar while the target’s memory is being
erased. If this feature is not used, the callback
parameter must be NULL. The callback function
prototype must be defined as follows:

void IPL_ProgressProc (unsigned long);

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetErrorMessage function

to get extended error information.
Description:

Erases a portion of the target device’s memory.
Note: this function must be called within an IPL_StartProgramming/
IPL_EndProgramming block.

Programming Library Reference

Page 14

IPL_GetInfo

Include file:

#include “IPL_ST7.h”
Function prototype:

BOOL IPL_GetInfo (char *info);

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetErrorMessage function

to get extended error information.
Description:

Returns a string containing the version of the IPL-ST7 Programming
Library and the version of the underlying inDART_ST7.dll file in use.

IPL_OpenCommunication

Include file:

#include “IPL_ST7.h”
Function prototype:

BOOL IPL_OpenCommunication
 (int comm_channel,
 const char *hw_model,
 const char *device_code,
 unsigned long reset_rise_time,
 BOOL use_option_bytes,
 int ec_freq);

Parameters:
comm_channel: the communication channel between the

inDART board and the PC. Valid values are:
IPL_USB
IPL_LPT1
IPL_LPT2
IPL_LPT3
IPL_LPT4

IPL-ST7 Programming Library

Page 15

hw_model: a string defining the inDART board model.
Valid values are:
IPL_INDART_ST72F264
IPL_INDART_ST7C
IPL_INDART_ST7F
IPL_INDART_ST7FLITE0
IPL_INDART_STX

device_code: a string representing the exact code of the target
device, as listed by the DataBlaze programming
utility.

reset_rise_time: is the target RESET rise time. Depending on the
specific inDART board model and target device
you are working with, this parameter is used by
the IPL-ST7 Programming Library to correctly
initialize the instrument. For further details,
please refer to the appropriate inDART user’s
manual.

use_option_bytes: specifies how the instrument will enter the ICC
mode. Depending on the specific inDART board
model and target device you are working with,
this parameter is used by the IPL-ST7
Programming Library to correctly initialize the
instrument. For further details, please refer to
the appropriate inDART user’s manual.

ec_freq: sets the embedded command frequency (in
MHz). Depending on the specific inDART board
model and target device you are working with,
this parameter is used by the IPL-ST7
Programming Library to correctly initialize the
instrument. For further details, please refer to
the appropriate inDART user’s manual.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetErrorMessage function

to get extended error information.
Description:

Opens a parallel port or USB resource and initializes the inDART board
with target device information. This initialization procedure must be done

Programming Library Reference

Page 16

every time the instrument is powered on, and before calling any other
function that communicates with the instrument.

IPL_Program

Include file:

#include “IPL_ST7.h”
Function prototype:

BOOL IPL_Program
(int mem_type,
unsigned long start_addr,
unsigned long len,
unsigned char *mem,
BOOL *result,
IPL_ProgressProc *callback);

Parameters:
mem_type: the type of memory affected. Can be one of the

following values:
IPL_MEMORY_CODE
IPL_MEMORY_DATA
IPL_MEMORY_OPTION

start_addr: the start address. When programming the Option
Bytes, set this parameter to 0.

len: the number of bytes (starting from start_addr) to
program. When programming the Option Bytes, this
parameter is 2 for devices with 2 Option Bytes, and 1
for devices with 1 Option Byte.

mem: the pointer to the first byte of the buffer containing
the data to be programmed. When programming the
Option Bytes, mem points to the first Option Byte.

result: returns TRUE if the programming was successful,
FALSE otherwise.

callback: specifies the address of a callback function which will
get the progress (a value from 0 to 100) of the
programming operation. You can use this feature to
display a progress bar while the target’s memory is
being programmed. If this feature is not used, the

IPL-ST7 Programming Library

Page 17

callback parameter must be NULL. The callback
function prototype must be defined as follows:

void IPL_ProgressProc (unsigned long);

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetErrorMessage function

to get extended error information.
Description:

Programs (writes) a portion of the target device’s memory.
Note: this function must be called within an IPL_StartProgramming/
IPL_EndProgramming block.

IPL_Read

Include file:

#include “IPL_ST7.h”
Function prototype:

BOOL IPL_Read
(int mem_type,
unsigned long start_addr,
unsigned long len,
unsigned char *mem,
BOOL *result,
IPL_ProgressProc *callback);

Parameters:
mem_type: the type of memory affected. Can be one of the

following values:
IPL_MEMORY_CODE
IPL_MEMORY_DATA
IPL_MEMORY_OPTION

start_addr: the start address. When reading the Option Bytes, set
this parameter to 0.

Programming Library Reference

Page 18

len: the number of bytes (starting from start_addr) to
read. When reading the Option Bytes, this parameter
is 2 for devices with 2 Option Bytes, and 1 for devices
with 1 Option Byte.

mem: the pointer to the first byte of the buffer which will
receive the read data. When reading the Option Bytes,
mem points to the first Option Byte.

result: returns TRUE if the reading was successful, FALSE
otherwise.

callback: specifies the address of a callback function which will
get the progress (a value from 0 to 100) of the reading
operation. You can use this feature to display a
progress bar while the target’s memory contents are
being read. If this feature is not used, the callback
parameter must be NULL. The callback function
prototype must be defined as follows:

void IPL_ProgressProc (unsigned long);

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetErrorMessage function

to get extended error information.
Description:

Reads a portion of the target device’s memory.
Note: this function must be called within an IPL_StartProgramming/
IPL_EndProgramming block.

IPL_Run

Include file:

#include “IPL_ST7.h”
Function prototype:

BOOL IPL_Run (void);

Return value:
TRUE: the function was successful.

IPL-ST7 Programming Library

Page 19

FALSE: an error occurred. Call the IPL_GetErrorMessage function
to get extended error information.

Description:
Resets the target device and restarts the microcontroller in user mode,
thus fetching and executing the programmed user program.
Note: this function must be called within an IPL_StartProgramming/
IPL_EndProgramming block.

IPL_StartProgramming

Include file:

#include “IPL_ST7.h”
Function prototype:

BOOL IPL_StartProgramming (void);

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetErrorMessage function

to get extended error information.
Description:

Each programming operation (blank check, erase, read, program, etc.)
must be called within a IPL_StartProgramming and
IPL_EndProgramming block. The IPL_StartProgramming function
prepares the inDART board to perform programming operations, and
turns on the “BUSY” LED (if present on the inDART board).
An user application can have as many IPL_StartProgramming/
IPL_EndProgramming blocks as desired, as long as every programming
operation is called within them.

