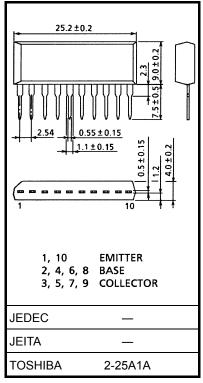
TOSHIBA Power Transistor Module Silicon NPN Triple Diffused Type (Four Darlington Power Transistors in One)

MP4015

High Power Switching Applications Hammer Drive, Pulse Motor Drive Inductive Load Switching


- Small package by full molding (SIP 10 pins)
- High collector power dissipation (4-device operation)
 PT = 4 W (Ta = 25°C)
- High collector current: IC(DC) = 5 A (max)
- High DC current gain: $h_{FE} = 1000$ (min) ($V_{CE} = 4$ V, $I_{C} = 3$ A)
- Zener diode included between collector and base.
- Unclamped inductive load energy: ES/B = 100 mJ (min)

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Collector-base voltage		V_{CBO}	55	V	
Collector-emitter voltage		V _{CEO}	60 ± 10	V	
Emitter-base voltage		V _{EBO}	6	V	
Collector current	DC	IC	5	А	
Collector current	Pulse	I _{CP}	8		
Continuous base current		Ι _Β	0.5	Α	
Collector power dissipation (1-device operation)		PC	2.0	W	
Collector power dissipation (4-device operation)		P _T	4.0	W	
Junction temperature		Tj	150	°C	
Storage temperature range		T _{stg}	-55 to 150	°C	

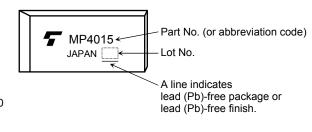
Industrial Applications

Unit: mm

Weight: 2.1 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

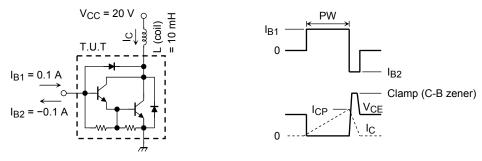

Array Configuration

2 4 4 6 8 8 10

 $R2 \approx 150 \Omega$

R1 ≈ 5 kΩ

Marking

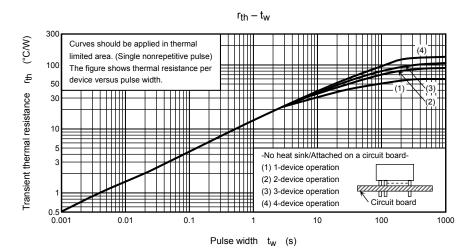


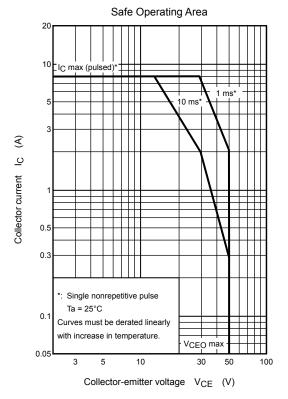
Thermal Characteristics

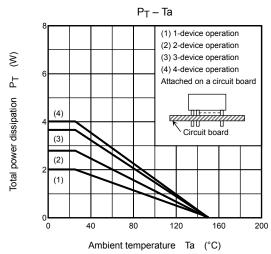
Characteristics	Symbol	Max	Unit	
Thermal resistance from junction to ambient	ΣR _{th (j-a)}	31.3	°C/W	
(4-device operation, Ta = 25°C)	3 (3)			
Maximum lead temperature for soldering purposes	TL	260	°C	
(3.2 mm from case for 10 s)				

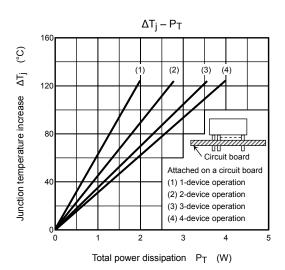
Electrical Characteristics (Ta = 25°C)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit	
Collector cut-off current		I _{CBO}	V _{CB} = 45 V, I _E = 0 A	_	_	10	μΑ	
Collector cut-off current		I _{CEO}	V _{CE} = 45 V, I _B = 0 A	_	_	10	μA	
Emitter cut-off current		I _{EBO}	V _{EB} = 6 V, I _C = 0 A	0.3	_	10	mA	
Collector-base breakdown voltage		V (BR) CBO	I _C = 10 mA, I _E = 0 A	50	_	70	V	
DC current gain		h _{FE (1)}	V _{CE} = 4 V, I _C = 1 A		_	_		
		h _{FE (2)}	V _{CE} = 4 V, I _C = 3 A	1000	_	_		
Saturation voltage	Collector-emitter	V _{CE} (sat) (1)	I _C = 1 A, I _B = 4 mA	_	0.9	1.4		
		V _{BE} (sat) (2)	I _C = 3 A, I _B = 10 mA	_	1.3	2.0		
	Base-emitter	V _{BE} (sat)	I _C = 1 A, I _B = 4 mA	_	1.6	2.0		
Base-emitter voltage		V _{BE}	V _{CE} = 4 V, I _B = 3 A	_	1.8	2.5	V	
Transition frequency		f _T	V _{CE} = 3 V, I _C = 0.5 A		7	_	MHz	
Collector output capacitance		C _{ob}	V _{CB} = 10 V, I _E = 0 A, f = 1 MHz	_	44	_	pF	
Switching time	Turn-on time	t _{on}	Output Input B1 20 μs B2 VCC = 30 V	_	0.6	_		
	Storage time	t _{stg}		_	4.2	_	μs	
	Fall time	t _f	$ _{B_1} = - _{B_2} = 10 \text{ mA, duty cycle} \le 1\%$	_	2.3	_		
Unclamped inductive load energy		E _{S/B}	Refer to Figure 1	100	_	_	mJ	


Note 1: Pulse width adjusted for desired I_{CP} (I_{CP} = 4.48 A min)


Note 2:
$$E_{S/B} = \frac{1}{2} L \cdot I_{CP} 2$$


Figure 1 Measurement Circuit of Unclamped Inductive Load Energy E_{S/B}


2

2006-10-27

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.