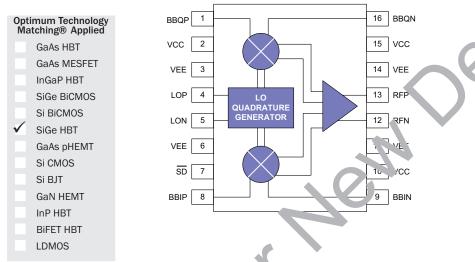


STQ-2016(Z) 700 MHz to 2500 MHz DIRECT QUADRATURE MODULATOR



RFMD Green, RoHS Compliant, Pb-Free (Z Part Number) Package: TSSOP, 16-Pin, 5.0mmx6.4mmx1.0mm

Product Description

RFMD's STQ-2016 is a direct quadrature modulator targeted for use in a wide range of communications systems, including cellular/PCS, CDMA2000, UMTS, and ISM datacom. This device features a wide 700MHz to 2500MHz operating frequency band, excellent carrier and sideband suppression, and a low broadband noise floor.

The STQ-2016 uses silicon germanium (SiGe) device technology and delivers a typical output power of -11dBm with typical 60dB IM3 suppression. A digital input shut-down feature is included that, when enabled, attenuates the output by 60dB. The device is packaged in an industry standard 16-pin TSSOP with exposed paddle for superb RF and thermal ground.

Features

- Excellent Carrier Feedthrough, -40dBm Constant with Output Power
- Output P1dB +3dBm
- Wide Base: and puput, DC to 500 MH[±]
- Super, Phas Accuracy and Amplitude Balance, ±0 Γ°C/±0.2dB
- Very Low Noise Floor, ↓155dBm/Hz
- Low LO Drive Requirement, -5 dBm

Applications

- Celllar/PCS/ CDMA2000/UMTS Transceivers
- ISM Band Transceivers, 900 MHz and 2400 MHz
- GMSK, QPSK, QAM, SSB Modulators

Parameter	700MHz .0 1. 00.1Hz 1700MHz to 2500MHz							
Farameter	Unit	М'л.	ivp.	Max.	Min.	Тур.	Max.	Comments
RF Output:								
$T_A = 25 \degree C$								
RF Frequency Range	MH∠	700		1000	1700		2500	
Output Power	dBm	-13.0	-10.5	-9.0	-15.0	-11.5	-9.0	Baseband 200kHz @ 600mV _{P-P} differential
RF Port Return Loss	dB		20			16		Matched to 50Ω (refer to schematics on pages 6 and 7)
Output P1dB	G	+3	+4		0	+3		(I/Q inputs=3.74V _{P-P} differential typical)
Carrier Feedthro. Yu	'Bm		-40	-34		-40	-32	
Sideband Suppress. n	dB	34	40		34	40		
IM3 Suppression	dB	55	60		55	60		Two-tone baseband input @ 600 mV _{P-P} differential per tone
Broadband Noise Floor	dBm/Hz		-154	-152		-155	-153	Baseband inputs tied to 1.9V _{DC} , -20MHz offset from carrier
Quadrature Phase Error	deg	-2.0	±0.5	+2.0	-2.0	±0.5	+2.0	
I/Q Amplitude Balance	dB	-0.20	±0.05	+0.20	-0.20	±0.05	+0.20	
Supply Voltage (V _{CC})	V	+4.75	+5.00	+5.25	+4.75	+5.00	+5.25	
Supply Current	mA		73	86		73	86	
Device Thermal Resis- tance	°C/W		25			25		

RF MICRO EVICES, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^{III}, PowerStarle, POLARIS^{III} TOTAL RADIO^{III} and UtimateBlum^{III} and trademarks of RFMD, LLC, BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., LLSA, and liegensed for use by RFMD, All other trademarks and resistend trademarks are the proceets of their respective owners. Sc2006, RF Micro Devices, Inc.

STQ-2016(Z)

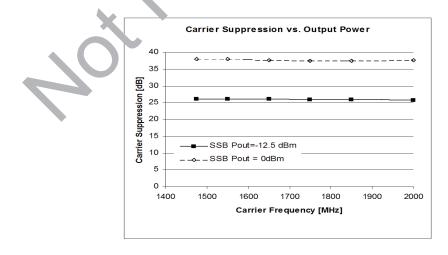
rfmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage (V _{CC})	6.0	V _{DC}
LO, RF Input (LOP, LON, RFP, RFN)	+10	dBm
Baseband Min Input Voltage (BBIP, BBIN, BBQP, BBQN)	0	V _{DC}
Baseband Max Input Voltage (BBIP, BBIN, BBQP, BBQN)	3	V _{DC}
Operating Temperature	-40 to +85	°C
Storage Temperature	-65 to + 150	°C

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

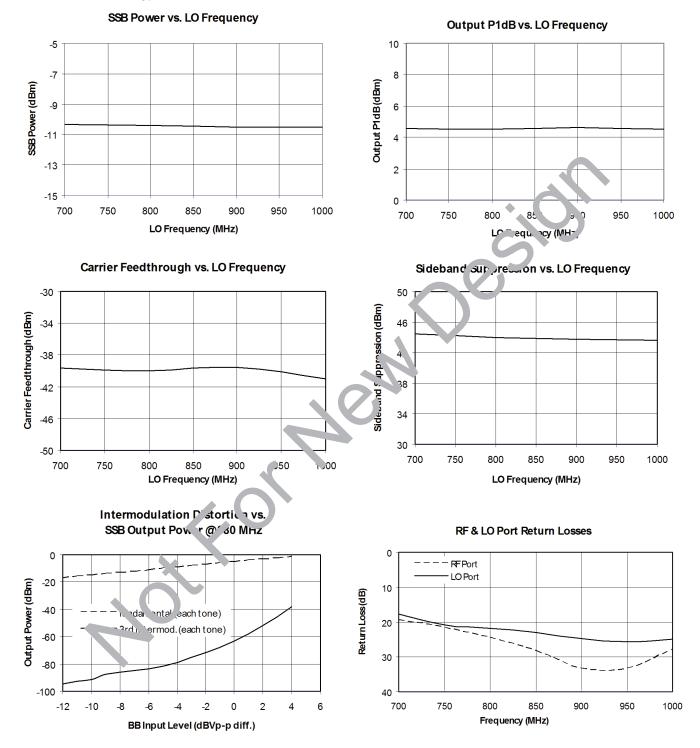
Caution! ESD sensitive device.

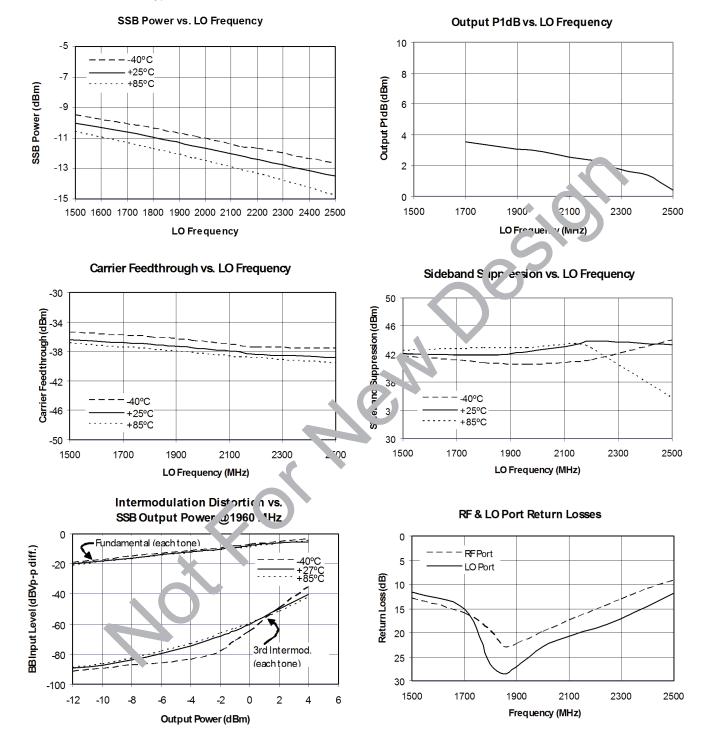

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

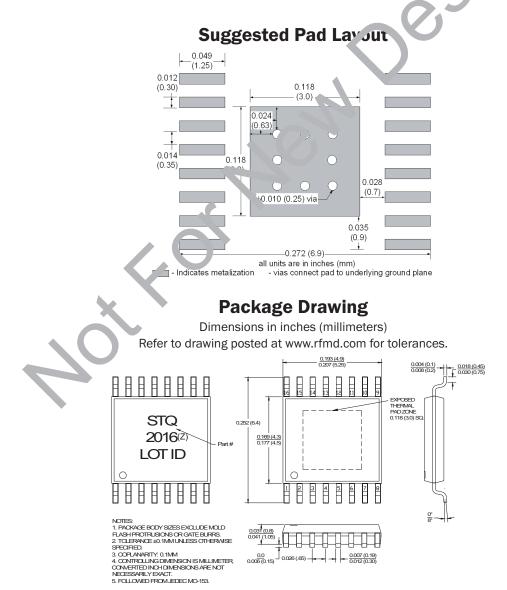
Parameter		Specification		Unit	Continion	
Farameter	Min.	Тур.	Max.	Unit		
Product Specifications					Basd Mod_lation Input: T _A =25°C	
Baseband Frequency Input	DC		500	MHz	-3 B ⁷ and vidth, baseband inputs terminated in 50.	
Baseband Input Resistance		4.4		K .	p pin	
Baseband Input Capacitance		0.5		pF	pe pin	
Product Specifications					J Input: T _A =25°C	
LO Frequency	700		2500	MHz		
LO Drive Level	-8	-5	-2	د 3m		
LO Port Return Loss		16			Matched to 50Ω (refer to schematics)	
Product Specifications					Miscellaneous: T _A =25 °C	
Shut-Down Attenuation		60		dB		
Shut-Down Pin Resistance		11.9		kΩ	at 1MHz	
Shut-Down Pin Capacitance		5.2		pF	at 1MHz	
Shut-Down Control Voltage Thresh- olds	3.75		V _{CC}	V	Shut-Down disabled (normal operation)	
Shut-Down Control Voltage Thresh- olds	0.0		1.5	V	Shut-Down enabled	
Shut-Down Settling Time		<4. ٦		ns		

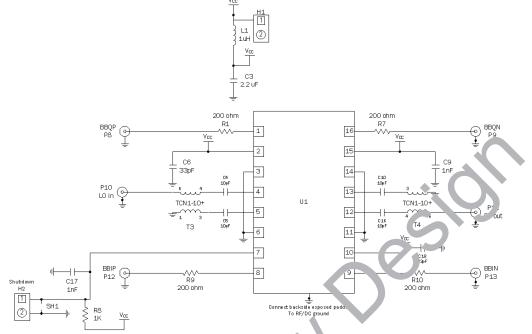

est Conditions: (for all product specifications nless otherwise noted) V_{CC} (pins 2, 10, 15): +5V, T_A=+25°C, Baseband Input (pins 1, 8, 9, 18): 1.9V DC bias, 200kHz frequency; 300mVp-p per un=600, Vp-r differential drive, I and Q signals in quadrature, LO Input (pins 4, 5)=-5dBm at 1960MHz



700MHz to 1000MHz Typical Device Performance

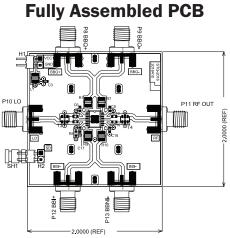
1500 MHz to 2500 MHz Typical Device Performance



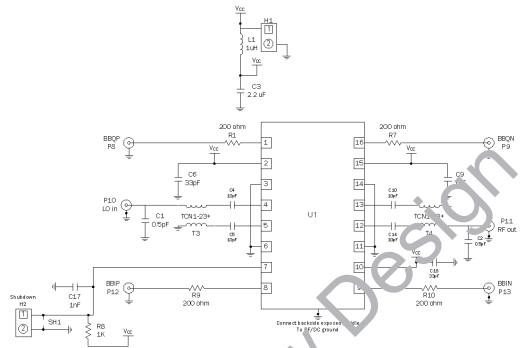

rfmd.com

STQ-2016(Z)

Pin	Function	Description
1	BBQP	Q-channel baseband input, positive terminal. Nominal DC voltage is 1.9V (biased internally).
2, 10,	VCC	Positive supply (+5V).
15		
3, 6,	VEE	Ground.
11, 14		
4	LOP	Local oscillator input, positive terminal. Nominal DC voltage is 2.0V. Input should be AC-coupled.
5	LON	Local oscillator input, negative terminal. Nominal DC voltage is 2.0V. Input should be AC-coupled.
7	SD	Shut-down control. Logic high=normal operation; logic low=shut-down enabled.
8	BBIP	I-channel baseband input, positive terminal. Nominal DC bias voltage is 1.9V (biased interny ily).
9	BBIN	I-channel baseband input, negative terminal. Nominal DC bias voltage is 1.9V (biased in prine 'v).
12	RFN	RF output, negative terminal. Nominal DC voltage is 2.4V. Output should be AC coup. ed.
13	RFP	RF output, positive terminal. Nominal DC voltage is 2.4V. Output should be AC-cou, 'ed.
16	BBQN	Q-channel baseband input, negative terminal. Nominal DC bias voltage is 1 9V seo internally).

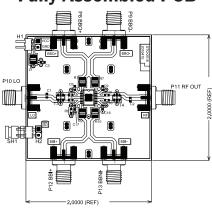


700 MHz to 1000 MHz Application Schematic


Bill of Materials (for 700MHz to 1000MHz Evaluation Board P/N STQ- C1C EVB-1)

Qty	Description	<u>, j</u> ė'	Manufacturer	Mfg Part Number	Sub	
		D'.signator			0k?	
1	SiGe (HBT) Quad Modulator, 70mA	U1	RFMD	STQ-2016	Ν	
6	CONN, SMA END LAUNCH, 0.062"	P8, 9, 10, 11, 12, 13	Johnson Components, INC	142-0701-851	Y	
2	2-pin header, right angle	H1, H2	MOLEX	68142-0221	Y	
1	PCB, 2016		DDI	STQ2016410(A)	Ν	
2	RF transormer, 680-1050MHz	T3, T4	Mini-Circuits	TCN1-10+	Ν	
1	Inductor, 1210 footprint, ±10% to 1 uh	L1	Panasonic	ELJ-FA1R0KF2	Y	
4	Resistor, 1206 footprint \geq 10% tol. 20 Ω	R1, 7, 9, 10	Panasonic	ERJ-8ENF2000	Y	
1	Resistor, 0603 footr int, ±1% 1/ 2	R8	Panasonic	ERA-3YEB102V	Y	
2	Capacitor, 0603 foo, int ±5% tol. 33 pF	C6, C18	Panasonic	ECJ-1VC1H330J	Y	
2	Capacitor, 0603 footph, + ±5% tol. 1nF	C9, 17	Panasonic	ECJ1VB2A102K	Y	
1	CAP, 2.2 u 10%, 10V, 7R, 0603	C3	Murata Electronics	GRM188R61A225KE34D	Y	
4	Capacitor, 06Ca Totprint, ±5% tol. 10pF	C4, 5, 10, 16	Panasonic	ECJ-1VC1H100D	Y	
1	Shans or ty pin header	SH1	ЗM	929950-00	Y	

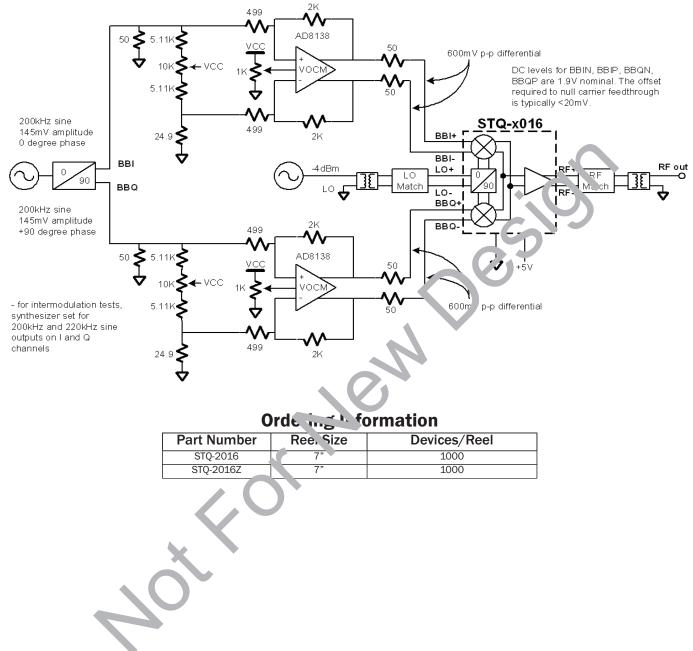
STQ-2016(Z)



1.7 GHz to 2.5 GHz Application Schematic

Bill of Materials (for 1700MHz to 2500MHz Evaluation Board P/N 102016EVB2)

Qty	Description	? \f.	Manufacturer	Mfg Part Number	Sub
		D signator			Ok?
1	SiGe (HBT) Quad Modulator, 70 mA	U1	RFMD	STQ-2016	Ν
6	CONN, SMA END LAUNCH, 0.062"	P8, 9, 10, 11, 12, 13	Johnson Components, INC	142-0701-851	Y
2	2-pin header, right angle	H1, H2	MOLEX	68142-0221	Y
1	PCB, 2016		DDI	STQ2016410(A)	Ν
2	RF transormer, 1300-2300MF.	T3, T4	Mini-Circuits	TCN1-23+	Ν
1	Inductor, 1210 footprint, ±1 0% to 10.	L1	Panasonic	ELJ-FA1R0KF2	Y
4	Resistor, 1206 footr int, ± 1 % tol. 00 Ω	R1, 7, 9, 10	Panasonic	ERJ-8ENF2000	Y
1	Resistor, 0603 otprin ±1, 1KΩ	R8	Panasonic	ERA-3YEB102V	Y
2	Capacitor, 0603 for 1 int, ±5% tol. 33 pF	C6, C18	Panasonic	ECJ-1VC1H330J	Y
2	Capacitor 0603 footp t, ±5% tol. 0.5 pF	C1, C2	Murata	GRM1885C1HR050BZ01D	Y
2	Capacitor, 03 footprint, ±5% tol. 1nF	C9, 17	Panasonic	ECJ-1VB2A102K	Y
1	CAP. 2 2u, 10% 10V, X5R, 0603	C3	Murata Electronics	GRM188R61A225KE34D	Y
4	Capar lor, 0, 73 100tprint, ±5% tol. 10pF	C4, 5, 10, 16	Panasonic	ECJ-1VC1H100D	Y
1	Shun for two pin header	SH1	ЗM	929950-00	Y



Fully Assembled PCB

STQ-2016(Z)

RFMD will

Direct Quadrature Modulator: General Test Set-Up

