PCI-EXPRESS GEN 1, GEN 2, & GEN 3 NINE OUTPUT **FANOUT BUFFER** #### **Features** - PCI-Express Gen 1, Gen 2, and Gen 3 compliant - Supports Serial-ATA (SATA) at 100 MHz - Low power push-pull differential output buffers - No termination resistors required - Output enable pins for all buffered clocks - Up to nine buffered clocks - 100 to 210 MHz clock input range - I²C support with readback capabilities - Supports spread spectrum input - Extended temperature: –40 to 85 °C - 3.3 V power supply - 48-pin QFN package See page 18. #### **Applications** - Network attached storage - Multi-function printers - Wireless access point - Servers #### **Description** The Si53159 is a high-performance, low additive, PCIe clock buffer that can fan out nine PCIe clocks. The clock outputs are compliant to PCIe Gen 1, Gen 2, and Gen 3 specifications. The device has six hardware output enable control pins for enabling and disabling differential outputs. The small footprint and low power consumption makes the Si53159 the ideal clock solution for consumer and embedded applications. #### **Functional Block Diagram** Patents pending # TABLE OF CONTENTS | <u>Section</u> | <u>Page</u> | |-----------------------------------|-------------| | 1. Electrical Specifications | | | 2. Functional Description | | | 2.1. CKPWRGD/PDB (Power Down) Pin | | | 2.2. PDB (Power Down) Assertion | | | 2.3. PDB Deassertion | | | 2.4. OE Pin | | | 2.5. OE Assertion | | | 2.6. OE Deassertion | | | 3. Test and Measurement Setup | | | 4. Control Registers | | | 4.1. I ² C Interface | | | 4.2. Data Protocol | | | 5. Pin Descriptions: 48-Pin QFN | | | 6. Ordering Guide | | | 7. Package Outline | | | Contact Information | | 3 # 1. Electrical Specifications **Table 1. DC Electrical Specifications** | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---------------------------------------|----------------------|--|-----------------------|-----|-----------------------|------| | 3.3 V Operating Voltage | VDD core | 3.3 ± 5% | 3.135 | _ | 3.465 | V | | 3.3 V Input High Voltage | V _{IH} | Control input pins | 2.0 | | V _{DD} + 0.3 | V | | 3.3 V Input Low Voltage | V _{IL} | Control input pins | V _{SS} - 0.3 | _ | 0.8 | V | | Input High Voltage | V _{IHI2C} | SDATA, SCLK | 2.2 | _ | _ | V | | Input Low Voltage | V _{ILI2C} | SDATA, SCLK | _ | | 1.0 | V | | Input High Leakage Current | I _{IH} | Except internal pull-down resistors, 0 < V _{IN} < V _{DD} | _ | _ | 5 | μА | | Input Low Leakage Current | I _{IL} | Except internal pull-up resistors, 0 < V _{IN} < V _{DD} | - 5 | _ | _ | μА | | High-impedance Output
Current | I _{OZ} | | -10 | 1 | 10 | μА | | Input Pin Capacitance | C_{IN} | | 1.5 | | 5 | pF | | Output Pin Capacitance | C _{OUT} | | _ | _ | 6 | pF | | Pin Inductance | L _{IN} | | _ | _ | 7 | nΗ | | Power Down Current | I _{DD} PD | | _ | _ | 1 | mA | | Dynamic Supply Current in Fanout Mode | I _{DD_3.3V} | All outputs enabled,
5" traces; 2 pF load,
frequency at 100 MHz | _ | _ | 60 | mA | **Table 2. AC Electrical Specifications** | Parameter | Symbol | Condition | Min | Тур | Max | Unit | |---|--------------------------------|---|------|-----|------|------| | DIFFIN at 0.7 V | l | | | | | | | DIFFIN and DIFFIN
Rising/Falling Slew Rate | T _R /T _F | Single ended measurement:
V _{OL} = 0.175 to V _{OH} = 0.525 V
(Averaged) | 0.6 | _ | 4 | V/ns | | Differential Input High Voltage | V _{IH} | | 150 | _ | _ | mV | | Differential Input Low Voltage | V _{IL} | | _ | _ | -150 | mV | | Crossing Point Voltage at 0.7 V
Swing | V _{OX} | Single-ended measurement | 250 | _ | 550 | mV | | Vcross Variation Over All edges | ΔV_{OX} | Single-ended measurement | _ | _ | 140 | mV | | Differential Ringback Voltage | V _{RB} | | -100 | _ | 100 | mV | | Time before Ringback Allowed | T _{STABLE} | | 500 | _ | _ | ps | | Absolute Maximum Input Voltage | V _{MAX} | | | _ | 1.15 | V | | Absolute Minimum Input Voltage | V _{MIN} | | -0.3 | _ | _ | V | | DIFFIN and DIFFIN Duty Cycle | T _{DC} | Measured at crossing point V _{OX} | 45 | _ | 55 | % | | Rise/Fall Matching | T _{RFM} | Determined as a fraction of $2 \times (T_R - T_F)/(T_R + T_F)$ | _ | _ | 20 | % | | DIFF at 0.7 V | | | | | | • | | Duty Cycle | T _{DC} | Measured at 0 V differential | 45 | _ | 55 | % | | Clock Skew | T _{SKEW} | Measured at 0 V differential | _ | _ | 50 | ps | | PCIe Gen1 Pk-Pk Jitter | Pk-Pk | PCIe Gen 1 | 0 | _ | 10 | ps | | PCIe Gen 2 Phase Jitter | RMS _{GEN2} | 10 kHz < F < 1.5 MHz | 0 | _ | 0.5 | ps | | | | 1.5 MHz < F < Nyquist | 0 | | 0.5 | ps | | PCIe Gen 3 Phase Jitter | RMS _{GEN3} | Includes PLL BW 2-4 MHz,
CDR = 10 MHz | 0 | _ | 0.10 | ps | | Additive Cycle to Cycle Jitter | T _{CCJ} | In buffer mode.
Measured at 0 V differential | _ | 20 | 50 | ps | | Long-term Accuracy | L _{ACC} | Measured at 0 V differential | _ | _ | 100 | ppm | | Rising/Falling Slew rate | T _R /T _F | Measured differentially from ±150 mV | 2.5 | _ | 8 | V/ns | | Crossing Point Voltage at 0.7 V
Swing | V _{OX} | | 300 | _ | 550 | mV | | Enable/Disable and Setup | | | | | | • | | Clock Stabilization from Power-Up | T _{STABLE} | | _ | _ | 1.8 | ms | | Stopclock Set-up Time | T _{SS} | | 10.0 | _ | _ | ns | | Note: Visit www.pcisig.com for comple | ete PCIe spe | cifications. | | | | | **Table 3. Absolute Maximum Conditions** | Parameter | Symbol | Condition | Min | Тур | Max | Unit | |--|--------------------|-----------------------------|------|-----|-----|----------| | Main Supply Voltage | $V_{DD_3.3V}$ | Functional | 1 | 1 | 4.6 | V | | Input Voltage | V _{IN} | Relative to V _{SS} | -0.5 | | 4.6 | V_{DC} | | Temperature, Storage | T _S | Non-functional | -65 | | 150 | °C | | Extended Temperature, Operating
Ambient | T _A | Functional | -40 | 1 | 85 | °C | | Temperature, Junction | T_J | Functional | 1 | | 150 | °C | | Dissipation, Junction to Case | Ø _{JC} | JEDEC (JESD 51) | _ | _ | 22 | °C/W | | Dissipation, Junction to Ambient | Ø _{JA} | JEDEC (JESD 51) | _ | _ | 30 | °C/W | | ESD Protection (Human Body Model) | ESD _{HBM} | JEDEC (JESD 22 - A114) | 2000 | _ | | V | | Flammability Rating | UL-94 | UL (Class) | | V-0 | | | | Moisture Sensitivity Level | MSL | JEDEC (J-STD-020) | 2 | | | | **Note:** Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required. ## 2. Functional Description #### 2.1. CKPWRGD/PDB (Power Down) Pin The CKPWRGD/PDB pin is a dual-function pin. During initial power up, the pin functions as the CKPWRGD pin. Upon the first power up, if the CKPWRGD pin is low, the outputs will be disabled, but the crystal oscillator and I^2C logics will be active. Once the CKPWRGD pin has been sampled high by the clock chip, the pin assumes a PDB functionality. When the pin has assumed a PDB functionality and is pulled low, the device will be placed in power down mode. The CKPWRGD/PDB pin is required to be driven at all times even though it has an internal 100 k Ω resistor. #### 2.2. PDB (Power Down) Assertion The PDB pin is an asynchronous active low input used to disable all output clocks in a glitch-free manner. All outputs will be driven low in power down mode. In power down mode, all outputs, the crystal oscillator, and the I²C logic are disabled. #### 2.3. PDB Deassertion When a valid rising edge on CKPWRGD/PDB pin is applied, all outputs are enabled in a glitch-free manner within two to six output clock cycles. #### 2.4. OE Pin The OE pin is an active high input used to enable and disable the output clock. To enable the output clock, the OE pin and the I^2C OE bit need to be a logic high. By default, the OE pin and the I^2C OE bit are set to a logic high. There are two methods to disable the output clock: the OE pin is pulled to a logic low, or the I^2C OE bit is set to a logic low. The OE pin is required to be driven at all times even though it has an internal 100 k Ω resistor. #### 2.5. OE Assertion The OE pin is an active high input used for synchronous stopping and starting the respective output clock while the rest of the clock generator continues to function. The assertion of the OE function is achieved by pulling the OE pin and the I²C OE bit high which causes the respective stopped output to resume normal operation. No short or stretched clock pulses are produced when the clocks resume. The maximum latency from the assertion to active outputs is no more than two to six output clock cycles. #### 2.6. OE Deassertion The OE function is deasserted by pulling the pin or the I^2C OE bit to a logic low. The corresponding output is stopped cleanly and the final output state is driven low. ## 3. Test and Measurement Setup This diagram shows the test load configuration for the differential clock signals. Figure 1. 0.7 V Differential Load Configuration Figure 2. Differential Measurement for Differential Output Signals (for AC Parameters Measurement) Figure 3. Single-Ended Measurement for Differential Output Signals (for AC Parameters Measurement) ### 4. Control Registers ## 4.1. I²C Interface To enhance the flexibility and function of the clock synthesizer, an I²C interface is provided. Through the I²C interface, various device functions, such as individual clock output buffers are individually enabled or disabled. The registers associated with the I²C interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required. #### 4.2. Data Protocol The clock driver I²C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The block write and block read protocol is outlined in Table 4 on page 10 while Table 5 on page 11 outlines byte write and byte read protocol. The slave receiver address is 11010110 (D6h). Table 4. Block Read and Block Write Protocol | | Block Write Protocol | | Block Read Protocol | |-------|------------------------------|-------|-----------------------------------| | Bit | Description | Bit | Description | | 1 | Start | 1 | Start | | 8:2 | Slave address—7 bits | 8:2 | Slave address—7 bits | | 9 | Write | 9 | Write | | 10 | Acknowledge from slave | 10 | Acknowledge from slave | | 18:11 | Command Code—8 bits | 18:11 | Command Code–8 bits | | 19 | Acknowledge from slave | 19 | Acknowledge from slave | | 27:20 | Byte Count—8 bits | 20 | Repeat start | | 28 | Acknowledge from slave | 27:21 | Slave address—7 bits | | 36:29 | Data byte 1–8 bits | 28 | Read = 1 | | 37 | Acknowledge from slave | 29 | Acknowledge from slave | | 45:38 | Data byte 2–8 bits | 37:30 | Byte Count from slave—8 bits | | 46 | Acknowledge from slave | 38 | Acknowledge | | | Data Byte/Slave Acknowledges | 46:39 | Data byte 1 from slave—8 bits | | | Data Byte N–8 bits | 47 | Acknowledge | | | Acknowledge from slave | 55:48 | Data byte 2 from slave—8 bits | | | Stop | 56 | Acknowledge | | | | | Data bytes from slave/Acknowledge | | | | | Data Byte N from slave—8 bits | | | | | NOT Acknowledge | | | | | Stop | Table 5. Byte Read and Byte Write Protocol | | Byte Write Protocol | | Byte Read Protocol | | | | |-------|------------------------|-------|------------------------|--|--|--| | Bit | Description | Bit | Description | | | | | 1 | Start | 1 | Start | | | | | 8:2 | Slave address–7 bits | 8:2 | Slave address–7 bits | | | | | 9 | Write | 9 | Write | | | | | 10 | Acknowledge from slave | 10 | Acknowledge from slave | | | | | 18:11 | Command Code-8 bits | 18:11 | Command Code–8 bits | | | | | 19 | Acknowledge from slave | 19 | Acknowledge from slave | | | | | 27:20 | Data byte–8 bits | 20 | Repeated start | | | | | 28 | Acknowledge from slave | 27:21 | Slave address–7 bits | | | | | 29 | Stop | 28 | Read | | | | | | | 29 | Acknowledge from slave | | | | | | | 37:30 | Data from slave–8 bits | | | | | | | 38 | NOT Acknowledge | | | | | | | 39 | Stop | | | | ## Control Register 0. Byte 0 | Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | | | | | | | | | | Туре | R/W Reset settings = 00000000 | Bit | Name | Function | |-----|----------|----------| | 7:0 | Reserved | | ### Control Register 1. Byte 1 | Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |------|-----|-----|-----|----------|-----|----------|----------|----------| | Name | | | | DIFF0_OE | | DIFF1_OE | DIFF2_OE | DIFF3_OE | | Туре | R/W Reset settings = 00010111 | Bit | Name | Function | |-----|----------|---| | 7:5 | Reserved | | | 4 | DIFF0_OE | Output Enable for DIFF0. 0: Output disabled. 1: Output enabled. | | 3 | Reserved | | | 2 | DIFF1_OE | Output Enable for DIFF1. 0: Output disabled. 1: Output enabled. | | 1 | DIFF2_OE | Output Enable for DIFF2. 0: Output disabled. 1: Output enabled. | | 0 | DIFF3_OE | Output Enable for DIFF3. 0: Output disabled. 1: Output enabled. | # Control Register 2. Byte 2 | Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |------|----------|----------|----------|----------|----------|-----|-----|-----| | Name | DIFF4_OE | DIFF5_OE | DIFF6_OE | DIFF7_OE | DIFF8_OE | | | | | Туре | R/W Reset settings = 11111000 | Bit | Name | Function | |-----|----------|---| | 7 | DIFF4_OE | Output Enable for DIFF4. 0: Output disabled. 1: Output enabled. | | 6 | DIFF5_OE | Output Enable for DIFF5. 0: Output disabled. 1: Output enabled. | | 5 | DIFF6_OE | Output Enable for DIFF6. 0: Output disabled. 1: Output enabled. | | 4 | DIFF7_OE | Output Enable for DIFF7. 0: Output disabled. 1: Output enabled. | | 3 | DIFF8_OE | Output Enable for DIFF8. 0: Output disabled. 1: Output enabled. | | 2:0 | Reserved | | ### Control Register 3. Byte 3 | Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |------|-----|--------|----------|-----|----------------|-----|-----|-----| | Name | | Rev Co | ode[3:0] | | Vendor ID[3:0] | | | | | Туре | R/W Reset settings = 00001000 | Bit | Name | Function | | | |-----|----------------|-----------------------------|--|--| | 7:4 | Rev Code[3:0] | Program Revision Code. | | | | 3:0 | Vendor ID[3:0] | Vendor Identification Code. | | | #### Control Register 4. Byte 4 | Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |------|---------|-----|-----|-----|-----|-----|-----|-----| | Name | BC[7:0] | | | | | | | | | Туре | R/W Reset settings = 00000110 | Bit | Name | Function | |-----|---------|----------------------| | 7:0 | BC[7:0] | Byte Count Register. | ### Control Register 5. Byte 5 | Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |------|--------------|------------------|------------------|------------------|-----|-----|-----|-----| | Name | DIFF_Amp_Sel | DIFF_Amp_Cntl[2] | DIFF_Amp_Cntl[1] | DIFF_Amp_Cntl[0] | | | | | | Туре | R/W Reset settings = 11011000 | Bit | Name | Function | | | |-----|------------------|---|--|--| | 7 | DIFF_Amp_Sel | Amplitude Control for DIFF Differential Outputs. 0: Differential outputs with Default amplitude. 1: Differential outputs amplitude is set by Byte 5[6:4]. | | | | 6 | DIFF_Amp_Cntl[2] | DIFF Differential Outputs Amplitude Adjustment. | | | | 5 | DIFF_Amp_Cntl[1] | 000: 300 mV 001: 400 mV 010: 500 mV 011: 600 mV | | | | 4 | DIFF_Amp_Cntl[0] | 100: 700 mV 101: 800 mV 110: 900 mV 111: 1000 mV | | | | 3:0 | Reserved | | | | # 5. Pin Descriptions: 48-Pin QFN #### Notes: - Internal 100 kohm pull-up. Internal 100 kohm pull-down. Table 6. Si53159 48-Pin QFN Descriptions | Pin# | Name | Туре | Description | |------|----------|------|--| | 1 | VDD_DIFF | PWR | 3.3 V power supply. | | 2 | VDD_DIFF | PWR | 3.3 V power supply. | | 3 | OE_DIFF0 | I,PU | Active high input pin enables DIFF0 (internal 100 kΩ pull-up). | | 4 | OE_DIFF1 | I,PU | Active high input pin enables DIFF1 (internal 100 kΩ pull-up). | | 5 | VDD_DIFF | PWR | 3.3 V power supply. | | 6 | VSS_DIFF | GND | Ground. | | 7 | VSS_DIFF | GND | Ground. | | 8 | OE_DIFF2 | I,PU | Active high input pin enables DIFF2 (internal 100 k Ω pull-up). | Table 6. Si53159 48-Pin QFN Descriptions | Pin# | Name | Туре | Description | |------|--------------|--------|---| | 9 | OE_DIFF3 | I,PU | Active high input pin enables DIFF3 (internal 100 $k\Omega$ pull-up). | | 10 | OE_DIFF[4:5] | I,PU | Active high input pin enables DIFF[4:5] (internal 100 kΩ pull-up). | | 11 | OE_DIFF[6:8] | I,PU | Active high input pin enables DIFF[6:8] (internal 100 kΩ pull-up). | | 12 | VDD_DIFF | PWR | 3.3 V power supply. | | 13 | VDD_DIFF | PWR | 3.3 V power supply. | | 14 | DIFF0 | O, DIF | 0.7 V, 100 MHz differential clock. | | 15 | DIFF0 | O, DIF | 0.7 V, 100 MHz differential clock. | | 16 | VSS_DIFF | GND | Ground. | | 17 | DIFF1 | O, DIF | 0.7 V, 100 MHz differential clock. | | 18 | DIFF1 | O, DIF | 0.7 V, 100 MHz differential clock. | | 19 | DIFF2 | O, DIF | 0.7 V, 100 MHz differential clock. | | 20 | DIFF2 | O, DIF | 0.7 V, 100 MHz differential clock. | | 21 | DIFF3 | O, DIF | 0.7 V, 100 MHz differential clock. | | 22 | DIFF3 | O, DIF | 0.7 V, 100 MHz differential clock. | | 23 | VDD_DIFF | PWR | 3.3V power supply. | | 24 | VSS_DIFF | GND | Ground. | | 25 | DIFF4 | O, DIF | 0.7 V, 100 MHz differential clock. | | 26 | DIFF4 | O, DIF | 0.7 V, 100 MHz differential clock. | | 27 | DIFF5 | O, DIF | 0.7 V, 100 MHz differential clock. | | 28 | DIFF5 | O, DIF | 0.7 V, 100 MHz differential clock. | | 29 | VSS_DIFF | GND | Ground. | | 30 | DIFF6 | O, DIF | 0.7 V, 100 MHz differential clock. | | 31 | DIFF6 | O, DIF | 0.7 V, 100 MHz differential clock. | | 32 | DIFF7 | O, DIF | 0.7 V, 100 MHz differential clock. | | 33 | DIFF7 | O, DIF | 0.7 V, 100 MHz differential clock. | | 34 | VDD_DIFF | PWR | 3.3 V power supply. | | 35 | DIFF8 | O, DIF | 0.7 V, 100 MHz differential clock. | | 36 | DIFF8 | O, DIF | 0.7 V, 100 MHz differential clock. | | 37 | SCLK | I | I ² C compatible SCLOCK. | Table 6. Si53159 48-Pin QFN Descriptions | Pin# | Name | Туре | Description | |------|-------------|-------|---| | 38 | SDATA | I/O | I ² C compatible SDATA. | | 39 | CKPWRGD/PDB | I, PU | Active low input pin asserts power down (PDB) and disables all outputs (internal 100 k Ω pull-up). | | 40 | VDD_CORE | PWR | 3.3 V power supply for core. | | 41 | DIFFIN | I | 0.7 V Differential True Input, typically 100 MHz. Input frequency range 100 to 210 MHz. | | 42 | DIFFIN | 0 | 0.7 V Differential Complement Input, typically 100 MHz. Input frequency range 100 to 210 MHz. | | 43 | NC | NC | No connect. | | 44 | NC | NC | No connect. | | 45 | VSS_CORE | GND | Ground for core. | | 46 | VSS_DIFF | GND | Ground. | | 47 | NC | NC | No connect. | | 48 | NC | NC | No connect. | | 49 | GND | GND | Ground for bottom pad of the IC. | # 6. Ordering Guide | Part Number | Package Type | Temperature | | |-----------------|--------------------------|------------------------|--| | Lead-free | | | | | Si53159-A01AGM | 48-pin QFN | Extended, -40 to 85 °C | | | Si53159-A01AGMR | 48-pin QFN—Tape and Reel | Extended, -40 to 85 °C | | # 7. Package Outline Figure 4 illustrates the package details for the Si53159. Table 7 lists the values for the dimensions shown in the illustration. Figure 4. 48-Pin Quad Flat No Lead (QFN) Package **Table 7. Package Diagram Dimensions** | Symbol | | Millimeters | | | | | |--------|------|-------------|------|--|--|--| | | Min | Nom | Max | | | | | А | 0.70 | 0.75 | 0.80 | | | | | A1 | 0.00 | 0.025 | 0.05 | | | | | b | 0.15 | 0.20 | 0.25 | | | | | D | | 6.00 BSC | | | | | | D2 | 4.30 | 4.40 | 4.50 | | | | | е | | 0.40 BSC | | | | | | E | | 6.00 BSC | | | | | | E2 | 4.30 | 4.40 | 4.50 | | | | | L | 0.30 | 0.40 | 0.50 | | | | | aaa | | 0.10 | | | | | | bbb | | 0.10 | | | | | | ccc | | 0.08 | | | | | | ddd | | 0.07 | | | | | #### Notes: - All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. - 3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8 - **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components ## **DOCUMENT CHANGE LIST** ## **Revision 0.1 to Revision 1.0** - Updated Features and Description. - Corrected pinout. - Updated Table 2. - Updated Section 2.1. - Updated Section 2.1.1. - Updated Sections 2.2 through 2.8. - Updated Section 4.2. - Updated Table 7. Notes: ## Si53159 ### **CONTACT INFORMATION** Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032 Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.