LCD Module Technical Specification First Edition Nov. 09, 2009 Final Revision Type No. T-55519D150J-LW-A-AAN Customer : Customer's Product No : ## **OPTREX CORPORATION** Approved: Yasuo Kawasaki QUALITY ASSURANCE DIVISION Checked: Toshiaki Ochi Test Production Control G. Prepared: Noboru Wada Design G. | APPROVED | | | |-----------------------|--|--| | Ву | | | | Signature :
Date : | | | Please return this specification within two month with your signature. If not returned within two month ,specification will be considered as having been accepted. | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 1/39 | |-----------------------|--------------------|-----------| |-----------------------|--------------------|-----------| # **CONTENTS** | No. | Item | Page | |-----|---|------| | | CONTENTS | 2 | | 1 | APPLICATION | 3 | | 2 | OVERVIEW | 4 | | 3 | ABSOLUTE MAXIMUM RATINGS | 5 | | 4 | ELECTRICAL CHARACTERISTICS | 5 | | 5 | INTERFACE PIN CONNECTION | 7 | | 6 | INTERFACE TIMING | 10 | | 7 | BLOCK DIAGRAM | 15 | | 8 | MECHANICAL SPECIFICATION | 16 | | 9 | OPTICAL CHARACTERISTICS | 18 | | 10 | RELIABILITY TEST CONDITION | 21 | | 11 | INSPECTION STANDARDS | 22 | | 12 | OTHER FEATURE | 23 | | 13 | HANDLING PRECAUTIONS FOR TFT-LCD MODULE | 24 | | | PACKAGING SPECIFICATION | 27 | | | PRODUCTS NUMBER LABELING FORMS | 32 | | | LED UNIT for 15.0"XGA | 33 | **Revision History** | Rev. | Date | Page | Comment | | |-------|------------------|-------|--------------------|-----------| | 1167. | Date | 1 age | Comment | - | T-55519D150J-LW- | A-AAN | OPTREX CORPORATION | Page 2/39 | ## 1. APPLICATION This specification applies to color TFT-LCD module, T-55519D150J-LW-A-AAN. These specification papers are the proprietary product of OPTREX CORPORATION ("OPTREX) and include materials protected under copyright of OPTREX. No part of this document may be reproduced in any form or by any means without the express written permission of OPTREX. OPTREX does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a product specified in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of OPTREX or of others. OPTREX classifies the usage of the TFT-LCD module as follows. Please confirm the usage before using the product. ## (1) Standard Usage Computers, office equipment, factory automation equipment, test and measurement equipment, communications, transportation equipment(automobiles, ships, trains, etc.), provided, however, that operation is not influenced by TFT-LCD directly. #### (2) Special Usage Medical equipment, safety equipment, transportation equipment, provided, however, that TFT-LCD is necessary to its operation. #### (3) Specific Usage Cockpit Equipment, military systems, aerospace equipment, nuclear reactor control systems, life support systems and any other equipment. OPTREX should make a contract that stipulate apportionment of responsibilities between OPTREX and our customer. The product specified in this document is designed for "Standard Usage" unless otherwise specified in this document. If customers intend to use the product for applications other than those specified for "Standard Usage", they should first contact OPTREX sales representative for it's intended use in writing. OPTREX has been making continuous effort to improve the reliability of its products. Customers should implement sufficient reliability design of their application equipments such as redundant system design, fail-safe functions, anti-failure features. OPTREX assumes no responsibility for any damage resulting from the use of the product that does not comply with the instructions and the precautions specified in this document. Please contact and consult OPTREX sales representative for any questions regarding this product. | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 3/39 | |-----------------------|--------------------|-----------| |-----------------------|--------------------|-----------| ## 2. OVERVIEW T-55519D150J-LW-A-AAN is 15.0" color TFT-LCD (Thin Film Transistor Liquid Crystal Display) modules composed of LCD panel, driver ICs, control circuit, and backlight unit. By applying 6 bit or 8 bit digital data, 1024×768 , 262k-color or 16.7M-color images are displayed on the 15.0° diagonal screen. Input power voltage is 3.3 V for LCD driving. The type of data and control signals are digital and transmitted via LVDS interface per Typ. 65 MHz clock cycle. Driver circuit for LED backlight is not included in this module. General specifications are summarized in the following table: | ITEM | SPECIFICATION | |-------------------------------|--| | Display Area (mm) | 304.1 (H) × 228.1 (V)
(15.0-inch diagonal) | | Number of Dots | $1024 \times 3 \text{ (H)} \times 768 \text{ (V)}$ | | Pixel Pitch (mm) | 0.297 (H) × 0.297 (V) | | Color Pixel Arrangement | RGB vertical stripe | | Display Mode | Normally black | | Number of Color | 262k(6 bit/color) 16.7M(8 bit/color) | | Luminance (cd/m²) | 350 | | Wide Viewing Angle Technology | IPS | | Viewing Angle (CR ≥ 10) | -85~85° (H) −85~85° (V) | | Surface Treatment | Anti-glare and hard-coating 3H | | Electrical Interface | LVDS (6 bit/8 bit) | | Module Size (mm) | 326.0 (W) × 255.0 (H) × 16.6 (D) | | Module Mass (g) | 1260 | | Backlight Unit | LED, edge·light, replaceable | Characteristic value without any note is typical value. | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 4/39 | l | |-----------------------|--------------------|-----------|---| |-----------------------|--------------------|-----------|---| ## 3. ABSOLUTE MAXIMUM RATINGS | ITEM | | SYMBOL | MIN. | MAX. | UNIT | |--------------------------------------|------|--------------|------|---------|------| | Power Supply Voltage for LCD | | VCC | 0 | 4.0 | V | | Logic Input Voltage | | VI | -0.3 | VCC+0.3 | V | | Backlight (LED) Current | | IF | 0 | 180 | mA | | Operation Temperature (Panel) Note | 1,2) | Top(Panel) | -20 | 70 | °C | | Operation Temperature (Ambient) Note | 2) | Top(Ambient) | -20 | 70 | °C | | Storage Temperature Note | 2) | $T_{ m stg}$ | -20 | 80 | °C | #### [Note] - 1) Measured at the center of active area and at the center of panel back surface - 2) Top,Tstg \leq 40°C : 90%RH max. without condensation Top,Tstg > 40°C: Absolute humidity shall be less than the value of 90%RH at 40°C without condensation. ## 4. ELECTRICAL CHARACTERISTICS | 1) TFT- LCD Ambient Temperature : Ta = 26 | | | | | | ure : Ta = 25°C | | |---|------|--------|------|------|------|-----------------|--------------| | ITEM | | SYMBOL | MIN. | TYP. | MAX. | UNIT | Remarks | | Power Supply Voltage for LCD | | VCC | 3.0 | 3.3 | 3.6 | V | *1) | | Power Supply Current for LCD | | ICC | | 550 | 1100 | mA | *2) | | Permissive Input Ripple Voltage | | VRP | | | 100 | mVp-p | VCC = +3.3 V | | Logic Input Voltage | High | VIH | 2.4 | - | VCC | V | MODE, SC | | Logic Input voitage | Low | VIL | 0 | | 0.8 | V | MODE SC | ^{*1)} Power and signals sequence: $t1 \le 10 \text{ ms}$ $200 \text{ ms} \le t4$ $0 < t2 \le 50 \text{ ms}$ $200 \text{ ms} \le t5$ $0 < t3 \le 50 \text{ ms}$ $0 \le t6$ data: RGB DATA, DCLK, DENA, MODE, SC | T-55519D150J-LW-A-AAN OPTREX CORPORATION P | |--| |--| ## VCC-dip conditions: - 1) When $2.6 \text{ V} \le \text{VCC} < 3.0 \text{ V}$, $\text{td} \le 10 \text{ ms}$ - 2) When VCC < 2.6 V VCC-dip conditions should also follow the power and signals sequence. *2) VCC = +3.3 V , $f_H = 48.4$ kHz, $f_V = 60$ Hz, $f_{CLK} = 65$ MHz Display image at typical power supply current value is 256-gray-bar pattern (8 bit), 768 line mode. #### *3) Fuse | I | Parameter | Fuse Type Name | Supplier | Remark | |---|-----------|----------------|---------------------------|--------| | | VCC | FHC16322AD | Kamaya Electric Co., Ltd. | *) | ^{*)} The power supply capacity should be designed to be more than the fusing current. ## (2) Backlight | ITEM | SYMBOL | MIN. | TYP. | MAX. | UNIT | Remarks | |---------------|--------|--------|------|------|------|---| | | | | (24) | 31.1 | V | IF = 120 mA, Ta = 25℃ | | LED Voltage | VF | | | 32.2 | V | IF = 120 mA, $Ta = 0$ °C | | | | | | 33.1 | V | IF = 120 mA, $Ta = -20^{\circ}C$ | | LED Current | IF | | 120 | 130 | mA | *1), *3) | | LED Life Time | LT | 60,000 | ; | | h | IF = 120 mA, Ta = 25℃
*4), *5), Continuous operation | #### [Note] - *1) Constant Current Drive - *2) The Voltage deviation between strings: $|V_{fmax} V_{fmin}| \le 2V$ - *3) LED Current measurement method - *4) LED life time is defined as the time when the brightness becomes 50% of the initial value. - *5) The life time of the backlight depends on the ambient temperature. The life time will decrease under high temperature. | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 6/39 | |-----------------------|--------------------|-----------| |-----------------------|--------------------|-----------| ## 5. INTERFACE PIN CONNECTION (1) CN 1(Interface Signal) Used Connector: DF14H-20P-1.25H(56) (HIROSE) Corresponding connector: DF14-20S-1.25C (HIROSE) | Pin | Symbol | Function(ISP 6 bit o | compatibility mode) | Function(ISP 8 bit | |-----|---------|-----------------------------|----------------------------|--------------------------------------| | No. | Symbol | 6 bit input | 8 bit input | compatibility mode) | | 1 | VCC | +3.3 V Po | wer supply | ← | | 2 | VCC | +3.3 V Po | wer supply | ← | | 3 | GND | Gl | ND | ← | | 4 | GND | Gl | ND | ← | | 5 | Link 0– | R0, R1, R2, R3, R4, R5, G0 | R2, R3, R4, R5, R6, R7, G2 | R0, R1, R2, R3, R4, R5, G0 | | 6 | Link 0+ | R0, R1, R2, R3, R4, R5, G0 | R2, R3, R4, R5, R6, R7, G2 | R0, R1, R2, R3, R4, R5, G0 | | 7 | GND | Gl | ND | ← | | 8 | Link 1- | G1, G2, G3, G4, G5, B0, B1 | G3, G4, G5, G6, G7, B2, B3 | G1, G2, G3, G4, G5, B0, B1 | | 9 | Link 1+ | G1, G2, G3, G4, G5, B0, B1 | G3, G4, G5, G6, G7, B2, B3 | G1, G2, G3, G4, G5, B0, B1 | | 10 | GND | Gl | ND | ← | | 11 | Link 2– | B2, B3, B4, B5, DENA | B4, B5, B6, B7, DENA | B2, B3, B4, B5, DENA | | 12 | Link 2+ | B2, B3, B4, B5, DENA | B4, B5, B6, B7, DENA | B2, B3, B4, B5, DENA | | 13 | GND | Gl | ND | ← | | 14 | CLKIN- | Clo | ck – | ← | | 15 | CLKIN+ | Clo | ck + | ← | | 16 | GND | Gl | ND | ← | | 17 | Link3– | See: *2) | R0, R1, G0, G1, B0, B1 | R6, R7, G6, G7, B6, B7 | | 18 | Link3+ | See: *2) | R0, R1, G0, G1, B0, B1 | R6, R7, G6, G7, B6, B7 | | 19 | MODE | Low=ISP 6 bit c | ompatibility mode | High=ISP
8 bit compatibility mode | | 20 | SC | Scan direction control (Low | = Normal, High = Reverse) | <u> </u> | ^{*1)} Metal frame is connected to signal GND. ^{*2)} Recommended wiring of Pin 17,18 (6 bit input) | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 7/39 | |-----------------------|--------------------|-----------| |-----------------------|--------------------|-----------| ## (2) CN 2(Backlight) Backlight-side connector: SM10B·SHLS·TF(LF)(SN) (JST) Corresponding connector: SHLP·10V·S·B (JST) | Pin No. | Symbol | Function | |---------|---------|--------------------------| | 1 | NC | This pin should be open. | | 2 | NC | This pin should be open. | | 3 | LED C 1 | LED cathode 1 | | 4 | LED A 1 | LED anode 1 | | 5 | LED A 2 | LED anode 2 | | 6 | LED C 2 | LED cathode 2 | | 7 | LED C 3 | LED cathode 3 | | 8 | LED A 3 | LED anode 3 | | 9 | LED A 4 | LED anode 4 | | 10 | LED C 4 | LED cathode 4 | ## (3) ISP data mapping a. ISP 6 bit compatibility mode(6 bit input) #### b. ISP 6 bit compatibility mode(8 bit input) ## $c.\ ISP\ 8\ bit\ compatibility\ mode$ | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 9/39 | |-----------------------|--------------------|-----------| |-----------------------|--------------------|-----------| ## 6. INTERFACE TIMING ## LVDS transmitter input signal (1) Timing Specifications | | ITEN | M | SYMBOL | MIN. | TYP. | MAX. | UNIT | |------|-----------------|---------------|-----------------------------|------|------|------|---------------------------| | DOLL | Frequency | | $\mathbf{f}_{\mathrm{CLK}}$ | 50 | 65 | 80 | MHz | | DCLK | Period | | tclk | 12.5 | 15.4 | 20 | ns | | | | Active Time | tha | 1024 | 1024 | 1024 | $\mathbf{t}_{ ext{CLK}}$ | | |
 Horizontal | Blanking Time | tнв | 20 | 320 | | $\mathbf{t}_{ ext{CLK}}$ | | | norizontai | Frequency | \mathbf{f}_{H} | 42.4 | 48.4 | 60 | kHz | | DEM | | Period | $t_{ m H}$ | 16.6 | 20.7 | 23.6 | μs | | DENA | | Active Time | tva | 768 | 768 | 768 | \mathbf{t}_{H} | | |
 Vertical | Blanking Time | tvв | 3 | 38 | | \mathbf{t}_{H} | | | verticai | Frequency | fv | 55 | 60 | 75 | Hz | | | | Period | tv | 13.3 | 16.7 | 18.2 | ms | ## [Note] - 1) DENA (Data Enable) shall always be positive polarity as shown in the timing specification. - 2) DCLK shall appear during all invalid period. - 3) LVDS timing follows the timing specifications of LVDS receiver IC: THC63LVDF84B(Thine). - 4) In case of blanking time fluctuation, please satisfy following condition. $$t_{VBn} > t_{VBn-1} - 3(t_H)$$ ## (2) Timing Chart ## a. Horizontal Timing Chart ## b. Vertical Timing Chart ## (3) Color Data Assignment a. 6 bit input | <u>a. 6 bit i</u> | прис | | | | | | | | IN | NPUT | ' DA'I | 'A | | | | | | | | |-------------------|-----------|-----|----|----------|-----|----|----------|-----|----|------|--------|----|----------|-----|----|----|-----|----|-----| | | | | | R D. | АТА | | | | | G D. | | | | | | ΒD | АТА | | | | C | OLOR | R5 | R4 | RЗ | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | В4 | В3 | B2 | В1 | В0 | | | | MSB | | | | | LSB | MSB | | | | | LSB | MSB | | | | | LSB | | | BLACK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED(63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | BASIC | BLUE(63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | COLOR | CYAN | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | MAGENTA | 1 | 1 | <u>ў</u> | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | YELLOW | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | WHITE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | RED(1) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED(2) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | |
 | | | | | | | | RED | RED(62) | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED(63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | GREEN | | | | | | | | | | | | | ļ | | | | | | | | GREEN | | | | | | | | | | | | | <u>.</u> | | | | | | | | | GREEN(62) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | BLUE(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | BLUE | | | | | | | <u>.</u> | ļ | | | | | ļ | | | | | | ļ | | | | | | | | | ļ | ļ | | | | | ļ | | | | | | ļ | | | BLUE(62) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | [NI_+_] | BLUE(63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | [Note] 1) Definition of gray scale Color (n) --- n indicates gray scale level. Higher n means brighter level. 2) Data 1:High, 0: Low | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 12/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------| b. 8 bit input | <u> </u> | прис_ | | INPUT DATA |----------|------------|-----|------------|----|------|-----|----|----|-----|--------|----|----|----|----|----|----|-----|-----|----|----|------|----------|----------|----|-----| | 00 | OLOR | | | I | R DA | AΤΑ | | | | G DATA | | | | | | | | | |] | B D. | ATA | | | | | | JLOK | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | В7 | В6 | В5 | В4 | ВЗ | В2 | В1 | В0 | | | | MSB | | | | | | | LSB | MSB | | | | | | | LSB | MSB | | | | | | | LSB | | | BLACK | 0 | | | RED(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | BASIC | BLUE(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | COLOR | CYAN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | MAGENTA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | YELLOW | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | WHITE | 1 | | | RED(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED(2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | RED | RED(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | GDDDM | | | ļ | | | | | | | | | | | | | | | | | | ļ | <u> </u> | | | | | GREEN | | ļ | ļ | | | | | | | | ļ | | | | | | | ļ | | | ļ | <u> </u> | <u>.</u> | <u> </u> | | | | | | GREEN(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE(1) | 0 | 1 | | | BLUE(2) | 0 | 1 | 0 | | DITE | | | ļ | | | | | | | | ļ | | | | | | | ļ | | | ļ | <u> </u> | ļ | | | | BLUE | | | | | | | | | | | | | | | | | | ļ | | | ļ | ļ | | | | | | | ļ | ļ | | | | | | | | ļ | | | | | | | ļ | | | ļ | ļ | | | | | | BLUE(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ## [Note] 1) Definition of gray scale Color (n) ··· n indicates gray scale level. Higher n means brighter level. 2) Data 1:High, 0: Low | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 13/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------| ## (4) Display Position and Scan Direction D(X,Y) shows the data number of input signal. SC: Low SC: High ## 7. BLOCK DIAGRAM | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 15/39 | | |-----------------------|--------------------|------------|--| |-----------------------|--------------------|------------|--| ## 8. MECHANICAL SPECIFICATIONS ## (1) Front side | T-55519D150J-LW-A-AAN OPTREX CORPORATION | Page 16/39 | |--|------------| |--|------------| 1)Tolerance is $\pm 0.5 \, \text{mm}$ unless noted. 2)Thickness of PET film is not included. 3)Third angle projection CN1:DF14H-20P-1.25H(56)(HIROSE) CN2:SM10B-SHLS-TF(LF)(SN)(JST) (Unit: mm) | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 17/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------| ## 9. OPTICAL CHARACTERISTICS Ta = 25°C, VCC = 3.3 V, Input Signals: Typ. values shown in Section 6 | | | | | | - 0 | | | | |--------------|------------|-----------------------|---|--------|--------|-------|-------------------|-----------| | ITE | ΣM | SYMBOL | CONDITION | MIN. | TYP. | MAX. | UNIT | Remarks | | Contrast Ra | tio | CR | θv=0°, θ _H =0° | 650 | 1000 | | | *1)*2)*5) | | Luminance | | Lw | θv=0°, θH=0° | 280 | 350 | | cd/m ² | *1)*5) | | Luminance l | Uniformity | ΔLw | $\theta_V=0^{\circ},\theta_H=0^{\circ}$ | | | 30 | % | *1)*3)*5) | | Domonoo Ti | | tr | $\theta_V=0^\circ,\theta_H=0^\circ$ | | 12 | | ms | *1)*4)*5) | | Response Ti | ше | tf | $\theta_V=0^\circ,\theta_H=0^\circ$ | | 12 | | ms | *1)*4)*5) | | Viewing | Horizontal | θ_{H} | OD > 10 | -70~70 | -85~85 | | 0 | *1)*5) | | Angle | Vertical | $\theta_{\rm V}$ | CR ≥ 10 | -70~70 | -85~85 | | 0 | *1)*5) | | Image Sticki | ing | tis | 2 h | | | 2 | s | *6) | | | Red | Rx | | 0.604 | 0.644 | 0.684 | | | | | | Ry | | 0.281 | 0.321 | 0.361 | | | | | Green | Gx | | 0.279 | 0.319 | 0.359 | | | | Color | | Gy | 0 00 0 00 | 0.586 | 0.626 | 0.666 | | *1) *5) | | Coordinates | Blue | Bx | $\theta_V=0^\circ, \theta_H=0^\circ$ | 0.109 | 0.149 | 0.189 | | 1) 0) | | | | Ву | | 0.033 | 0.073 | 0.113 | | | | | White | Wx | | 0.273 | 0.313 | 0.353 | | | | | | Wy | | 0.289 | 0.329 | 0.369 | | | #### [Note] These items are measured using CS1000(MINOLTA) for color coordinates, EZContrast(ELDIM) for viewing angle and CS1000 or BM-5A(TOPCON) for others under the dark room condition (no ambient light) after more than 30 minutes from turning on the backlight unless noted. Condition: IF = 120 mA Measurement method for luminance and color coordinates is as follows. The luminance is measured according to FLAT PANEL DISPLAY MEASUREMENTS STANDARD (VESA Standard). | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 18/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------| ## *1) Measurement Point Contrast Ratio, Luminance, Response Time, Viewing Angle, Color Coordinates: Display Center Luminance Uniformity: point 1~5 shown in a figure below #### *2) Definition of Contrast Ratio CR=Luminance with all white pixels / Luminance with all black pixels ## *3) Definition of Luminance Uniformity $\Delta Lw=[Lw(MAX)/Lw(MIN)-1]\times 100$ ## *4) Definition of Response Time ## *5) Definition of Viewing Angle (θ_V , θ_H) | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 19/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------| ## *6) Image Sticking Continuously display the test pattern shown in the figure below for two-hours. Then display a completely white screen. The previous image shall not persist more than two seconds at 25°C. TEST PATTERN FOR IMAGE STICKING TEST | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 20/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------| ## 10. RELIABILITY TEST CONDITION ## (1) Temperature and Humidity | ITEM | CONDITIONS | |---|--| | HIGH TEMPERATURE
HIGH HUMIDITY OPERATION | 40°C, 90% RH, 240 h
(No condensation) | | HIGH TEMPERATURE OPERATION | 70°C, 240 h | | LOW TEMPERATURE OPERATION | −20°C, 240 h | | HIGH TEMPERATURE STORAGE | 80°C, 240 h | | LOW TEMPERATURE STORAGE | −20°C, 240 h | | THERMAL SHOCK (NON-OPERATION) | -20°C (1h) ~ 80°C(1h),
100 cycles | #### (2) Shock & Vibration | ITEM | CONDITIONS | |-----------------|---| | | Shock level: 1470 m/s ² (150 G) | | SHOCK | Waveform: half sinusoidal wave, 2 ms | | (NON-OPERATION) | Number of shocks: one shock input in each direction of three mutually | | | Perpendicular axes for a total of six shock inputs | | | Vibration level: 9.8 m/s ² (1.0 G) zero to peak | | | Waveform: sinusoidal | | VIBRATION | Frequency range: 5 to 500 Hz | | (NON-OPERATION) | Frequency sweep rate: 0.5 octave /min | | | Duration: one sweep from 5 to 500 Hz in each of three mutually | | | perpendicular axis(each x,y,z axis: 1 hour, total 3 hours) | ## (3) Judgment standard The judgment of the above tests should be made as follow: Pass: Normal display image, no damage of the display function. (ex. no line defect) Partial transformation of the module parts should be ignored. Fail: No display image, damage of the display function. (ex. line defect) | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 21/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------| ## 12. OTHER FEATURE This LCD module complies with RoHS*) directive. $^{*)}$ RoHS: Restriction of the use of certain hazardous substances in electrical and electronic equipment | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 23/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------| ## 13. HANDLING PRECAUTIONS FOR TFT-LCD MODULE Please pay attention to the followings in handling TFT-LCD products: #### (1) ASSEMBLY PRECAUTION - a. Please mount the LCD module by using mounting hole with a screw clamping torque (recommended value: 0.3 Nm). Please do not bend or wrench the LCD module in assembling. Please do not drop, bend or twist the LCD module in handling. - b. Please design display housing in accordance with the following guide lines. - (a) Housing case must be designed carefully so as not to put stresses on LCD and not to wrench module. - (b) Under high temperature environment, performance and life time of LED may heavily shorten. When you design with our LCD product, please consider radiating heat and ventilation for good heat management. - (c) Keep sufficient clearance between LCD module back surface and housing when the LCD module is mounted. Approximately 1.0mm of the clearance in the design is recommended taking into account the tolerance of LCD module thickness and mounting structure height on the housing. - (d) When some parts, such as, FPC cable and ferrite plate, are installed underneath the LCD module, still sufficient clearance is required, such as 0.5mm. This clearance is, especially, to be reconsidered when the additional parts are implemented for EMI countermeasure. - (e) Design the LED driver location and connector position carefully so as not to give stress to LED backlight cable. - (f) Keep sufficient clearance between LCD module and the others parts, such as inverter and speaker so as not to interfere the LCD module. Approximately 1.0 mm of the clearance in the design is recommended. - (g) To avoid local elevation/decrease of temperature, considering location of heating element, heat release, thermal design should be done. - c. Please do not push or scratch LCD panel surface with anything hard. And do not soil LCD panel surface by touching with bare hands. (Polarizer film, surface of LCD panel is easy to be flawed.) - d. Please wipe off LCD panel surface with absorbent cotton or soft cloth in case of it being soiled. - e. Please wipe off drops of adhesives like saliva and water on LCD panel surface immediately. They might damage to cause panel surface variation and color change. - f. Please do not take a LCD module to pieces and reconstruct it. Resolving and reconstructing modules may cause them not to work well. | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 24/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------| - g. Please do not touch metal frames with bare hands and soiled gloves. A color change of the metal frames can happen during a long preservation of soiled LCD modules. - h. Please handle metal frame carefully because edge of metal frame is very sharp. - i. Please connect the metal frame of LCD module to GND in order to minimize the effect of external noise and EMI. - j. Be sure to connect the cables and the connecters correctly. #### (2) OPERATING PRECAUTIONS - a. Please be sure to turn off the power supply before connecting and disconnecting signal input cable. - b. Please do not change variable resistance settings in LCD module. They are adjusted to the most suitable value. If they are changed, it might happen LCD does not satisfy the characteristics specification. - c. The interface signal speed is very high. Please pay attention to transmission line design and other high speed signal precautions to satisfy signal specification. - d. A condensation might happen on the surface and inside of LCD module in case of sudden change of ambient temperature. Please take care so as not to cause any damage mentioned on (1)-d. - e. Please pay attention not to display the same pattern for very long time. Image might stick on LCD. Even if image sticking happens, it may disappear as the operation time proceeds. - f. Please obey the same safe instructions as ones being prepared for ordinary electronic products. #### (3) PRECAUTIONS WITH ELECTROSTATICS - a. This LCD module use CMOS-IC on circuit board and TFT-LCD panel, and so it is easy to be affected by electrostatics. Please be careful with electrostatics by the way of your body connecting to the ground and so on. - b. Please remove protection film very slowly from the surface of LCD module to prevent from electrostatics occurrence. #### (4) STORAGE PRECAUTIONS LCD should be stored in the room temperature environment with normal humidity. The LCD inventory should be processed by first-in first-out method. | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 25/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------| #### (5) SAFETY PRECAUTIONS - a. When you waste damaged or unnecessary LCDs, it is recommended to crush LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned. - b. If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water. - c. Be sure to turn off the power supply when inserting or disconnecting the LED backlight cable. - d. LED driver should be designed carefully to limit or stop its function when over current is detected on the LED. ## (6) OTHERS - a. A strong incident light into LCD panel may cause deterioration to polarizer film, color filter, and other materials, which will degrade the quality of display characteristics. Please do not expose LCD module under strong Ultraviolet rays for a long time. - b. Please pay attention to a panel side of LCD module not to contact with other materials in preserving it alone. - c. For the packaging box handling, please see and obey with the packaging specification datasheet. - d. Please do not reuse the LED unit which is once removed. | T-55519D150J-LW-A-AAN | OPTREX CORPORATION | Page 26/39 | |-----------------------|--------------------|------------| |-----------------------|--------------------|------------|