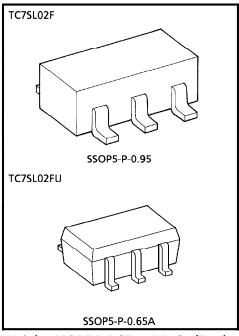
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7SL02F, TC7SL02FU

2-INPUT NOR GATE

The TC7SL02 is a low voltage operative C²MOS 2-INPUT NOR GATE fabricated with silicon gate C²MOS technology.

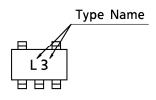

Operating voltage (V_{CC} (opr)) is 1~3V equivalent to 1pc or 2pcs of dry cell battery and it achives low power dissipation.

The internal circuit is composed of 3 stages including buffer output, which enables high noise immunity and stable output.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

FEATURES

- High Speed ······ t_{pd} = 10ns (Typ.) at V_{CC} = 3V
- Low Power Dissipation ······· $I_{CC} = 1\mu A$ (Max.) at $Ta = 25^{\circ}C$
- High Noise Immunity $V_{NIH} = V_{NIL}$ = 28% V_{CC} (Min.)
- Symmetrical Output Impedance ····· |IOH| = IOL = 1mA
- Balanced Propagation Delay Time ··· tpLH≒tpHL
- Low Voltage Operating············V_{CC} (opr) = 1~3.6V

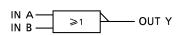


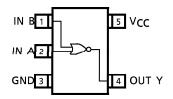
Weight SSOP5-P-0.95 : 0.016g (Typ.) SSOP5-P-0.65A : 0.006g (Typ.)

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	-0.5~5	V
DC Input Voltage	VIN	-0.5~V _{CC} +0.5	V
DC Output Voltage	Vout	-0.5~V _{CC} +0.5	V
Input Diode Current	ΙΚ	± 20	mA
Output Diode Current	lok	± 20	mA
DC Output Current	IOUT	± 12.5	mA
DC V _{CC} / Ground Current	ICC	± 25	mA
Power Dissipation	PD	200	mW
Storage Temperature	T _{stg}	-65~150	°C
Lead Temperature (10s)	Tı	260	°C

MARKING




961001EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

LOGIC DIAGRAM

PIN CONNECTION (TOP VIEW)

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	1~3.6	V
Input Voltage	V _{IN}	0~V _{CC}	٧
Output Voltage	VOUT	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40~85	°C
		0~1000 (V _{CC} = 1.0V)	
Input Rise and Fall Time	t _r , t _f	0∼ 500 (V _{CC} = 1.5V)	ns
		0~ 400 (V _{CC} = 3.0V)	

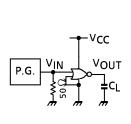
DC ELECTRICAL CHARACTERISTICS

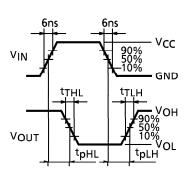
CHARACTERISTIC	SYMBOL	TEST CIR-				Ta = 25°C			Ta = −40~85°C		UNIT
CHARACTERISTIC STIVIBOL		CUIT	TEST CONDITION		Vcc	MIN.	TYP.	МАХ.	MIN.	MAX.	OINIT
High-Level Input					1.0	0.75	_	_	0.75	_	
Voltage	VIH	_	_		1.5	1.05	—	—	1.05	 	V
Voltage					3.0	2.10	_	_	2.10	_	
Low-Level Input			_		1.0	—	_	0.25	l —	0.25	
Voltage	V _{IL}	—			1.5	—	—	0.45	—	0.45	V
voitage					3.0	—	_	0.90	—	0.90	
			V _{IN} = V _{IL}	I _{OH} = -20μA	1.0	0.9	1.0	—	0.9		
High-Level					1.5	1.4	1.5	—	1.4	_	
1	VOH	 			3.0	2.9	3.0	_	2.9	_	V
Output Voltage				$I_{OH} = -1mA$	1.5	1.07	1.23	<u> </u>	0.99		
				$I_{OH} = -2.6mA$	3.0	2.61	2.68	—	2.55	_	
	V _{OL}			I _{OL} = 20μA	1.0	_	0.0	0.1	—	0.1	
Low-Level Output Voltage			V _{IN} = V _{IH} or V _{IL}		1.5	—	0.0	0.1	<u> </u>	0.1	
		—			3.0	_	0.0	0.1	—	0.1	V
				$I_{OL} = 1mA$	1.5	—	0.23	0.31	—	0.37	
				$I_{OL} = 2.6 mA$	3.0	_	0.23	0.31	<u> </u>	0.33	
Input Leakage	liki	_	V _{IN} = V _{CC}	or GND	3.6			± 0.1		± 1.0	
Current	IN		AIN - ACC	OI GIVD	3.0			- 0.1		∸ 1.0	ا ۸٫٫٫ ا
Quiescent Supply Current	l _{CC}	_	$V_{IN} = V_{CC}$	or GND	3.6	_	_	1.0	_	10.0	μΑ

961001EBA2'

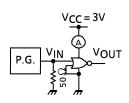
The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

CHARACTERISTIC SYMBO		TEST	TEST CONDITION	7	UNIT		
	3 I IVIBOL	CUIT	1231 CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition	tTLH				5.0	9.0	ns
Time	tTHL	_	_	_	5.0	9.0	113
Propagation	^t PLH				7.5	13.0	nc
Delay Time	t _{PHL}			_	7.5	13.0	ns


AC ELECTRICAL CHARACTERISTICS ($C_L = 25pF$, Input $t_r = t_f = 6ns$)


CHARACTERISTIC SYMBOL	CAMBOI	TEST			Ta = 25°C			Ta = -4		
	CIR- CUIT	TEST CONDITION	VCC	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
Output Transition	+			1.0	_	70	170	_	240	
Time	t _{TLH}	_	_	1.5	<u> </u>	25	45	i —	55	ns
Time	^t THL			3.0	_	10	15	_	20	
Propagation	t n			1.0	_	70	170	_	210	
Propagation Delay Time	t _{PLH}	_	_	1.5	—	25	45	l —	55	ns
Delay Time	t _{PHL}			3.0	_	10	15	—	20	
Input Capacitance	CIN	_	_		_	5	10	_	10	
Power Dissipation Capacitance	C _{PD}	_	Note (1)		_	10		_	_	рF
Capacitance										

Note (1): CpD defined as the value of internal equivalent capacitance of IC which is calculated from the operating current consumption without load (refer to Test Circuit).


Average operating current can be obtained by the equation as follows. $I_{CC}(opr) = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

SWITCHING CHARACTERISTICS TEST CIRCUIT

ICC (opr) TEST CIRCUIT

Input waveform is the same as that in case of switching characteristics test.