
a

CrossCore® Embedded Studio 1.0.0
Loader and Utilities Manual
(including ADSP-BFxxx and ADSP-21xxx)

Revision 1.0, March 2012

Part Number
82-100114-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
©2012 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, CrossCore, EZ-Board, EZ-KIT Lite,
SHARC, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CrossCore Embedded Studio 1.0.0 iii
Loader and Utilities Manual

 CONTENTS

PREFACE

Purpose of This Manual .. xv

Intended Audience .. xv

Manual Contents ... xvi

What’s New in This Manual .. xvii

Technical or Customer Support .. xviii

Supported Processors .. xviii

Product Information .. xix

Analog Devices Web Site .. xix

EngineerZone .. xx

Notation Conventions ... xx

INTRODUCTION

Importing a Legacy Loader Project .. 1-2

Importing a Legacy Splitter Project .. 1-2

Definition of Terms .. 1-3

Program Development Flow .. 1-8

Compiling and Assembling .. 1-9

Linking ... 1-9

Contents

iv CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Loading, Splitting, or Both .. 1-10

Non-Bootable Files Versus Boot-Loadable Files 1-11

Loader Utility Operations ... 1-12

Splitter Utility Operations .. 1-13

Boot Modes .. 1-14

No-Boot Mode ... 1-14

PROM Boot Mode ... 1-15

Host Boot Mode ... 1-15

Boot Kernels .. 1-16

Boot Streams .. 1-16

File Searches ... 1-18

LOADER/SPLITTER FOR
ADSP-BF50X/BF51X/BF52X/BF54X/BF59X
BLACKFIN PROCESSORS

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting 2-2

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor
Loader Guide ... 2-7

Using Blackfin Loader Command Line 2-8

File Searches ... 2-9

File Extensions ... 2-9

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin
Loader Command-Line Switches 2-9

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE
Loader Files ... 2-19

CrossCore Embedded Studio 1.0.0 v
Loader and Utilities Manual

Contents

Using Studio Loader .. 2-20

Using Second-Stage Loader .. 2-22

Using ROM Splitter .. 2-24

LOADER/SPLITTER FOR ADSP-BF53X/BF561
BLACKFIN PROCESSORS

ADSP-BF53x/BF561 Processor Booting .. 3-2

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Booting .. 3-3

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor On-Chip Boot ROM 3-7

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Boot Streams 3-8

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Block Headers and Flags 3-9

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Initialization Blocks 3-12

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor No-Boot Mode 3-15

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Memory Ranges 3-18

ADSP-BF561 Processor Booting .. 3-19

ADSP-BF561 Processor On-Chip Boot ROM 3-21

ADSP-BF561 Processor Boot Streams 3-22

ADSP-BF561 Processor Initialization Blocks 3-27

ADSP-BF561 Dual-Core Application Management 3-28

ADSP-BF561 Processor Memory Ranges 3-29

Contents

vi CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-BF53x and ADSP-BF561 Multi-Application
(Multi-DXE) Management ... 3-30

ADSP-BF531/BF532/BF533/BF534/BF536/BF537
Processor Compression Support .. 3-33

Compressed Streams ... 3-34

Compressed Block Headers ... 3-35

Uncompressed Streams ... 3-37

Booting Compressed Streams .. 3-38

Decompression Initialization Files 3-39

ADSP-BF53x/BF561 Processor Loader Guide 3-40

Using Blackfin Loader Command Line 3-41

File Searches ... 3-42

File Extensions ... 3-42

Blackfin Loader Command-Line Switches 3-43

Using Loader .. 3-53

Using Compression ... 3-56

Using ROM Splitter .. 3-57

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor No-Boot Mode 3-59

LOADER/SPLITTER FOR ADSP-BF60X
BLACKFIN PROCESSORS

ADSP-BF60x Processor Booting ... 4-2

ADSP-BF60x Processor Loader Guide ... 4-3

Using Studio Loader ... 4-3

ADSP-BF60x Boot Modes ... 4-6

CrossCore Embedded Studio 1.0.0 vii
Loader and Utilities Manual

Contents

ADSP-BF60x BCODE for Memory, RSI and SPI
Master Boot ... 4-7

Building a Dual-Core Application .. 4-9

Programming Memory on Target Board 4-9

CRC32 Protection ... 4-10

-CRC32 [PolynomialCoefficient] 4-10

Block Sizes .. 4-11

Using ROM Splitter .. 4-11

ADSP-BF60x Loader Collateral ... 4-14

ROM Code ... 4-14

Init Code .. 4-14

ROM Programming .. 4-15

LOADER FOR ADSP-21160 SHARC PROCESSORS

ADSP-21160 Processor Booting .. 5-2

Power-Up Booting Process ... 5-3

Boot Mode Selection ... 5-4

ADSP-21160 Boot Modes ... 5-5

EPROM Boot Mode ... 5-5

Host Boot Mode ... 5-9

Link Port Boot Mode .. 5-12

No-Boot Mode ... 5-13

ADSP-21160 Boot Kernels .. 5-13

ADSP-21160 Processor Boot Steams 5-14

Boot Kernel Modification and Loader Issues 5-16

Contents

viii CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-21160 Interrupt Vector Table 5-19

ADSP-21160 Multi-Application (Multi-DXE)
Management .. 5-19

ADSP-21160 Processor ID Numbers 5-20

ADSP-21160 Processor Loader Guide ... 5-21

Using ADSP-21160 Loader Command Line 5-22

File Searches ... 5-23

File Extensions ... 5-23

ADSP-21160 Loader Command-Line Switches 5-24

Using Interface (Load Page) ... 5-27

LOADER FOR ADSP-21161 SHARC PROCESSORS

ADSP-21161 Processor Booting .. 6-2

Power-Up Booting Process ... 6-3

Boot Mode Selection ... 6-4

ADSP-21161 Processor Boot Modes .. 6-5

EPROM Boot Mode ... 6-5

Host Boot Mode ... 6-9

Link Port Boot Mode .. 6-12

SPI Port Boot Mode ... 6-14

No-Boot Mode ... 6-16

ADSP-21161 Processor Boot Kernels 6-16

ADSP-21161 Processor Boot Streams 6-16

CrossCore Embedded Studio 1.0.0 ix
Loader and Utilities Manual

Contents

Boot Kernel Modification and Loader Issues 6-18

Rebuilding a Boot Kernel File .. 6-18

Rebuilding a Boot Kernel Using Command Lines 6-19

Loader File Issues .. 6-20

ADSP-21161 Processor Interrupt Vector Table 6-20

ADSP-21161 Multi-Application (Multi-DXE)
Management .. 6-21

Boot From a Single EPROM ... 6-21

Sequential EPROM Boot .. 6-22

Processor ID Numbers .. 6-22

ADSP-21161 Processor Loader Guide .. 6-23

Using ADSP-21161 Loader Command Line 6-24

File Searches ... 6-26

File Extensions .. 6-26

Loader Command-Line Switches 6-27

Using Interface (Load Page) ... 6-31

LOADER FOR ADSP-2126X/2136X/2137X/214XX
SHARC PROCESSORS

ADSP-2126x/2136x/2137x/214xx Processor Booting 7-2

Power-Up Booting Process ... 7-3

ADSP-2126x/2136x/2137x/214xx Processors Interrupt
Vector Table ... 7-4

General Boot Definitions ... 7-4

Boot Mode Selection ... 7-5

Boot DMA Configuration Settings ... 7-6

Contents

x CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

PROM Boot Mode ... 7-7

Packing Options for External Memory 7-7

Multiplexed Parallel Port ... 7-7

AMI/SDRAM/DDR2 ... 7-8

Packing and Padding Details ... 7-9

SPI Port Boot Modes .. 7-9

 SPI Slave Boot Mode ... 7-9

SPI Master Boot Modes .. 7-10

Booting From an SPI Flash (24-bit address) 7-14

Booting From an SPI PROM (16-bit address) 7-14

Booting From an SPI Host Processor (no address) 7-14

Reserved (No Boot) Mode .. 7-15

ADSP-2126x/2136x/2137x/214xx Processors Boot Kernels 7-15

Boot Kernel Modification and Loader Issues 7-16

Rebuilding a Boot Kernel File 7-18

Rebuilding a Boot Kernel Using Command Lines 7-19

Loader File Issues .. 7-19

ADSP-2126x/2136x/2137x/214xx Processor Boot Streams 7-20

Boot Stream Block Tags .. 7-21

ZERO_INIT Blocks ... 7-22

INIT_L48 Blocks ... 7-23

INIT_L16 Blocks ... 7-24

INIT_L64 Blocks ... 7-25

CrossCore Embedded Studio 1.0.0 xi
Loader and Utilities Manual

Contents

MULT_PROC Blocks ... 7-25

FINAL_INIT Blocks ... 7-26

ADSP-21368/2146x Multi-Application (Multi-DXE)
Management .. 7-30

ADSP-2126x/2136x/2137x Processors Compression
Support .. 7-32

Compressed Streams ... 7-33

Compressed Block Headers ... 7-34

Uncompressed Streams .. 7-35

Overlay Compression .. 7-36

Booting Compressed Streams .. 7-36

Decompression Kernel File .. 7-37

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide 7-38

Using ADSP-2126x/2136x/2137x/214xx Loader
Command Line .. 7-39

File Searches ... 7-40

File Extensions .. 7-40

Loader Command-Line Switches 7-41

Using Interface (Load Page) ... 7-46

SPLITTER FOR SHARC PROCESSORS

Splitter Command Line ... 8-2

File Searches .. 8-4

Output File Extensions .. 8-4

Splitter Command-Line Switches ... 8-5

Contents

xii CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

FILE FORMATS

Source Files .. A-1

C/C++ Source Files ... A-2

Assembly Source Files .. A-2

Assembly Initialization Data Files .. A-2

Header Files .. A-3

Linker Description Files .. A-4

Linker Command-Line Files .. A-4

Build Files .. A-4

Assembler Object Files .. A-5

Library Files ... A-5

Linker Output Files .. A-5

Memory Map Files .. A-6

Loader Output Files in Intel Hex-32 Format A-6

Loader Output Files in Include Format A-8

Loader Output Files in Binary Format A-10

Output Files in Motorola S-Record Format A-10

Splitter Output Files in Intel Hex-32 Format A-12

Splitter Output Files in Byte-Stacked Format A-12

Splitter Output Files in ASCII Format A-14

Debugger Files .. A-15

Format References .. A-16

CrossCore Embedded Studio 1.0.0 xiii

Contents

UTILITIES

hexutil – Hex-32 to S-Record File Converter B-1

elf2flt – ELF to BFLT File Converter .. B-2

elf2elf – ELF to ELF File Converter .. B-4

fltdump – BFLT File Dumper .. B-5

INDEX

Contents

xiv CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual xv

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
Analog Devices embedded processors.

Purpose of This Manual
The Loader and Utilities Manual contains information about the
loader/splitter program for Analog Devices processors.

The manual describes the loader/splitter operations for these processors
and references information about related development software. It also
provides information about the loader and splitter command-line
interfaces.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware reference and programming reference manuals, that describe
their target architecture.

Manual Contents

xvi CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Manual Contents
The manual contains:

• Chapter 1, “Introduction”, provides an overview of the loader util-
ity (or loader) program as well as the process of loading and
splitting, the final phase of the application development flow.

• Chapter 2, “Loader/Splitter for
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Processors”,
explains how the loader/splitter utility is used to convert executable
files into boot-loadable or non-bootable files for the ADSP-BF50x,
ADSP-BF51x, ADSP-BF52x, ADSP-BF54x, and ADSP-BF59x
Blackfin® processors.

• Chapter 3, “Loader/Splitter for ADSP-BF53x/BF561 Blackfin Pro-
cessors”, explains how the loader/splitter utility is used to convert
executable files into boot-loadable or non-bootable files for the
ADSP-BF53x and ADSP-BF561 Blackfin processors.

• Chapter 4, “Loader/Splitter for ADSP-BF60x Blackfin Processors”,
explains how the loader/splitter utility (elfloader.exe) is used to
convert executable (.dxe) files into boot-loadable or non-bootable
files for the ADSP-BF60x Blackfin processors.

• Chapter 5, “Loader for ADSP-21160 SHARC Processors”, explains
how the loader utility is used to convert executable files into
boot-loadable files for the ADSP-21160 SHARC® processors.

• Chapter 6, “Loader for ADSP-21161 SHARC Processors”, explains
how the loader utility is used to convert executable files into
boot-loadable files for the ADSP-21161 SHARC processors.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual xvii

Preface

• Chapter 7, “Loader for ADSP-2126x/2136x/2137x/214xx SHARC
Processors”, explains how the loader utility is used to convert exe-
cutable files into boot-loadable files for the ADSP-2126x, ADSP-
2136x, ADSP-2137x, ADSP-2146x, ADSP-2147x, and
ADSP-2148x SHARC processors.

• Chapter 8, “Splitter for SHARC Processors”, explains how the
splitter utility is used to convert executable files into non-bootable
files for the ADSP-21xxx SHARC processors.

• Appendix A, “File Formats”, describes source, build, and debugger
file formats.

• Appendix B, “Utilities”, describes several utility programs included
with CrossCore® Embedded Studio, some of which run from a
command line only.

What’s New in This Manual
This is Revision 1.0 of the Loader and Utilities Manual. For future revi-
sions, this section will document loader and splitter functionality that is
new to updates of CrossCore Embedded Studio, including support for
new SHARC and/or Blackfin processors. In addition, modifications and
corrections based on errata reports against the previous revisions of the
manual will also be noted here.

Technical or Customer Support

xviii CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technical_support

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD (800-262-5643)

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:
Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
The CrossCore Embedded Studio loader and utility programs support the
following processor families from Analog Devices.

• Blackfin (ADSP-BFxxx)

• SHARC (ADSP-21xxx)

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual xix

Preface

Refer to the CrossCore Embedded Studio online help for a complete list
of supported processors.

Product Information
Product information can be obtained from the Analog Devices Web site
and the CrossCore Embedded Studio online help.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals. MyAna-
log.com provides access to books, application notes, data sheets, code
examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

Notation Conventions

xx CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

Notation Conventions
Text conventions used in this manual are identified and described as fol-
lows. Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
CrossCore Embedded Studio environment’s menu system (for example,
the Close command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

http://ez.analog.com

CrossCore Embedded Studio 1.0.0 xxi
Loader and Utilities Manual

Preface

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for the
devices users. In the online version of this book, the word Warning
appears instead of this symbol.

Example Description







Notation Conventions

xxii CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 1-1

1 INTRODUCTION

The majority of this manual describes the loader utility (or loader) pro-
gram as well as the process of loading and splitting, the final phase of the
application development flow.

Most of this chapter applies to all 8-, 16-, and 32-bit processors. Informa-
tion specific to a particular processor, or to a particular processor family, is
provided in the following chapter.

• Chapter 2, “Loader/Splitter for
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Processors”

• Chapter 3, “Loader/Splitter for ADSP-BF53x/BF561 Blackfin
Processors”

• Chapter 4, “Loader/Splitter for ADSP-BF60x Blackfin Processors”

• Chapter 5, “Loader for ADSP-21160 SHARC Processors”

• Chapter 6, “Loader for ADSP-21161 SHARC Processors”

• Chapter 7, “Loader for ADSP-2126x/2136x/2137x/214xx SHARC
Processors”

• Chapter 8, “Splitter for SHARC Processors”

• Appendix A, “File Formats”

• Appendix B, “Utilities”

Importing a Legacy Loader Project

1-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

 The code examples in this manual have been compiled using release
1.0. The examples compiled with another version may result in
build errors or different output in the CrossCore Embedded Studio
Integrated Development Environment (IDE); although, the high-
lighted algorithms stand and should continue to stand in future
releases of CrossCore Embedded Studio.

Importing a Legacy Loader Project
For users who are migrating from VisualDSP++®, follow these steps when
importing a legacy loader project into the IDE.

1. Select File > Import > General.

2. In the General folder, select VisualDSP++ Project.

3. Click Next which brings up the Import Project File dialog box.

4. Browse for dpj (or dpg) in File: box.

5. Select File > Import > General.

6. The result will be CrossCore Embedded Studio .project / .cpro-
ject files.

 CrossCore Embedded Studio has one build target per directory. If
you have multiple VisualDSP++ *.dpj projects, the conversion cre-
ates them in separate sub-directories.

Importing a Legacy Splitter Project
VisualDSP++ legacy splitter projects cannot be imported into the IDE.
There is no SHARC splitter build artifact in CrossCore Embedded Stu-
dio. If attempting to import a VisualDSP++ legacy splitter project, a status
of “Not Converted” appears along with the following error messages.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 1-3

Introduction

createProjectDescription: Unable to find the project type

sharc.projecttype.bnm.

NullPointerException thrown. See error log for further details.

The legacy SHARC splitter elfspl21k.exe is available with CrossCore
Embedded Studio for command-line usage.

Splitter functionality for SHARC processors beginning with the
ADSP-214xx family is available through the SHARC loader instead of the
through the legacy splitter utility.

Definition of Terms
Loader and Loader Utility

The term loader refers to a loader utility that is part of CrossCore Embed-
ded Studio. The loader utility post-processes one or multiple executable
(.dxe) files, extracts segments that have been declared by the TYPE(RAM)
command in a Linker Description File (.ldf), and generates a loader file
(.ldr). Since the .dxe file meets the Executable and Linkable Format
(ELF) standard, the loader utility is often called elfloader utility. See also
“Loader Utility Operations” on page 1-12.

Splitter Utility

The splitter utility is part of CrossCore Embedded Studio. The splitter
utility post-processes one or multiple executable (.dxe) files, extracts seg-
ments that have been declared by the TYPE(R0M) command in a Linker
Description File (.ldf), and generates a file consisting of processor
instructions (opcodes). If burned into an EPROM or flash memory device
connected to the target processor’s system bus, the processor can directly
fetch and execute these instructions. See also “Splitter Utility Operations”
on page 1-13.

Splitter and loader jobs can be managed either by separate utility pro-
grams or by the same program (see “Non-Bootable Files Versus

Definition of Terms

1-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Boot-Loadable Files” on page 1-11). In the latter case, the generated out-
put file may contain code instructions and boot streams.

Loader File

A loader file is generated by the loader utility. The file typically has the
.ldr extension and is often called an LDR file. Loader files can meet one
of multiple formats. Common formats are Intel hex-32, binary, or ASCII
representation. Regardless of the format, the loader file describes a boot
image, which is the binary version of the loader file. See also
“Non-Bootable Files Versus Boot-Loadable Files” on page 1-11.

Loader Command Line

If invoked from a command-line prompt, the loader and splitter utilities
accept numerous control switches to customize the loader file generation.

Loader Property Page

The loader property page is part of the Tool Settings tab of the IDE. The
property page is a graphical tool that assists in composing the loader util-
ity’s command line.

Boot Mode

Most processors support multiple boot modes. A boot mode is determined
by special input pins that are interrogated when the processor awakes from
either a reset or power-down state. See also “Boot Modes” on page 1-14.

Boot Kernel

A boot kernel is software that runs on the target processor. It reads data
from the boot source and interprets the data as defined in the boot stream
format. The boot kernel can reside in an on-chip boot ROM or in an
off-chip ROM device. Often, the kernel has to be pre-booted from the
boot source before it can be executed. In this case, the loader utility puts a
default kernel to the front of the boot image, or, allows the user to specify
a customized kernel. See also “Boot Kernels” on page 1-16.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 1-5

Introduction

Boot ROM

A boot ROM is an on-chip read-only memory that holds the boot kernel
and, in some cases, additional advanced booting routines.

Second-Stage Loader

A second-stage loader is a special boot kernel that extends the default boot-
ing mechanisms of the processor. It is typically booted by a first-stage
kernel in a standard boot mode configuration. Afterward, it executes and
boots in the final applications. See also “Boot Kernels” on page 1-16.

Boot Source

A boot source refers to the interface through which the boot data is loaded
as well as to the storage location of a boot image, such as a memory or host
device.

Boot Image

A boot image that can be seen as the binary version of a loader file. Usually,
it has to be stored into a physical memory that is accessible by either the
target processor or its host device. Often it is burned into an EPROM or
downloaded into a flash memory device using the Programmer plug-in.

The boot image is organized in a special manner required by the boot ker-
nel. This format is called a boot stream. A boot image can contain one or
multiple boot streams. Sometimes the boot kernel itself is part of the boot
image.

Boot Stream

A boot stream is basically a list of boot blocks. It is the data structure that is
processed and interpreted by the boot kernel. The loader utility generates
loader files that contain one or multiple boot streams. A boot stream often
represents one application. However, a linked list of multiple applica-
tion-level boot streams is referred to as a boot stream.

Definition of Terms

1-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Boot Host

A boot host is a processor or programmable logic that feeds the device con-
figured in a slave boot mode with a boot image or a boot stream.

Boot Block

Multiple boot blocks form a boot stream. These blocks consist of boot data
that is preceded by a block header. The header instructs the boot kernel
how to interpret the payload data. In some cases, the header may contain
special instructions only. In such blocks, there is likely no payload data
present.

Boot Code

Boot code refers to all boot-relevant ROM code. Boot code typically con-
sists of the pre-boot routine and the boot kernel.

Boot Strapping

If the boot process consists of multiple steps, such as pre-loading the boot
kernel or managing second-stage loaders, this is called boot strapping.

Initialization Code

Initialization code or initcode is part of a boot stream for Blackfin proces-
sors and is a special boot block. While normally all boot blocks of an
application are booted in first and control is passed to the application
afterward, the initialization code executes at boot time. It is common that
an initialization code is booted and executed before any other boot block.
This initialization code can customize the target system for optimized
boot processing.

Global Header

Some boot kernels expect a boot stream to be headed by a special informa-
tion tag. The tag is referred to as a global header.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 1-7

Introduction

Callback Routine

Some processors can optionally call a user-defined routine after a boot
block has been loaded and processed. This is referred to as a callback rou-
tine. It provides hooks to implement checksum and decompression
strategies.

Slave Boot

The term slave boot spans all boot modes where the target processor func-
tions as a slave. This is typically the case when a host device loads data into
the target processor’s memories. The target processor can wait passively in
idle mode or support the host-controlled data transfers actively. Note that
the term host boot usually refers only to boot modes that are based on
so-called host port interfaces.

Master Boot

The term master boot spans all boot modes where the target processor
functions as master. This is typically the case when the target processor
reads the boot data from parallel or serial memories.

Boot Manager

A boot manager is firmware that decides which application is to be booted.
An application is usually represented as a project in the IDE and stored in
a .dxe file. The boot manger itself can be managed within an application
.dxe file, or have its own separate .dxe file. Often, the boot manager is
executed by initialization code.

In slave boot scenarios, boot management is up to the host device and
does not require special tools support.

Multi-.dxe Boot

A loader file can contain data of multiple application (.dxe) files if the
loader utility was invoked by specifying multiple .dxe files. Either a boot
manager decides which application is to be booted exclusively or,

Program Development Flow

1-8 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

alternatively, one application can terminate and initiate the next applica-
tion to be booted. In some cases, a single application can also consist of
multiple .dxe files.

Next .dxe File Pointer

If a loader file contains multiple applications, some boot stream formats
enable them to be organized as a linked list. The next .dxe pointer (NDP)
is simply a pointer to a location where the next application’s boot stream
resides.

Preboot Routine

A preboot routine is present in the boot ROM of parts that feature OTP
memory on a processor. Preboot reads OTP memory and customizes sev-
eral MMR registers based on factory and user instructions, as programmed
to OTP memory. A preboot routine executes prior to the boot kernel.

Program Development Flow
Figure 1-1 is a simplified view of the application development flow.

The development flow can be split into three phases:

1. “Compiling and Assembling”

2. “Linking”

3. “Loading, Splitting, or Both”

A brief description of each phase follows.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 1-9

Introduction

Compiling and Assembling
Input source files are compiled and assembled to yield object files. Source
files are text files containing C/C++ code, compiler directives, possibly a
mixture of assembly code and directives, and, typically, preprocessor com-
mands. The assembler and compiler are documented in the Assembler and
Preprocessor Manual and C/C++ Compiler and Library Manual, which are
part of the online help.

Linking
Under the direction of the linker description file (LDF) and linker set-
tings, the linker consumes separately-assembled object and library files to
yield an executable file. If specified, the linker also produces the shared
memory files and overlay files. The linker output (.dxe files) conforms to
the ELF standard, an industry-standard format for executable files. The
linker also produces map files and other embedded information
(DWARF-2) used by the debugger.

Figure 1-1. Program Development Flow

SOURCE
FILES

ASSEMBLER
AND/OR

COMPILER

.asm, .c, .cpp

PROCESSOR

LOADER
AND/OR

SPLITTER

EXTERNAL
MEMORY

BOOTING
UPON
RESET

TARGET SYSTEM

.doj .dxe

.ldr

LINKER

Program Development Flow

1-10 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

These executable files are not readable by the processor hardware directly.
They are neither supposed to be burned onto an EPROM or flash memory
device. Executable files are intended for debugging targets, such as the
simulator or emulator. Refer to the Linker and Utilities Manual and online
help for information about linking and debugging.

Loading, Splitting, or Both
Upon completing the debug cycle, the processor hardware needs to run on
its own, without any debugging tools connected. After power-up, the
processor’s on-chip and off-chip memories need to be initialized. The pro-
cess of initializing memories is often referred to as booting. Therefore, the
linker output must be transformed to a format readable by the processor.
This process is handled by the loader and/or splitter utility. The
loader/splitter utility uses the debugged and tested executable files as well
as shared memory and overlay files as inputs to yield a processor-loadable
file.

CrossCore Embedded Studio includes these loader and splitter utilities:

• elfloader.exe (loader utility) for Blackfin and SHARC processors.
The loader utility for Blackfin processors also acts as a ROM split-
ter utility when evoked with the corresponding switches.

• elfspl21k.exe (ROM splitter utility) for SHARC processors.

The loader/splitter output is either a boot-loadable or non-bootable file.
The output is meant to be loaded onto the target. There are several ways
to use the output:

• Download the loadable file into the processor’s PROM space on an
EZ-KIT Lite® board via the Flash Programmer plug-in. Refer to
the online help for information on the Flash Programmer.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 1-11

Introduction

• Use the IDE to simulate booting in a simulator session. Load the
loader file and then reset the processor to debug the booting rou-
tines. No hardware is required: just point to the location of the
loader file, letting the simulator to do the rest. You can step
through the boot kernel code as it brings the rest of the code into
memory.

• Store the loader file in an array for a multiprocessor system. A mas-
ter (host) processor has the array in its memory, allowing a full
control to reset and load the file into the memory of a slave
processor.

Non-Bootable Files Versus Boot-Loadable Files
A non-bootable file executes from an external memory of the processor,
while a boot-loadable file is transported into and executes from an internal
memory of the processor. The boot-loadable file is then programmed into
an external memory device (burned into EPROM) within your target sys-
tem. The loader utility outputs loadable files in formats readable by most
EPROM burners, such as Intel hex-32 and Motorola S formats. For
advanced usage, other file formats and boot modes are supported. (See
“File Formats” on page A-1.)

A non-bootable EPROM image file executes from an external memory of
the processor, bypassing the built-in boot mechanisms. Preparing a
non-bootable EPROM image is called splitting. In most cases (except for
Blackfin processors), developers working with floating- and fixed-point
processors use the splitter instead of the loader utility to produce a
non-bootable memory image file.

Program Development Flow

1-12 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

A booting sequence of the processor and application program design dic-
tate the way loader/splitter utility is called to consume and transform
executable files:

• For Blackfin processors, loader and splitter operations are handled
by the loader utility program, elfloader.exe. The splitter is
invoked by a different set of command-line switches than the
loader.

In the IDE, with the addition of the -readall switch, the loader
utility for the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin
processors can call the splitter program automatically. For more
information, see -readall #.

• For SHARC processors, splitter operations are handled by the
splitter program, ElfSpl21k.exe.

Loader Utility Operations

Common tasks performed by the loader utility can include:

• Processing the loader option settings or command-line switches.

• Formatting the output .ldr file according to user specifications.
Supported formats are binary, ASCII, Intel hex-32, and more.
Valid file formats are described in “File Formats” on page A-1.

• Packing the code for a particular data format: 8-, 16- or 32-bit for
some processors.

• Adding the code and data from a specified initialization executable
file to the loader file, if applicable.

• Adding a boot kernel on top of the user code.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 1-13

Introduction

• If specified, preprogramming the location of the .ldr file in a
specified PROM space.

• Specifying processor IDs for multiple input .dxe files for a
multiprocessor system, if applicable.

You can run the loader utility from the IDE, when the IDE is available, or
from the command line. In order to do so in the IDE, open the project’s
Properties > C/C++ Build > Settings > Build Artifact page and change
the Artifact Type from Executable to Loader File.

Loader utility operations depend on the loader options, which control
how the loader utility processes executable files into boot-loadable files,
letting you select features, such as kernels, boot modes, and output file
formats. These options are set on the loader pages of the Tool Settings tab
in the IDE or on the loader command line. Option settings on the loader
pages correspond to switches typed on the elfloader.exe command line.

Splitter Utility Operations

Splitter utility operations depend on the splitter options, which control
how the splitter utility processes executable files into non-bootable files:

• For Blackfin processor, the loader utility includes the ROM splitter
capabilities invoked through the Tool Settings tab. Refer to “Using
ROM Splitter” on page 3-57. Option settings in the tab corre-
spond to switches typed on the elfloader.exe command line.

• For SHARC processors, change the project’s target type to Splitter
file. The splitter options are set via the CrossCore Embedded Stu-
dio SHARC Loader : Splitter page of the Tool Settings tab. Refer
to “Splitter for SHARC Processors” on page 8-1. Option settings
in the dialog box correspond to switches typed on the
elfspl21k.exe command line.

Boot Modes

1-14 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Boot Modes
Once an executable file is fully debugged, the loader utility is ready to
convert the executable file into a processor-loadable (boot-loadable) file.
The loadable file can be automatically downloaded (booted) to the proces-
sor after power-up or after a software reset. The way the loader utility
creates a boot-loadable file depends upon how the loadable file is booted
into the processor.

The boot mode of the processor is determined by sampling one or more of
the input flag pins. Booting sequences, highly processor-specific, are
detailed in the following chapters.

Analog Devices processors support different boot mechanisms. In general,
the following schemes can be used to provide program instructions to the
processors after reset.

• “No-Boot Mode”

• “PROM Boot Mode”

• “Host Boot Mode”

No-Boot Mode
After reset, the processor starts fetching and executing instructions from
EPROM/flash memory devices directly. This scheme does not require any
loader mechanism. It is up to the user program to initialize volatile
memories.

The splitter utility generates a file that can be burned into the PROM
memory.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 1-15

Introduction

PROM Boot Mode
After reset, the processor starts reading data from a parallel or serial
PROM device. The PROM stores a formatted boot stream rather than raw
instruction code. Beside application data, the boot stream contains addi-
tional data, such as destination addresses and word counts. A small
program called a boot kernel (described on page 1-16) parses the boot
stream and initializes memories accordingly. The boot kernel runs on the
target processor. Depending on the architecture, the boot kernel may exe-
cute from on-chip boot RAM or may be preloaded from the PROM
device into on-chip SRAM and execute from there.

The loader utility generates the boot stream from the linker output (an
executable file) and stores it to file format that can be burned into the
PROM.

Host Boot Mode
In this scheme, the target processor is a slave to a host system. After reset,
the processor delays program execution until the slave gets signalled by the
host system that the boot process has completed. Depending on hardware
capabilities, there are two different methods of host booting. In the first
case, the host system has full control over all target memories. The host
halts the target while initializing all memories as required. In the second
case, the host communicates by a certain handshake with the boot kernel
running on the target processor. This kernel may execute from on-chip
ROM or may be preloaded by the host devices into the processor’s SRAM
by any bootstrapping scheme.

The loader/splitter utility generates a file that can be consumed by the
host device. It depends on the intelligence of the host device and on the
target architecture whether the host expects raw application data or a for-
matted boot stream.

Boot Kernels

1-16 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

In this context, a boot-loadable file differs from a non-bootable file in that
it stores instruction code in a formatted manner in order to be processed
by a boot kernel. A non-bootable file stores raw instruction code.

Boot Kernels
A boot kernel refers to the resident program in the boot ROM space
responsible for booting the processor. Alternatively (or in absence of the
boot ROM), the boot kernel can be preloaded from the boot source by a
bootstrapping scheme.

When a reset signal is sent to the processor, the processor starts booting
from a PROM, host device, or through a communication port. For exam-
ple, an ADSP-2116x processor, brings a 256-word program into internal
memory for execution. This small program is a boot kernel.

The boot kernel then brings the rest of the application code into the pro-
cessor’s memory. Finally, the boot kernel overwrites itself with the final
block of application code and jumps to the beginning of the application
program.

Some of the newer Blackfin processors do not require to load a boot ker-
nel—a kernel is already present in the on-chip boot ROM. It allows the
entire application program’s body to be booted into the internal and
external memories of the processor. The boot ROM has the capability to
parse address and count information for each bootable block.

Boot Streams
The loader utility’s output (.ldr file) is essentially the same executable
code as in the input .dxe file; the loader utility simply repackages the exe-
cutable as shown in Figure 1-2.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 1-17

Introduction

Processor code and data in a loader file (also called a boot stream) is split
into blocks. Each code block is marked with a tag that contains
information about the block, such as the number of words and destination
in the processor’s memory. Depending on the processor family, there can
be additional information in the tag. Common block types are “zero”
(memory is filled with 0s); nonzero (code or data); and final (code or
data). Depending on the processor family, there can be other block types.

Figure 1-2. A .dxe File Versus an .ldr File

.LDR FILE

CODE

DATA

SYMBOLS

DEBUG
INFORMATION

.DXE FILE

CODE

DATA

SYMBOLS

DEBUG
INFORMATION

A .DXE FILE INCLUDES:
- DSP INSTRUCTIONS (CODE AND DATA)
- SYMBOL TABLE AND SECTION INFORMATION
- TARGET PROCESSOR MEMORY LAYOUT
- DEBUG INFORMATION

AN .LDR FILE INCLUDES:
- DSP INSTRUCTIONS (CODE AND DATA)
- RUDIMENTARY FORMATTING

(ALL DEBUG INFORMATION HAS
BEEN REMOVED)

File Searches

1-18 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

File Searches
File searches are important in the loader utility operation. The loader util-
ity supports relative and absolute directory names and default directories.
File searches occur as follows.

• Specified path—If relative or absolute path information is included
in a file name, the loader utility searches only in that location for
the file.

• Default directory—If path information is not included in the file
name, the loader utility searches for the file in the current working
directory.

• Overlay and shared memory files—The loader utility recognizes
overlay and shared memory files but does not expect these files on
the command line. Place the files in the directory that contains the
executable file that refers to them, or place them in the current
working directory. The loader utility can locate them when pro-
cessing the executable file.

When providing an input or output file name as a loader/splitter com-
mand-line parameter, use these guidelines:

• Enclose long file names within straight quotes, “long file name”.

• Append the appropriate file extension to each file.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-1

2 LOADER/SPLITTER FOR
ADSP-BF50X/BF51X/BF52X/
BF54X/BF59X BLACKFIN
PROCESSORS

This chapter explains how the loader/splitter utility (elfloader.exe) is
used to convert executable (.dxe) files into boot-loadable or non-bootable
files for the ADSP-BF50x, ADSP-BF51x, ADSP-BF52x, ADSP-BF54x,
and ADSP-BF59x Blackfin processors.

Refer to “Introduction” on page 1-1 for the loader utility overview.
Loader operations specific to the ADSP-BF50x/BF51x/BF52x/BF54x and
ADSP-BF59x Blackfin processors are detailed in the following sections.

• “ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting”
on page 2-2
Provides general information on various boot modes, including
information on second-stage kernels.

• “ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader
Guide” on page 2-7
Provides reference information on the loader utility’s com-
mand-line syntax and switches.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

2-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Processor Booting

Refer to the processor’s data sheet and hardware reference manual for
detailed information on system configuration, peripherals, registers, and
operating modes.

• Blackfin processor data sheets can be found at:
http://www.analog.com/en/embedded-processing-dsp/black-

fin/processors/data-sheets/resources/index.html.

• Blackfin processor manuals can be found at:
http://www.analog.com/en/embedded-processing-dsp/black-

fin/processors/manuals/resources/index.html.

Table 2-1 lists the part numbers that currently comprise the
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x families of Blackfin proces-
sors. Future releases of CrossCore Embedded Studio may support
additional processors.

Table 2-1. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Part Numbers

Processor Family Part Numbers

ADSP-BF504 ADSP-BF504, ADSP-BF504F, ADSP-BF506F

ADSP-BF518 ADSP-BF512, ADSP-BF514, ADSP-BF516, ADSP-BF518

ADSP-BF526 ADSP-BF522, ADSP-BF524, ADSP-BF526

ADSP-BF527 ADSP-BF523, ADSP-BF525, ADSP-BF527

ADSP-BF548 ADSP-BF542, ADSP-BF544, ADSP-BF547, ADSP-BF548, ADSP-BF549

ADSP-BF548M ADSP-BF542M, ADSP-BF544M, ADSP-BF547M, ADSP-BF548M,
ADSP-BF549M

ADSP-BF592 ADSP-BF592-A

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-3

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

Upon reset, an ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processor
starts fetching and executing instructions from the on-chip boot ROM at
address 0xEF00 0000. The boot ROM is an on-chip read-only memory
that holds a boot kernel program to load data from an external memory or
host device. The boot ROM details can be found in the corresponding
hardware reference manual.

There are other boot modes available, including idle (no-boot) mode. The
processor transitions into the boot mode sequence configured by the
BMODE pins; see Table 2-2 through Table 2-5. The BMODE pins are dedi-
cated mode-control pins; that is, no other functions are performed by the
pins. The pins can be read through bits in the system configuration regis-
ter (SYSCR).

Table 2-2. ADSP-BF50x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

Stacked parallel flash memory in async mode 0011

1 ADSP-BF504 processors do not support BMODE 001 or 010 because they have no internal
flash.

0x2000 0000

Stacked parallel flash memory in sync burst mode 0101 0x2000 0000

SPI0 master from SPI memory 011 0x0000 0000

SPI0 slave from host device 100 N/A

16-bit PPI host 101 N/A

Reserved 110 N/A

UART0 slave from UART host 111 N/A

Table 2-3. ADSP-BF51x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

8- or 16-bit external flash memory (default mode) 001 0x2000 0000

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

2-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Internal SPI memory 010 0x2030 0000

External SPI memory (EEPROM or flash) 011 0x0000 0000

SPI0 host device 100 N/A

One-time programmable (OTP) memory 101 N/A

SDRAM memory 110 N/A

UART0 host 111 N/A

Table 2-4. ADSP-BF52x/BF54x Boot Modes

Boot Source BMODE[3:0] Start Address

Idle (no-boot) 0000 N/A

8- or 16-bit external flash memory (default mode) 0001 0x2000 0000

16-bit asynchronous FIFO 0010 0x2030 0000

8-, 16-, 24-, or 32-bit addressable SPI memory 0011 0x0000 0000

External SPI host device 0100 N/A

Serial TWI memory 0101 0x0000 0000

TWI host 0110 N/A

UART0 host on ADSP-BF52x processors;
UART1 host on ADSP-BF54x processors

0111 N/A

UART1 host on ADSP-BF52x processors;
Reserved on ADSP-BF54x processors

1000 N/A

Reserved 1001 N/A

SDRAM/DDR 1010 0x0000 0010

OTP memory 1011 default page
0x40

8- or 16-bit NAND flash memory 1100, 1101 0x0000 0000

16-bit host DMA 1110 N/A

8-bit host DMA 1111 N/A

Table 2-3. ADSP-BF51x Boot Modes (Cont’d)

Boot Source BMODE[2:0] Start Address

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-5

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

In general, there are two categories of boot modes: master and slave. In
master boot modes, the processor actively loads data from parallel or serial
memory devices. In slave boot modes, the processor receives data from par-
allel or serial memory devices.

The Blackfin loader utility generates .ldr files that meet the requirements
of the target boot mode; for example:

• HOSTDP (-b HOSTDP)
When building for the HOSTDP boot, the loader utility aligns
blocks with payload to the appropriate FIFO depth for the target
processor.

Note that HOSTDP differs from other boot modes in the default
setting for -NoFillBlock. The HOSTDP boot mode directs the
loader not to produce fill (zero) blocks by default. To enable fill
blocks for HOSTDP builds, add -FillBlock to the
Additional Options dialog box on the loader page of the Tool Set-
tings tab in the IDE (the loader property page). Click the + Add
button and the Enter Value pop-up dialog box appears. Type in
-FillBlock. See “Using Studio Loader” on page 2-20 for informa-
tion on the loader property page.

Table 2-5. ADSP-BF59x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

Reserved 001 N/A

External serial SPI memory using SPI1 010 N/A

SPI host device using SPI1 011 N/A

External serial SPI memory using SPI0 100 N/A

PPI host 101 N/A

UART host 110 N/A

Internal L1 ROM 111 0x2000 0000

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

2-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

• NAND (-b NAND)
When building for the NAND boot, the loader utility appends 256
bytes to the boot NAND loader stream, a requirement for the boot
kernel for the prefetch mechanism. While fetching one 256 byte
block of data, it prefetches the next 256 byte block of data. The
padding ensures that the final block of the loader stream is pro-
grammed, and the error correction parity data is written.

• OTP (-b OTP)
When building for the OTP boot, no width selection is used.
OTP is always a 32-bit internal transfer. Use Intel hex-32 format
for the OTP boot mode and provide the offset to the start address
for the OTP page.

The OTP flash programmer requires the offset to the start address
for the OTP page when Intel hex loader format is selected. If using
the IDE, on the General loader page of the Tool Settings tab do
the following:

• Ensure Intel hex is selected for the Boot format (-f).

• Uncheck the Use default start kernel option. Enter the page
number multiplied by 16 in the Prom start address (-p)
field. For example, if you are building for OTP boot and
writing to page 0x40L, specify start address 0x400. See
“Using Studio Loader” on page 2-20 for information on the
loader property page.

On the loader command-line, the above example corresponds to
-b otp -f hex -p 0x400.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-7

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Processor Loader Guide

The loader utility post processes executable (.dxe) files and generates
loader (.ldr) files. A loader file can be formatted as binary, ASCII or Intel
hex style. An .ldr file contains the boot stream in a format expected by
the on-chip boot kernel.

Loader utility operations depend on the loader options, which control
how the utility processes executable files. You select features such as boot
modes, boot kernels, and output file formats via the options. The options
are specified on the loader utility’s command line or via the loader pages
of the Tools Settings tab in the IDE. The loader pages consist of multiple
panes. When you open the loader pages, the default loader settings for the
selected processor are set already.

 Option settings on the loader pages of the Tools Settings tab corre-
spond to switches displayed on the command line.

These sections describe how to produce a bootable (single and multiple)
or non-bootable loader file:

• “Using Blackfin Loader Command Line” on page 2-8

• “Using Studio Loader” on page 2-20

• “Using Second-Stage Loader” on page 2-22

• “Using ROM Splitter” on page 2-24

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-8 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Using Blackfin Loader Command Line
The ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin loader utility
uses the following command-line syntax.

For a single input file:

elfloader inputfile -proc processor [-switch …]

For multiple input files:

elfloader inputfile1 inputfile2 … -proc processor [-switch …]

where:

• inputfile—Name of the executable (.dxe) file to be processed
into a single boot-loadable or non-bootable file. An input file name
can include the drive and directory. For multiprocessor or
multi-input systems, specify multiple input .dxe files. Put the
input file names in the order in which you want the loader utility
to process the files. Enclose long file names within straight quotes,
“long file name”.

• -proc processor—Part number of the processor (for example,
-proc ADSP-BF542) for which the loadable file is built. Provide a
processor part number for every input .dxe if designing multipro-
cessor systems; see Table 2-1.

• -switch …—One or more optional switches to process. Switches
select operations and modes for the loader utility.

 Command-line switches may be placed on the command line in
any order, except the order of input files for a multi-input system.
For a multi-input system, the loader utility processes the input files
in the order presented on the command line.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-9

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-18.

File Extensions

Some loader switches take a file name as an optional parameter. Table 2-6
lists the expected file types, names, and extensions.

In some cases, the loader utility expects the overlay input files with the
.ovl file extension, shared memory input files with the .sm extension, or
both but does not expect those files to appear on a command line or on
the General loader property page. The loader utility finds these files in the
directory of the associated .dxe files, in the current working directory, or
in the directory specified in the .ldf file.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Loader
Command-Line Switches

A summary of the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin
loader command-line switches appears in Table 2-7. For a quick on-line
help on the switches available for a specific processor; for example an
ADSP-BF548 processor, use the following command line.

elfloader -proc ADSP-BF548 -help

Table 2-6. File Extensions

Extension File Description

.dxe Loader input files, boot kernel files, and initialization files

.ldr Loader output file

.knl Loader output files containing kernel code only when two output files are selected

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-10 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary

Switch Description

-b flash
-b prom
-b spimaster
-b spislave
-b TWImaster
-b TWIslave
-b UART
-b FIFO
-b OTP
-b NAND
-b PPI
-b HOSTDP

The -b switch directs the loader utility to prepare a boot-load-
able file for the specified boot mode. The default boot mode for
all processors described in this chapter is PROM/FLASH.

Other valid boot modes include:
• SPI (SPImaster) – for the ADSP-BF50x,

BF51x/52x/54x/54xM, and ADSP-BF59x processors
• SPIslave – for the ADSP-BF50x, BF51x/52x/54x/54xM, and

ADSP-BF59x processors
• UART – for the ADSP-BF50x, BF51x/52x/54x/54xM, and

ADSP-BF59x processors
• TWI (TWI Master) – for the ADSP-BF52x/54x/54xM

processors
• TWISlave – for the ADSP-BF52x/54x/54xM processors
• FIFO – for the ADSP-BF52x/54x/54xM processors
• OTP – for the ADSP-BF51x/52x/54x/54xM processors
• NAND – for the ADSP-BF52x/54x/54xM processors
• PPI – for the ADSP-BF50x and BF59x processors
• HOSTDP – for the ADSP-BF52x, BF544/7/8/9, and

BF544M/547M/548M/549M processors

See additional information on page 2-5 on the HOSTDP,
NAND, and OTP boot modes.

-CRC32 [polynomial] The -CRC32 (polynomial coefficient) switch directs the loader
utility to generate CRC32 checksum. Use a polynomial coeffi-
cient if specified; otherwise, use default 0xD8018001.
This switch inserts an initcode boot block that calls an initializa-
tion routine residing in the on-chip boot ROM. The argument
field of the boot block provides the used polynomial. The loader
utility calculates the CRC checksum for all subsequent data
blocks and stores the result in the block header’s argument field.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-11

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

-callback sym=symbol
[arg=const32]

The -callback switch takes a sym=symbol (no spaces) assign-
ment.
The switch directs the loader utility to isolate the named subrou-
tine into a separate block, set the block header’s BFLAG_CALLBACK
flag, and fill in the block header’s argument field with the speci-
fied constant 32-bit values. The switch is used for boot-time call-
backs.
The callback is guaranteed to be made prior to the target address
of sym=symbol.

The -callback cannot be used with -CRC32.

-dmawidth # The -dmawidth {8|16|32}switch specifies a DMA width (in
bits) for memory boot modes. It controls the DMACODE bit field
issued to the boot block headers by the -width switch.
For FIFO boot mode, 16 is the only DMA width. SPI, TWI, and
UART modes use 8-bit DMA.

-f hex
-f ASCII
-f binary
-f include

The -f {hex|ASCII|binary|include} switch specifies the for-
mat of a boot-loadable file: Intel hex-32, ASCII, binary, or
include. If the -f switch does not appear on the command line,
the default file format is hex for flash/PROM boot modes; and
ASCII for other boot modes.

-FillBlock FILL blocks are enabled by default for all boot modes, except
-b HOSTDP.

-h or -help The -help switch invokes the command-line help, outputs a list
of command-line switches to standard output, and exits. By
default, the -h switch alone provides help for the loader driver. To
obtain a help screen for your target Blackfin processor, add the
-proc switch to the command line. For example, type
elfloader -proc ADSP-BF542 -h to obtain help for the
ADSP-BF542 processor.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-12 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-init filename.dxe The -init filename.dxe switch directs the loader utility to
include the initialization code from the named executable file.
The loader utility places the code and data from the initialization
sections at the top of the boot stream. The boot kernel loads the
code and then calls it. It is the code’s responsibility to save/restore
state/registers and then perform an RTS back to the kernel. Init-
codes can be written in C language and are compliant to C calling
conventions.
The -init filename.dxe switch can be used multiple times to
specify the same file or different files a number of times. The
loader utility will place the code from the initialization files in the
order the files appear on the command line.
 For more information, see
“ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader
Files” on page 2-19.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-13

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

-initcall sym=sym_symbol
at=at_symbol [stride=DstAd-
drGap count=times]

While the -init filename.dxe switch integrates initialization
codes managed by a separate application program, the -initcall
switch controls calls to initialization subroutines that are part of
the same application.
The -initcall switch directs the loader utility to dispatch a
boot-time initialization call to the sym subroutine when the at
symbol is encountered and loaded. The stride and count
parameters are optional:
• If an optional stride= constant 32-bit value is specified, the

loader utility insets the target program call every stride= tar-
get address locations.

• If an optional count= constant 32-bit value is specified, the
loader utility insets the target program call count= times, every
stride= target address locations apart. A count value without
a stride value is an error.

For example, the following command line
-initcall sym=_initcode at=_othersymbol

stride=0x100 count=5
results in function _initcode being called five times the first
time, just prior to data in _othersymbol being booted. Thereaf-
ter, every 256 destination load addresses _initcode is called
again until a total of five calls have been made.

-initcall restrictions:
• -initcall target (sym_symbol) must be a routine entry

point, end with an RTS. It can be written in C language and
can rely on the presence of a stack. However, the routine must
not call any libraries, not rely on compiler run-time environ-
ment (such as heaps) – must be self-contained

• -initcall subroutine must be previously loaded and still in
memory

• -initcall subroutine cannot contain any forward references
to code not yet loaded

• sym_symbol address must be less than at_symbol address
For more information, see
“ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader
Files” on page 2-19.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-14 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-kb flash
-kb prom
-kb spimaster
-kb spislave
-kb UART
-kb TWImaster
-kb TWIslave
-kb FIFO
-kb nand
-kb PPI

The -kb switch specifies the boot mode for the initialization
code and/or boot kernel output file if two output loader files are
selected.

The -kb switch must be used in conjunction with the -o2 switch.

If the -kb switch is absent from the command line, the loader
utility generates the file for the init and/or boot kernel code in the
same boot mode as used to output the user application program.

Other valid boot modes include:
• PROM/FLASH – the default boot mode for all processors

described in this chapter
• SPI (SPImaster) – for the ADSP-BF50x,

BF51x/52x/54x/54xM, and ADSP-BF59x processors
• SPIslave – for the ADSP-BF50x, BF51x/52x/54x/54xM, and

ADSP-BF59x processors
• UART – for the ADSP-BF50x, BF51x/52x/54x/54xM, and

ADSP-BF59x processors
• TWI (TWI Master) – for the ADSP-BF52x/54x/54xM

processors
• TWISlave – for the ADSP-BF52x/54x/54xM processors
• FIFO – for the ADSP-BF52x/54x/54xM processors
• NAND – for the ADSP-BF52x/54x/54xM processors
• PPI – for the ADSP-BF50x and BF59x processors

-kf hex
-kf ascii
-kf binary
-kf include

The -kf {hex|ascii|binary|include} switch specifies the
output file format (hex, ASCII, binary, include) for the initializa-
tion and/or boot kernel code if two output files from the loader
utility are selected: one file for the init code and/or boot kernel
and one file for user application code.

The -kf switch must be used in conjunction with the -o2 switch.

If -kf is absent from the command line, the loader utility gener-
ates the file for the initialization and /or boot kernel code in the
same format as for the user application code.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-15

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

-kp # The -kp # switch specifies a hex flash/PROM start address for the
initialization and/or boot kernel code. A valid value is between
0x0 and 0xFFFFFFFF. The specified value is ignored when nei-
ther kernel nor initialization code is included in the loader file.

-kwidth # The -kwidth {8|16|32} switch specifies an external memory
device width (in bits) for the initialization code and/or the boot
kernel if two output files from the loader utility are selected.

If -kwidth is absent from the command line, the loader utility
generates the boot kernel file in the same width as the user appli-
cation program.

The -kWidth # switch must be used in conjunction with the -o2
switch.

-l userkernel.dxe The -l userkernel.dxe switch specifies the user boot kernel
file.

There is no default kernel for the
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processors.

-M The -M switch generates make dependencies only, no output file
is generated.

-maskaddr # The -maskaddr # switch masks all EPROM address bits above or
equal to #. For example, -maskaddr 29 (default) masks all the
bits above and including A29 (ANDed by 0x1FFF FFFF). For
example, 0x2000 0000 becomes 0x0000 0000. The valid #s are
integers 0 through 32, but based on your specific input file, the
value can be within a subset of [0, 32].

The -maskaddr # switch requires -romsplitter and affects the
ROM section address only.

-MaxBlockSize # The -MaxBlockSize # switch specifies the maximum block size
up to 0x7FFFFFF0. The value must be a multiple of 4.
The default maximum block size is 0xFFF0 or the value specified
by the -MaxBlockSize switch.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-16 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-MaxFillBlockSize # The -MaxFillBlockSize # switch specifies the maximum fill
block size up to 0xFFFFFF0. The value must be a multiple of two.
The default fill block size is 0xFFF0.

-MM The -MM switch generates make dependencies while producing the
output files.

-Mo filename The -Mo filename switch writes make dependencies to the
named file. Use the -Mo switch with either -M or -MM. If -Mo is
absent, the default is a <stdout> display.

-Mt target The -Mt target switch specifies the make dependencies target
output file. Use the -Mt switch with either -M or -MM. If -Mt is
not present, the default is the name of the input file with an .ldr
extension.

-NoFillBlock The -NoFillBlock switch directs the loader utility not to pro-
duce FILL blocks, zero, or repeated blocks.
The -NoFillBlock switch is set automatically in the HOSTDP
(-b HOSTDP) boot mode.

-NoInitCode The -NoInitCode switch directs the loader utility not to expect
an init code file. The loader utility may expect an init code file,
specified through the -init filename.dxe switch if the applica-
tion has an external memory section. The init code file should
contain the code to initialize registers for external memory initial-
ization.

-o filename The -o filename switch directs the loader utility to use the spec-
ified file as the name of the loader utility’s output file. If the
filename is absent, the default name is the root name of the
input file with an .ldr extension.

-o2 The -o2 switch directs the loader utility to produce two output
files: one file for code from the initialization block and/or boot
kernel and one file for user application code.
To have a different format, boot mode, or output width for the
application code output file, use the -kb -kf -kwidth switches
to specify the boot mode, the boot format, and the boot width for
the output kernel file, respectively.

Combine -o2 with -l filename and/or -init filename.dxe.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-17

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

-p # The -p # switch specifies a hex flash/PROM output start address
for the application code. A valid value is between 0x0 and
0xFFFFFFFF. A specified value must be greater than that specified
by -kp if both kernel and/or initialization and application code
are in the same output file (a single output file).

For boot mode -b OTP and -f hex format, use -p to supply the
offset to the start address for the OTP page (page # multiplied
by 16).

-proc processor The -proc processor switch specifies the target processor.
The processor can be one of the processors listed in Table 2-1.

-quickboot sec=section The -quickboot switch takes a sec=section (no spaces) assign-
ment.
The switch directs the loader utility to mark blocks within the
LDF-defined output section name with the BFLAG_QUICKBOOT
flag. The switch is used to mark blocks to skip on warm-boot
cycles.

-readall # The -readall # switch directs the loader utility to integrate
fixed-position ROM sections within the loader boot stream. The
switch calls the splitter utility as a transparent sub-process to the
loader utility. Memory segments declared with the TYPE(ROM)
command in the LDF file are processed by the splitter. Segments
with the TYPE(RAM) command emit to the boot stream.
The valid switch argument is an integer between 0 and 32, where
29 is the default. In the resulting loader (.ldr) file in Intel
hex-32 format, the ROM-based splitter data is merged with the
RAM-based loader stream.
The # argument is similar to the -maskaddr # switch, which des-
ignates the upper PROM address bit position for extended
address mapping. The splitter utility is required to provide the
-maskaddr # parameter to the loader utility to generate a
ROM-based splitter stream, but the required splitter parameter is
not available on the loader command line. The loader utility
solves this requirement by supporting the -readall # switch.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-18 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-romsplitter The -romsplitter switch creates a non-bootable image only.
This switch overwrites the -b switch and any other switch
bounded by the boot mode.
In the .ldf file, declare memory segments to be ‘split’ as type
ROM. The splitter skips RAM segments, resulting in an empty file if
all segments are declared as RAM. The -romsplitter switch sup-
ports Intel hex and ASCII formats.

-save [sec=section] The -save switch takes a sec=section (no spaces) assignment.
The switch directs the loader utility to mark blocks within the
LDF-defined section name with the BFLAG_SAVE flag. The switch
is used to mark blocks to archive for low-power or power-fail
cycles.

-si-revision #.#|none|any The -si-revision {#.#|none|any} switch provides a silicon
revision of the specified processor. The switch parameter repre-
sents a silicon revision of the processor specified by the -proc
processor switch. The parameter takes one of three forms:
• The #.# value indicates one or more decimal digits, followed

by a point, followed by one or two decimal digits. Examples of
revisions are: 0.0, 0.1, 0.2, 0.3.

• The none value indicates that CrossCore Embedded Studio
ignores silicon errata.

• The any value indicates that CrossCore Embedded Studio pro-
duces an output file that can be run at any silicon revision.

The switch generates either a warning about any potential anom-
alous conditions or an error if any anomalous conditions occur.

In the absence of the silicon revision switch, the loader utility
selects the default silicon revision it is aware of, if any.

-v The -v switch directs the loader utility to output verbose loader
messages and status information as the loader processes files.

-width # The -width {8|16|32} switch specifies an external memory
device width (in bits) to the loader utility in flash/PROM boot
mode (default is 8). For FIFO boot mode, the only valid width is
16. For SPI, TWI, and UART boot modes, the only valid width is
8.

Table 2-7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader
Command-Line Switch Summary (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-19

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader Files

An ADSP-BF50x/BF51x/BF52x/BF54x/BF59x loader (.ldr) file can con-
tain data of multiple application (.dxe) files. At boot time, the boot kernel
boots one application file exclusively, or one application file initiates the
boot of the next application file. In some cases, a single application can
consist of multiple .dxe files.

Initialization code is a subroutine called at boot time. Unlike the
ADSP-BF53x/BF56x processors, the
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processors support initcode
written in both assembly and C.

CrossCore Embedded Studio supports two methods of integrating multi-
ple initcode subroutines:

• The -init filename.dxe command-line switch expects a .dxe file.
The initcode is managed by a separate project. If the initcode is
written in C language, ensure that the .dxe file does not include
the CRT code because the boot kernel expects a subroutine.

The -init filename.dxe switch can be used multiple times to
specify the same file or different files a number of times. The loader
utility places the code from the initialization files in the order the
files appear on the command line. All initcodes are inserted after
the first regular .dxe file.

The loader utility equips every initcode with a dedicated first boot
block, which has the BFLAG_FIRST flag set. Initcodes, however, do
not feature a final block; they are terminated by a boot block,
tagged by the BFLAG_INIT flag. Therefore, in absence of the
BFLAG_FINAL flag, the boot kernel continues processing of the sub-
sequent .dxe data after finishing execution of the initcode.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-20 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

• The -initcall sym=sym_symbol command-line switch relies on
initcode subroutines that are part of the same project. Initcode sub-
routines invoked by the –initcall switch are not accompanied by
any first boot blocks with the BFLAG_FIRST flag set. In the loader
file, the initcode subroutines translate to boot blocks tagged by the
BFLAG_INIT flag.

When writing an initcode subroutine in C, ensure that the code does not
rely on libraries or heap support, which may not be available in memory
by the time the initcode executes. An initcode routine is expected to
return properly to the boot kernel by an RTS instruction and to meet
C-language calling conventions (see the C/C++ Compiler and Library
Manual for Blackfin Processors).

Refer to the initcode examples provided with the installation in
<install_path>\Blackfin\ldr\init_code.

Using Studio Loader
After selecting Loader Image as the project output type for your Blackfin
application on the Application Settings page in the C Project Wizard,
modify the default load settings.

The loader node of the Tool Settings tab consists of multiple pages. When
you open the loader pages (also called loader property pages), view the
default load settings for the selected processor. As an example, Figure 2-1
shows the ADSP-BF548 processor’s default load settings for PROM boot
mode. The dialog box options are equivalent to the command-line
switches. Refer to “ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin
Loader Command-Line Switches” on page 2-9 for more information
about the switches.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-21

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

Using the page controls, select or modify the load settings. Table 2-8
describes each load control and corresponding setting. When satisfied
with the settings, click Apply to complete the load setup.

 At the time of this release, some settings listed in Table 2-8 have
not been implemented.

Figure 2-1. Load: Tool Settings: General Page for ADSP-BF548 Processors

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-22 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Using Second-Stage Loader
If you use a second-stage loader, choose Kernel in the Tool Settings tab.
The Kernel page shows the default settings for a loader file that does not
include a second-stage loader.

Table 2-8. Default Load Page Settings for
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

Setting Description

Loader Selections for the loader utility. The pages are:
• General – default boot options
• Kernel – specification for a second-stage loader (on page 2-22)
• Splitter – specification for the no-boot mode (on page 2-24)
• Additional Options – specification for additional loader switches. You

can specify additional input files for a multi-input system. Type the
input file names with the paths if the files are not in the current work-
ing directory, separate any two file names with a space in order for the
loader utility to retrieve the files.
Note: The loader utility processes the input files in the order in which
the files appear on the command line, generated from the property
page (on page 2-24).

Output verbose loader
messages (-v)

When selected, generates status information as the loader utility pro-
cesses the files.

Boot mode (-b) Specifies Flash/Prom, SPI master, SPI slave, NAND, Uart, TWI, FIFO,
OTP, or HOSTDP as a boot source.

Boot format (-f) Specifies Intel hex, ASCII, Binary, or Include format.

Output width
(-width)

Specifies 8 or 16 bits.

Use default start

address

When selected, uses the default flash/PROM output start address in hex
format for the application code.

Start address (-p) Specifies a flash/PROM output start address in hex format for the appli-
cation code.

Initialization file Directs the loader utility to include the initialization file (init code).

Output file Names the loader utility’s output file.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-23

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

Unless you develop a second-stage loader and use it, most of the options
on the Kernel page are grayed out. Figure 2-2 shows a sample Kernel page
with options set for an ADSP-BF548 Blackfin processor.

To create a loader file which includes a second-stage loader:

1. If not already, set up the base loader options on the General page
of the Tool Settings tab (on page 2-20).

2. Select Kernel (in the Tool Settings tab) to set up the second-stage
loader options (Figure 2-2).

3. On the Kernel page, select Use boot kernel.

Figure 2-2. Load: Tool Setting: Kernel Page for ADSP-BF548 Processors

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-24 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

4. In Kernel file (-l), enter the name of the second-stage loader file
(.dxe).

5. To produce two output files, select the Output kernel in separate
file (-o2) check box. This option allows to boot the second-stage
loader with an initialization code (if any) from one source and the
application code from another source. You can specify the kernel
output file options, such as Boot mode (-kb), Boot format (-kf),
and Output width (-kwidth).

6. Select Change hex output kernel code start address and specify the
Start address (-kp) in hex format for the second-stage loader code.
This option allows you to place the second-stage loader file at a
specific location within the flash/PROM.

7. Click Apply to complete the loader utility setup.

Using ROM Splitter
Unlike the loader utility, the splitter utility does not format the applica-
tion data when transforming a .dxe file to an .ldr file. The splitter utility
emits raw data only. Whether data and/or instruction sections are pro-
cessed by the loader or by the splitter utility depends upon the LDF’s
TYPE() command. Sections declared with TYPE(RAM) are consumed by the
loader utility, and sections declared by TYPE(ROM) are consumed by the
splitter.

Figure 2-3 shows a sample Splitter page of the Tool Settings tab. If the
Enable ROM splitter (-romsplitter) box is unchecked, only TYPE(RAM)
segments are processed and all TYPE(ROM) sections are ignored by the
loader utility. If the box is checked, TYPE(RAM) sections are ignored, and
TYPE(ROM) segments are processed by the splitter utility.

The Address mask (-maskaddr) field masks all EPROM address bits above
or equal to the number specified. For example, Address mask
(-maskaddr) = 29 (default) masks all bits above and including A29 (ANDed

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 2-25

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Blackfin Processors

by 0x1FFF FFFF). Thus, 0x2000 0000 becomes 0x0000 0000. The valid
numbers are integers 0 through 32; based on your specific input file, the
value can be within a subset of [0, 32].

Figure 2-3. Load: Tool Settings: Splitter Page for ADSP-BF548 Processors

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

2-26 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-1

3 LOADER/SPLITTER FOR
ADSP-BF53X/BF561
BLACKFIN PROCESSORS

This chapter explains how the loader/splitter utility (elfloader.exe) is
used to convert executable (.dxe) files into boot-loadable or non-bootable
files for the ADSP-BF53x and ADSP-BF561 Blackfin processors.

Refer to “Introduction” on page 1-1 for the loader utility overview.
Loader operations specific to the ADSP-BF53x and ADSP-BF561 Black-
fin processors are detailed in the following sections.

• “ADSP-BF53x/BF561 Processor Booting” on page 3-2
Provides general information on various boot modes.

• “ADSP-BF53x/BF561 Processor Loader Guide” on page 3-40
Provides reference information on the loader utility’s com-
mand-line syntax and switches.

ADSP-BF53x/BF561 Processor Booting

3-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-BF53x/BF561 Processor Booting
At power-up, after a reset, the processor transitions into a boot mode
sequence configured by the BMODE pins. The BMODE pins are dedicated
mode-control pins; that is, no other functions are performed by these
pins. The pins can be read through bits in the system reset configuration
register SYSCR.

An ADSP-BF53x or an ADSP-BF561 Blackfin processor can be booted
from an 8- or 16-bit flash/PROM memory or from an 8-,16-, or 24-bit
addressable SPI memory. The ADSP-BF561 processors does not support
24-bit addressable SPI memory boot. There is also a no-boot option
(bypass mode) in which execution occurs from a 16-bit external memory.

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Booting description is on page 3-3

• ADSP-BF561 Processor Booting description is on page 3-19

Software developers who use the loader utility should be familiar with the
following operations.

• “ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE)
Management” on page 3-30

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor
Compression Support” on page 3-33

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-3

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Booting

Upon reset, an ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 processor jumps to the on-chip boot ROM or jumps to
16-bit external memory for execution (if BMODE = 0) located at
0x2000 0000. The
ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Pro-
cessor On-Chip Boot ROM can be found on page 3-7.

Table 3-1 summarizes the boot modes and execution start addresses for
the ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF538, and
ADSP-BF539 processors.

Table 3-2 summarizes the boot modes for the
ADSP-BF534/BF536/BF537 processors, which in addition to all of the
ADSP-BF531/BF532/BF533 processor boot modes, also can boot from a
TWI serial device, a TWI host, and a UART host.

• Execute from 16-bit external memory – execution starts from
address 0x2000 0000 with 16-bit packing. The boot ROM is
bypassed in this mode. All configuration settings are set for the
slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup).

• Boot from 8-bit or 16-bit external flash memory – the 8-bit or
16-bit flash boot routine located in boot ROM memory space is set
up using asynchronous memory bank 0. All configuration settings
are set for the slowest device possible (3-cycle hold time; 15-cycle
R/W access times; 4-cycle setup). The boot ROM evaluates the
first byte of the boot stream at address 0x2000 0000. If it is 0x40,
8-bit boot is performed. A 0x60 byte assumes a 16-bit memory
device and performs 8-bit DMA. A 0x20 byte also assumes 16-bit
memory but performs 16-bit DMA.

ADSP-BF53x/BF561 Processor Booting

3-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

• Boot from serial SPI memory (EEPROM or flash) – 8-, 16-, or
24-bit addressable devices are supported as well as AT45DB041,
AT45DB081, AT45DB161, AT45DB321, AT45DB642, and
AT45DB1282 DataFlash® devices from Atmel. The SPI uses the
PF10/SPI SSEL1 output pin to select a single SPI EEPROM/flash
device, submits a read command and successive address bytes
(0x00) until a valid 8-, 16-, or 24-bit, or Atmel addressable device
is detected, and begins clocking data into the processor.

• Boot from SPI host device – the Blackfin processor operates in SPI
slave mode and is configured to receive the bytes of the .ldr file
from an SPI host (master) agent. To hold off the host device from
transmitting while the boot ROM is busy, the Blackfin processor
asserts a GPIO pin, called host wait (HWAIT), to signal the host device
not to send any more bytes until the flag is deasserted. The flag is
chosen by the user and this information is transferred to the Black-
fin processor via bits 10:5 of the FLAG header.

• Boot from UART – using an autobaud handshake sequence, a
boot-stream-formatted program is downloaded by the host. The
host agent selects a baud rate within the UART’s clocking capabili-
ties. When performing the autobaud, the UART expects an “@”
(boot stream) character (8 bits data, 1 start bit, 1 stop bit, no parity
bit) on the RXD pin to determine the bit rate. It then replies with an
acknowledgement that is composed of 4 bytes: 0xBF, the value of
UART_DLL, the value of UART_DLH, and 0x00. The host can then
download the boot stream. When the processor needs to hold off
the host, it deasserts CTS. Therefore, the host must monitor this
signal.

• Boot from serial TWI memory (EEPROM/flash) – the Blackfin
processor operates in master mode and selects the TWI slave with
the unique ID 0xA0. It submits successive read commands to the
memory device starting at two byte internal address 0x0000 and
begins clocking data into the processor. The TWI memory device

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-5

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

should comply with Philips I2C Bus Specification version 2.1 and
have the capability to auto-increment its internal address counter
such that the contents of the memory device can be read
sequentially.

• Boot from TWI host – the TWI host agent selects the slave with
the unique ID 0x5F. The processor replies with an acknowledge-
ment, and the host can then download the boot stream. The TWI
host agent should comply with Philips I2C Bus Specification ver-
sion 2.1. An I2C multiplexer can be used to select one processor at
a time when booting multiple processors from a single TWI.

To augment the boot modes, a secondary software loader can be added to
provide additional booting mechanisms. The secondary loader could pro-
vide the capability to boot from flash, variable baud rate, and other
sources.

Table 3-1. Boot Mode Selections for ADSP-BF531/BF532/
BF533/BF538/BF539 Processors

Boot Source BMODE[1:0] Execution Start Address

ADSP-BF531
ADSP-BF532

ADSP-BF533
ADSP-BF538
ADSP-BF539

Executes from a 16-bit external ASYNC
bank 0 memory (no-boot mode); see
on page 3-15

00 0x2000 0000 0x2000 0000

8- or 16-bit flash/PROM 01 0xFFA0 8000 0xFFA0 0000

SPI host in SPI slave mode 10 0xFFA0 8000 0xFFA0 0000

8-, 16-, or 24-bit addressable SPI memory in
SPI master boot mode with support for Atmel
AT45DB041B, AT45DB081B, and
AT45DB161B DataFlash devices

11 0xFFA0 8000 0xFFA0 0000

ADSP-BF53x/BF561 Processor Booting

3-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The following loader topics also are discussed in this chapter.

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processor Boot Streams” on page 3-8

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processor Memory Ranges” on page 3-18

 Refer to the processor’s data sheet and hardware reference manual
for more information on system configuration, peripherals, regis-
ters, and operating modes:

• Blackfin processor data sheets can be found at
http://www.analog.com/en/embedded-processing-dsp/black-

fin/processors/data-sheets/resources/index.html.

• Blackfin processor manuals can be found at
http://www.analog.com/en/embedded-processing-dsp/black-

fin/processors/manuals/resources/index.html.

Table 3-2. ADSP-BF534/BF536/BF537 Processor Boot Modes

Boot Source BMODE[2:0]

Executes from an external 16-bit memory connected to
ASYNC bank 0; (no-boot mode or bypass on-chip boot
ROM); see on page 3-15

000

8- or 16-bit flash/PROM 001

Reserved 010

8-, 16-, or 24-bit addressable SPI memory in SPI master mode
with support for Atmel AT45DB041B, AT45DB081B, and
AT45DB161B DataFlash devices

011

SPI host in SPI slave mode 100

TWI serial device 101

TWI host 110

UART host 111

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-7

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539
Processor On-Chip Boot ROM

The on-chip boot ROM for the ADSP-BF531/BF532/BF533/BF534/
BF536/BF537/BF538/BF539 processors does the following.

1. Sets up supervisor mode by exiting the RESET interrupt service
routine and jumping into the lowest priority interrupt (IVG15).

Note that the on-chip boot ROM of the ADSP-BF534/BF536 and
ADSP-BF537 processors executes at the Reset priority level, does
not degrade to the lowest priority interrupt.

2. Checks whether the RESET was a software reset and, if so, whether
to skip the entire sequence and jump to the start of L1 memory
(0xFFA0 0000 for the ADSP-BF533/BF534/BF536/BF537/BF538
and ADSP-BF539 processors; 0xFFA0 8000 for the
ADSP-BF531/BF532 processors) for execution. The on-chip boot
ROM does this by checking the NOBOOT bit (bit 4) of the system
reset configuration register (SYSCR). If bit 4 is not set, the on-chip
boot ROM performs the full boot sequence. If bit 4 is set, the
on-chip boot ROM bypasses the full boot sequence and jumps to
the start of L1 memory.

3. The NOBOOT bit, if bit 4 of the SYSCR register is not set, performs the
full boot sequence (Figure 3-1).

The boot ROM has the capability to parse address and count information
for each bootable block.

The loader utility converts the application code (.dxe) into the loadable
file by parsing the code and creating a file that consists of different blocks.
Each block is encapsulated within a 10-byte header, which is illustrated in
Figure 3-1 and detailed in the following section. The headers, in turn, are
read and parsed by the on-chip boot ROM during booting.

ADSP-BF53x/BF561 Processor Booting

3-8 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The 10-byte header provides all information the on-chip boot ROM
requires—where to boot the block to, how many bytes to boot in, and
what to do with the block.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processor Boot Streams

The following sections describe the boot stream, header, and flag frame-
work for the ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF534,
ADSP-BF536, ADSP-BF537, ADSP-BF538, and ADSP-BF539
processors.

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Block Headers and Flags” on page 3-9

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Initialization Blocks” on page 3-12

Figure 3-1. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/B
F539 Processors: Booting Sequence

ADSP-BF531/32/33/34/36/37/39/39 Processor

10-Byte Header for Block 1

App.
Code/
Data

Block 1

PROM/Flash or SPI Device

L1 Memory
Block 1

SDRAM

Block 2

0xEF00 0000

Block 3
10-Byte Header for Block 2

Block 2

10-Byte Header for Block 3

Block 3

Block n

........

10-Byte Header for Block n

........

On-Chip
Boot ROM

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-9

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Block Headers and Flags

As the loader utility converts the code from an input .dxe file into blocks
comprising the output loader file, each block receives a 10-byte header
(Figure 3-2), followed by a block body (if a non-zero block) or no-block
body (if a zero block). A description of the header structure can be found
in Table 3-3.

Figure 3-2. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processors: Boot Stream Structure

4-BYTE ADDRESS

4-BYTE COUNT

2-BYTE FLAG

10-BYTE HEADER

SEE FLAG INFORMATION

.DXE 1 BYTE COUNT

HEADER OF .DXE 1

BLOCK 1 HEADER

BLOCK 2 HEADER

BLOCK 2 BODY

......

......

......

......

.DXE 2 BYTE COUNT

BLOCK 1 BODY
BOOT STREAM

OF THE

1st EXECUTABLE
(.DXE 1)

HEADER OF .DXE 2

BOOT STREAM
OF THE

2nd EXECUTABLE
(.DXE 2)

ADSP-BF53x/BF561 Processor Booting

3-10 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Refer to Table 3-4 and Figure 3-3 for the flag’s bit descriptions.

Table 3-3. ADSP-BF531/BF532/BF533 Block Header Structure

Bit Field Description

Address 4-byte address at which the block resides in memory

Count 4-byte number of bytes to boot

Flag 2-byte flag containing information about the block; the following text
describes the flag structure

Figure 3-3. Flag Bit Assignments for 2-Byte Block Flag Word

Table 3-4. Flag Structure

Bit Field Description

Zero-fill block Indicates that the block is for a buffer filled with zeros. The body of a zero block
is not included within the loader file. When the loader utility parses through
the .dxe file and encounters a large buffer with zeros, it creates a zero-fill block
to reduce the .ldr file size and boot time. If this bit is set, there is no block
body in the block.

Processor type Indicates the processor, either the ADSP-BF531/BF532/BF538 or the
ADSP-BF533/BF534/BF536/BF537/BF539. Once booting is complete, the
on-chip boot ROM jumps to 0xFFA0 0000 on the
ADSP-BF533/BF536/BF537/BF538/BF539 processor and to 0xFFA0 8000 on
the ADSP-BF531/BF532/ processors.

Zero-Fill:

 1 = Zero-Fill Block

 0 = No Zero-Fill Block

Processor Type:

 1 = ADSP-BF533/534/536/537/538/539

 0 = ADSP-BF531/BF532

Initialization Block:

 1 = Init Block, 0 = No Init Block

Ignore Block:

 1 = Ignore Block

 0 = Do Not Ignore Block

Last Block:

 1 = Last Block

 0 = Not Last Block

Compressed Block:

 1 = Compressed Block

 0 = Not Compressed Block

Port Number:

 00 = Disabled, 01 =Port F

 10 = Port G, 11 = Port H

Programmable Flag:

 0 = Default, Selectable from 0–15

Bits 14, 12–11, 2 are reserved for future use

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-11

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Note that the ADSP-BF534/BF536/BF537 processor can have a special
last block if the boot mode is two-wire interface (TWI). The loader utility
saves all the data from 0xFF90 3F00 to 0xFF90 3FFF and makes the last
block with the data. The loader utility, however, creates a regular last
block if no data is in that memory range. The space of 0xFF90 3F00 to
0xFF90 3FFF is saved for the boot ROM to use as a data buffer during a
boot process.

Initialization
block

Indicates that the block is to be executed before booting. The initialization
block indicator allows the on-chip boot ROM to execute a number of instruc-
tions before booting the actual application code. When the on-chip boot ROM
detects an init block, it boots the block into internal memory and makes a CALL
to it (initialization code must have an RTS at the end).
This option allows the user to run initialization code (such as SDRAM initial-
ization) before the full boot sequence proceeds. Figure 3-4 and Figure 3-5 illus-
trate the process. Initialization code can be included within the .ldr file by
using the -init switch (see “-init filename.dxe” on page 3-45).
See “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Ini-
tialization Blocks” on page 3-12 for more information.

Ignore block Indicates that the block is not to be booted into memory; skips the block and
moves on to the next one. Currently is not implemented for application code.

 This flag is equivalent to the FIRST flag in boot streams on the
ADSP-BF51x/BF52x/BF54x processors. Because the IGNORE flag
is used for other purposes on the ADSP-BF51x/BF52x/BF54x
processors, the FIRST flag is invented to indicate the first header.

Compressed
block

Indicates that the block contains compressed data. The compressed block can
include a number of blocks compressed together to form a single compressed
block.

Last block Indicates that the block is the last block to be booted into memory. After the
last block, the processor jumps to the start of L1 memory for application code
execution. When it jumps to L1 memory for code execution, the processor is
still in supervisor mode and in the lowest priority interrupt (IVG15).

Table 3-4. Flag Structure (Cont’d)

Bit Field Description

ADSP-BF53x/BF561 Processor Booting

3-12 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Initialization Blocks

The -init filename option directs the loader utility to produce the ini-
tialization blocks from the initialization section’s code in the named file.
The initialization blocks are placed at the top of a loader file. They are
executed before the rest of the code in the loader file booted into the
memory (see Figure 3-4).

Following execution of the initialization blocks, the boot process
continues with the rest of data blocks until it encounters a final block (see
Figure 3-5). The initialization code example follows in Listing 3-1.

Figure 3-4. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processors: Initialization Block Execution

INIT BLOCK HEADER

APP.
CODE/
DATA

INIT BLOCKS

L1 BLOCK HEADER

L1 BLOCK

SDRAM BLOCK HEADER

BLOCK N

........

BLOCK N 10-BYTE HEADER

SDRAM BLOCK

ADSP-BF531/32/33/34/36/37/39/39 Processor PROM/FLASH OR SPI
DEVICE

L1 Memory
Init Blocks

SDRAM

0xEF00 0000

On-Chip
Boot ROM

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-13

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Listing 3-1. Initialization Block Code Example

/* This file contains 3 sections: */

/* 1) A Pre-Init Section–this section saves off all the

processor registers onto the stack.

2) An Init Code Section–this section is the initialization

code which can be modified by the customer

As an example, an SDRAM initialization code is supplied.

The example setups the SDRAM controller as required by

certain SDRAM types. Different SDRAMs may require

different initialization procedure or values.

3) A Post-Init Section–this section restores all the register

from the stack. Customers should not modify the Pre-Init
and Post-Init Sections. The Init Code Section can be

modified for a particular application.*/

Figure 3-5. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processors: Booting Application Code

A

L1 Memory
Init Block

SDRAM

0xEF00 0000

On-Ch p
Boot ROM

i

L1 Block

SDRAM Block

INIT BLOCK HEADER

APP.
CODE/
DATA

INIT BLOCKS

L1 BLOCK HEADER

L1 BLOCK

SDRAM BLOCK HEADER

BLOCK N

........

BLOCK N 10-BYTE HEADER

SDRAM BLOCK

PROM/FLASH OR SPI
DEVICE

ADSP-BF531/32/33/34/36/37/39/39 Processor

ADSP-BF53x/BF561 Processor Booting

3-14 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

#include <defBF532.h>

.SECTION program;

/**********************Pre-Init Section************************/

[--SP] = ASTAT; /* Stack Pointer (SP) is set to the end of */

[--SP] = RETS; /* scratchpad memory (0xFFB00FFC) */

[--SP] = (r7:0); /* by the on-chip boot ROM */

[--SP] = (p5:0);

[--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;

[--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;

[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;

[--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

/*******************Init Code Section**************************/

/*******Please insert Initialization code in this section******/

/***********************SDRAM Setup****************************/

Setup_SDRAM:

P0.L = LO(EBIU_SDRRC);

/* SDRAM Refresh Rate Control Register */

P0.H = HI(EBIU_SDRRC);

R0 = 0x074A(Z);

W[P0] = R0;

SSYNC;

P0.L = LO(EBIU_SDBCTL);

/* SDRAM Memory Bank Control Register */

P0.H = HI(EBIU_SDBCTL);

R0 = 0x0001(Z);

W[P0] = R0;

SSYNC;

P0.L = LO(EBIU_SDGCTL);

/* SDRAM Memory Global Control Register */

P0.H = HI(EBIU_SDGCTL);

R0.L = 0x998D;

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-15

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

R0.H = 0x0091;

[P0] = R0;

SSYNC;

/*********************Post-Init Section************************/

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];

M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];

B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];

I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];

(p5:0) = [SP++];

(r7:0) = [SP++];

RETS = [SP++];

ASTAT = [SP++];

/**/

RTS;

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539
Processor No-Boot Mode

The hardware settings of BMODE = 00 for the ADSP-BF531, ADSP-BF532,
and ADSP-BF533 processors select the no-boot option. In this mode of
operation, the on-chip boot kernel is bypassed after reset, and the proces-
sor starts fetching and executing instructions from address 0x2000 0000 in
the asynchronous memory bank 0. The processor assumes 16-bit memory
with valid instructions at that location.

To create a proper .ldr file that can be burned into either a parallel flash
or EPROM device, you must modify the standard LDF file in order for
the reset vector to be located accordingly. The following code fragments
(Listing 3-2 and Listing 3-3) illustrate the required modifications in case
of an ADSP-BF533 processor.

ADSP-BF53x/BF561 Processor Booting

3-16 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Listing 3-2. Section Assignment (LDF File) Example

MEMORY

{

/* Off-chip Instruction ROM in Async Bank 0 */

MEM_PROGRAM_ROM { TYPE(ROM) START(0x20000000) END(0x2009FFFF)

WIDTH(8) }

/* Off-chip constant data in Async Bank 0 */

MEM_DATA_ROM { TYPE(ROM) START(0x200A0000) END(0x200FFFFF)

WIDTH(8) }

/* On-chip SRAM data, is not booted automatically */

MEM_DATA_RAM { TYPE(RAM) START(0xFF903000) END(0xFF907FFF)

WIDTH(8) }

Listing 3-3. ROM Segment Definitions (LDF File) Example

PROCESSOR p0

{

OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS

{

program_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_code))

} >MEM_PROGRAM_ROM

data_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_data))

} >MEM_DATA_ROM

data_sram

{

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-17

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(ram_data))

} >MEM_DATA_RAM

With the LDF file modified this way, the source files can now take advan-
tage of the newly-introduced sections, as in Listing 3-4.

Listing 3-4. Section Handling (Source File) Example

.SECTION rom_code;

_reset_vector: l0 = 0;

1 = 0;

l2 = 0;

l3 = 0;

/* continue with setup and application code */

/* . . . */

.SECTION rom_data;

.VAR myconst x = 0xdeadbeef;

/* . . . */

.SECTION ram_data;

.VAR myvar y; /* note that y cannot be initialized automatically

*/

ADSP-BF53x/BF561 Processor Booting

3-18 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processor Memory Ranges

The on-chip boot ROM on the
ADSP-BF531/BF532/BF533/BF534/BF536/ BF537/BF538/BF539
Blackfin processors allows booting to the following memory ranges.

• L1 memory

• ADSP-BF531 processor:

 Data bank A SRAM (0xFF80 4000–0xFF80 7FFF)
 Instruction SRAM (0xFFA0 8000–0xFFA0 BFFF)

• ADSP-BF532 processor:

Data bank A SRAM (0xFF80 4000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 4000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 8000–0xFFA1 3FFF)

• ADSP-BF533 processor:

Data bank A SRAM (0xFF80 0000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• ADSP-BF534 processor:

Data bank A SRAM (0xFF80 0000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 0000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• ADSP-BF536 processor:

Data bank A SRAM (0xFF80 4000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 4000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-19

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

• ADSP-BF537 processor:

Data bank A SRAM (0xFF80 0000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 0000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• ADSP-BF538 processor:

Data bank A SRAM (0xFF80 4000–0xFF80 7FFF)
Data bank B SRAM (0xFF90 4000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 8000–0xFFA1 3FFF)

• ADSP-BF539 processor:

Data bank A SRAM (0xFF80 0000–0xFF80 3FFF)
Data bank B SRAM (0xFF90 2000–0xFF90 7FFF)
Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• SDRAM memory:

• Bank 0 (0x0000 0000–0x07FF FFFF)

 Booting to scratchpad memory (0xFFB0 0000) is not supported.

 SDRAM must be initialized by user code before any instructions or
data are loaded into it.

ADSP-BF561 Processor Booting
The booting sequence for the ADSP-BF561 dual-core processors is similar
to the ADSP-BF531/BF532/BF533 processor boot sequence described
on page 3-7. Differences occur because the ADSP-BF561 processor has
two cores: core A and core B. After reset, core B remains idle, but core A
executes the on-chip boot ROM located at address 0xEF00 0000.

ADSP-BF53x/BF561 Processor Booting

3-20 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The ADSP-BF561 Processor On-Chip Boot ROM details can be found
on page 3-21.

Table 3-5 summarizes the boot modes and execution start addresses for
the ADSP-BF561 processors.

• Execute from 16-bit external memory – execution starts from
address 0x2000 0000 with 16-bit packing. The boot ROM is
bypassed in this mode. All configuration settings are set for the
slowest device possible (3-cycle hold time, 15-cycle R/W access
times, 4-cycle setup).

• Boot from 8-bit/16-bit external flash memory – the 8-bit/16-bit
flash boot routine located in boot ROM memory space is set up
using asynchronous memory bank 0. All configuration settings are
set for the slowest device possible (3-cycle hold time; 15-cycle R/W
access times; 4-cycle setup).

• Boot from SPI host – the ADSP-BF561 processor is configured as
an SPI slave device and a host is used to boot the processor. The
host drives the SPI clock and is therefore responsible for the tim-
ing. The baud rate should be equal to or less than one fourth of the
ADSP-BF561 system clock (SCLK).

Table 3-5. ADSP-BF561 Processor Boot Mode Selections

Boot Source BMODE[1:0]

16-bit external memory (bypass boot ROM) 00

8- or 16-bit flash 01

SPI host 10

SPI serial EEPROM (16-bit address range) 11

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-21

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

• Boot from SPI serial EEPROM (16-bit addressable) – the SPI uses
the PF2 output pin to select a single SPI EPROM device, submits a
read command at address 0x0000, and begins clocking data into the
beginning of L1 instruction memory. A 16-bit/24-bit addressable
SPI-compatible EPROM must be used.

The following loader topics also are discussed in this chapter.

• “ADSP-BF561 Processor Boot Streams” on page 3-22

• “ADSP-BF561 Processor Initialization Blocks” on page 3-27

• “ADSP-BF561 Dual-Core Application Management” on page 3-28

• “ADSP-BF561 Processor Memory Ranges” on page 3-29

 Refer to the ADSP-BF561 Embedded Symmetric Multiprocessor data
sheet and the ADSP-BF561 Blackfin Processor Hardware Reference
manual for information about the processor’s operating modes and
states, including background information on system reset and
booting.

ADSP-BF561 Processor On-Chip Boot ROM

The boot ROM loads an application program from an external memory
device and starts executing that program by jumping to the start of
core A’s L1 instruction SRAM, at address 0xFFA0 0000.

Similar to the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561
boot ROM uses the interrupt vectors to stay in supervisor mode.

The boot ROM code transitions from the RESET interrupt service routine
into the lowest priority user interrupt service routine (Int 15) and
remains in the interrupt service routine. The boot ROM then checks
whether it has been invoked by a software reset by examining bit 4 of the
system reset configuration register (SYSCR).

ADSP-BF53x/BF561 Processor Booting

3-22 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

If bit 4 is not set, the boot ROM presumes that a hard reset has occurred
and performs the full boot sequence. If bit 4 is set, the boot ROM under-
stands that the user code has invoked a software reset and restarts the user
program by jumping to the beginning of core A’s L1 memory
(0xFFA0 0000), bypassing the entire boot sequence.

When developing an ADSP-BF561 processor application, you start with
compiling and linking your application code into an executable (.dxe)
file. The debugger loads the .dxe file into the processor’s memory and
executes it. With two cores, two .dxe files can be loaded at once. In the
real-time environment, there is no debugger which allows the boot ROM
to load the executables into memory.

ADSP-BF561 Processor Boot Streams

The loader utility converts the .dxe file into a boot stream (.ldr) file by
parsing the executable and creating blocks. Each block is encapsulated
within a 10-byte header. The .ldr file is burned into the external memory
device (flash memory, PROM, or EEPROM). The boot ROM reads the
external memory device, parsing the headers and copying the blocks to the
addresses where they reside during program execution. After all the blocks
are loaded, the boot ROM jumps to address 0xFFA0 0000 to execute the
core A program.

 When code is run on both cores, the core A program is responsible
for releasing core B from the idle state by clearing bit 5 in core A’s
system configuration register. Then core B begins execution at
address 0xFF60 0000.

Multiple .dxe files are often combined into a single boot stream
(see “ADSP-BF561 Dual-Core Application Management” on page 3-28
and “ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE)
Management” on page 3-30).

Unlike the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561
boot stream begins with a 4-byte global header, which contains

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-23

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

information about the external memory device. A bit-by-bit description of
the global header is presented in Table 3-6. The global header also con-
tains a signature in the upper 4 bits that prevents the boot ROM from
reading in a boot stream from a blank device.

Following the global header is a .dxe count block, which contains a 32-bit
byte count for the first .dxe file in the boot stream. Though this block
contains only a byte count, it is encapsulated by a 10-byte block header,
just like the other blocks.

The 10-byte header instructs the boot ROM where, in memory, to place
each block, how many bytes to copy, and whether the block needs any
special processing. The block header structure is the same as that of the
ADSP-BF531/BF532/BF533 processors (described in
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Block Headers and Flags” on page 3-9). Each header contains a 4-byte
start address for the data block, a 4-byte count for the data block, and a
2-byte flag word, indicating whether the data block is a “zero-fill” block or
a “final block” (the last block in the boot stream).

For the .dxe count block, the address field is irrelevant since the block is
not going to be copied to memory. The “ignore bit” is set in the flag word
of this header, so the boot loader utility does not try to load the .dxe

Table 3-6. ADSP-BF561 Global Header Structure

Bit Field Description

0 1 = 16-bit flash, 0 = 8-bit flash; default is 0

1–4 Number of wait states; default is 15

5 Unused bit

6–7 Number of hold time cycles for flash; default is 3

8–10 Baud rate for SPI boot: 00 = 500k, 01 = 1M, 10 = 2M

11–27 Reserved for future use

28–31 Signature that indicates valid boot stream

ADSP-BF53x/BF561 Processor Booting

3-24 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

count but skips the count. For more details, see
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Block Headers and Flags” on page 3-9.

Following the .dxe count block are the rest of the blocks of the first .dxe.

A bit-by-bit description of the boot steam is presented in Table 3-7.
When learning about the ADSP-BF561 boot stream structure, keep in
mind that the count byte for each .dxe is, itself, a block encapsulated by a
block header.

Table 3-7. ADSP-BF561 Processor Boot Stream Structure

Bit Field Description

0–7 LSB of the global header

32
-B

it
 G

lo
ba

l
H

ea
de

r

8–15 8–15 of the global header

16–23 16–23 of the global header

24–31 MSB of the global header

32–39 LSB of the address field of 1st .dxe count block (no care)

10
-B

yt
e

.d
xe

1
H

ea
de

r

40–47 8–15 of the address field of 1st .dxe count block (no care)

48–55 16–23 of the address field of 1st .dxe count block (no care)

56–63 MSB of the address field of 1st .dxe count block (no care)

64–71 LSB (4) of the byte count field of 1st .dxe count block

72–79 8–15 (0) of the byte count field of 1st .dxe count block

80–87 16–23 (0) of the byte count field of 1st .dxe count block

88–95 MSB (0) of the byte count field of 1st .dxe count block

96–103 LSB of the flag word of 1st .dxe count block – ignore bit set

104–111 MSB of the flag word of 1st .dxe count block

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-25

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

112–119 LSB of the first 1st .dxe byte count

32
-B

it
 B

lo
ck

B
yt

e
C

ou
nt120–127 8–15 of the first 1st .dxe byte count

128–135 16–23 of the first 1st .dxe byte count

136–143 24–31 of the first 1st .dxe byte count

1-
0-

B
yt

e
B

lo
ck

 H
ea

de
r

144–151 LSB of the address field of the 1st data block in 1st .dxe

.d
xe

1
B

lo
ck

 D
at

a

152–159 8–15 of the address field of the 1st data block in 1st .dxe

160–167 16–23 of the address field of the 1st data block in 1st .dxe

168–175 MSB of the address field of the 1st data block in 1st .dxe

176–183 LSB of the byte count of the 1st data block in 1st .dxe

184–191 8–15 of the byte count of the 1st data block in 1st .dxe

192–199 16–23 of the byte count of the 1st data block in 1st .dxe

200–207 MSB of the byte count of the 1st data block in 1st .dxe

208–215 LSB of the flag word of the 1st block in 1st .dxe

216–223 MSB of the flag word of the 1st block in 1st .dxe

B
lo

ck
 D

at
a

224–231 Byte 3 of the 1st block of 1st .dxe

.d
xe

1
B

lo
ck

 D
at

a
(C

on
t’d

)

232–239 Byte 2 of the 1st block of 1st .dxe

240–247 Byte 1 of the 1st block of 1st .dxe

248–255 Byte 0 of the 1st block of 1st .dxe

256–263 Byte 7 of the 1st block of 1st .dxe

… And so on …

ADSP-BF53x/BF561 Processor Booting

3-26 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

10
-B

yt
e

B
lo

ck

H
ea

de
r

… LSB of the address field of the nth data block in 1st .dxe

.d
xe

1
B

lo
ck

 D
at

a
(C

on
t’d

)

… 8–15 of the address field of the nth data block in 1st .dxe

… 16–23 of the address field of the nth data block in 1st .dxe

… MSB of the address field of the nth data block in 1st .dxe

… LSB of the byte count of the nth data block in 1st .dxe

… 8–15 of the byte count of the nth data block in 1st .dxe

… 16–23 of the byte count of the nth data block in 1st .dxe

… MSB of the byte count of the nth data block in 1st .dxe

… LSB of the flag word of the nth block in 1st .dxe

… MSB of the flag word of the nth block in 1st .dxe

B
lo

ck
 D

at
a

… And so on …

.d
xe

1
B

lo
ck

 D
at

a
(C

on
t’d

)

… Byte 1 of the nth block of 1st .dxe

… Byte 0 of the nth block of 1st .dxe

… LSB of the address field of 2nd .dxe count block (no care)

10
-B

yt
e

.d
xe

2
H

ea
de

r… 8–15 of the address field of 2nd .dxe count block (no care)

… And so on…

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-27

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF561 Processor Initialization Blocks

The initialization block or a second-stage loader utility must be used to
initialize the SDRAM memory of the ADSP-BF561 processor before any
instructions or data are loaded into it.

The initialization blocks are identified by a bit in the flag word of the
10-byte block header. When the boot ROM encounters the initialization
blocks in the boot stream, it loads the blocks and executes them
immediately. The initialization blocks must save and restore registers and
return to the boot ROM, so the boot ROM can load the rest of the blocks.
For more details, see
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Block Headers and Flags” on page 3-9.

Both the initialization block and second-stage loader utility can be used to
force the boot ROM to load a specific .dxe file from the external memory
device if the boot ROM stores multiple executable files. The initialization
block can manipulate the R0 or R3 register, which the boot ROM uses as
the external memory pointers for flash/PROM or SPI memory boot,
respectively.

After the processor returns from the execution of the initialization blocks,
the boot ROM continues to load blocks from the location specified in the
R0 or R3 register, which can be any .dxe file in the boot stream. This
option requires the starting locations of specific executables within exter-
nal memory. The R0 or R3 register must point to the 10-byte count header,
as illustrated in “ADSP-BF53x and ADSP-BF561 Multi-Application
(Multi-DXE) Management” on page 3-30.

ADSP-BF53x/BF561 Processor Booting

3-28 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-BF561 Dual-Core Application Management

A typical ADSP-BF561 dual-core application is separated into two execut-
able files: one executable file for each core. The default linker description
(.ldf) file for the ADSP-BF561 processor creates two separate executable
files (p0.dxe and p1.dxe) and some shared memory files (sml2.sm and
sml3.sm). By modifying the LDF, it is possible to create a dual-core
application that combines both cores into a single .dxe file. This is not
recommended unless the application is a simple assembly language pro-
gram which does not link any C run-time libraries. When using shared
memory and/or C run-time routines on both cores, it is best to generate a
separate .dxe file for each core. The loader utility combines the contents
of the shared memory files (sml2.sm, sml3.sm) only into the boot stream
generated from the .dxe file for core A (p0.dxe).

By default, The boot ROM loads only one single executable before the
ROM jumps to the start of core A instruction SRAM (0xFFA0 0000).
When two .dxe files are loaded, a second-stage loader is used. (Or, when
the -noSecondStageKernel switch is called, the loader utility combines the
two .dxe files into one.) If the he second-stage boot loader is used, it must
start at 0xFFA0 0000. The boot ROM loads and executes the second-stage
loader. A default second-stage loader is provided for each boot mode and
can be customized by the user.

Unlike the initialization blocks, the second-stage loader takes full control
over the boot process and never returns to the boot ROM.

The second-stage loader can use the .dxe byte count blocks to find spe-
cific .dxe files in external memory if a loader file includes the codes and
data from a number of .dxe files.

 The default second-stage loader uses the last 1024 bytes of L2
memory. The area must be reserved during booting but can be
reallocated at runtime.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-29

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF561 Processor Memory Ranges

The on-chip boot ROM of the ADSP-BF561 processor can load a full
application to the various memories of both cores. Booting is allowed to
the following memory ranges. The boot ROM clears these memory ranges
before booting in a new application.

• Core A

• L1 instruction SRAM (0xFFA0 0000 – 0xFFA0 3FFF)

• L1 instruction cache/SRAM (0xFFA1 0000 – 0xFFA1 3FFF)

• L1 data bank A SRAM (0xFF80 0000 – 0xFF80 3FFF)

• L1 data bank A cache/SRAM (0xFF80 4000 – 0xFF80 7FFF)

• L1 data bank B SRAM (0xFF90 0000 – 0xFF90 3FFF)

• L1 data bank B cache/SRAM (0xFF90 4000 – 0xFF90 7FFF)

• Core B

• L1 instruction SRAM (0xFF60 0000 – 0xFF6 03FFF)

• L1 instruction cache/SRAM (0xFF61 0000 – 0xFF61 3FFF)

• L1 data bank A SRAM (0xFF40 0000 – 0xFF40 3FFF)

• L1 data bank A cache/SRAM (0xFF40 4000 – 0xFF40 7FFF)

• L1 data bank B SRAM (0xFF50 0000 – 0xFF50 3FFF)

• L1 data bank B cache/SRAM (0xFF50 4000 – 0xFF50 7FFF)

• 128K of shared L2 memory (FEB0 0000 – FEB1 FFFF)

• Four banks of configurable synchronous DRAM
(0x0000 0000 – (up to) 0x1FFF FFFF)

ADSP-BF53x/BF561 Processor Booting

3-30 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

 The boot ROM does not support booting to core A scratch mem-
ory (0xFFB0 0000 – 0xFFB0 0FFF) and to core B scratch memory
(0xFF70 0000–0xFF70 0FFF). Data that needs to be initialized prior
to runtime should not be placed in scratch memory.

ADSP-BF53x and ADSP-BF561 Multi-Application
(Multi-DXE) Management

This section describes how to generate and boot more than one .dxe file
for the ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 and ADSP-BF561 processors. For further information
about the ADSP-BF561 processors, refer to “ADSP-BF561 Dual-Core
Application Management” on page 3-28.

The ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538/BF539
and ADSP-BF561 loader file structure and the silicon revision of 0.1 and
higher allow generation and booting of multiple .dxe files into a single
processor from external memory. As illustrated in Figure 3-6, each execut-
able file is preceded by a 4-byte count header, which is the number of
bytes within the executable, including headers. This information can be
used to boot a specific .dxe file into the processor. The 4-byte .dxe count
block is encapsulated within a 10-byte header to be compatible with the
silicon revision 0.0. For more information, see
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Block Headers and Flags” on page 3-9.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-31

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Booting multiple executables can be accomplished by one of the following
methods.

• Use the second-stage loader switch, -l userkernel.dxe. The
option allows you to use your own second-stage loader.

After the second-stage loader is booted into internal memory via
the on-chip boot ROM, the loader has full control over the boot
process. Now the second-stage loader can use the .dxe byte counts
to boot in one or more .dxe files from external memory.

Figure 3-6. ADSP-BF531/BF32/BF33/BF534/ BF536/BF537/BF538/
BF539/BF561 Processors: Multi-Application Booting Streams

BLOCK 1

BLOCK 2 10-BYTE HEADER

BLOCK 3 10-BYTE HEADER

BLOCK 2

BLOCK 1 10-BYTE HEADER

-

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE1

.DXE 1 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 2

.DXE 2 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 3

.DXE 3 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 4

.......................

.......................

.DXE 1

.DXE 2

.DXE 3

.DXE 4

BLOCK 3

..............

ADSP-BF53x/BF561 Processor Booting

3-32 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

• Use the initialization block switch, -init filename.dxe, where
filename.dxe is the name of the executable file containing the ini-
tialization code. This option allows you to change the external
memory pointer and boot a specific .dxe file via the on-chip boot
ROM. On the ADSP-BF531 and ADSP-BF561 processors, the ini-
tialization code is an assembly written subroutine.

A sample initialization code is included in Listing 3-5. The R0 and R3 reg-
isters are used as external memory pointers by the on-chip boot ROM.
The R0 register is for flash/PROM boot, and R3 is for SPI memory boot.
Within the initialization block code, change the value of R0 or R3 to point
to the external memory location at which the specific application code
starts. After the processor returns from the initialization block code to the
on-chip boot ROM, the on-chip boot ROM continues to boot in bytes
from the location specified in the R0 or R3 register.

Listing 3-5. Initialization Block Code Example for Multiple .dxe Boot

#include <defBF532.h>

.SECTION program;

/*******Pre-Init Section***************************************/

[--SP] = ASTAT;

[--SP] = RETS;

[--SP] = (r7:0);

[--SP] = (p5:0);

[--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;

[--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;

[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;

[--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

/**/

/*******Init Code Section**************************************

R0.H = High Address of DXE Location (R0 for flash/PROM boot,

R3 for SPI boot)

R0.L = Low Address of DXE Location. (R0 for flash/PROM boot,

R3 for SPI boot)

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-33

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

***/

/*******Post-Init Section**************************************/

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];

M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];

B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];

I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];

(p5:0) = [SP++];

/* MAKE SURE NOT TO RESTORE

R0 for flash/PROM Boot, R3 for SPI Boot */

(r7:0) = [SP++];

RETS = [SP++];

ASTAT = [SP++];

/**/

RTS;

ADSP-BF531/BF532/BF533/BF534/BF536/BF537
Processor Compression Support

The loader utility for the
ADSP-BF531/BF532/BF533/BF534/BF536/BF537 processors offers a
loader file (boot stream) compression mechanism known as zLib. The zLib
compression is supported by a third party dynamic link library,
zLib1.dll. Additional information about the library can be obtained from
the http://www.zlib.net Web site.

The zLib1.dll dynamic link library is included with CrossCore Embed-
ded Studio. The library functions perform the boot stream compression
and decompression procedures when the appropriate options are selected
for the loader utility. The initialization executable files with built-in
decompression mechanism must perform the decompression on a com-
pressed boot stream in a boot process. The default initialization executable
files with decompression functions are included in CrossCore Embedded
Studio.

ADSP-BF53x/BF561 Processor Booting

3-34 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The loader -compression switch directs the loader utility to perform the
boot stream compression from the command line. The IDE also includes a
dedicated loader property page (see Figure 3-13) to manage the
compression.

The loader utility takes two steps to compress a boot stream. First, the
utility generates the boot stream in the conventional way (builds data
blocks), then applies the compression to the boot stream. The decompres-
sion initialization is the reversed process: the loader utility decompresses
the compressed stream first, then loads code and data into memory seg-
ments in the conventional way.

The loader utility compresses the boot stream on the .dxe-by-.dxe basis.
For each input .dxe file, the utility compresses the code and data together,
including all code and data from any associated overlay (.ovl) and shared
memory (.sm) files.

Compressed Streams

Figure 3-7 illustrates the basic structure of a loader file with compressed
streams.

The initialization code is on the top of the loader file. The initialization
code is loaded into the processor first and is executed first when a boot

Figure 3-7. Loader File with Compressed Streams

INITIALIZATION CODE
(KERNEL WITH DECOMPRESSION ENGINE)

 1ST .dxe COMPRESSED STREAM

 1ST .dxe UNCOMPRESSED STREAM

 2ND .dxe COMPRESSED STREAM

 2ND .dxe UNCOMPRESSED STREAM

 . . .

 . . .

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-35

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

process starts. Once the initialization code is executed, the rest of the
stream is brought into the processor. The initialization code calls the
decompression routine to perform the decompression operation on the
stream, and then loads the decompressed stream into the processor’s mem-
ory in the same manner a conventional boot kernel does when it
encounters a compressed stream. Finally, the loader utility loads the
uncompressed boot stream in the conventional way.

The Figure 3-8 illustrates the structure of a compressed block.

Compressed Block Headers

A compressed stream always has a header, followed by the payload com-
pressed stream. Figure 3-9 shows the structure of a compressed block
header.

The first 16 bits of the compressed block header hold the padded byte
count of the compressed stream. The loader utility always pads the byte
count if the resulting compressed stream from the loader compression
engine is an odd number. The loader utility rounds up the byte count of

Figure 3-8. Compressed Block

Figure 3-9. Compressed Block Header

 COMPRESSED BLOCK HEADER

 COMPRESSED STREAM

16 BITS:
PADDED BYTE COUNT

OF COMPRESSED STREAM

16 BITS:
SIZE OF USED COMPRESSION

WINDOW

32 BITS:
TOTAL BYTE COUNT OF THE COMPRESSED STREAM

INCLUDING PADDED BYTES

16 BITS:
COMPRESSED BLOCK FLAG WORD

ADSP-BF53x/BF561 Processor Booting

3-36 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

the compressed stream to be a next higher even number. This 16-bit value
is either 0x0000 or 0x0001.

The second 16 bits of the compressed block header hold the size of the
compression window, used by the loader compression engine. The value
range is 8–15 bits, with the default value of 9 bits. The compression win-
dow size specifies to the compression engine a number of bytes taken from
the window during the compression. The window size is the 2’s exponen-
tial value.

As mentioned before, the compression/decompression mechanism for
Blackfin processors utilizes the open-source lossless data-compression
library zLib1. The zLib1 deflate algorithm, in turn, is a combination of a
variation of Huffman coding and LZ77 compression algorithms.

LZ77 compression works by finding sequences of data that are repeated
within a sliding window. As expected, with a larger sliding window, the
compression algorithm is able to find more repeating sequences of data,
resulting in higher compression ratios. However, technical limitations of
the zLib1 decompression algorithm dictate that the window size of the
decompressor must be the same as the window size of the compressor. For
a more detailed technical explanation of the compression/decompression
implementation on a Blackfin processor, refer to the readme.txt file in the
<install_path>\Blackfin\ldr\zlib\src directory.

 It is not recommended to use memory ranges used by the zlib ker-
nel. The memory ranges used by the kernel, such as heap and static
data, are defined in the LDF file, for example in
<install_path>\Blackfin\ldr\zlib\src\blkfin_zlib_init.ldf .

In the Blackfin implementation, the decompressor is part of the decom-
pression initialization files (see “Decompression Initialization Files” on
page 3-39). These files are built with a default decompressor window size
of 9 bits (512 bytes). Thus, if you choose a non-default window size for
the compressor by using the pull-down tab for the Compression window
size (-compressWS) on the Compression page (under the loader node of

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-37

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

the Tool Settings tab), then the decompressor must be re-built with the
newly chosen window size. For details on re-building of the decompressor
init project, refer to the readme.txt file located in the
<install_path>\Blackfin\ldr\zlib\src directory.

While it is true that a larger compression window size results in better
compression ratios, note that there are counter factors that decrease the
overall effective compression ratios with increasing window sizes for
Blackfin’s implementation of zlib. This is because of the limited memory
resources on an embedded target, such as a Blackfin processor. For more
information, refer to the readme.txt file in the <install_path>\Black-
fin\ldr\zlib\src directory.

The last 16 bits of the compressed header is the flag word. The only valid
compression flag assignments are shown in Figure 3-10.

Uncompressed Streams

Following the compressed streams (see Figure 3-7), the loader file includes
the uncompressed streams. The uncompressed streams include application
codes, conflicted with the code in the initialization blocks in the proces-
sor’s memory spaces, and a final block. The uncompressed stream includes
only a final block if there is no conflicted code. The final block can have a
zero byte count. The final block indicates the end of the application to the
initialization code.

Figure 3-10. Flag Word of Compressed Block Header

0

15 13 0

Compression Flag:
Bit 13: 0 = Not Compression Mode
 1 = Compression Block

1

ADSP-BF53x/BF561 Processor Booting

3-38 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Booting Compressed Streams

The Figure 3-11 shows the booting sequence of a loader file with com-
pressed streams. The loader file is pre-stored in the flash memory.

1. The boot ROM is pointing to the start of the flash memory. The
boot ROM reads the initialization code header and boots the ini-
tialization code.

2. The boot ROM jumps to and starts executing the initialization
code.

3. (A) The initialization code scans the header for any compressed
streams (see the compression flag structure in Figure 3-10). The
code decompresses the streams to the decompression window (in
parts) and runs the initialization kernel on the decompressed data.

(B) The initialization kernel boots the data into various memories
just as the boot ROM kernel does.

4. The initialization code sets the boot ROM to boot the uncom-
pressed blocks and the final block (FINAL flag is set in the block
header’s flag word). The boot ROM boots the final payload, over-
writing any areas used by the initialization code. Because the final
flag is set in the header, the boot ROM jumps to EVT1
(0xFFA0 0000 for the ADSP-BF533/BF534/BF536/BF537/BF538
and ADSP-BF539 processors; 0xFFA0 8000 for the
ADSP-BF531/BF532 processors) to start application code
execution.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-39

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Decompression Initialization Files

As stated before, a decompression initialization .dxe file must be used
when building a loader file with compressed streams. The decompression
initialization .dxe file has a built-in decompression engine to decompress
the compressed streams from the loader file.

The decompression initialization file can be specified from the loader
property page or from the loader command line via the -init file-
name.dxe switch. CrossCore Embedded Studio includes the default
decompression initialization files, which the loader utility uses if no other
initialization file is specified. The default decompression initialization file
is stored in the <install_path>\Blackfin\ldr\zlib directory. The

Figure 3-11. ADSP-BF531/BF532/BF533/BF534/BF536/BF537
Compressed Stream: Booting Sequence

INIT CODE HEADER

 INIT CODE
PAYLOAD

(KERNEL AND
DECOMPRESSION

ENGINE)

COMPRESSED
HEADER

COMPRESSED
IMAGE PAYLOAD

FINAL SECTION
HEADER

FINAL PAYLOAD
(OVERWRITES LOCA-
TION FROM WHICH

INIT CODE EXE-
CUTES)

FLASH MEMORY

INITIALIZATION
KERNEL AND

 DECOMPRESSION
ENGINE

DECOMPRESSION
WINDOW

BOOT ROM BOOTS
FINAL PAYLOAD, OVER-
WRITING INITIALIATION

KERNEL AND
DECOMPRESSION WINDOW
IN L1, THEN JUMPS TO EVT1

L1 MEMORY

DECOMPRESSED
STREAM IN PARTS
BOOTS INTO VARI-

OUS MEMORIES
THROUGH INIT

1

2

3A

3B

4

BOOT ROM

ADSP-BF53x/BF561 Processor Loader Guide

3-40 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

default decompression initialization file is built for the compression win-
dow size of 9 bits.

To use a different compression window size, build your own decompres-
sion initialization file. For details, refer to the readme.txt file located in
the <install_path>\Blackfin\ldr\zlib\src directory. The size can be
changed through the loader property page or the -compressWS # com-
mand-line switch. The valid range for the window size is [8, 15] bits.

ADSP-BF53x/BF561 Processor Loader
Guide

Loader utility operations depend on the options, which control how the
utility processes executable files. You select features such as boot modes,
boot kernels, and output file formats via the options. The options are
specified on the loader utility’s command line or via the loader pages of
the Tool Settings tab in the IDE. The loader pages consist of multiple
panes. When you open the loader pages, the default loader settings for the
selected processor are set already.

 Option settings on the loader pages of the Tool Settings tab corre-
spond to switches displayed on the command line.

These sections describe how to produce a bootable or non-bootable loader
file:

• “Using Blackfin Loader Command Line” on page 3-41

• “Using Loader” on page 3-53

• “Using Compression” on page 3-56

• “Using ROM Splitter” on page 3-57

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-41

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Using Blackfin Loader Command Line
The ADSP-BF5xx Blackfin loader utility uses the following command-line
syntax.

For a single input file:

elfloader inputfile -proc processor [-switch …]

For multiple input files:

elfloader inputfile1 inputfile2 … -proc processor [-switch …]

where:

• inputfile—Name of the executable (.dxe) file to be processed
into a single boot-loadable or non-bootable file. An input file name
can include the drive and directory. For multiprocessor or
multi-input systems, specify multiple input .dxe files. Put the
input file names in the order in which you want the loader utility
to process the files. Enclose long file names within straight quotes,
“long file name”.

• -proc processor—Part number of the processor (for example,
-proc ADSP-BF531) for which the loadable file is built. Provide a
processor part number for every input .dxe if designing multipro-
cessor systems.

• -switch …—One or more optional switches to process. Switches
select operations and modes for the loader utility.

 Command-line switches may be placed on the command line in
any order, except the order of input files for a multi-input system.
For a multi-input system, the loader utility processes the input files
in the order presented on the command line.

ADSP-BF53x/BF561 Processor Loader Guide

3-42 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-18.

File Extensions

Some loader switches take a file name as an optional parameter. Table 3-8
lists the expected file types, names, and extensions.

In some cases the loader utility expects the overlay input files with the file
extension of .ovl, shared memory input files with the extension of .sm or
both, but does not expect those files to appear on a command line or on
the General loader property page. The loader utility finds these files in the
directory of the associated .dxe files, in the current working directory, or
in the directory specified in the .ldf file.

Table 3-8. File Extensions

Extension File Description

.dxe Loader input files, boot kernel files, and initialization files

.ldr Loader output file

.knl Loader output files containing kernel code only when two output files are selected

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-43

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Blackfin Loader Command-Line Switches

A summary of the Blackfin loader command-line switches appears in
Table 3-9.

Table 3-9. ADSP-BF53x/BF561 Loader Command-Line
Switches

Switch Description

-b prom
-b flash
-b spi
-b spislave
-b UART
-b TWI
-b FIFO

The -b switch specifies the boot mode and directs the loader utility
to prepare a boot-loadable file for the specified boot mode.

If -b does not appear on the command line, the default is
-b flash.

Other valid boot modes include:
• SPI (SPImaster) – for all processors described in this chapter
• SPIslave – for the ADSP-BF531/2/3/4/6/7/9 and ADSP-BF561

processors
• UART – for the ADSP-BF534/6/7 processors
• TWI (TWI Master) – for the ADSP-BF534/6/7 processors
• FIFO – for the ADSP-534/6/7 processors

-compression The -compression switch directs the loader utility to compress the
boot stream; see
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor
Compression Support” on page 3-33. Either a default or user ini-
tialization .dxe file with decompression code must be provided for
-compression.

This switch is for flash/PROM boot modes only and does not apply
to the ADSP-BF538, ADSP-BF539, or ADSP-BF561 processors.

-compressWS # The -compressWS # switch specifies a compression window size in
bytes. The number is a 2’s exponential value to be used by the com-
pression engine. The valid values are [8,15] bits, with the default
of 9 bits.

This switch is for flash/PROM boot modes only and does not apply
to the ADSP-BF538, ADSP-BF539, or ADSP-BF561 processors.

ADSP-BF53x/BF561 Processor Loader Guide

3-44 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-dmawidth # The -dmawidth {8|16} switch specifies a DMA width (in bits) to
the loader utility.

For FIFO boot mode, 16 is the only DMA width. For other boot
modes, all DMA widths are valid with the default of 8.

The switch does not apply to the ADSP-BF561 processors.

-enc dll_filename The -enc dll_filename switch encrypts the data stream from the
application input .dxe files with the encryption algorithms in the
dynamic library file dll_filename. The dll_filename is
required. Two functions with the following APIs are required in the
encryption DLL:

For setting the encryption initial value:

int EncryptInit(unsigned int FixedData);

For getting encrypted data:

int EncryptBlock(unsigned int * buffer, unsigned int

BlkSize, char * message);

The loader calls the encryption routines as it is creating the ldr
output file. The loader sets reserved bit 2 in the block header to
indicate the payload is encrypted.

-f hex
-f ASCII
-f binary
-f include

The -f {hex|ASCII|binary|include} switch specifies the for-
mat of a boot-loadable file (Intel hex-32, ASCII, binary, include). If
the -f switch does not appear on the command line, the default
boot mode format is hex for flash/PROM and ASCII for SPI, SPI
slave, UART, and TWI.

-ghc # The -ghc # switch specifies a 4-bit value (global header cookie) for
bits 31–28 of the global header (see Table 3-6).

The switch applies to the ADSP-BF561 processors only.

Table 3-9. ADSP-BF53x/BF561 Loader Command-Line
Switches (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-45

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

-h or -help The -h[elp] switch invokes the command-line help, outputs a list
of command-line switches to standard output, and exits. By default,
the -h switch alone provides help for the loader driver. To obtain a
help screen for your target Blackfin processor, add the -proc switch
to the command line. For example: type
elfloader -proc ADSP-BF533 -h to obtain help for the
ADSP-BF533 processor.

-init filename.dxe The -init filename.dxe switch directs the loader utility to
include the initialization code from the named file. The loader util-
ity places the code from the initialization sections of the specified
.dxe file in the boot stream. The kernel loads the code and then
calls it. It is the responsibility of the code to save/restore state/regis-
ters and then perform an RTS back to the kernel.

-kb prom
-kb flash
-kb spi
-kb spislave
-kb UART
-kb TWI
-kb FIFO

The -kb switch specifies the boot mode for the boot kernel output
file if you generate two output files from the loader utility: one for
the boot kernel and another for user application code.

The -kb switch must be used in conjunction with the -o2 switch.

If the -kb switch is absent from the command line, the loader util-
ity generates the file for the boot kernel in the same boot mode as
used to output the user application program.
Valid boot modes include:
• PROM/FLASH – the default boot mode for all processors

described in this chapter
• SPI (SPImaster) – for all processors described in this chapter
• SPIslave – for the ADSP-BF531/2/3/4/6/7/9 and ADSP-BF561

processors
• UART – for the ADSP-BF534/6/7 processors
• TWI (TWI Master) – for the ADSP-BF534/6/7 processors
• FIFO – for the ADSP-534/6/7 processors

Table 3-9. ADSP-BF53x/BF561 Loader Command-Line
Switches (Cont’d)

Switch Description

ADSP-BF53x/BF561 Processor Loader Guide

3-46 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-kf hex
-kf ascii
-kf binary
-kf include

The -kf {hex|asci|binary|include} switch specifies the out-
put file format (hex, ASCII, binary, or include) for the boot kernel
if you output two files from the loader utility: one for the boot ker-
nel and one for user application code.

The -kf switch must be used in conjunction with the -o2 switch.

If the -kf switch is absent from the command line, the loader util-
ity generates the file for the boot kernel in the same format as for
the user application program.

-kenc dll_filename The -kenc dll_filename switch specifies the user encryption
dynamic library file for the encryption of the data stream from the
kernel file. The dll_filename is required. Two functions with the
following APIs are required in the encryption DLL:

For setting the encryption initial value:

int EncryptInit (unsigned int FixedData);

For getting encrypted data:

int EncryptBlock (unsigned int * buffer, unsigned

int BlkSize, char * message);

The loader calls the encryption routines as it is creating the knl
output file. The loader sets reserved bit 2 in the block header to
indicate the payload is encrypted.

-kp # The -kp # switch specifies a hex flash/PROM output start address
for the kernel code. A valid value is between 0x0 and 0xFFFFFFFF.
The specified value is ignored when no kernel or/and initialization
code is included in the loader file.

Table 3-9. ADSP-BF53x/BF561 Loader Command-Line
Switches (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-47

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

-kWidth # The -kWidth # switch specifies the width of the boot kernel output
file when there are two output files: one for the boot kernel and one
for user application code.
Valid values are:
• 8 or 16 for PROM or flash boot kernel
• 16 for FIFO boot kernel
• 8 for SPI and other boot kernels
If this switch is absent from the command line, the default file
width is:
• the -width parameter for flash/PROM boot mode
• 16 for FIFO boot mode
• 8 when booting from SPI and other boot modes

The -kWidth # switch must be used in conjunction with the -o2
switch.

-M The -M switch generates make dependencies only, no output file is
generated.

-maskaddr # The -maskaddr # switch masks all EPROM address bits above or
equal to #. For example, -maskaddr 29 (default) masks all the bits
above and including A29 (ANDed by 0x1FFF FFFF). For example,
0x2000 0000 becomes 0x0000 0000. The valid #s are integers
0 through 32, but based on your specific input file, the value can be
within a subset of [0, 32].

The -maskaddr # switch requires -romsplitter and affects the
ROM section address only.

-MaxBlockSize # The -MaxBlockSize # switch specifies the maximum block byte
count, which must be a multiple of 16.

-MaxZeroFillBlockSize # The -MaxZeroFillBlockSize # switch specifies the maximum
block byte count for zero-filled blocks. The valid values are from
0x0 to 0xFFFFFFF0, and the default value matches
-MaxBlockSize #.

-MM The -MM switch generates make dependencies while producing the
output files.

Table 3-9. ADSP-BF53x/BF561 Loader Command-Line
Switches (Cont’d)

Switch Description

ADSP-BF53x/BF561 Processor Loader Guide

3-48 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-Mo filename The -Mo filename switch writes make dependencies to the named
file. Use the -Mo switch with either -M or -MM. If -Mo is not present,
the default is a <stdout> display.

-Mt filename The -Mt filename switch specifies the make dependencies target
output file. Use the -Mt switch with either -M or -MM. If -Mt is not
present, the default is the name of the input file with an .ldr
extension.

-noFinalBlock The -noFinalBlock switch directs the loader utility not to make a
special final block for TWI boot.

The switch applies to the ADSP-BF537 processors only.

-noFinalTag The -noFinalTag switch directs the loader utility not to set the
final block tag for the first .dxe file. As a result, the boot process
continues with code from the second .dxe file, following the first
file.

The switch applies to the ADSP-BF56x processors only.

-noInitCode The -noInitCode switch directs the loader utility not to expect an
initialization input file even though an external memory section is
present in the input .dxe file.

The switch applies to the ADSP-BF531/BF532/BF533,
ADSP-BF534/BF536/BF537/BF538/BF539 processors only.

-noSecondStageKernel The -noSecondStageKernel switch directs the loader utility not
to include a default second-stage kernel into the loader stream.

The switch applies to the ADSP-BF56x processors only.

-o filename The -o filename switch directs the loader utility to use the speci-
fied file as the name of the loader utility’s output file. If the file-
name is absent, the default name is the root name of the input file
with an .ldr extension.

Table 3-9. ADSP-BF53x/BF561 Loader Command-Line
Switches (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-49

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

-o2 The -o2 switch produces two output files: one for the init block (if
present) and boot kernel and one for user application code.
To have a different format, boot mode, or output width from the
application code output file, use the -kb -kf -kwidth switches to
specify the boot mode, the boot format, and the boot width for the
output kernel file, respectively.

Combine -o2 with -l filename and/or -init filename on the
ADSP-BF531/BF532/BF533,
ADSP-BF534/BF536/BF537/BF538/BF539, ADSP-BF561 proces-
sors.

-p # The -p # switch specifies a hex flash/PROM output start address for
the application code. A valid value is between 0x0 and
0xFFFFFFFF. A specified value must be greater than that specified
by -kp if both kernel and/or initialization and application code are
in the same output file (a single output file).

-pFlag #
-pFlag PF#
-pFlag PG#
-pFlag PH#

The -pflag {#|PF#|PG#|PH#} switch specifies a 4-bit hex value
for a strobe (programmable flag) or for one of the ports: F, G, or H.
There is no default value. The value is dynamic and varies with pro-
cessor, silicon revision, boot mode, and width. The loader generates
warnings for illegal combinations.
Table 3-10, Table 3-11, and Table 3-12 show the valid values for
the -pFlag switch.

The switch applies to the ADSP-BF531/BF532/BF533/BF534,
ADSP-BF536/BF537/BF538/BF539, and ADSP-BF561 processors
only.

-proc processor The -proc processor switch specifies the target processor.
The processor can be one of the following: ADSP-BF531,
ADSP-BF532, ADSP-BF533, ADSP-BF534, ADSP-BF536,
ADSP-BF537, ADSP-BF538, ADSP-BF539, ADSP-BF561.

Table 3-9. ADSP-BF53x/BF561 Loader Command-Line
Switches (Cont’d)

Switch Description

ADSP-BF53x/BF561 Processor Loader Guide

3-50 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-romsplitter The -romsplitter switch creates a non-bootable image only. This
switch overwrites the -b switch and any other switch bounded by
the boot mode.
In the .ldf file, declare memory segments to be ‘split’ as type ROM.
The splitter skips RAM segments, resulting in an empty file if all seg-
ments are declared as RAM. The -romsplitter switch supports hex
and ASCII formats.

-ShowEncryptionMessage The -ShowEncryptionMessage switch displays a message returned
from the encryption function.

-si-revision #|none|any The -si-revision {#|none|any} switch provides a silicon revi-
sion of the specified processor.
The switch parameter represents a silicon revision of the processor
specified by the -proc processor switch. The parameter takes one
of three forms:
• The none value indicates that CrossCore Embedded Studio

ignores silicon errata.
• The #.# value indicates one or more decimal digits, followed by

a point, followed by one or two decimal digits. An example of a
#.# revision is 0.5 for the ADSP-BF561 processor.

• The any value indicates that CrossCore Embedded Studio pro-
duces an output file that can be run at any silicon revision.

The switch generates either a warning about any potential anoma-
lous conditions or an error if any anomalous conditions occur.

In the absence of the silicon revision switch, the loader utility
selects the greatest silicon revision it is aware of, if any.

-v The -v switch directs the loader utility to output verbose loader
messages and status information as the loader processes files.

Table 3-9. ADSP-BF53x/BF561 Loader Command-Line
Switches (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-51

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

-width # The -width # switch specifies the loader output file’s width in bits.
Valid values are 8 and 16, depending on the boot mode. The default
value is 16 for FIFO boot mode and 8 for all other boot modes.
• For flash/PROM booting, the size of the output file depends on

the -width # switch.
• For FIFO booting, the only available width is 16.
• For SPI booting, the size of the output .ldr file is the same for

both -width 8 and -width 16. The only difference is the
header information.

-ZeroPadForced The -ZeroPadForced switch forces the loader utility to pad each
data byte with a zero byte for 16-bit output. Use this switch only if
your system requires zero padding in a loader file. Use this switch
with caution: arbitrating pad data with zeros can cause the loader
file to fail. The loader utility performs default zero padding auto-
matically in general.

The switch applies to the ADSP-BF531/BF532/BF533/BF534,
ADSP-BF536/BF537/BF538/BF539 processors only.

Table 3-10. -pFlag Values for ADSP-BF531/BF532/BF533 Processors1

Silicon Revision 0.6

Width 8 16

Flash boot mode NONE NONE

SPI boot mode NONE

SPI slave boot mode 1–15
PF1–15

1 The ADSP-BF531/BF532/BF533 processors always have the RESVECT bit (bit 2 in the block
header flag word) cleared.

Table 3-9. ADSP-BF53x/BF561 Loader Command-Line
Switches (Cont’d)

Switch Description

ADSP-BF53x/BF561 Processor Loader Guide

3-52 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Table 3-11. -pFlag Values for ADSP-BF534/BF536/BF5371

Silicon Revision 0.3

Width 8 16

Flash boot mode NONE
PF0–15
PG0–15
PH0–15

NONE
PF0–15
PG0–15
PH0–15

SPI boot mode NONE
PF0–9
PF15
PG0–15
PH0–15

SPI slave boot mode NONE
PF0–10
PF15
PG0–15
PH0–15

TWI boot mode NONE
PF0–15
PG0–15
PH0–15

TWI slave boot mode NONE
PF0–15
PG0–15
PH0–15

UART boot mode NONE
PF2–15
PG0–15
PH0–15

FIFO boot mode NONE
PF0
PF2–15
PG0–15
PH0–15

1 The ADSP-BF534/BF536/BF537 processors always have the RESVECT bit (bit 2 in the block
header flag word) set.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-53

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Using Loader
After selecting Loader Image as the project output type for your applica-
tion on the Application Settings page in the C Project Wizard, modify
the default load settings.

The loader node of the Tool Settings tab consists of multiple pages. When
you open the loader pages (also called loader property pages), view the
default load settings for the selected processor. As an example, Figure 3-12
shows the ADSP-BF533 processor’s default load settings for PROM boot-
ing. The dialog box options are equivalent to the command-line switches.
Refer to “Blackfin Loader Command-Line Switches” on page 3-43 for
more information about the switches.

Table 3-12. -pFlag Values for ADSP-BF538/BF539 Processors1

Silicon Revision All

Width 8 16

Flash boot mode NONE NONE

SPI boot mode NONE

SPI slave boot mode 1–15
PF1–15

1 The ADSP-BF538/BF539 processors always have the RESVECT bit (bit 2 in the
block header flag word) set.

ADSP-BF53x/BF561 Processor Loader Guide

3-54 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Using the page controls, select or modify the load settings. Table 3-13
describes each load control and corresponding setting. When satisfied
with the settings, click Apply to complete the load setup.

 At the time of this release, some settings listed in Table 3-13 have
not been implemented.

Figure 3-12. Load: Tool Settings: General Page for ADSP-BF533
Processors

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-55

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Table 3-13. Default Load Page Settings for ADSP-BF53x/BF561
Processors

Setting Description

Loader Selections for the loader utility. The options are:
• General – default boot options
• Compression – specification for zLib compression; applies to the

ADSP-BF531/BF532/BF533/BF534, ADSP-BF536, and ADSP-BF537
processors (on page 3-33).

• Kernel – specification for a second-stage loader. Can be used to over-
ride the default boot kernel if there is one by default.

• Splitter – specification for the no-boot mode (on page 3-57)
For the ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539/BF561 processors, which do not have software boot kernels by
default, select the boot kernel to use one.

• Additional Options – specification for additional loader switches. You
can specify additional input files for a multi-input system. Type the
input file names with the paths if the files are not in the current work-
ing directory, separate two file names with a space in order for the
loader utility to retrieve the files.
Note: The loader utility processes the input files in the order in which
the files appear on the command line, generated from the property
page.

Output verbose
loader messages (-v)

When selected, generates status information as the loader utility processes
the files.

Boot mode (-b) Specifies Flash/Prom, SPI master, and SPI slave as a boot source.

Boot format (-f) Specifies Intel hex, ASCII, Binary, or Include format.

Output width
(-width)

Specifies 8 or 16 bits.
If BMODE = 01 or 001 and flash/PROM is 16-bit wide, the 16-bit option
must be selected.

Programmable flag Same as the -pFlag command-line switch—selects a programmable flag
number (0–15) for a strobe or for a port. The box is active for the
ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 pro-
cessors. Valid values are listed in Table 3-10 through Table 3-12. The
NONE option also is available; when chosen, no -pFlag switch appears on
the command line.
Verify the programmable flag setting whenever the processor, silicon revi-
sion, boot mode, or width is changed.

ADSP-BF53x/BF561 Processor Loader Guide

3-56 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Using Compression
If you develop an ADSP-BF531/BF532/BF533/BF534/BF536 or
ADSP-BF537 processor based application, you can select the Compres-
sion node in the loader page of the Tool Settings tab to set parameters for
zLib compression.

To enable compression, select Enable compression (-compression). You
can select the Compression window size (-compressWS), Retain kernel
after boot (-retainSecondStageKernel), and Compress overlays (-com-
pressOverlay) options. The dialog box options are equivalent to
command-line switches. See
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compres-
sion Support” on page 3-33 for more information.

Use default start

address

When selected, uses the default flash/PROM output start address in hex
format for the application code.

Start address (-p) Specifies a flash/PROM output start address in hex format for the applica-
tion code.

Initialization file Directs the loader utility to include the initialization file (init code).

Use default decom-
pression INIT file

Directs the loader utility to include the default decompression initializa-
tion file (init code). The initialization file selection is active for the
ADSP-BF531/BF532/BF533, and ADSP-BF561 processors.

Output file Names the loader utility’s output file.

Table 3-13. Default Load Page Settings for ADSP-BF53x/BF561
Processors (Cont’d)

Setting Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-57

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

Using ROM Splitter
Unlike the loader utility, the splitter does not format the application data
when transforming a .dxe file to an .ldr file. It emits raw data only.
Whether data and/or instruction segments are processed by the loader or
by the splitter utility depends upon the LDF’s TYPE() command. Sections
declared with TYPE(RAM) are consumed by the loader utility, and sections
declared by TYPE(ROM) are consumed by the splitter.

Figure 3-14 shows a sample Splitter page of the Tool Settings tab. If the
Enable ROM splitter (-romsplitter) box unchecked, only TYPE(RAM) sec-
tions are processed and all TYPE(ROM) segments are ignored by the loader

Figure 3-13. Load: Tool Settings: Compression Page for ADSP-BF537
Processors

ADSP-BF53x/BF561 Processor Loader Guide

3-58 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

utility. If the box is checked, TYPE(RAM) sections are ignored, and
TYPE(ROM) sections are processed by the splitter utility.

The Address mask (-maskaddr) field masks all EPROM address bits above
or equal to the number specified. For example, Address mask (-maskaddr)
= 29 (default) masks all bits above and including A29 (ANDed by
0x1FFF FFFF). Thus, 0x2000 0000 becomes 0x0000 0000. The valid num-
bers are integers 0 through 32 but, based on your specific input file, the
value can be within a subset of [0, 32].

Figure 3-14. Load: Tool Settings: Splitter Page for ADSP-BF533
Processors

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-59

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

ADSP-BF531/BF532/BF533/BF534/
BF536/BF537/BF538/BF539 Processor No-Boot Mode

The hardware settings of BMODE = 00 for ADSP-BF531, ADSP-BF532,
and ADSP-BF533 processors, select the no-boot option. In this mode of
operation, the on-chip boot kernel is bypassed after reset, and the
processor starts fetching and executing instructions from address
0x2000 0000 in the asynchronous memory bank 0. The processor assumes
16-bit memory with valid instructions at that location.

To create a proper .ldr file that can be burned into either a parallel flash
or EPROM device, you must modify the standard LDF file in order for
the reset vector to be located accordingly. The following code fragments
(Listing 3-6 and Listing 3-7) illustrate the required modifications in case
of an ADSP-BF533 processor.

Listing 3-6. Section Assignment (LDF File) Example

MEMORY

{

/* Off-chip Instruction ROM in Async Bank 0 */

MEM_PROGRAM_ROM { TYPE(ROM) START(0x20000000) END(0x2009FFFF)

WIDTH(8) }

/* Off-chip constant data in Async Bank 0 */

MEM_DATA_ROM { TYPE(ROM) START(0x200A0000) END(0x200FFFFF)

WIDTH(8) }

/* On-chip SRAM data, is not booted automatically */

MEM_DATA_RAM { TYPE(RAM) START(0xFF903000) END(0xFF907FFF)

WIDTH(8) }

Listing 3-7. ROM Segment Definitions (LDF File) Example

PROCESSOR p0

{

OUTPUT($COMMAND_LINE_OUTPUT_FILE)

ADSP-BF53x/BF561 Processor Loader Guide

3-60 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

SECTIONS

{

program_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_code))

} >MEM_PROGRAM_ROM

data_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_data))

} >MEM_DATA_ROM

data_sram

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(ram_data))

} >MEM_DATA_RAM

With the LDF file modified this way, the source files can now take advan-
tage of the newly-introduced sections, as in Listing 3-8.

Listing 3-8. Section Handling (Source File) Example

.SECTION rom_code;

_reset_vector: l0 = 0;

1 = 0;

l2 = 0;

l3 = 0;

/* continue with setup and application code */

/* . . . */

.SECTION rom_data;

.VAR myconst x = 0xdeadbeef;

/* . . . */

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 3-61

Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors

.SECTION ram_data;

.VAR myvar y; /* note that y cannot be initialized automatically

*/

ADSP-BF53x/BF561 Processor Loader Guide

3-62 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 4-1

4 LOADER/SPLITTER FOR
ADSP-BF60X BLACKFIN
PROCESSORS

This chapter explains how the loader/splitter utility (elfloader.exe) is
used to convert executable (.dxe) files into boot-loadable or non-bootable
files for the ADSP-BF60x Blackfin processors.

Refer to “Introduction” on page 1-1 for the loader utility overview.
Loader operations specific to the ADSP-BF60x Blackfin processors are
detailed in the following sections.

• “ADSP-BF60x Processor Booting” on page 4-2
Provides general information on various boot modes.

• “ADSP-BF60x Processor Loader Guide” on page 4-3
Provides information on how to build loader files.

ADSP-BF60x Processor Booting

4-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-BF60x Processor Booting
For detailed information on the boot loader stream and boot modes for
the ADSP-BF60x processors, refer to the “Booting the Processor (Boot)”
chapter of the ADSP-BF60x Blackfin Processor Hardware Reference.

Refer to the processor’s data sheet and hardware reference manual for
detailed information on system configuration, peripherals, registers, and
operating modes.

• Blackfin processor data sheets can be found at:
http://www.analog.com/en/embedded-processing-dsp/black-

fin/processors/data-sheets/resources/index.html.

• Blackfin processor manuals can be found at:
http://www.analog.com/en/embedded-processing-dsp/black-

fin/processors/manuals/resources/index.html.

Table 4-1 lists the part numbers that currently comprise the ADSP-BF60x
family of Blackfin processors. Future releases of CrossCore Embedded
Studio may support additional processors.

Table 4-1. ADSP-BF60x Part Numbers

Part Numbers

ADSP-BF606

ADSP-BF607

ADSP-BF608

ADSP-BF609

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 4-3

Loader/Splitter for ADSP-BF60x Blackfin Processors

ADSP-BF60x Processor Loader Guide
The loader utility post processes executable (.dxe) files and generates
loader (.ldr) files. A loader file can be formatted as binary, ASCII or Intel
hex style. An .ldr file contains the boot stream in a format expected by
the on-chip boot kernel.

Loader utility operations depend on the loader options, which control
how the utility processes executable files. You select features such as boot
modes, boot kernels, and output file formats via the options. The options
are specified on the loader utility’s command line or via the loader pages
of the Tools Settings tab in the IDE. The loader pages consist of multiple
panes. When you open the loader pages, the default loader settings for the
selected processor are set already.

 Option settings on the loader pages of the Tools Settings tab corre-
spond to switches displayed on the command line.

These sections describe how to produce a bootable (single and multiple)
or non-bootable loader file:

• “Using Studio Loader” on page 4-3

• “Building a Dual-Core Application” on page 4-9

• “Using ROM Splitter” on page 4-11

Using Studio Loader
After selecting Loader Image as the project output type for your Blackfin
application on the Application Settings page in the C Project Wizard,
modify the default load settings.

 To change an existing project to produce a loader stream, change
the Build Artifact Type to Loader File: Project > Properties >
C/C++ Build > Settings > Build Artifact > Artifact Type.

ADSP-BF60x Processor Loader Guide

4-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The loader node of the Tool Settings tab consists of multiple pages. When
you open the loader pages (also called loader property pages), view the
default load settings for the selected processor. As an example, Figure 4-1
shows the ADSP-BF609 processor’s default load settings for Memory boot
mode. The dialog box options are equivalent to the command-line
switches.

Figure 4-1. Loader : Tool Settings : General : Memory Boot Mode for
ADSP-BF609 Processors

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 4-5

Loader/Splitter for ADSP-BF60x Blackfin Processors

Using the page controls, select or modify the load settings. Table 4-2
describes each load control and corresponding setting. When satisfied
with the settings, click Apply to complete the load setup.

 The ADSP-BF60x property pages are subject to change.

Table 4-2. Default Load Page Settings for ADSP-BF60x Processors

Setting Description

Loader Selections for the loader utility. The pages are:
• General – default boot options
• Splitter – specification for the no-boot mode (on page 4-11)
• Additional Options – specification for additional loader switches. You

can specify additional input files for a multi-input system. Type the
input file names with the paths if the files are not in the current work-
ing directory, separate any two file names with a space in order for the
loader utility to retrieve the files.
Note: The loader utility processes the input files in the order in which
the files appear on the command line, generated from the property
page (on page 4-11).

Output verbose loader
messages (-v)

When selected, generates status information as the loader utility pro-
cesses the files.

Boot mode (-b) Specifies Memory, RSI master, SPI master, SPI slave, LP slave, UART
slave as a boot source.

Boot format (-f) Specifies Intel hex, ASCII, Binary, or Include format.

Output width
(-width)

Specifies 8, 16, or 32 bits.

Use default start

address

When selected, uses the default flash/PROM output start address in hex
format for the application code.

Start address (-p) Specifies a flash/PROM output start address in hex format for the appli-
cation code.

Initialization file Directs the loader utility to include the initialization file (init code rou-
tine). The loader creates an init block which instructs the boot kernel to
issue a CALL instruction to the init code routine after the entire block has
been loaded. See “Init Code” in “ADSP-BF60x Loader Collateral” on
page 4-14 for init code projects that are available in the installation.

ADSP-BF60x Processor Loader Guide

4-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-BF60x Boot Modes

Table 4-3. ADSP-BF60x Boot Modes

BF609 Boot Mode -b Additional Options
-bcode

Notes

MEMORY -b MEMORY -bcode #1

1 For legal values for the -bcode #, see the “Booting the Processor (Boot)” chapter of the
ADSP-BF60x Blackfin Processor Hardware Reference.

Generic memory boot mode.
Replaces -b FLASH.
The argument for the -bcode switch
is the MDMACODE, one of the
supported numeric values specific to
Memory boot.

RSI0 Master -b RSI -bcode #1 The argument for the -bcode switch
is the RSICODE, one of the sup-
ported numeric values specific to
RSI Master boot.

SPI0 Master -b SPI -bcode #1 The argument for the -bcode switch
is the SPIMCODE, one of the sup-
ported numeric values specific to
SPI Master boot.

SPI0 Slave -b SPISLAVE Boot code field in headers is not
used for slave boot modes.

LP0 Slave -b LPSLAVE Boot code field in headers is not
used for slave boot modes.

UART0 Slave -b UARTSLAVE Boot code field in headers is not
used for slave boot modes.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 4-7

Loader/Splitter for ADSP-BF60x Blackfin Processors

ADSP-BF60x BCODE for Memory, RSI and SPI Master
Boot

A bootable loader stream is a series of ldr boot blocks, each block begin-
ning with a block header. Bits 0:3 of the block code portion of the
ADSP-BF60x block header is a boot mode specific code field known
generically as the BCODE. The -bcode # switch controls what value is
written to the BCODE field in the block headers in a bootable loader
stream.

For detailed information on ldr block headers, see the Boot Loader Stream
section within the “Booting the Processor (Boot)” chapter of the
ADSP-BF60x Blackfin Processor Hardware Reference.

The loader requires an explicit BCODE value when creating loader
streams for master boot modes. For the ADSP-BF60x processors, this
includes Memory, RSI, and SPI Master boot modes.

 When used in the context of a specific boot mode, BCODE is
referred to by its boot specific name: MDMACODE for Memory
boot, RSICODE for RSI boot, and SPIMCODE for SPI Master
boot.

When building loader streams, you need to explicitly specify the BCODE
for the LDR block headers using Loader > Additional Options. Click the
+ Add button and the Enter Value pop-up dialog box appears. The
BCODE is as specified for that particular boot mode. See Figure 4-2.

ADSP-BF60x Processor Loader Guide

4-8 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

If you do not specify -bcode #, Error ld0260 is reported by the loader.
For example, if -bcode # was not present when building a loader stream
for RSI boot:

[Error ld0260]: Missing BCODE value for target ADSP-BF609 block

header. Specify -bcode # to provide the BCODE value

applicable for boot mode.

Figure 4-2. Loader : Tool Settings : Additional Options Page for
ADSP-BF609 Processors

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 4-9

Loader/Splitter for ADSP-BF60x Blackfin Processors

BCODE (RSICODE) for RSI boot:

Bus Width RSI Clk Description

-bcode 0x0 0x00 0x3 1 bit, regular speed

-bcode 0x1 0x00 0x3 1 bit, high speed

-bcode 0x2 0x01 0x3 4 bit, regular speed

-bcode 0x3 0x01 0x3 4 bit, high speed

-bcode 0x4 0x02 0x3 8 bit, regular speed

-bcode 0x5 0x02 0x3 8 bit, high speed

For legal values for the -bcode #, see the “Booting the Processor (Boot)”
chapter of the ADSP-BF60x Blackfin Processor Hardware Reference.

 The -bcode switch is not used for slave boot modes. The BCODE
field is zero for slave boot modes.

Building a Dual-Core Application
When building a dual-core application, use the -NoFinalTag switch to
append the core 1 processing to core 0. The loader processes the input
DXEs in order. If building at the command-line, place
DualCoreApp_Core1.dxe after DualCoreApp.dxe:

elfloader -proc ADSP-BF609 -b SPI -bcode 0x1 DualCoreApp.dxe

-NoFinalTag DualCoreApp_Core1.dxe -o DualCoreApp.ldr -f HEX

-Width 8.

 Since the default startup code does not include functionality to
allow core 0 to enable core 1, a convenient way to enable core 1 is
to use the adi_core_1_enable function in the main program of
DualCoreApp.

Programming Memory on Target Board

Use the CCES Device Programmer utility “cldp” for programming the
memory on a target board.

ADSP-BF60x Processor Loader Guide

4-10 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

In the building a dual-core application example above, DualCoreApp.ldr
was built for boot mode SPIO master with format hex.

Driver:

ADSP-BF609_EZBoard\Examples\Device_Programmer\serial\

w25q32bv_dpia\w25q32bv_dpia.dxe

cldp –proc ADSP-BF609 -emu HPUSB -driver w25q32bv_dpia.dxe -cmd

prog -erase affected -offset 0 -format hex -file DualCoreApp.ldr

 You can save the device programmer commands to a file:

cldp -@ myPath\SPI_Flash_Programming.txt

See the Device Programmer help section for more information: Cross-
Core Embedded Studio > Graphical Development Environment >
Device Programmer.

CRC32 Protection
ADSP-BF60x CRC32 protection is implemented in hardware. The boot
kernel provides mechanisms to allow each block to be verified using a
32-bit CRC.

When building a LDR file for CRC32 protection, use the -CRC32 <Poly-
nomialCoefficient> switch.

-CRC32 [PolynomialCoefficient]

The -CRC32 switch directs the loader to generate CRC32 checksums. It
uses the polynomial coefficient if specified, otherwise uses the default
coefficient (0xD8018001).

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 4-11

Loader/Splitter for ADSP-BF60x Blackfin Processors

Block Sizes
The loader creates blocks with payload and fill blocks using default maxi-
mum size and alignment that meets the requirements of the target
hardware. Switches are available to override the defaults.

Using ROM Splitter

 Note that the readall feature is available for the automatic merging
of fixed-position ROM data with code blocks within the bootable
loader stream and typically supersedes the use of the legacy rom-
splitter feature described below.

Unlike the loader utility, the splitter utility does not format the applica-
tion data when transforming a .dxe file to an .ldr file. The splitter utility
emits raw data only. Whether data and/or instruction sections are pro-
cessed by the loader or by the splitter utility depends upon the LDF’s
TYPE() command. Sections declared with TYPE(RAM) are consumed by the
loader utility, and sections declared by TYPE(ROM) are consumed by the
splitter.

Table 4-4. ADSP-BF60x Block Sizes

Switch Description Default Requirements

-MaxBlockSize # Specify the max-
imum block
byte count

Loader uses maxi-
mum block size
0x7FFFFFF0 as
default

The maximum block size is limited
to 0xFFFFFFFC bytes and must be
a multiple of 4.

-MaxFillBlockSize # Specify the
maximum fill
block byte
count

Loader uses maxi-
mum fill block size
0x7FFFFFF0 as
default

The maximum fill block size is lim-
ited to 0xFFFFFFFF bytes. If the
fill block size is not a multiple of 4,
only the fill value from the lower 16
bits of the argument are used.

ADSP-BF60x Processor Loader Guide

4-12 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Figure 4-3 shows a sample Splitter page of the Tool Settings tab. If the
Enable ROM splitter (-romsplitter) box is unchecked, only TYPE(RAM)
segments are processed and all TYPE(ROM) sections are ignored by the
loader utility. If the box is checked, TYPE(RAM) sections are ignored, and
TYPE(ROM) segments are processed by the splitter utility.

Figure 4-3. Loader : Tool Settings : Splitter Page for ADSP-BF609
Processors

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 4-13

Loader/Splitter for ADSP-BF60x Blackfin Processors

The loader extracts the contents of the ROM memory segments from the
.dxe. The content of the ROM segments get written to the .ldr file in
raw format, each segment preceded by header words. The header consists
of the following four 32-bit words written in unprefixed hex format:

Example – ASCII Formatted Splitter .ldr File

This is an example of the header preceding the raw content extracted from
the DXE for segment MEM1.

Assume 256 bytes were written to the .ldr file and MEM1 was defined in
the LDF as:

MEM1 { TYPE(ROM) WIDTH(8) START(0xB0000000) END(0xB3FFFFFF) }

The -romsplitter .ldr output will be:

B0000000

00000100

00010101

00000000

00 <- content starts here

01

02

Address Start address of ROM memory segment (as defined in LDF)

Length # of bytes extracted from the DXE for this segment

Control Word 32 bit control word
 00
 xx address multiply
 xx logical width
 xx physical width

Reserved word All zeros

ADSP-BF60x Processor Loader Guide

4-14 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

03

...

The Address mask (-maskaddr) field masks all EPROM address bits above
or equal to the number specified. For example, Address mask
(-maskaddr) = 29 (default) masks all bits above and including A29 (ANDed
by 0x1FFF FFFF). Thus, 0x2000 0000 becomes 0x0000 0000. The valid
numbers are integers 0 through 32; based on your specific input file, the
value can be within a subset of [0, 32].

ADSP-BF60x Loader Collateral
The CrossCore Embedded Studio installation contains additional files and
projects to assist with the development and debugging of ADSP-BF60x
applications which rely on booting functionality.

ROM Code

The sources/project and a pre-built executable for the ADSP-BF609
ROM code are available in the CrossCore Embedded Studio installation
at Blackfin\ldr\rom_code.

Init Code

The sources/project and a pre-built executable for the init code for the
ADSP-BF609 EZ-Board® are available in the CrossCore Embedded Stu-
dio installation at Blackfin\ldr\init_code. See readme.txt in
Blackfin\ldr\init_code\BF609_init. Configuration information is in
Blackfin\ldr\init_code\BF609_init\src\init_platform.h.

When building the *.ldr file for your application, an init code dxe may
be optionally included. In the IDE, this is done via Initialization file or
use the -init "filename" switch. Multiple -init switches are supported.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 4-15

Loader/Splitter for ADSP-BF60x Blackfin Processors

 Projects in the Blackfin\ldr tree rely on shared LDF files and
sources. Copy the entire Blackfin\ldr directory tree to your
CrossCore Embedded Studio Workspace before rebuilding a
Blackfin\ldr init code or rom code project.

For example:
 Blackfin\ldr\init_code\BF609_init\BF609_init_v00 is the
project directory for building BF609_init_v00.dxe. The project
references files in its parent directory. If only the project directory
BF609_init_v00 is in the workspace, it will not rebuild successfully.

ROM Programming

ROM API headers for the Blackfin, including the ADSP-BF609, are avail-
able in the CrossCore Embedded Studio installation. Build macros will
automatically configure bfrom.h for use for your build target processor:
Blackfin\include\bfrom.h.

The Boot Programming Model is documented in the “Booting the Processor
(Boot)” chapter of the ADSP-BF60x Blackfin Processor Hardware Reference.

ADSP-BF60x Processor Loader Guide

4-16 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-1

5 LOADER FOR ADSP-21160
SHARC PROCESSORS

This chapter explains how the loader utility (elfloader.exe) is used to
convert executable (.dxe) files into boot-loadable files for the
ADSP-21160 SHARC processors.

Refer to “Introduction” on page 1-1 for the loader utility overview; the
introductory material applies to all processor families. Refer to “Loader for
ADSP-21161 SHARC Processors” on page 6-1 for information about the
ADSP-21161 processors. Refer to “Loader for
ADSP-2126x/2136x/2137x/214xx SHARC Processors” on page 7-1 for
information about the ADSP-2126x and ADSP-2136x processors.

Loader operations specific to the ADSP-21160 SHARC processors are
detailed in the following sections.

• “ADSP-21160 Processor Booting” on page 5-2
Provides general information about various booting modes, includ-
ing information about boot kernels.

• “ADSP-21160 Processor Loader Guide” on page 5-21
Provides reference information about the loader utility’s graphical
user interface, command-line syntax, and switches.

ADSP-21160 Processor Booting

5-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-21160 Processor Booting
The ADSP-21160 processors support three boot modes: EPROM, host,
link port, and no-boot (see Table 5-3 and Table 5-4). Boot-loadable files
for these modes pack boot data into 48-bit instructions and use an appro-
priate DMA channel of the processor’s DMA controller to boot-load the
instructions.

 The ADSP-21160 processors use DMAC8 for link port booting and
DMAC10 for the host and EPROM booting.

• When booting from an EPROM through the external port, the
ADSP-21160 processor reads boot data from an 8-bit external
EPROM.

• When booting from a host processor through the external port, the
ADSP-21160 processor accepts boot data from a 8- or 16-bit host
microprocessor.

• When booting through the link port, the ADSP-21160 processor
receives boot data as 4-bit wide data in link buffer 4.

• In no-boot mode, the ADSP-21160 processor begins executing
instructions from external memory.

Software developers who use the loader utility should be familiar with the
following operations.

• “Power-Up Booting Process” on page 5-3

• “Boot Mode Selection” on page 5-4

• “ADSP-21160 Boot Modes” on page 5-5

• “ADSP-21160 Boot Kernels” on page 5-13

• “ADSP-21160 Interrupt Vector Table” on page 5-19

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-3

Loader for ADSP-21160 SHARC Processors

• “ADSP-21160 Multi-Application (Multi-DXE) Management” on
page 5-19

• “ADSP-21160 Processor ID Numbers” on page 5-20

Power-Up Booting Process
The ADSP-21160 processors include a hardware feature that boot-loads a
small, 256-instruction program into the processor’s internal memory after
power-up or after the chip reset. These instructions come from a program
called boot kernel. When executed, the boot kernel facilitates booting of
user application code. The combination of the boot kernel and application
code comprise the boot-loadable (.ldr) file.

At power-up, after the chip reset, the booting process includes the follow-
ing steps.

1. Based on the boot type, an appropriate DMA channel is automati-
cally configured for a 256-instruction (48-bit) transfer. This
transfer boot-loads the boot kernel program into the processor
memory. DMA channels used by the various processor models are
shown in Table 5-1.

2. The boot kernel runs and loads the application executable code and
data.

3. The boot kernel overwrites itself with the first 256 words of the
application at the end of the booting process. After that, the appli-
cation executable code begins to execute from location 0x40000
(ADSP-21160). The start addresses and reset vector addresses are
summarized in Table 5-2.

Table 5-1. ADSP-21160 Processor DMA Channels

Processor PROM Booting Host Booting Link Booting

ADSP-21160 DMAC10 (See Table 5-6) DMAC10 (See Table 5-6) DMAC8

ADSP-21160 Processor Booting

5-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The boot type selection directs the system to prepare the appropriate boot
kernel.

Boot Mode Selection
The state of various pins selects the processor boot mode. See Table 5-3
and Table 5-4.

Table 5-2. ADSP-21160 Processor Start Addresses

Processor Start Address Reset Vector Address1

ADSP-21160 0x40000 0x40004

1 The reset vector address must not contain a valid instruction since it is not executed during the
booting sequence. Place a NOP or IDLE instruction at this location.

Table 5-3. ADSP-21160 Boot Mode Pins

Pin Type Description

EBOOT I EPROM boot. When EBOOT is high, the processor boot-loads from an 8-bit
EPROM through the processor’s external port. When EBOOT is low, the LBOOT
and BMS pins determine the booting mode.

LBOOT I Link port boot. When LBOOT is high and EBOOT is low, the processor boots
from another SHARC through the link port. When LBOOT is low and EBOOT
is low, the processor boots from a host processor through the processor’s exter-
nal port.

BMS I/O/T1

1 Three-statable in EPROM boot mode (when BMS is an output).

Boot memory select. When boot-loading from an EPROM (EBOOT=1 and
LBOOT=0), this pin is an output and serves as the chip select for the EPROM.
In a multiprocessor system, BMS is output by the bus master. When host-boot-
ing or link-booting (EBOOT=0), BMS is an input and must be high.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-5

Loader for ADSP-21160 SHARC Processors

ADSP-21160 Boot Modes
The ADSP-21160 processors support these boot modes: EPROM, host,
and link. The following sections describe each of the modes.

• “EPROM Boot Mode” on page 5-5

• “Host Boot Mode” on page 5-9

• “Link Port Boot Mode” on page 5-12

• “No-Boot Mode” on page 5-13

For multiprocessor booting, refer to “ADSP-21160 Multi-Application
(Multi-DXE) Management” on page 5-19.

EPROM Boot Mode

The ADSP-21160 processor is configured for EPROM boot through the
external port when the EBOOT pin is high and the LBOOT pin is low. These
settings cause the BMS pin to become an output, serving as chip select for
the EPROM. Table 5-5 lists all PROM-to-processor connections.

During reset, the ACK line is pulled high internally with a 2K ohm
equivalent resistor and is held high with an internal keeper latch. It is not

Table 5-4. ADSP-21160 Boot Modes

EBOOT LBOOT BMS Boot Mode

0 0 0 (Input) No-boot (processor executes from external memory)

0 0 1 (Input) Host processor

0 1 0 (Input) Reserved

0 1 1 (Input) Link port

1 0 Output EPROM (BMS is chip select)

1 1 x (Input) Reserved

ADSP-21160 Processor Booting

5-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

necessary to use an external pull-up resistor on the ACK line during booting
or at any other time.

The DMA channel parameter registers are initialized at reset for EPROM
booting as shown in Table 5-6. The count is initialized to 0x0100 to trans-
fer 256 words to internal memory. The external count register (ECx),
which is used when external addresses (BMS space) are generated by the
DMA controller, is initialized to 0x0600 (0x100 words at six bytes per
word).

Table 5-5. PROM Connections to ADSP-21160 Processors

Processor Connection

ADSP-21160 PROM/EPROM connects to DATA39—32 pins

ADSP-21xxx Address pins of PROM connect to lowest address pins of any pro-
cessor

ADSP-21xxx Chip select connects to the BMS pin

ADSP-21160 Output enable connects to RDH pin

Table 5-6. DMA Settings for ADSP-21160 EPROM Booting

DMA Setting ADSP-21160 Processor

BMS space 8M x 8-bit

DMA channel DMAC10 = 0x4A1

II10 0x40000

IM10 0x1 (implied)

C10 0x100

EI10 0x800000

EM10 0x1 (implied)

EC10 0x600

IRQ vector 0x40050

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-7

Loader for ADSP-21160 SHARC Processors

After the processor’s RESET pin goes inactive on start-up, a SHARC system
configured for EPROM boot undergoes the following boot-loading
sequence:

1. The processor BMS pin becomes the boot EPROM chip select.

2. The processor goes into an idle state, identical to that caused by the
IDLE instruction. The program counter (PC) is set to the processor
reset vector address (refer to Table 5-2).

3. The DMA controller reads 8-bit EPROM words, packs them into
48-bit instruction words, and transfers them into internal memory
(low-to-high byte packing order) until the 256 words are loaded.

4. The DMA parameter registers for appropriate DMA channels are
initialized, as shown in Table 5-6. The external port DMA channel
(6 or 10) becomes active following reset; it is initialized to set
external port DMA enable and selects DTYPE for instruction words.
The packing mode bits (PMODE) are ignored, and 48- to 8-bit pack-
ing is forced with least significant word first. The UBWS and UBWM
fields of the WAIT register are initialized to generate six wait states
for the EPROM access in unbanked external memory space.

5. The processor begins 8-bit DMA transfers from the EPROM to
internal memory using the D39—32 external port data bus lines.

6. Data transfers begin and increment after each access. The external
address lines (ADDR31—0) start at 0x80 0000.

7. The processor RD pin asserts as in a normal memory access, with six
wait states (seven cycles).

8. After finishing DMA transfers to load the boot kernel into the pro-
cessor, the BSO bit is cleared in the SYSCON register, deactivating the
BMS pin and activating normal external memory select.

ADSP-21160 Processor Booting

5-8 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The boot kernel uses three copies of SYSCON—one that contains the
original value of SYSCON, a second that contains SYSCON with the
BSO bit set (allowing the processor to gain access to the boot
EPROM), and a third with the BSO bit cleared.

When BSO=1, the EPROM packing mode bits in the DMACx control
register are ignored and 8- to 48-bit packing is forced. (8-bit pack-
ing is available only during EPROM booting or when BSO is set.)
When an external port DMA channel is being used in conjunction
with the BSO bit, none of the other three channels may be used. In
this mode, BMS is not asserted by a core processor access but only by
a DMA transfer. This allows the boot kernel to perform other
external accesses to non-boot memory.

The EPROM is automatically selected by the BMS pin after reset, and other
memory select pins are disabled. The processor’s DMA controller reads
the 8-bit EPROM words, packs them into 48-bit instruction words, and
transfers them to internal memory until 256 words have been loaded. The
master DMA internal and external count registers (Cx and ECx) decrement
after each EPROM transfer. When both counters reach zero, DMA trans-
fer has stopped and RTI returns the program counter to the address where
the kernel starts.

 To EPROM boot a single-processor system, include the executable
on the command-line without a switch. Do not use the -id#exe
switch with ID=0 (see “ADSP-21160 Processor ID Numbers” on
page 5-20).

The WAIT register UBWM (used for EPROM booting) is initialized at reset to
both internal wait and external acknowledge required. The internal keeper
latch on the ACK pin initially holds acknowledge high (asserted). If
acknowledge is driven low by another device during an EPROM boot, the
keeper latch may latch acknowledge low.

The processor views the deasserted (low) acknowledge as a hold off from
the EPROM. In this condition, wait states are continually inserted,

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-9

Loader for ADSP-21160 SHARC Processors

preventing completion of the EPROM boot. When writing a custom boot
kernel, change the WAIT register early within the boot kernel so UBWM is set
to internal wait mode (01).

Host Boot Mode

The ADSP-21160 processors accept data from a 8- and 16-bit host micro-
processor (or other external device) through the external port EPB0 and
pack boot data into 48-bit instructions using an appropriate DMA chan-
nel. The host is selected when the EBOOT and LBOOT inputs are low and BMS
is high. Configured for host booting, the processor enters the slave mode
after reset and waits for the host to download the boot program. Table 5-7
lists host connections to processors.

After reset, the processor goes into an idle stage with PC set to address
0x40004.

The parameter registers for the external port DMA channel (0, 6, or 10)
are initialized as shown in Table 5-6, except that registers EIx, EMx and ECx
are not initialized and no DMA transfers start.

The DMA channel control register (DMAC10) for the ADSP-21160 proces-
sor is initialized, which allows external port DMA enable and selects DTYPE
for instruction words, PMODE for 16- to 48-bit word packing, and least sig-
nificant word first.

Because the host processor is accessing the EPB0 external port buffer, the
HPM host packing mode bits of the SYSCON register must correspond to the
external bus width specified by the PMODE bits of DMACx control register.

Table 5-7. Host Connections to ADSP-21160 Processors

Processor Connection/Data Bus Pins

ADSP-21160 Host connected to DATA63—32 or DATA47—31 pins (based on HPM bits)

ADSP-21160 ADSP-21160 host address to IOP registers and internal memory

ADSP-21160 Processor Booting

5-10 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

For a different packing mode, the host must write to DMACx and SYSCON to
change the PMODE and HBW setting. The host boot file created by the loader
utility requires the host processor to perform the following sequence of
actions:

1. The host initiates the synchronous booting operation by asserting
the processor HBR input pin, informing the processor that the
default 8-/16-bit bus width is used. The host may optionally assert
the CS chip select input to allow asynchronous transfers.

2. After the host receives the HBG signal (and ACK for synchronous
operation or READY for asynchronous operation) from the proces-
sor, the host can start downloading instructions by writing directly
to the external port DMA buffer 0 or the host can change the reset
initialization conditions of the processor by writing to any of the
IOP control registers. The host must use data bus pins as shown in
Table 5-7.

3. The host continues to write 16-bit words to EPB0 until the entire
program is boot-loaded. The host must wait between each host
write to external port DMA buffer 0.

After the host boot-loads the first 256 instructions of the boot kernel, the
initial DMA transfers stop, and the boot kernel:

1. Activates external port DMA channel interrupt (EP0I), stores the
DMACx control setting in R2 for later restore, clears DMACx for new
setting, and sets the BUSLCK bit in the MODE2 register to lock out the
host.

2. Stores the SYSCON register value in R12 for restore.

3. Enables interrupts and nesting for DMA transfer, sets up the IMASK
register to allow DMA interrupts, and sets up the MODE1 register to
enable interrupts and allow nesting.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-11

Loader for ADSP-21160 SHARC Processors

4. Loads the DMA control register with 0x00A1 and sets up its param-
eters to read the data word by word from external buffer 0.

Each word is read into the reset vector address (refer to Table 5-2)
for dispatching. The data through this buffer has a structure of
boot section which could include more than one initialization
block.

5. Clears the BUSLCK bit in the MODE2 register to let the host write in
the external buffer 0 right after the appropriate DMA channel is
activated.

For information on the data structure of the boot section and ini-
tialization, see “ADSP-21160 Processor Boot Steams” on
page 5-14.

6. Loads the first 256 words of target the executable file during the
final initialization stage, and then the kernel overwrites itself.

The final initialization works the same way as with EPROM booting,
except that the BUSLCK bit in the MODE2 register is cleared to allow the host
to write to the external port buffer.

The default boot kernel for host booting assumes IMDW is set to 0 during
boot-loading, except during the final initialization stage. When using any
power-up booting mode, the reset vector address (refer to Table 5-2) must
not contain a valid instruction because it is not executed during the boot-
ing sequence. Place a NOP or IDLE instruction at this location.

If the boot kernel initializes external memory, create a custom boot kernel
that sets appropriate values in the SYSCON and WAIT register. Be aware that
the value in the DMA channel register is non-zero, and IMASK is set to
allow DMA channel register interrupts. Because the DMA interrupt
remains enabled in IMASK, this interrupt must be cleared before using the
DMA channel again. Otherwise, unintended interrupts may occur.

ADSP-21160 Processor Booting

5-12 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

A master SHARC processor may boot a slave SHARC processor by writing
to its DMACx control register and setting the packing mode (PMODE) to 00.
This allows instructions to be downloaded directly without packing. The
wait state setting of 6 on the slave processor does not affect the speed of
the download since wait states affect bus master operation only.

Link Port Boot Mode

When link-boot the ADSP-21160 SHARC processors, the processor
receives data from 4-bit link buffer 4 and packs boot data into 48-bit
instructions using the appropriate DMA channels (DMA channel 8).

Link port mode is selected when the EBOOT is low and LBOOT and BMS are
high. The external device must provide a clock signal to the link port
assigned to link buffer 4. The clock can be any frequency, up to a maxi-
mum of the processor clock frequency. The clock falling edges strobe the
data into the link port. The most significant 4-bit nibble of the 48-bit
instruction must be downloaded first. The link port acknowledge signal
generated by the processor can be ignored during booting since the link
port cannot be preempted by another DMA channel.

Link booting is similar to host booting—the parameter registers
(IIx and Cx) for DMA channels are initialized to the same values. The
DMA channel 6 control register (DMAC6) is initialized to 0x00A0, and the
DMA channel 10 control register (DMAC10) is initialized to 0x100000. This
disables external port DMA and selects DTYPE for instruction words. The
LCTL and LCOM link port control registers are overridden during link boot-
ing to allow link buffer 4 to receive 48-bit data.

After booting completes, the IMASK remains set, allowing DMA channel
interrupts. This interrupt must be cleared before link buffer 4 is again
enabled; otherwise, unintended link interrupts may occur.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-13

Loader for ADSP-21160 SHARC Processors

No-Boot Mode

No-boot mode causes the processor to start fetching and executing
instructions at address 0x800004 in external memory space for
ADSP-21160 processors. All DMA control and parameter registers are set
to their default initialization values. The loader utility is not intended to
support no-boot mode.

ADSP-21160 Boot Kernels
The boot-loading process starts with a transfer of the boot kernel program
into the processor memory. The boot kernel sets up the processor and
loads boot data. After the boot kernel finishes initializing the rest of the
system, the boot kernel loads boot data over itself with a final DMA
transfer.

Boot kernels are loaded at reset into program segment seg_ldr, which is
defined in:

160_ldr.ldf

The files are stored in the <install_path>\SHARC\ldr directories.

The default boot kernel files shipped with CrossCore Embedded Studio
are listed in Table 5-8.

Table 5-8. ADSP-21160 Default Boot Kernel Files

Processor PROM Booting Link Booting Host Booting

ADSP-21160 160_prom.asm 160_link.asm 160_host.asm

ADSP-21160 Processor Booting

5-14 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Once the boot kernel has been loaded successfully into the processor, the
kernel follows the following sequence:

1. Each boot kernel begins with general initializations for the DAG reg-
isters, appropriate interrupts, processor ID information, and
various SDRAM or WAIT state initializations.

2. Once the boot kernel has finished the task of initializing the pro-
cessor, the kernel initializes processor memory, both internal and
external, with user application code.

ADSP-21160 Processor Boot Steams

The structure of a loader file enables the boot kernel to load code and
data, block by block. In the loader file, each block of code or data is pre-
ceded by a block header, which describes the block —length, placement,
and data or instruction type. After the block header, the loader utility out-
puts the block body, which includes the actual data or instructions for
placement in the processor memory. The loader utility, however, does not
output a block body if the actual data or instructions are all zeros in value.
This type of block called a zero block. Table 5-9 describes the block
header and block body formats.

Table 5-9. Boot Block Format

Block header
First word Bits 16–47 are not used

Bits 0–15 define the type of data block (tag)

Second word Bits 16–47 are the start address of the block
Bits 0–15 are the word count for the block

Block body
(if not a zero block)

Word 1 (48 bits)
Word 2 (48 bits)

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-15

Loader for ADSP-21160 SHARC Processors

The loader utility identifies the data type in the block header with a 16-bit
tag that precedes the block. Each type of initialization has a unique tag
number. The tag numbers and block types are shown in Table 5-10.

The kernel enables the boot port (external or link) to read the block
header. After reading information from the block header, the kernel places
the body of the block in the appropriate place in memory if the block has
a block body, or initializes in the appropriate place with zero values in the
memory if the block is a zero block.

The final section, which is identified by a tag of 0x0, is called the final ini-
tialization section. This section has self-modifying code that, when
executed, facilitates a DMA over the kernel, replacing it with user applica-
tion code that actually belongs in that space at run time. The final
initialization code also takes care of interrupts and returns the processor
registers, such as SYSCON and DMAC or LCTL, to their default values.

When the loader utility detects the final initialization tag, it reads the next
48-bit word. This word indicates the instruction to load into the 48-bit Px
register after the boot kernel finishes initializing memory.

Table 5-10. ADSP-21160 Processor Loader Block Tags

Tag Number Block Type Tag Number Block Type

0x0000 final init 0x000A zero pm48

0x0001 zero dm16 0x000B init pm16

0x0002 zero dm32 0x000C init pm32

0x0003 zero dm40 0x000E init pm48

0x0004 init dm16 0x000F zero dm64

0x0005 init dm32 0x0010 init dm64

0x0007 zero pm16 0x0011 zero pm64

0x0008 zero pm32 0x0012 init pm64

0x0009 zero pm40

ADSP-21160 Processor Booting

5-16 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The boot kernel requires that the interrupt, external port (or link port
address, depending on the boot mode) contains an RTI instruction. This
RTI is inserted automatically by the loader utility to guarantee that the
kernel executes from the reset vector, once the DMA that overwrites the
kernel is complete. A last remnant of the kernel code is left at the reset
vector location to replace the RTI with the user’s intended code. Because
of this last kernel remnant, user application code should not use the first
location of the reset vector. This first location should be a NOP or IDLE
instruction. The kernel automatically completes, and the program con-
troller begins sequencing the user application code at the second location
in the processor reset vector space.

When the boot process is complete, the processor automatically executes
the user application code. The only remaining evidence of the boot kernel
is at the first location of the interrupt vector. Almost no memory is sacri-
ficed to the boot code.

Boot Kernel Modification and Loader Issues

Some systems require boot kernel customization. The operation of other
tools (such as the C/C++ compiler) is influenced by whether the boot ker-
nel is used.

When producing a boot-loadable file, the loader utility reads a processor
executable file and uses information in it to initialize the memory. How-
ever, the loader utility cannot determine how the processor SYSCON and
WAIT registers are to be configured for external memory loading in the
system.

If you modify the boot kernel by inserting values for your system, you
must rebuild it before generating the boot-loadable file. The boot kernel
contains default values for SYSCON. The initialization code can be found in
the comments in the boot kernel source file.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-17

Loader for ADSP-21160 SHARC Processors

After modifying the boot kernel source file, rebuild the boot kernel (.dxe)
file. Do this from the IDE (refer to online help for details), or rebuild the
boot kernel file from the command line.

 Specify the name of the modified kernel executable in the Kernel
file (-l) box on the Kernel page of the Tool Settings tab.

If you modify the boot kernel for EPROM, host, or link boot modes,
ensure that the seg_ldr memory segment is defined in the .ldf file. Refer
to the source of the segment in the .ldf file located in the
<install_path>\SHARC\ldr\ or <install_path>\SHARC\ldr\ directory.

The loader utility generates a warning when vector address 0x40004 does
not contain NOP or IDLE. Because the boot kernel uses this address for the
first location of the reset vector during the boot-load process, avoid plac-
ing code at this address. When using any of the processor’s power-up boot
modes, ensure that the address does not contain a critical instruction.
Because the address is not executed during the booting sequence, place a
NOP or IDLE instruction at this location.

The boot kernel project can be rebuilt from the IDE. The command-line
can also be used to rebuild various default boot kernels for the
ADSP-21160 processors.

EPROM Booting. The default boot kernel source file for the
ADSP-21161 EPROM booting is 161_prom.asm. Copy this file to
my_prom.asm and modify it to suit your system. Then use the following
commands to rebuild the boot kernel:

easm21k -21161 my_prom.asm

or

easm21k -proc ADSP-21161 my_prom.asm

linker -T 161_ldr.ldf my_prom.doj

ADSP-21160 Processor Booting

5-18 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Host Booting. The default boot kernel source file for the ADSP-21161
host booting is 161_host.asm. Copy this file to my_host.asm and modify it
to suit your system. Then use the following commands to rebuild the boot
kernel:

easm21k -21161 my_host.asm

or

easm21k -proc ADSP-21161 my_host.asm

linker -T 161_ldr.ldf my_host.doj

Link Port Booting. The default boot kernel source file for the
ADSP-21160 link port booting is 161_link.asm. Copy this file to
my_link.asm and modify it to suit your system. Then use the following
commands to rebuild the boot kernel:

easm21k -21161 my_link.asm

or

easm21k -proc ADSP-21161 my_link.asm

linker -T 161_ldr.ldf my_link.doj

Rebuilding Boot Kernels

To rebuild the PROM boot kernel for the ADSP-21160 processors, use
these commands:

easm21k -21160 my_prom.asm

or

easm21k -proc ADSP-21160 my_prom.asm

linker -T 160_ldr.ldf my_prom.doj

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-19

Loader for ADSP-21160 SHARC Processors

ADSP-21160 Interrupt Vector Table
If an ADSP-21160 SHARC processor is booted from an external source
(EPROM, host, or another SHARC processor), the interrupt vector table
is located in internal memory. If, however, the processor is not booted and
executes from external memory, the vector table must be located in exter-
nal memory.

The IIVT bit of the SYSCON control register can be used to override the
boot mode in determining where the interrupt vector table is located. If
the processor is not booted (no-boot mode), setting IIVT to 1 selects an
internal vector table, and setting IIVT to 0 selects an external vector table.
If the processor is booted from an external source (any mode other than
no-boot mode), IIVT has no effect. The IIVT default initialization value
is 0.

Refer to EE-189: Link Port Tips and Tricks for ADSP-2116x and EE-77:
SHARC Link Port Booting on the Analog Devices Web site for more
information.

ADSP-21160 Multi-Application (Multi-DXE)
Management

Currently, the loader utility generates single-processor loader files for host
and link port boot modes. As a result, the loader utility supports multipro-
cessor EPROM boot mode only. The application code must be modified
for a multiprocessor system boot in host and link port modes.

The loader utility can produce boot-loadable files that permit the
ADSP-21160 SHARC processors in a multiprocessor system to boot from
a single EPROM. In such a system, the BMS signals from each SHARC
processor are OR’ed together to drive the chip select pin of the EPROM.
Each processor boots in turn, according to its priority. When the last pro-
cessor finishes booting, it must inform the processors to begin program
execution.

ADSP-21160 Processor Booting

5-20 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Besides taking turns when booting, EPROM boot of multiple processors
is similar to a single-processor EPROM boot.

When booting a multiprocessor system through a single EPROM:

• Connect all BMS pins to EPROM.

• Processor with ID# of 1 boots first. The other processors follow.

• The EPROM boot kernel accepts multiple .dxe files and reads the
ID field in SYSTAT to determine which area of EPROM to read.

• All processors require a software flag or hardware signal (FLAG pins)
to indicate that booting is complete.

When booting a multiprocessor system through an external port:

• The host can use the host interface.

• A SHARC processor that is EPROM-, host-, or link-booted can
boot the other processors through the external port (host boot
mode).

For multiprocessor EPROM booting, select the Multiprocessor check box
on the loader pages of the Tool Settings tab or specify the -id1exe= switch
on the loader command line. These options specify the executable file tar-
geted for a specific processor.

Do not use the -id1exe= switch to EPROM-boot a single processor whose
ID is 0. Instead, name the executable file on the command line without a
switch. For a single processor with ID=1, use the -id1exe= switch.

ADSP-21160 Processor ID Numbers

A single-processor system requires only one input (.dxe) file without any
prefix and suffix to the input file name, for example:

elfloader -proc ADSP-21160 -bprom Input.dxe

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-21

Loader for ADSP-21160 SHARC Processors

A multiprocessor system requires a distinct processor ID number for each
input file on the command line. A processor ID is provided via the
-id#exe=filename.dxe switch, where # is 0 to 6.

In the following example, the loader utility processes the input file
Input1.dxe for the processor with an ID of 1 and the input file
Input2.dxe for the processor with an ID of 2.

elfloader -proc ADSP-21160 -bprom -id1exe=Input1.dxe

-id2exe=Input2.dxe

If the executable for the # processor is identical to the executable of the N
processor, the output loader file contains only one copy of the code from
the input file.

elfloader -proc ADSP-21160 -bprom -id1exe=Input.dxe -id2ref=1

The loader utility points the id(2)exe loader jump table entry to the
id(1)exe image, effectively reducing the size of the loader file.

ADSP-21160 Processor Loader Guide
Loader utility operations depend on the loader options, which control
how the loader utility processes executable files. You select features such as
boot modes, boot kernels, and output file formats via the loader options.
These options are specified on the loader utility’s command line or via the
loader pages of the Tool Settings tab in the IDE. The loader pages consist
of multiple panes. When you open the loader pages, the default loader set-
tings for the selected processor are already set. Use the Additional Options
node to enter options that have no dialog box equivalent.

 Option settings on the loader pages of the Tool Settings tab corre-
spond to switches displayed on the command line.

For detailed information about the ADSP-21160 processor loader prop-
erty page, refer to the online help.

ADSP-21160 Processor Loader Guide

5-22 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

These sections describe how to produce a bootable loader (.ldr) file:

• “Using ADSP-21160 Loader Command Line” on page 5-22

• “Using Interface (Load Page)” on page 5-27

Using ADSP-21160 Loader Command Line
Use the following syntax for the SHARC loader command line.

elfloader inputfile -proc part_number -switch [-switch …]

where:

• inputfile—Name of the executable (.dxe) file to be processed
into a single boot-loadable file. An input file name can include the
drive and directory. Enclose long file names within straight quotes,
“long file name”.

• -proc part_number—Part number of the processor (for example,
-proc ADSP-21160) for which the loadable file is built. The -proc
switch is mandatory.

• -switch …—One or more optional switches to process. Switches
select operations and boot modes for the loader utility. A list of all
switches and their descriptions appear in Table 5-12.

 Command-line switches are not case-sensitive and placed on the
command line in any order.

The following command line,

elfloader p0.dxe -bprom -fhex -l 160_prom.dxe -proc ADSP-21160

runs the loader utility with:

• p0.dxe—Identifies the executable file to process into a boot-load-
able file. The absence of the -o switch causes the output file name
to default to p0.ldr.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-23

Loader for ADSP-21160 SHARC Processors

• -bprom —Specifies EPROM booting as the boot type for the
boot-loadable file.

• -fhex —Specifies Intel hex-32 format for the boot-loadable file.

• -l 160_prom.exe—Specifies 160_prom.exe as the boot kernel file
to be used in the boot-loadable file.

• -proc ADSP-21160—Identifies the processor model as
ADSP-21160.

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-18.

File Extensions

Some loader switches take a file name as an optional parameter.
Table 5-11 lists the expected file types, names, and extensions.

Table 5-11. File Extensions

Extension File Description

.dxe Input executable files and boot kernel files. The loader utility recognizes overlay
memory files (.ovl) and shared memory files (.sm), but does not expect these files
on the command line. Place .ovl and .sm files in the same directory as the .dxe
file that refers to them. The loader utility finds the files when processing the .dxe
file. The .ovl and .sm files may also be placed in the .ovl and .sm file output
directory specified in the .ldf file or current working directory.

.ldr Loader output file

ADSP-21160 Processor Loader Guide

5-24 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-21160 Loader Command-Line Switches

Table 5-12 is a summary of the ADSP-21160 loader switches.

Table 5-12. ADSP-21160 Loader Command-Line Switches

Switch Description

-bprom
-bhost
-blink
-bJTAG

Specifies the boot mode. The -b switch directs the loader utility to pre-
pare a boot-loadable file for the specified boot mode. Valid boot modes
include PROM, host, and link.
If -b does not appear on the command line, the default is -bprom.
To use a custom boot kernel, the boot type selected with the -b switch
must correspond to the boot kernel selected with the -l switch. Other-
wise, the loader utility automatically selects a default boot kernel based
on the selected boot type (see “ADSP-21160 Boot Kernels” on
page 5-13).

-caddress Custom option. This switch directs the loader utility to use the specified
address. Valid addresses are:
• 40000 and 40050
The loader utility obtains the proper address even when this switch is
absent from the command line.

-e filename Except shared memory. The -e switch omits the specified shared mem-
ory (.sm) file from the output loader file. Use this option to omit the
shared parts of the executable file intended to boot a multiprocessor sys-
tem.
To omit multiple .sm files, repeat the switch and parameter multiple
times on the command line. For example, to omit two files, use:
-e fileA.sm -e fileB.sm.
In most cases, it is not necessary to use the -e switch: the loader utility
processes the .sm files efficiently—includes a single copy of the code
and data from each .sm file in a loader file.

-fhex
-fASCII
-fbinary
-finclude
-fS1
-fS2
-fS3

Specifies the format of the boot-loadable file (Intel hex-32, ASCII, S1,
S2, S3, binary, or include). If the -f switch does not appear on the com-
mand line, the default boot file format is Intel hex-32 for PROM, and
ASCII for host or link.
Available formats depend on the boot type selection (-b switch):
• For PROM boot type, select a hex, ASCII, S1, S2, S3, or include

format.
• For host or link boot type, select an ASCII, binary, or include format.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-25

Loader for ADSP-21160 SHARC Processors

-h
or
-help

Command-line help. Outputs a list of the command-line switches to
standard out and exits. Type elfloader -proc ADSP-21xxx -h,
where xxx is 160 to obtain help for SHARC processors. By default, the
-h switch alone provides help for the loader driver.

-id#exe=filename Specifies the processor ID. The -id#exe= switch directs the loader util-
ity to use the processor ID (#) for the corresponding executable file
(filename parameter) when producing a boot-loadable file for a multi-
processor system. This switch is used to produce a boot-loadable file
that boots multiple processors from a single EPROM. Valid values for #
are 1, 2, 3, 4, 5, and 6.
Do not use this switch for single-processor systems. For single-processor
systems, use filename as a parameter without a switch. For more infor-
mation, refer to “ADSP-21160 Processor ID Numbers” on page 5-20.

-id#ref=N Points the processor ID (#) loader jump table entry to the ID (N) image.
If the executable file for the (#) processor is identical to the executable
of the (N) processor, the switch can be used to set the PROM start
address of the processor with ID of # to be the same as for the processor
with ID of N. This effectively reduces the size of the loader file by pro-
viding a single copy of an executable to two or more processors in a mul-
tiprocessor system. For more information, refer to “ADSP-21160
Processor ID Numbers” on page 5-20.

-l kernelfile Directs the loader utility to use the specified kernelfile as the
boot-loading routine in the output boot-loadable file. The boot kernel
selected with this switch must correspond to the boot type selected with
the -b switch.
If the -l switch does not appear on the command line, the loader
searches for a default boot kernel file. Based on the boot type (-b
switch), the loader utility searches in the processor-specific loader direc-
tory for the boot kernel file as described in “ADSP-21160 Boot Kernels”
on page 5-13.

-o filename Directs the loader utility to use the specified filename as the name for
the loader output file. If not specified, the default name is input-
file.ldr.

Table 5-12. ADSP-21160 Loader Command-Line Switches (Cont’d)

Switch Description

ADSP-21160 Processor Loader Guide

5-26 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-paddress PROM start address. Places the boot-loadable file at the specified
address in the EPROM.
If the -p switch does not appear on the command line, the loader utility
starts the EPROM file at address 0x0; this EPROM address corresponds
to 0x800000 on ADSP-21160 processors.

-proc processor Specifies the processor. This a mandatory switch.

-si-revision
#|none|any

The -si-revision {#|none|any} switch provides a silicon revision of
the specified processor.
The switch parameter represents a silicon revision of the processor spec-
ified by the -proc processor switch. The parameter takes one of three
forms:
• The none value indicates that CrossCore Embedded Studio ignores

silicon errata.
• The #.# value indicates one or more decimal digits, followed by a

point, followed by one or two decimal digits. Examples of revisions
are: 0.0, 0.1, 0.2, 0.3.

• The any value indicates that CrossCore Embedded Studio produces
an output file that can be run at any silicon revision.

The switch generates either a warning about any potential anomalous
conditions or an error if any anomalous conditions occur.

In the absence of the switch parameter (a valid revision value)—
-si-revision alone or with an invalid value—the loader utility gener-
ates an error.

-t# (Host boot only) Specifies timeout cycles; for example, -t100. Limits
the number of cycles that the processor spends initializing external
memory with zeros. Valid timeout values (#) range from 3 to 32765
cycles; 32765 is the default. The # is directly related to the number of
cycles the processor locks the bus for boot-loading, instructing the pro-
cessor to lock the bus for no more than two times the timeout number
of cycles. When working with a fast host that cannot tolerate being
locked out of the bus, use a relatively small timeout value.

-use32bitTagsfor
ExternalMemory-
Blocks

Directs the loader utility to treat the external memory sections as 32-bit
sections, as specified in the .ldf file and does not pack them into 48-bit
sections before processing. This option is useful if the external memory
sections are packed by the linker and do not need the loader utility to
pack them again.

Table 5-12. ADSP-21160 Loader Command-Line Switches (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 5-27

Loader for ADSP-21160 SHARC Processors

Using Interface (Load Page)
After selecting Loader Image as the project output type for your SHARC
application on the Application Settings page in the C Project Wizard,
modify the default options on the loader pages (also called loader property
pages). Click Apply to save the selections.

The IDE invokes the elfloader utility to build the output file. The loader
pages buttons and fields correspond to loader command-line switches and
parameters (see Table 5-12). Use the Additional Options page to enter
options that do not have dialog box equivalents.

-v Outputs verbose loader utility messages and status information as the
utility processes files.

-version Directs the loader utility to show its version information. Type
elfloader -version to display the version of the loader drive. Add
the -proc switch, for example,
elfloader -proc ADSP-21160 -version to display version infor-
mation of both loader drive and SHARC loader utility.

Table 5-12. ADSP-21160 Loader Command-Line Switches (Cont’d)

Switch Description

ADSP-21160 Processor Loader Guide

5-28 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-1

6 LOADER FOR ADSP-21161
SHARC PROCESSORS

This chapter explains how the loader utility (elfloader.exe) is used to
convert executable (.dxe) files into boot-loadable files for the
ADSP-21161 SHARC processors.

Refer to “Introduction” on page 1-1 for the loader utility overview; the
introductory material applies to all processor families. Refer to “Loader for
ADSP-21160 SHARC Processors” on page 5-1 for information about the
ADSP-21160 processors. Refer to “Loader for
ADSP-2126x/2136x/2137x/214xx SHARC Processors” on page 7-1 for
information about the ADSP-2126x, ADSP-2136x, ADSP-2137x,
ADSP-2146x, ADSP-2147x, and ADSP-2148x processors.

Loader operations specific to the ADSP-21161 SHARC processors are
detailed in the following sections.

• “ADSP-21161 Processor Booting” on page 6-2
Provides general information about various boot modes, including
information about boot kernels.

• “ADSP-21161 Processor Loader Guide” on page 6-23
Provides reference information about the loader utility’s graphical
user interface, command-line syntax, and switches.

Refer to EE-177 SHARC SPI Booting, EE-199 Link Port Booting on the
ADSP-21161 SHARC DSP, EE-209 Asynchronous Host Interface on the
ADSP-21161 SHARC DSP on the Analog Devices Processor Web site for
related information.

ADSP-21161 Processor Booting

6-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-21161 Processor Booting
The ADSP-21161 processors support five boot modes: EPROM, host,
link port, SPI port, and no-boot (see Table 6-1 and Table 6-2).
Boot-loadable files for these modes pack boot data into words of appropri-
ate widths and use an appropriate DMA channel of the processor’s DMA
controller to boot-load the words.

• When booting from an EPROM through the external port, the
ADSP-21161 processor reads boot data from an 8-bit external
EPROM.

• When booting from a host processor through the external port, the
ADSP-21161 processor accepts boot data from 8- or 16-bit host
microprocessor.

• When booting through the link port, the ADSP-21161 processor
receives boot data through the link port as 4-bit wide data in link
buffer 4.

• When booting through the SPI port, the ADSP-21161 processor
uses DMA channel 8 of the IO processor to transfer instructions to
internal memory. In this boot mode, the processor receives data in
the SPIRx register.

• In no-boot mode, the ADSP-21161 processors begin executing
instructions from external memory.

Software developers who use the loader utility should be familiar with the
following operations:

• “Power-Up Booting Process” on page 6-3

• “Boot Mode Selection” on page 6-4

• “ADSP-21161 Processor Boot Modes” on page 6-5

• “ADSP-21161 Processor Boot Kernels” on page 6-16

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-3

Loader for ADSP-21161 SHARC Processors

• “Boot Kernel Modification and Loader Issues” on page 6-18

• “ADSP-21161 Processor Interrupt Vector Table” on page 6-20

• “ADSP-21161 Multi-Application (Multi-DXE) Management” on
page 6-21

Power-Up Booting Process
The ADSP-21161 processors include a hardware feature that boot-loads a
small, 256-instruction program into the processor’s internal memory after
power-up or after the chip reset. These instructions come from a program
called boot kernel. When executed, the boot kernel facilitates booting of
user application code. The combination of the boot kernel and application
code comprises the boot-loadable (.ldr) file.

At power-up, after the chip reset, the booting process includes the follow-
ing steps.

1. Based on the boot mode, an appropriate DMA channel is automat-
ically configured for a 256-instruction transfer. This transfer
boot-loads the boot kernel program into the processor memory.

2. The boot kernel runs and loads the application executable code and
data.

3. The boot kernel overwrites itself with the first 256 words of the
application at the end of the booting process. After that, the appli-
cation executable code starts running.

The boot mode selection directs the system to prepare the appropriate
boot kernel.

ADSP-21161 Processor Booting

6-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Boot Mode Selection
The state of the LBOOT, EBOOT, and BMS pins selects the ADSP-21161 pro-
cessor’s boot mode. Table 6-1 and Table 6-2 show how the pin states
correspond to the modes.

Table 6-1. ADSP-21161 Boot Mode Pins

Pin Type Description

EBOOT I EPROM boot – when EBOOT is high, the processor boot-loads from an 8-bit
EPROM through the processor’s external port. When EBOOT is low, the
LBOOT and BMS pins determine booting mode.

LBOOT I Link port boot – when LBOOT is high and EBOOT is low, the processor boots
from another SHARC processor through the processor’s link port. When
LBOOT is low and EBOOT is low, the processor boots from a host processor
through the processor’s external port.

BMS I/O/T1

1 Three-statable in EPROM boot mode (when BMS is an output).

Boot memory select – when boot-loading from EPROM (EBOOT=1 and
LBOOT=0), the pin is an output and serves as the chip select for the EPROM.
In a multiprocessor system, BMS is output by the bus master. When
host-booting, link-booting, or SPI-booting (EBOOT=0), BMS is an input and
must be high.

Table 6-2. ADSP-21161 Boot Mode Pin States

EBOOT LBOOT BMS Booting Mode

1 0 Output EPROM (connects BMS to EPROM chip select)

0 0 1 (Input) Host processor

0 1 1 (Input) Link port

0 1 0 (Input) Serial port (SPI)

0 0 0 (Input) No-boot (processor executes from external memory)

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-5

Loader for ADSP-21161 SHARC Processors

ADSP-21161 Processor Boot Modes
The ADSP-21161 processors support these boot modes: EPROM, host,
link, and SPI. The following section describe each of the modes.

• “EPROM Boot Mode” on page 6-5

• “Host Boot Mode” on page 6-9

• “Link Port Boot Mode” on page 6-12

• “SPI Port Boot Mode” on page 6-14

• “No-Boot Mode” on page 6-16

 For multiprocessor booting, refer to “ADSP-21161 Multi-Applica-
tion (Multi-DXE) Management” on page 6-21.

EPROM Boot Mode

EPROM boot via the external port is selected when the EBOOT input is
high and the LBOOT input is low. These settings cause the BMS pin to
become an output, serving as chip select for the EPROM.

The DMAC10 control register is initialized for booting packing boot data
into 48-bit instructions. EPROM boot mode uses channel 10 of the IO
processor’s DMA controller to transfer the instructions to internal mem-
ory. For EPROM booting, the processor reads data from an 8-bit external
EPROM.

After the boot process loads 256 words into memory locations 0x40000
through 0x400FF, the processor begins to execute instructions. Because
most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for
the application. CrossCore Embedded Studio includes loading routines
(boot kernels) that can load entire programs; see “ADSP-21161 Processor
Boot Kernels” on page 6-16 for more information.

ADSP-21161 Processor Booting

6-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed
information on DMA and system configurations.

 Be aware that DMA channel differences between the ADSP-21161
and previous SHARC processors account for boot differences. Even
with these differences, the ADSP-21161 processor supports the
same boot capability and configuration as previous SHARC proces-
sors. The DMACx register default values differ because the
ADSP-21161 processor has additional parameters and different
DMA channel assignments. EPROM boot mode uses EPB0, DMA
channel 10. Similar to previous SHARC processors, the
ADSP-21161 processor boots from DATA23—16.

The processor determines the booting mode at reset from the EBOOT,
LBOOT, and BMS pin inputs. When EBOOT=1 and LBOOT=0, the processor
boots from an EPROM through the external port and uses BMS as the
memory select output. For information on boot mode selection, see the
boot memory select pin descriptions in Table 6-1 and Table 6-2.

 When using any of the power-up boot modes, address 0x40004
should not contain a valid instruction since it is not executed dur-
ing the booting sequence. Place a NOP or IDLE instruction at this
location.

EPROM boot (boot space 8M x 8-bit) through the external port requires
that an 8-bit wide boot EPROM be connected to the processor data bus
pins 23–16 (DATA23—16). The processor’s lowest address pins should be
connected to the EPROM address lines. The EPROM’s chip select should
be connected to BMS, and its output enable should be connected to RD.

In a multiprocessor system, the BMS output is driven by the ADSP-21161
processor bus master only. This allows the wired OR of multiple BMS signals
for a single common boot EPROM.

 Systems can boot up to six ADSP-21161 processors from a single
EPROM using the same code for each processor or differing code
for each processor.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-7

Loader for ADSP-21161 SHARC Processors

During reset, the ACK line is internally pulled high with the equivalent of
an internal 20K ohm resistor and is held high with an internal keeper
latch. It is not necessary to use an external pull-up resistor on the ACK line
during booting or at any other time.

The RBWS and RBAM fields of the WAIT register are initialized to perform
asynchronous access and generate seven wait states (8 cycles total) for the
EPROM access in external memory space. Note that wait states defined
for boot memory are applied to BMS asserted accesses.

Table 6-3 shows how DMA channel 10 parameter registers are initialized
at reset. The count register (CEP0) is initialized to 0x0100 to transfer 256
words to internal memory. The external count register (ECEP0), used when
external addresses (BMS space) are generated by the DMA controller, is ini-
tialized to 0x0600 (0x0100 words at six bytes per word). The DMAC10
control register is initialized to 0x00 0561.

The default value sets up external port transfers as follows:

• DEN = 1, external port enabled

• MSWF = 0, LSB first

• PMODE = 101, 8-bit to 48-bit packing, Master = 1

• DTYPE = 1, three column data

ADSP-21161 Processor Booting

6-8 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The following sequence occurs at system start-up, when the processor
RESET input goes inactive.

1. The processor goes into an idle state, identical to that caused by the
IDLE instruction. The program counter (PC) is set to address
0x40004.

2. The DMA parameter registers for channel 10 are initialized as
shown in Table 6-3.

3. The BMS pin becomes the boot EPROM chip select.

4. 8-bit master mode DMA transfers from EPROM to the first inter-
nal memory address on the external port data bus lines 23–16.

5. The external address lines (ADDR23—0) start at 0x800000 and incre-
ment after each access.

6. The RD strobe asserts as in a normal memory access with seven wait
states (8 cycles).

The processor’s DMA controller reads the 8-bit EPROM words, packs
them into 48-bit instruction words, and transfers them to internal

Table 6-3. DMA Channel 10 Parameter Registers for EPROM Booting

Parameter Register Initialization Value

IIEP0 0x40000

IMEP0 Uninitialized (increment by 1 is automatic)

CEP0 0x100 (256-instruction words)

CPEP0 Uninitialized

GPEP0 Uninitialized

EIEP0 0x800000

EMEP0 Uninitialized (increment by 1 is automatic)

ECEP0 0x600 (256 words x 6 bytes/word)

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-9

Loader for ADSP-21161 SHARC Processors

memory until 256 words have been loaded. The EPROM is automatically
selected by the BMS pin; other memory select pins are disabled.

The master DMA internal and external count registers (ECEP0/CEP0) dec-
rement after each EPROM transfer. When both counters reach zero, the
following wake-up sequence occurs:

1. DMA transfers stop.

2. External port DMA channel 10 interrupt (EP0I) is activated.

3. The BMS pin is deactivated, and normal external memory selects are
activated.

4. The processor vectors to the EP0I interrupt vector at 0x40050.

At this point, the processor has completed its boot and is executing
instructions normally. The first instruction at the EP0I interrupt vector
location, address 0x40050, should be an RTI (return from interrupt). This
process returns execution to the reset routine at location 0x40005 where
normal program execution can resume. After reaching this point, a pro-
gram can write a different service routine at the EP0I vector location
0x40050.

Host Boot Mode

The processor can boot from a host processor through the external port.
Host booting is selected when the EBOOT and LBOOT inputs are low and BMS
is high. Configured for host booting, the processor enters the slave mode
after reset and waits for the host to download the boot program.

The DMAC10 control register is initialized for booting, packing boot data
into 48-bit instructions. Channel 10 of the IO processor’s DMA control-
ler is used to transfer instructions to internal memory. Processors accept
data from 8- or 16-bit host microprocessor (or other external devices).

ADSP-21161 Processor Booting

6-10 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

After the boot process loads 256 words into memory locations 0x40000
through 0x400FF, the processor begins executing instructions. Because
most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for
the application. CrossCore Embedded Studio includes loading routines
(boot kernels) that can load entire programs; refer to “ADSP-21161 Pro-
cessor Boot Kernels” on page 6-16 for more information.

Refer to EE-177: SHARC SPI Booting, located on the Analog Devices Web
site for information about SPI slave booting. Refer to the ADSP-21161
SHARC DSP Hardware Reference for detailed information on DMA and
system configurations.

 DMA channel differences between the ADSP-21161 and previous
SHARC family processors account for boot differences. Even with
these differences, the ADSP-21161 processors support the same
boot capability and configuration as previous SHARC processors.
The DMAC10 register default values differ because the ADSP-21161
processor has additional parameters and different DMA channel
assignments. Host boot mode uses EPB0, DMA channel 10.

The processor determines the boot mode at reset from the EBOOT, LBOOT,
and BMS pin inputs. When EBOOT=0, LBOOT=0, and BMS=1, the processor
boots from a host through the external port. Refer to Table 6-1 and
Table 6-2 for boot mode selection.

When using any of the power-up boot modes, address 0x40004 should not
contain a valid instruction. Because it is not executed during the boot
sequence, place a NOP or IDLE instruction at this location.

During reset, the processor ACK line is internally pulled high with an
equivalent 20K ohm resistor and is held high with an internal keeper
latch. It is not necessary to use an external pull-up resistor on the ACK line
during booting or at any other time.

Table 6-4 shows how the DMA channel 10 parameter registers are initial-
ized at reset for host boot. The internal count register (CEP0) is initialized

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-11

Loader for ADSP-21161 SHARC Processors

to 0x0100 to transfer 256 words to internal memory. The DMAC10 control
register is initialized to 0000 0161.

The default value sets up external port transfers as follows:

• DEN = 1, external port enabled

• MSWF = 0, LSB first

• PMODE = 101, 8-bit to 48-bit packing

• DTYPE = 1, three column data

At system start-up, when the processor RESET input goes inactive, the fol-
lowing sequence occurs.

1. The processor goes into an idle state, identical to that caused by the
IDLE instruction. The program counter (PC) is set to address
0x40004.

2. The DMA parameter registers for channel 10 are initialized as
shown in Table 6-4.

3. The host uses HBR and CS to arbitrate for the bus.

Table 6-4. DMA Channel 10 Parameter Register for Host Boot

Parameter Register Initialization Value

IIEP0 0x0004 0000

IMEP0 Uninitialized (increment by 1 is automatic)

CEP0 0x0100 (256-instruction words)

CPEP0 Uninitialized

GPEP0 Uninitialized

EIEP0 Uninitialized

EMEP0 Uninitialized

ECEP0 Uninitialized

ADSP-21161 Processor Booting

6-12 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

4. The host can write to SYSCON (if HBG and READY are returned) to
change boot width from default.

5. The host writes boot information to external port buffer 0.

The slave DMA internal count register (CEP0) decrements after each trans-
fer. When CEP0 reaches zero, the following wake-up sequence occurs:

1. The DMA transfers stop.

2. The external port DMA channel 10 interrupt (EP0I) is activated.

3. The processor vectors to the EP0I interrupt vector at 0x40050.

At this point, the processor has completed its boot mode and is executing
instructions normally. The first instruction at the EP0I interrupt vector
location, address 0x40050, should be an RTI (return from interrupt). This
process returns execution to the reset routine at location 0x40005 where
normal program execution can resume. After reaching this point, a pro-
gram can write a different service routine at the EP0I vector location
0x40050.

Link Port Boot Mode

Link port boot uses DMA channel 8 of the IO processor to transfer
instructions to internal memory. In this boot mode, the processor receives
4-bit wide data in link buffer 0.

After the boot process loads 256 words into memory locations 0x40000
through 0x400FF, the processor begins to execute instructions. Because
most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for
the application. CrossCore Embedded Studio includes loading routines
(boot kernels) that load an entire program through the selected port; refer
to “ADSP-21161 Processor Boot Kernels” on page 6-16 for more
information.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-13

Loader for ADSP-21161 SHARC Processors

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed
information on DMA and system configurations.

 DMA channel differences between the ADSP-21161 and previous
SHARC family processors account for boot differences. Even with
these differences, the ADSP-21161 processors support the same
boot capabilities and configuration as the previous SHARC
processors.

The processor determines the boot mode at reset from the EBOOT, LBOOT
and BMS pin inputs. When EBOOT=0, LBOOT=1, and BMS=1, the processor
boots through the link port. For information on boot mode selection, see
Table 6-1 and Table 6-2.

 When using any of the power-up booting modes, address 0x40004
should not contain a valid instruction. Because it is not executed
during the boot sequence, place a NOP or IDLE instruction at this
location.

In link port boot, the processor gets boot data from another processor link
port or 4-bit wide external device after system power-up.

The external device must provide a clock signal to the link port assigned
to link buffer 0. The clock can be any frequency up to the processor clock
frequency. The clock falling edges strobe the data into the link port. The
most significant 4-bit nibble of the 48-bit instruction must be down-
loaded first.

Table 6-5 shows how the DMA channel 8 parameter registers are initial-
ized at reset. The count register (CLB0) is initialized to 0x0100 to transfer
256 words to internal memory. The LCTL register is overridden during link
port boot to allow link buffer 0 to receive 48-bit data.

In systems where multiple processors are not connected by the parallel
external bus, booting can be accomplished from a single source through
the link ports. To simultaneously boot all the processors, make a parallel
common connection to link buffer 0 on each of the processors. If a daisy

ADSP-21161 Processor Booting

6-14 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

chain connection exists between the processors’ link ports, each processor
can boot the next processor in turn. Link buffer 0 must always be used for
booting.

SPI Port Boot Mode

Serial peripheral interface (SPI) port booting uses DMA channel 8 of the
IO processor to transfer instructions to internal memory. In this boot
mode, the processor receives 8-bit wide data in the SPIRx register.

During the boot process, the program loads 256 words into memory loca-
tions 0x40000 through 0x400FF. The processor subsequently begins
executing instructions. Because most processor programs require more
than 256 words of instructions and initialization data, the 256 words typ-
ically serve as a loading routine for the application. CrossCore Embedded
Studio includes loading routines (boot kernels) which load an entire pro-
gram through the selected port. See “ADSP-21161 Processor Boot
Kernels” on page 6-16 for more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed
information on DMA and system configurations. For information about
SPI slave booting, refer to EE-177: SHARC SPI Booting, located on the
Analog Devices Web site.

The processor determines the boot mode at reset from the EBOOT, LBOOT,
and BMS pin inputs. When EBOOT=0, LBOOT=1, and BMS=0, the processor

Table 6-5. DMA Channel 8 Parameter Register for Link Port Boot

Parameter Register Initialization Value

IILB0 0x0004 0000

IMLB0 Uninitialized (increment by 1 is automatic)

CLB0 0x0100 (256-instruction words)

CPLB0 Uninitialized

GPLB0 Uninitialized

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-15

Loader for ADSP-21161 SHARC Processors

boots through its SPI port. For information on the boot mode selection,
see Table 6-1 and Table 6-2.

 When using any of the power-up booting modes, address 0x40004
should not contain a valid instruction. Because it is not executed
during the boot sequence, place a NOP or IDLE instruction placed at
this location.

For SPI port boot, the processor gets boot data after system power-up
from another processor’s SPI port or another SPI compatible device.

Table 6-6 shows how the DMA channel 8 parameter registers are initial-
ized at reset. The SPI control register (SPICTL) is configured to
0x0A001F81 upon reset during SPI boot.

This configuration sets up the SPIRx register for 32-bit serial transfers.
The SPIRx DMA channel 8 parameter registers are configured to DMA in
0x180 32-bit words into internal memory normal word address space start-
ing at 0x40000. Once the 32-bit DMA transfer completes, the data is
accessed as 3 column, 48-bit instructions. The processor executes a 256
word (0x100) boot kernel upon completion of the 32-bit, 0x180 word
DMA.

For 16-bit SPI hosts, two words are shifted into the 32-bit receive shift
register before a DMA transfer to internal memory occurs. For 8-bit SPI
hosts, four words are shifted into the 32-bit receive shift register before a
DMA transfer to internal memory occurs.

Table 6-6. DMA Channel 8 Parameter Register for SPI Port Boot

Parameter Register Initialization Value

IISRX 0x0004 0000

IMSRX Uninitialized (increment by 1 is automatic)

CSRX 0x0180 (256-instruction words)

GPSRX Uninitialized

ADSP-21161 Processor Booting

6-16 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

No-Boot Mode

No-boot mode causes the processor to start fetching and executing
instructions at address 0x200004 in external memory space. In no-boot
mode, the processor does not boot-load and all DMA control and
parameter registers are set to their default initialization values.The loader
utility does not produce the code for no-boot execution.

ADSP-21161 Processor Boot Kernels
The boot-loading process starts with a transfer of the boot kernel program
into the processor memory. The boot kernel sets up the processor and
loads boot data. After the boot kernel finishes initializing the rest of the
system, the boot kernel loads boot data over itself with a final DMA
transfer.

Four boot kernels are shipped with CrossCore Embedded Studio; refer to
Table 6-7.

Boot kernels are loaded at processor reset into the seg_ldr memory seg-
ment, which is defined in the 161_ldr.ldf. The file is stored in the
<install_path>\SHARC\ldr directory.

ADSP-21161 Processor Boot Streams

The loader utility produces the boot stream in blocks and inserts header
words at the beginning of data blocks in the loader (.ldr) file. The boot
kernel uses header words to properly place data and instruction blocks

Table 6-7. ADSP-21161 Default Boot Kernel Files

PROM Booting Link Booting Host Booting SPI Booting

161_PROM.dxe 161_LINK.dxe 161_HOST.dxe 161_SPI.dxe

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-17

Loader for ADSP-21161 SHARC Processors

into processor memory. The header format for PROM, host, and link
boot-loader files is as follows.

0x00000000DDDD

0xAAAAAAAALLLL

In the above example, D is a data block type tag, A is a block start address,
and L is a block word length.

For single-processor systems, the data block header has three 32-bit words
in SPI boot mode, as follows.

The boot kernel examines the tag to determine the type of data or instruc-
tion being loaded. Table 6-8 lists the ADSP-21161N processor block tags.

0xLLLLLLLL First word. Data word length or data word count of the data block.

0xAAAAAAAA Second word. Data block start address.

0x000000DD Third word. Tag of data block type.

Table 6-8. ADSP-21161N Processor Block Tags

Tag Number Block Type Tag Number Block Type

0x0000 final init 0x000E init pm48

0x0001 zero dm16 0x000F zero dm64

0x0002 zero dm32 0x0010 init dm64

0x0003 zero dm40 0x0012 init pm64

0x0004 init dm16 0x0013 init pm8 ext

0x0005 init dm32 0x0014 init pm16 ext

0x0007 zero pm16 0x0015 init pm32 ext

0x0008 zero pm32 0x0016 init pm48 ext

0x0009 zero pm40 0x0017 zero pm8 ext

0x000A zero pm48 0x0018 zero pm16 ext

ADSP-21161 Processor Booting

6-18 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Boot Kernel Modification and Loader Issues

Some systems require boot kernel customization. In addition, the opera-
tion of other tools (such as the C/C++ compiler) is influenced by whether
the loader utility is used.

If you do not specify a boot kernel file via the loader pages of the Tool Set-
tings tab in the IDE (or via the -l kernelfile command-line switch), the
loader utility places a default boot kernel in the loader output file (see
“ADSP-21161 Processor Boot Kernels” on page 6-16) based on the speci-
fied boot mode.

Rebuilding a Boot Kernel File

If you modify the boot kernel source (.asm) file by inserting correct values
for your system, you must rebuild the boot kernel (.dxe) before generating
the boot-loadable (.ldr) file. The boot kernel source file contains default
values for the SYSCON register. The WAIT, SDCTL, and SDRDIV initialization
code is in the boot kernel file comments.

To Modify a Boot Kernel Source File

1. Copy the applicable boot kernel source file (161_link.asm,
161_host.asm, 161_prom.asm, or 161_spi.asm).

2. Apply the appropriate initializations of the SYSCON and WAIT
registers.

0x000B init pm16 0x0019 zero pm32 ext

0x000C init pm32 0x001A zero pm48 ext

0x0011 zero pm64

Table 6-8. ADSP-21161N Processor Block Tags (Cont’d)

Tag Number Block Type Tag Number Block Type

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-19

Loader for ADSP-21161 SHARC Processors

After modifying the boot kernel source file, rebuild the boot kernel (.dxe)
file. Do this from the IDE (refer to online help for details), or rebuild the
boot kernel file from the command line.

Rebuilding a Boot Kernel Using Command Lines

Rebuild a boot kernel using command lines as follows.

EPROM Boot. The default boot kernel source file for EPROM booting is
161_prom.asm. After copying the default file to my_prom.asm and modify-
ing it to suit your system, use the following command lines to rebuild the
boot kernel.

easm21k -proc ADSP-21161 my_prom.asm

linker -T 161_ldr.ldf my_prom.doj

Host Boot. The default boot kernel source file for host booting is
161_host.asm. After copying the default file to my_host.asm and modify-
ing it to suit your system, use the following command lines to rebuild the
boot kernel.

easm21k -proc ADSP-21161 my_host.asm

linker -T 161_ldr.ldf my_host.doj

Link Boot. The default boot kernel source file for link booting is
161_link.asm. After copying the default file to my_link.asm and
modifying it to suit your system, use the following command lines to
rebuild the boot kernel.

easm21k -proc ADSP-21161 my_link.asm

linker -T 161_ldr.ldf my_link.doj

ADSP-21161 Processor Booting

6-20 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

SPI Boot. The default boot kernel source file for link booting is
161_SPI.asm. After copying the default file to my_SPI.asm and modifying
it to suit your system, use the following command lines to rebuild the
boot kernel:

easm21k -proc ADSP-21161 my_SPI.asm

linker -T 161_ldr.ldf my_SPI.doj

Loader File Issues

If you modify the boot kernel for the EPROM, host, SPI, or link booting
modes, ensure that the seg_ldr memory segment is defined in the .ldf
file. Refer to the source of this memory segment in the .ldf file located in
the …\ldr\ directory of the of the target processor.

Because the loader utility uses the address of 0x40004 for the first location
of the reset vector during the boot-load process, avoid placing code at this
address. When using any of the processor’s power-up boot modes, ensure
that this address does not contain a critical instruction. Because this
address is not executed during the booting sequence, place a NOP or IDLE in
this location. The loader utility generates a warning if the vector address
0x40004 does not contain NOP or IDLE.

 When creating the loader file, specify the name of the customized
boot kernel executable in the Kernel file (-l) box on the Kernel
loader page of the Tool Settings tab.

ADSP-21161 Processor Interrupt Vector Table
If the ADSP-21161 processor is booted from an external source (EPROM,
host, link port, or SPI), the interrupt vector table is located in internal
memory. If the processor is not booted and executes from external mem-
ory (no-boot mode), the vector table must be located in external memory.

The IIVT bit in the SYSCON control register can be used to override the
booting mode in determining where the interrupt vector table is located.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-21

Loader for ADSP-21161 SHARC Processors

If the processor is not booted (no-boot mode), setting IIVT to 1 selects an
internal vector table, and setting IIVT to zero selects an external vector
table. If the processor is booted from an external source (any boot mode
other than no-boot), IIVT has no effect. The default initialization value of
IIVT is zero.

ADSP-21161 Multi-Application (Multi-DXE)
Management

Currently, the loader utility generates single-processor loader files for
host, link, and SPI port boot. The loader utility supports multiprocessor
EPROM boot only. The application code must be modified to properly
set up multiprocessor booting in host, link, and SPI port boot modes.

There are two methods by which a multiprocessor system can be booted:

• “Boot From a Single EPROM”

• “Sequential EPROM Boot”

Regardless of the method, the processors perform the following steps.

1. Arbitrate for the bus

2. Upon becoming bus master, DMA the 256-word boot stream

3. Release the bus

4. Execute the loaded instructions

Boot From a Single EPROM

The loader utility can produce boot-loadable files that permit SHARC
processors in a multiprocessor system to boot from a single EPROM. The
BMS signals from each processor may be wire ORed together to drive the
EPROM’s chip select pin. Each processor can boot in turn, according to
its priority. When the last processor has finished booting, it must inform

ADSP-21161 Processor Booting

6-22 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

the other processors (which may be in the idle state) that program execu-
tion can begin (if all processors are to begin executing instructions
simultaneously).

When multiple processors boot from a single EPROM, the processors can
boot identical code or different code from the EPROM. If the processors
load differing code, use a jump table in the loader file (based on processor
ID) to select the code for each processor.

Sequential EPROM Boot

Set the EBOOT pin of the processor with ID# of 1 high for EPROM boot-
ing. The other processors should be configured for host boot (EBOOT=0,
LBOOT=0, and BMS=1), leaving them in the idle state at startup and allowing
the processor with ID=1 to become bus master and boot itself. Connect the
BMS pin of processor #1 only to the EPROM’s chip select pin. When
processor #1 has finished booting, it can boot the remaining processors by
writing to their external port DMA buffer 0 (EPB0) via the multiprocessor
memory space.

Processor ID Numbers

A single-processor system requires only one input (.dxe) file without any
prefix and suffix to the input file name, for example:

elfloader -proc ADSP-21161 -bprom Input.dxe

A multiprocessor system requires a distinct processor ID number for each
input file on the command line. A processor ID is provided via the
-id#exe=filename.dxe switch, where # is 1 to 6.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-23

Loader for ADSP-21161 SHARC Processors

In the following example, the loader utility processes the input file
Input1.dxe for the processor with an ID of 1 and the input file
Input2.dxe for the processor with an ID of 2.

elfloader -proc ADSP-21161 -bprom -id1exe=Input1.dxe

-id2exe=Input2.dxe

If the executable for the # processor is identical to the executable of the N
processor, the output loader file contains only one copy of the code from
the input file, as directed by the command-line switch -id#ref=N used in
the example:

elfloader -proc ADSP-21161 -bprom -id1exe=Input.dxe -id2ref=1

where 2 is the processor ID, and 1 is another processor ID referenced by
processor 2.

The loader utility points the id(2)exe loader jump table entry to the
id(1)exe image, effectively reducing the size of the loader file.

ADSP-21161 Processor Loader Guide
Loader operations depend on the loader options, which control how the
loader utility processes executable files. You select features such as boot
modes, boot kernels, and output file formats via the options. The options
are specified on the loader utility’s command line or via the General
loader page of the Tool Settings tab in the IDE.

The loader pages consist of multiple panes. For information specific to the
ADSP-21161 processor, refer to the online help for that processor. When
you open the loader pages, the default loader settings for the selected pro-
cessor are already set. Use the Additional Options loader page of the Tool
Settings tab to enter options that have no dialog box equivalent.

ADSP-21161 Processor Loader Guide

6-24 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

 Option settings on the loader pages correspond to switches dis-
played on the command line.

These sections describe how to produce a bootable loader (.ldr) file:

• “Using ADSP-21161 Loader Command Line” on page 6-24

• “Using Interface (Load Page)” on page 6-31

Using ADSP-21161 Loader Command Line
Use the following syntax for the ADSP-21161 loader command line.

elfloader inputfile -proc ADSP-21161 -switch [-switch…]

where:

• inputfile—Name of the executable file (.dxe) to be processed
into a single boot-loadable file. An input file name can include the
drive and directory. Enclose long file names within straight quotes,
“long file name”.

• -proc ADSP-21161—Part number of the processor for which the
loadable file is built. The -proc switch is mandatory.

• -switch …—One or more optional switches to process. Switches
select operations and boot modes for the loader utility. A list of all
switches and their descriptions appear in Table 6-10.

 Command-line switches are not case-sensitive and placed on the
command line in any order.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-25

Loader for ADSP-21161 SHARC Processors

Single-Processor Systems

The following command line,

elfloader Input.dxe -bSPI -proc ADSP-21161

runs the loader utility with:

• Input.dxe—Identifies the executable file to process into a
boot-loadable file for a single-processor system. Note that the
absence of the -o switch causes the output file name to default to
Input.ldr.

• -bSPI—Specifies SPI port booting as the boot type for the
boot-loadable file.

• -proc ADSP-21161—Specifies ADSP-21161 as the target processor.

Multiprocessor Systems

The following command line,

elfloader -proc ADSP-21161 -bprom -id1exe=Input1.dxe

-id2exe=Input2.dxe

runs the loader utility with:

• -proc ADSP-21161—Specifies ADSP-21161 as the target processor.

• -bprom—Specifies EPROM booting as the boot type for the
boot-loadable file.

• -id1exe=Input1.dxe—Identifies Input1.dxe as the executable file
to process into a boot-loadable file for a processor with ID of 1
(see “Processor ID Numbers” on page 6-22).

• -id2exe=Input2.dxe—Identifies Input2.dxe. as the executable file
to process into a boot-loadable file for a processor with ID of 2
(see “Processor ID Numbers” on page 6-22).

ADSP-21161 Processor Loader Guide

6-26 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-18.

File Extensions

Some loader switches take a file name as an optional parameter. Table 6-9
lists the expected file types, names, and extensions.

Table 6-9. File Extensions

Extension File Description

.dxe Executable files and boot kernel files. The loader utility recognizes overlay memory
files (.ovl) and shared memory files (.sm) but does not expect these files on the
command line. Place .ovl and .sm files in the same directory as the .dxe file that
refers to them so the loader utility can find them when processing the .ldr file. The
.ovl and .sm files can also be placed in the .ovl and .sm file output directory spec-
ified in the .ldf file.

.ldr Loader output file

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-27

Loader for ADSP-21161 SHARC Processors

Loader Command-Line Switches

Table 6-10 is a summary of the ADSP-21161 loader switches.

Table 6-10. ADSP-21161 Loader Command Line Switches

Switch Description

-bprom
-bhost
-blink
-bspi

Specifies the boot mode. The -b switch directs the loader utility to
prepare a boot-loadable file for the specified boot mode. The valid
modes (boot types) are PROM, host, link, and SPI.
If the switch does not appear on the command line, the default is
-bprom.
To use a custom boot kernel, the boot mode selected with the -b
switch must correspond with the boot kernel selected with the -l
kernelfile switch. Otherwise, the loader utility automatically
selects a default boot kernel based on the selected boot type
(see “ADSP-21161 Processor Boot Kernels” on page 6-16).

-efilename Except shared memory. The -e switch omits the specified shared
memory (.sm) file from the output loader file. Use this option to
omit the shared parts of the executable file intended to boot a mul-
tiprocessor system.
To omit multiple .sm files, repeat the switch and its parameter
multiple times on the command line. For example, to omit two
files, use: -efileA.SM -efileB.SM.
In most cases, it is not necessary to use the -e switch: the loader
utility processes the .sm files efficiently (includes a single copy of
the code and data from each .sm file in a loader file).

-fhex
-fASCII
-fbinary
-finclude
-fS1
-fS2
-fS3

Specifies the format of the boot-loadable file (Intel hex-32, ASCII,
include, binary, S1, S2, and S3 (Motorola S-records). If the -f
switch does not appear on the command line, the default boot file
format is hex for PROM, and ASCII for host, link, or SPI.
Available formats depend on the boot mode selection (-b switch):
• For a PROM boot, select a hex-32, S1, S2, S3, ASCII, or

include format.
• For host or link boot, select an ASCII, binary, or include

format.
• For SPI boot, select an ASCII or binary format.

ADSP-21161 Processor Loader Guide

6-28 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-h
or
-help

Command-line help. Outputs the list of command-line switches to
standard output and exits.
Combining the -h switch with -proc ADSP-21161; for example,
elfloader -proc ADSP-21161 -h, yields the loader syntax and
switches for the ADSP-21161 processors. By default, the -h switch
alone provides help for the loader driver.

-hostwidth # Sets up the word width for the .ldr file. By default, the word
width for PROM and host is 8, for link is 16, and for SPI is 32.
The valid word widths for the various boot modes are:
• PROM—8 for hex or ASCII format, 8 or 16 for include format
• host—8 or 16 for ASCII or binary format, 16 for include

format
• link—16 for ASCII, binary, or include format
• SPI—8, 16, or 32 for Intel hex 32 or ASCII format

-id#exe=filename Specifies the processor ID. The -id#exe= switch directs the
loader utility to use the processor ID (#) for the corresponding
executable file (filename) when producing a boot-loadable file
for EPROM boot of a multiprocessor system. This switch is used
only to produce a boot-loadable file that boots multiple processors
from a single EPROM.
Valid values for # are 1, 2, 3, 4, 5, and 6.
Do not use this switch for single-processor systems. For single-pro-
cessor systems, use filename as a parameter without a switch. For
more information, refer to “Processor ID Numbers” on page 6-22.

-id#ref=N Points the processor ID (#) loader jump table entry to the ID (N)
image. If the executable file for the (#) processor is identical to the
executable of the (N) processor, the switch can be used to set the
PROM start address of the processor with ID of # to be the same
as for the processor with ID of N. This effectively reduces the size
of the loader file by providing a single copy of an executable to two
or more processors in a multiprocessor system. For more informa-
tion, refer to “Processor ID Numbers” on page 6-22.

Table 6-10. ADSP-21161 Loader Command Line Switches (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-29

Loader for ADSP-21161 SHARC Processors

-l kernelfile Directs the loader utility to use the specified kernelfile as the
boot-loading routine in the output boot-loadable file. The boot
kernel selected with this switch must correspond to the boot mode
selected with the -b switch.
If the -l switch does not appear on the command line, the loader
utility searches for a default boot kernel file. Based on the boot
mode (-b switch), the loader utility searches in the processor-spe-
cific loader directory for the boot kernel file as described in
“ADSP-21161 Processor Boot Kernels” on page 6-16.

-o filename Directs the loader utility to use the specified filename as the
name for the loader output file. If not specified, the default name
is inputfile.ldr.

-noZeroBlock The -noZeroBlock switch directs the loader utility not to build
zero blocks.

-paddress Directs the loader utility to start the boot-loadable file at the spec-
ified address in the EPROM. This EPROM address corresponds to
0x8000000 on the ADSP-21161 processor. If the -p switch does
not appear on the command line, the loader utility starts the
EPROM file at address 0x0.

-proc ADSP-21161 Specifies the processor. This is a mandatory switch.

Table 6-10. ADSP-21161 Loader Command Line Switches (Cont’d)

Switch Description

ADSP-21161 Processor Loader Guide

6-30 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-si-revision #|none|any The -si-revision {#|none|any} switch provides a silicon revi-
sion of the specified processor.
The switch parameter represents a silicon revision of the processor
specified by the -proc processor switch. The parameter takes
one of three forms:
• The none value indicates that CrossCore Embedded Studio

ignores silicon errata.
• The #.# value indicates one or more decimal digits, followed by

a point, followed by one or two decimal digits. Examples of
revisions are: 0.0 - 0.3 and 1.0 - 1.3.

• The any value indicates that CrossCore Embedded Studio pro-
duces an output file that can be run at any silicon revision.

The switch generates either a warning about any potential anoma-
lous conditions or an error if any anomalous conditions occur.
In the absence of the silicon revision switch, the loader utility
selects the greatest silicon revision it is aware of, if any.

In the absence of the switch parameter (a valid revision value)—
-si-revision alone or with an invalid value—the loader utility
generates an error.

-t# (Host boot type only) Specifies timeout cycles. The -t switch (for
example, -t100) limits the number of cycles that the processor
spends initializing external memory with zeros. Valid values range
from 3 to 32765 cycles; 32765 is the default value.
The timeout value (#) is related directly to the number of cycles
the processor locks the bus for boot-loading, instructing the pro-
cessor to lock the bus for no more than two times the timeout
number of cycles. When working with a fast host that cannot tol-
erate being locked out of the bus, use a relatively small timeout
value.

-v Outputs verbose loader messages and status information as the
loader utility processes files.

-version Directs the loader utility to show its version information. Type
elfloader -version to display the version of the loader drive.
Add the -proc switch, for example,
elfloader -proc ADSP-21161 -version to display version
information of both loader drive and SHARC loader.

Table 6-10. ADSP-21161 Loader Command Line Switches (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 6-31

Loader for ADSP-21161 SHARC Processors

Using Interface (Load Page)
After selecting Loader Image as the project output type for your SHARC
application on the Application Settings page in the C Project Wizard,
modify the default options on the loader pages (also called loader property
pages). Click Apply to save the selections.

CrossCore Embedded Studio invokes the elfloader utility to build the
output file. The loader pages buttons and fields correspond to loader com-
mand-line switches and parameters (see Table 6-10). Use the Additional
Options loader page of the Tool Settings tab to enter options that do not
have dialog box equivalents.

ADSP-21161 Processor Loader Guide

6-32 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-1

7 LOADER FOR
ADSP-2126X/2136X/2137X/
214XX SHARC PROCESSORS

This chapter explains how the loader utility (elfloader.exe) is used to
convert executable (.dxe) files into boot-loadable files for the
ADSP-2126x, ADSP- 2136x, ADSP-2137x, and ADSP-214xx SHARC
processors.

 For information on specific SHARC processors, refer to the prod-
uct-specific hardware reference, programming reference, and data
sheet.

Refer to “Introduction” on page 1-1 for the loader utility overview; the
introductory material applies to all processor families. Refer to “Loader for
ADSP-21160 SHARC Processors” on page 5-1 for information about the
ADSP-21160 processors. Refer to “Loader for ADSP-21161 SHARC Pro-
cessors” on page 6-1 for information about the ADSP-21161 processors.

Loader operations specific to the ADSP-2126x/2136x/2137x/214xx
SHARC processors are detailed in the following sections.

• “ADSP-2126x/2136x/2137x/214xx Processor Booting”
Provides general information about various booting modes, includ-
ing information about boot kernels.

• “ADSP-2126x/2136x/2137x/214xx Processor Loader Guide”
Provides reference information about the graphical user interface,
command-line syntax, and switches.

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-2126x/2136x/2137x/214xx
Processor Booting

ADSP-2126x, ADSP-2136x, ADSP-2137x and ADSP-214xx processors
can be booted from various sources:

• The boot source is selected via the boot configuration pins during
power-up.

• All processors do support 8-bit parallel flash boot mode and SPI
master/slave boot modes.

• The ADSP-2146x processor does support link port boot mode.

• In no-boot mode, the processor fetches and executes instructions
directly from the internal ROM memory, bypassing the boot ker-
nel entirely. The loader utility does not produce a file supporting
the no-boot mode.

• SPI master boot does support three cases: SPI master (no address),
SPI PROM (16-bit address), and SPI flash (24-bit address).

• The ADSP-21368/2146x processors support parallel flash multi-
processing boot by decoding the processor ID number from the
boot stream.

 Only the ADSP-21368/2146x processors are supporting multipro-
cessing, so the loader can use an ID lookup table between the
kernel and the rest of the application.

 Upon ADSP-2126x processors, no boot mode from external mem-
ory with internal/external IVT option is no longer supported.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-3

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

Software developers who use the loader utility should be familiar with the
following operations.

• “Power-Up Booting Process” on page 7-3

• “ADSP-2126x/2136x/2137x/214xx Processors Interrupt Vector
Table” on page 7-4

• “General Boot Definitions” on page 7-4

• “Boot Mode Selection” on page 7-5

• “Boot DMA Configuration Settings” on page 7-6

• “ADSP-2126x/2136x/2137x/214xx Processors Boot Kernels” on
page 7-15

• “ADSP-2126x/2136x/2137x/214xx Processor Boot Streams” on
page 7-20

Power-Up Booting Process
The ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-214xx processors
include a hardware feature that boot-loads a small, 256-instruction, pro-
gram into the processor’s internal memory after power-up or after the chip
reset. These instructions come from a program called a boot kernel. When
executed, the boot kernel facilitates booting of user application code. The
combination of the boot kernel and application code comprise the
boot-loadable (.ldr) file.

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

At power-up, after the chip reset, the booting process includes the follow-
ing steps.

1. Based on the boot type, an appropriate DMA channel is automati-
cally configured for a 384-word (32-bit) transfer or a 256-word
(48-bit) transfer. This transfer boot-loads the boot kernel program
into the processor memory.

2. The boot kernel runs and loads the application executable code and
data.

3. The boot kernel overwrites itself with the first 256 (48-bit) words
of the application at the end of the booting process. After that, the
application executable code starts running.

The boot type selection directs the system to prepare the appropriate boot
kernel. Note that the DAI/DPI pins are enabled by default for correct
booting over the peripherals.

ADSP-2126x/2136x/2137x/214xx Processors
Interrupt Vector Table

If the ADSP-2126x, ADSP-2136x, ADSP-2137x or ADSP-214xx proces-
sor is booted from an external source (PROM or SPI or link port), the
IVT is always located in internal memory.

General Boot Definitions
The boot source is determined by sampling the state of the boot configu-
ration pins.

On the ADSP-2126x/2136x/2137x/214xx processors, the boot type is
determined by sampling the state of the BOOT_CFG1-0 pins (BOOT_CFG2-0
pins for ADSP-214xx processors). The truth table for boot configuration
pins can be found in the processor data sheet.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-5

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

Note all referred RESET vector locations in this chapter are dependant on
the processor type and are defined as follows:

All processors operate with an interrupt vector table (IVT) located in
internal memory block0 which is used to load and execute the kernel
(256x48-bit words) located at the following address:

Boot Mode Selection

 On the ADSP-2126x/2136x/2137x/214xx processors, the boot
type is determined by sampling the state of the BOOTCFGx pins,
(described in Table 7-1 and Table 7-2) and the selection of the cor-
responding boot kernel in the elfloader.

A description of each boot type follows the tables.

ADSP-2126x 0x80004

ADSP-2136x/2137x 0x90004

ADSP-214xx 0x8C004

ADSP-2126x 0x80000 – 0x800FF

ADSP-2136x/2137x 0x90000 – 0x900FF

ADSP-214xx 0x8C000 – 0x8C0FF

Table 7-1. ADSP-2126x/2136x/2137x Boot Mode Selection

HW Pins
BOOT_CFG[1–0]

Boot Mode SW Elfloader Settings
Boot Mode Selection

00 SPI slave -bspislave

01 SPI master (SPI flash, SPI PROM, or a host
processor via SPI master mode)

-bspiflash
-bspiprom
-bspimaster

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Boot DMA Configuration Settings
All peripheral boot mode use a 256 words instruction length DMA (as
described in “power-up booting process” which does load the kernel into
the internal memory. At reset, the control and parameter registers settings
of the peripheral’s boot DMA can be found at:

• For ADSP-2126x products refer to the ADSP-2126x SHARC Pro-
cessor Hardware Reference

• For ADSP-2136x products refer to the ADSP-2136x SHARC Pro-
cessor Hardware Reference

10 EPROM boot via the parallel port -bprom

11 No boot (not available on all processors) Does not use the loader utility

Table 7-2. ADSP-214xx Boot Mode Selection

HW Pins
BOOT_CFG[2–0]

Boot Mode SW Elfloader Settings
Boot Mode Selection

000 SPI slave -bspislave

001 SPI master (SPI flash, SPI PROM, or a host
processor via SPI master mode)

-bspiflash
-bspiprom
-bspimaster

010 EPROM boot via the parallel port -bprom

011 No boot (not available on all processors) Does not use the loader utility

100 Link Port 0 boot -blink

Table 7-1. ADSP-2126x/2136x/2137x Boot Mode Selection (Cont’d)

HW Pins
BOOT_CFG[1–0]

Boot Mode SW Elfloader Settings
Boot Mode Selection

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-7

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

• For ADSP-21367/8/9 and ADSP-2137xx products refer to the
ADSP-2137x SHARC Processor Hardware Reference

• For ADSP-214xx products refer to the ADSP-214xx SHARC Pro-
cessor Hardware Reference

PROM Boot Mode

All processors which support external memory typically have memory I/O
size which is different to normal word of 32-bit. The linker’s width com-
mand takes care about logical and physical addressing.

Packing Options for External Memory

The WIDTH() command in the linker specifies which packing mode should
be used to initialize the external memory: WIDTH(8) for 8-bit memory or
WIDTH(16) for 16-bit memory.

The loader utility packs the external memory data from the .dxe file
according to the linker’s WIDTH() command. The loader utility unpacks
the data from the executable file and packs the data again in the loader file
if the data is packed in the .dxe file due to the packing command in the
linker description (.ldf) file.

The next section lists the different packing options depending on model,
and data versus instruction fetch.

Multiplexed Parallel Port

The ADSP-2126x/2136x processors do use a parallel port which does
multiplex the address and data (in order to save pin count). The next sec-
tion lists the different packing options depending on model, and data
versus instruction.

For ADSP-2126x processors, the external memory address ranges are
0x10 00000–0x2F FFFFF. For ADSP-2136x processors, the external

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-8 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

memory address ranges are 0x12 00000–0x12 03FFF. External instruction
fetch is not supported by these processors.

AMI/SDRAM/DDR2

The ADSP-21367/8/9 processors external port is used to arbitrate
between AMI and SDRAM/DDR2 access.

For ADSP-2137x/214xx processors, the external memory address range
for ISA instruction fetch (bank0 only) is 0x20 0000–0x5F FFFF.

For ADSP-214xx processors, the external memory address range for VISA
instruction fetch (bank0 only) is 0x60 0000–0xFF FFFF.

Table 7-3. Data Packing Options for Parallel Port

Packing Options WIDTH (8) WIDTH (16) WIDTH (32)

ADSP-2126x Yes Yes No

ADSP-2136x Yes Yes No

Table 7-4. Data Packing Options for External Port

Packing Options WIDTH (8) WIDTH (16) WIDTH (32)

ADSP-21367/8/9 AMI AMI/SDRAM AMI/SDRAM

ADSP-2137x AMI AMI/SDRAM AMI/SDRAM

ADSP-214xx AMI AMI/SDRAM/DDR2 No

Table 7-5. Instruction Fetch Packing Options for External Port

Packing Options WIDTH (8) WIDTH (16) WIDTH (32)

ADSP-2137x AMI AMI/SDRAM AMI/SDRAM

ADSP-214xx AMI AMI/SDRAM/DDR2 No

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-9

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

Packing and Padding Details

For ZERO_INIT sections in a .dxe file, no data packing or padding in the
.ldr file is required because only the header itself is included in the .ldr
file. However, for other section types, additional data manipulation is
required. It is important to note that in all cases, the word count placed
into the block header in the loader file is the original number of words.
That is, the word count does not include the padded word.

SPI Port Boot Modes

Both SPI boot modes support booting from 8-, 16-, or 32-bit SPI devices.
In all SPI boot modes, the data word size in the shift register is hardwired
to 32 bits. Therefore, for 8- or 16-bit devices, data words are packed into
the SPI shift register to generate 32-bit words least significant bit (LSB)
first, which are then shifted into internal memory.

When booting, the ADSP-2126x/2136x/2137x/214xx processor expects
to receive words into the RXSPI buffer seamlessly. This means that bits are
received continuously without breaks in the SPIDS link. For different SPI
host sizes, the processor expects to receive instructions and data packed in
a least significant word (LSW) format.

 SPI Slave Boot Mode

In SPI slave boot mode, the host processor initiates the booting operation
by activating the SPICLK signal and asserting the SPIDS signal to the active
low state. The 256-word boot kernel is loaded 32 bits at a time, via the
SPI receive shift register. To receive 256 instructions (48-bit words) prop-
erly, the SPI DMA initially loads a DMA count of 384 32-bit words,
which is equivalent to 256 48-bit words.

 The processor’s SPIDS pin should not be tied low. When in SPI
slave mode, including booting, the SPIDS signal is required to tran-
sition from high to low. SPI slave booting uses the default bit
settings shown in Table 7-6.

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-10 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

SPI Master Boot Modes

In SPI master boot mode, the ADSP-2126x/2136x/2137x/214xx proces-
sor initiates the booting operation by:

1. Activating the SPICLK signal and asserting the FLAG0 signal to the
active low state

2. Writing the read command 0x03 and 24-bit address 0x00000 to the
slave device

 The processor’s SPIDS pin should not be tied low. When in SPI
slave mode, including booting, the SPIDS signal is required to tran-
sition from high to low. SPI slave booting uses the default bit
settings shown in Table 7-6.

From the perspective of the processor, there is no difference between boot-
ing from the three types of SPI slave devices. Since SPI is a full-duplex
protocol, the processor is receiving the same amount of bits that it sends as
a read command. The read command comprises a full 32-bit word (which
is what the processor is initialized to send) comprised of a 24-bit address
with an 8-bit opcode. The 32-bit word, received while the read command

Table 7-6. SPI Slave Boot Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI enabled

MS Cleared (= 0) Slave device

MSBF Cleared (= 0) LSB first

WL 10, 32-bit SPI Receive Shift register word length

DMISO Set (= 1) MISO MISO disabled

SENDZ Cleared (= 0) Send last word

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the first bit

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-11

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

is transmitted, is thrown away in hardware and can never be recovered by
the user. Consequently, special measures must be taken to guarantee that
the boot stream is identical in all three cases.

 SPI master boot mode is used when the processor is booting from
an SPI compatible serial PROM, serial flash, or slave host processor

The processor boots in least significant bit first (LSB) format, while most
serial memory devices operate in most significant bit first (MSB) format.
Therefore, it is necessary to program the device in a fashion that is com-
patible with the required LSB format. See “Bit-Reverse Option for SPI
Master Boot Modes” on page 7-11 for details.

Also, because the processor always transmits 32 bits before it begins read-
ing boot data from the slave device, the loader utility must insert extra
data into the byte stream (in the loader file) if using memory devices that
do not use the LSB format. The loader utility includes an option for creat-
ing a boot stream compatible with both endian formats, and devices
requiring 16-bit and 24-bit addresses, as well as those requiring no read
command at all. See “Initial Word Option for SPI Master Boot Modes”
on page 7-12 for details.

Figure 7-1 shows the initial 32-bit word sent out from the processor. As
shown in the figure, the processor initiates the SPI master boot process by
writing an 8-bit opcode (LSB first) to the slave device to specify a read
operation. This read opcode is fixed to 0xC0 (0x03 in MSB first format).
Following that, a 24-bit address (all zeros) is always driven by the proces-
sor. On the following SPICLK cycle (cycle 32), the processor expects the
first bit of the first word of the boot stream. This transfer continues until
the boot kernel has finished loading the user program into the processor.

Bit-Reverse Option for SPI Master Boot Modes

SPI PROM. For the SPI PROM boot type, the entirety of the SPI master
.ldr file needs the option of bit-reversing when loading to SPI PROMs.
This is because the default setting of the MSBF bit (SPICTL register) is

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-12 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

cleared which sets order to be LSB first. sets the bit order to be LSB first.
SPI EPROMs are usually MSB first, so the .ldr file must be sent in
bit-reversed order.

SPI Master and SPI Slave. When loading to other slave devices, the SPI
master and SPI slave boot types do not need bit reversing necessarily. For
SPI slave and SPI master boots to non-PROM devices, the same default
exists (bit-reversed); however, the host (master or slave) can simply be
configured to transmit LSB first.

Initial Word Option for SPI Master Boot Modes

Before final formatting (binary, include, etc.) the loader must prepend the
word 0xA5 to the beginning of the byte stream. During SPI read
command, the SPI port discards the first byte read from the SPI via the
MISO line.

SPI PROM. For the SPI PROM boot type, the word 0xA5 prepended to
the stream is one byte in length. SPI PROMs receives a 24-bit read

Figure 7-1. SPI Master Mode Booting Using Various Serial Devices

SPICLK

MOSI

SPI FLASH
MISO

SPI PROM
MISO

SPI MASTER
MISO

FLAG0

8-BIT CMD A15-8A23-16 A7-0

BYTE0
(0XA5) BYTE1

MSB LSB

BYTE0
(0XA5) BYTE1

BYTE0
(0XA5)

BYTE0
(0XA5) BYTE1BYTE3BYTE1 BYTE2BYTE0

VALID DATADATA IGNORED

24-BIT ADDRESS

16-BIT ADDRESS

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-13

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

command before any data is sent to the processor, the processor then dis-
cards the first byte it receives after this 24-bit opcode is sent (totaling one
32-bit word).

SPI Master. For the SPI master boot type, the word 0xA5000000 pre-
pended to the stream is 32 bits in length. An SPI host configured as a slave
begins sending data to the processor while the processor is sending the
24-bit PROM read opcode. These 24-bits must be zero-filled because the
processor discards the first 32-bit word that it receives from the slave.

 Initial word option is only required for SPI master/prom boot
mode. The CrossCore Embedded Studio tools automatically han-
dle this in the loader file generation process for SPI boot devices.

With bit reversing for SPI master boot mode, the 32-bit word is handled
according to the host width. With bit reversing for SPI PROM boot, the
8-bit word is reversed as a byte and prepended (see Table 7-8).

Table 7-7. Initial Word for SPI Master and SPI PROM in .ldr
File

Boot Mode Additional Word -hostwidth

 32 16 8

SPI master1

1 Initial word for SPI master boot type is always 32 bits. See Figure 7-1 for explanation.

0xA5000000 A5000000 0000 00

A500 00

00

A5

SPI PROM2

2 Initial word for SPI PROM boot type is always 8 bits. See Figure 7-1 for explanation

0xA5 A5 A5 A5

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-14 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Booting From an SPI Flash (24-bit address)

For SPI flash devices, the format of the boot stream is identical to that
used in SPI slave mode, with the first byte of the boot stream being the
first byte of the kernel. This is because SPI flash devices do not drive out
data until they receive an 8-bit command and a 24-bit address.

Booting From an SPI PROM (16-bit address)

Figure 7-1 shows the initial 32-bit word sent out from the processor from
the perspective of the serial PROM device.

As shown in Figure 7-1, SPI EEPROMs only require an 8-bit opcode and
a 16-bit address. These devices begin transmitting on clock cycle 24.
However, because the processor is not expecting data until clock cycle 32,
it is necessary for the loader to pad an extra byte to the beginning of the
boot stream when programming the PROM. In other words, the first byte
of the boot kernel is the second byte of the boot stream.

Booting From an SPI Host Processor (no address)

Typically, host processors in SPI slave mode transmit data on every SPICLK
cycle. This means that the first four bytes that are sent by the host proces-
sor are part of the first 32-bit word that is thrown away by the processor
(see Figure 7-1). Therefore, it is necessary for the loader to pad an extra
four bytes to the beginning of the boot stream when programming the

Table 7-8. Default Settings for PROM and SPI Boot Modes

Boot Type
Selection

Host
Width

Output Format Bit Reverse Initial Word

-bprom 8 Intel hex No -

-bspislave 32 ASCII No -

-bspiflash 32 ASCII No -

-bspimaster 32 ASCII No 0x000000a5

-bspiprom 8 Intel hex Yes 0xa5

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-15

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

host; for example, the first byte of the kernel is the fifth byte of the boot
stream.

Reserved (No Boot) Mode

In no boot mode, upon reset, the processor starts executing the applica-
tion stored in the internal boot kernel.

ADSP-2126x/2136x/2137x/214xx Processors Boot
Kernels

The boot-loading process starts with a transfer of the boot kernel program
into the processor memory. The boot kernel sets up the processor and
loads boot data. After the boot kernel finishes initializing the rest of the
system, the boot kernel loads boot data over itself with a final DMA
transfer.

Table 7-9 lists the ADSP-2126x/2136x/2137x/214xx boot kernels shipped
with CrossCore Embedded Studio.

Table 7-9. ADSP-2126x/2136x/2137x/214xx Default Boot Kernel
Files

Processor PROM SPI Slave, SPI Flash,
SPI Master, SPI PROM

Link Port Boot
(ADSP-2146x)

ADSP-2126x 26x_prom.dxe 26x_spi.dxe N/A

ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365,
ADSP-21366

36x_prom.dxe 36x_spi.dxe N/A

ADSP-21367, ADSP-21368,
ADSP-21369

369_prom.dxe 369_spi.dxe N/A

ADSP-21371, ADSP-21375 375_prom.dxe 375_spi.dxe N/A

ADSP-21467, ADSP-21469 469_prom.dxe 469_spi.dxe 469_link.dxe

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-16 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

At processor reset, a boot kernel is loaded into the seg_ldr memory seg-
ment as defined in the Linker Description File for the default loader
kernel that corresponds to the target processor, for example,
2126x_ldr.ldf, which is stored in the <install_path>\2126x\ldr direc-
tory of the target processor.

Boot Kernel Modification and Loader Issues

Boot kernel customization is required for some systems. In addition, the
operation of other tools (such as the C/C++ compiler) is influenced by
whether the loader utility is used.

If you do not specify a boot kernel file via the Loader > General page of
the Tool Settings tab in the IDE (or via the -l command-line switch), the
loader utility places a default boot kernel (see Table 7-9) in the loader out-
put file based on the specified boot type.

If you do not want to use any boot kernel file, check the No kernel
(-nokernel) box (or specify the -nokernel command-line switch). The
loader utility places no boot kernel in the loader output file.

• To omit a boot kernel.
The -nokernel switch denotes that a running on the processor
(already booted) subroutine imports the .ldr file. The loader

ADSP-21471, ADSP-21472,
ADSP-21475, ADSP-21478,
ADSP-21479

479_prom.dxe 479_spi.dxe N/A

ADSP-21481, ADSP-21482,
ADSP-21483, ADSP-21485,
ADSP-21486, ADSP-21487,
ADSP-21488, ADSP-21489

489_prom.dxe 489_spi.dxe N/A

Table 7-9. ADSP-2126x/2136x/2137x/214xx Default Boot Kernel
Files (Cont’d)

Processor PROM SPI Slave, SPI Flash,
SPI Master, SPI PROM

Link Port Boot
(ADSP-2146x)

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-17

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

utility does not insert a boot kernel into the .ldr file—a similar
subroutine is present already on the processor. Instead, the loader
file begins with the first header of the first block of the boot
stream.

• To omit any interrupt vector table (IVT) handling.
In internal boot mode, the boot stream is not imported by a boot
kernel executing from within the IVT; no self-modifying
FINAL_INIT code (which overwrites itself with the IVT) is needed.
Thus, the loader utility does not give any special handling to the
256 instructions located in the IVT (0x80000–0x800FF for
ADSP-2126x processors and 0x90000–0x900FF for ADSP-2136x
processors). Instead, the IVT code or data are handled like any
other range of memory.

• To omit an initial word of 0xa5.
When -nokernel is selected, the loader utility does not place an
initial word (A5) in the boot stream as required for SPI master
booting.

• To replace the FINAL_INIT block with a USER_MESG header.
The FINAL_INIT block (which typically contains the IVT code)
should not be included in the .ldr file because the contents of the
IVT (if any) is incorporated in the boot stream. Instead, the loader
utility appends one final bock header to terminate the loader file.

The final block header has a block tag of 0x0 (USER_MESG). The
header indicates to a subroutine processing the boot stream that
this is the end of the stream. The header contains two 32-bit data
words, instead of count and address information (unlike the other
headers). The words can be used to provide version number, error
checking, additional commands, return addresses, or a number of
other messages to the importing subroutine on the processor.

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-18 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The two 32-bit values can be set on the command line as argu-
ments to the -nokernel[message1, message2] switch. The first
optional argument is msg_word1, and the second optional argument
is msg_word2, where the values are interpreted as 32-bit unsigned
numbers. If only one argument is issued, that argument is
msg_word1. It is not possible to specify msg_word2 without specify-
ing msg_word1.) If one or no arguments are issued at the command
line, the default values for the arguments are 0x00000000.

Listing 7-1 shows a sample format for the USER_MESG header.

Listing 7-1. Internal Booting: USER_MESG Block Header Format

0x00000000 /* USER_MESG tag */

0x00000000 /* msg_word1 (1st cmd-line parameter) */

0x00000000 /* msg_word2 (2nd cmd-line parameter) */

Rebuilding a Boot Kernel File

If you modify the boot kernel source (.asm) file by inserting appropriate
settings for your system, you must rebuild the boot kernel (.dxe) before
generating the boot-loadable (.ldr) file. Note the boot kernel source file
already contains default register configurations for the external memories
(AMI/SDRAM/DDR2).

To Modify a Boot Kernel Source File

1. Copy the applicable boot kernel source file (26x_prom.asm,
26x_spi.asm, 36x_prom.asm, 36x_spi.asm, 369_prom.asm,
369_spi.asm).

2. Apply the appropriate changes.

 Any modification requires that the RTI instruction should still be
located at the required peripheral ISR, otherwise the booting may
fail.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-19

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

After modifying the boot kernel source file, rebuild the boot kernel (.dxe)
file. Do this from within the IDE (refer to online help for details) or
rebuild a boot kernel file from the command line.

Rebuilding a Boot Kernel Using Command Lines

Rebuild a boot kernel using command lines as follows.

PROM Booting. The default boot kernel source file for PROM booting is
26x_prom.asm for the ADSP-2126x processors. After copying the default
file to my_prom.asm and modifying it to suit your system, use the following
command lines to rebuild the boot kernel.

easm21k -proc ADSP-21262 my_prom.asm

linker -T 2162x_ldr.ldf my_prom.doj

SPI Booting. The default boot kernel source file for link booting is
2126x_SPI.asm for the ADSP-2126x processors. After copying the default
file to my_SPI.asm and modifying it to suit your system, use the following
command lines to rebuild the boot kernel:

easm21k -proc ADSP-21262 my_SPI.asm

linker -T 2126x_ldr.ldf my_SPI.doj

Loader File Issues

If you modify the boot kernel for the PROM or SPI booting modes,
ensure that the seg_ldr memory segment is defined in the .ldf file. Refer
to the source of this memory segment in the .ldf file located in the …\ldr
installation directory of the target processor.

Because the loader utility uses the RESET vector location during the
boot-load process, avoid placing code at the address. When using any of
the processor’s power-up booting modes, ensure that the address does not
contain a critical instruction, because the address is not executed during
the booting sequence. Place a NOP or IDLE in this location. The loader

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-20 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

utility generates a warning if the RESET vector location does not contain
NOP or IDLE.

 When creating the loader file, specify the name of the customized
boot kernel executable in the Kernel file (-l) box on the General
loader property page of the Tool Settings tab.

ADSP-2126x/2136x/2137x/214xx Processor Boot
Streams

The loader utility generates and inserts a header at the beginning of a
block of contiguous data and instructions in the loader file. The kernel
uses headers to properly place blocks into processor memory. The archi-
tecture of the header follows the convention used by other SHARC
processors.

For all of the ADSP-2126x/2136x/2137x/214xx processor boot types, the
structures of block header are the same. The header consists of three
32-bit words: the block tag, word count, and destination address. The
order of these words is as follows.

0x000000TT First word. Tag of the data block (T)

0x0000CCCC Second word. Data word length or data word count (C) of the data block.

0xAAAAAAAA Third word. Start address (A) of the data block.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-21

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

Boot Stream Block Tags

Table 7-10 details the processor block tags.

Table 7-10. ADSP-2126x/2136x/2137x/214xx Processor Block
Tags

Tag Count1 Address Padding

0x0
FINAL_INIT

None

0x1
ZERO_LDATA

Number of 16-, 32-,
or 64-bit words

Logical short, normal,
or long word address

None

0x2

ZERO_L482
Number of 48-bit
words

Logical normal word
(ISA) or Short word
(VISA) address

None

0x3
INIT_L16

Number of 16-bit
words

Logical short word
address

If count is odd, pad with
16-bit zero word; see
“INIT_L16 Blocks” on
page 7-24 for details.

0x4
INIT_L32

Number of 32-bit
words

Logical normal word
address

None

0x5

INIT_L482
Number of 48-bit
words

Logical normal word
(ISA) or Short word
(VISA) address

If count is odd, pad with
48-bit zero word; see
“INIT_L48 Blocks” on
page 7-23 for details.

0x6
INIT_L64

Number of 64-bit
words

Logical long word
address

None; see “INIT_L64
Blocks” on page 7-25 for
details.

0x7
ZERO_EXT8

Number of 32-bit
words

Physical external
address

None

0x8
ZERO_EXT16

Number of 32-bit
words

Physical external
address

None

0x9
INIT_EXT8

Number of 32-bit
words

Physical external
address

None

0xA
INIT_EXT16

Number of 32-bit
words

Physical external
address

None

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-22 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The ADSP-2126x/2136x/2137x/214xx processor uses eleven block tags, a
lesser number of tags compared to other SHARC predecessors.

ZERO_INIT Blocks

There is only one initialization tag per width because there is no need to
draw distinction between pm and dm sections during initialization. The
same tag is used for 16-bit (short word), 32-bit (normal word), and 64-bit
(long word) blocks that contain only zeros. The 0x1 tag is used for
ZERO_LDATA blocks of 16-bit, 32-bit, and 64-bit words. The 0x2 tag is used
for ZERO_L48 blocks of 40-bit floating point data and 48-bit ISA (VISA
instructions ADSP-214xx).

For clarity, the letter L has been added to the names of the internal block
tags. L indicates that the associated section header uses the logical word
count and logical address. Previous SHARC boot kernels do not use logi-
cal values. For example, the count for a 16-bit block may be the number
of 32-bit words rather than the actual number of 16-bit words.

Only four tags are required to handle an external memory, two for each
packing mode (see “Packing Options for External Memory” on page 7-7).

0xB
MULTI_PROC for
ADSP-21368,
ADSP-2146x
processors

Processor IDs
(bits 0–7);
see on page 7-30 for
details.

Offset to the next pro-
cessor ID in words
(32 bits)

None

0x0
USR_MESG

msg_word1 msg_word2 None

1 The count is the actual number of words and does NOT included padded words added by the
loader utility.

2 40-bit floating point data and 48-bit ISA/VISA instructions words are treated identically.

Table 7-10. ADSP-2126x/2136x/2137x/214xx Processor Block
Tags (Cont’d)

Tag Count1 Address Padding

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-23

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

The external memory can be accessed only via the physical address of the
memory. This means that each 32-bit word corresponds to either four (for
8-bit) or two (for 16-bit) external addresses. The EXT appended to the
name of the block tag indicates that the address is a physical external
address. For ADSP-21367/21368/21369/2137x and ADSP-214xx proces-
sors, tag INIT_L32 also is used for all external 32-bit blocks.

INIT_L48 Blocks

The INIT_L48 block has one packing and one padding requirements. First,
there must be an even number of 48-bit words in the block. If there is an
odd number of instructions, then the loader utility must append one addi-
tional 48-bit NOP instruction that is all zeros. In all cases, the count placed
into the header is the original logical number of words. That is, the count
does not include the padded word. Once the number of words in the
block is even, the data in this block is packed according to Table 7-11.

Table 7-11. INIT_L48 Block Packing and Zero-Padding
(ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

 32 16 8

111122223333 22223333 22223333 3333 33

444455556666 66661111 55551111 2222 33

AAAABBBBCCCC 44445555 44445555 1111 22

BBBBCCCC BBBBCCCC 6666 22

0000AAAA 0000AAAA 5555 11

00000000 00000000 4444 11

CCCC 66

BBBB 66

AAAA 55

0000 55

0000 44

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-24 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

INIT_L16 Blocks

For 16-bit initialization blocks, the number of 16-bit words in the block
must be even. If an odd number of 16-bit words is in the block, then the
loader utility adds one additional word (all zeros) to the end of the block,
as shown in Table 7-12. The count stored in the header is the actual num-
ber of 16-bit words. The count does not include the padded word.

0000 44

CC

CC

BB

Table 7-12. INIT_L16 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

 32 16 8

1122 33441122 33441122 1122 22

3344 00005566 00005566 3344 11

5566 5566 44

0000 33

66

55

00

00

Table 7-11. INIT_L48 Block Packing and Zero-Padding
(ASCII Format) (Cont’d)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

 32 16 8

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-25

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

INIT_L64 Blocks

For 64-bit initialization blocks, the data is packed as shown in Table 7-13.

MULT_PROC Blocks

The 0xB tag is for multiprocessor systems, exclusively supported on
ADSP-21368 and ADSP-2146x processors. The tag indicates that the
header is a processor ID header with the ID values and offset values stored
in the header. A block can have multiple IDs in its block header, which
makes it possible to boot the block into multiple processors.

Two data tags, USER_MESG and FINAL_INIT, differ from the standard for-
mat for other SHARC data tags. The USER_MESG header is described
on page 7-16 and the FINAL_INIT header on page 7-27.

Table 7-13. INIT_L64 Block Packing (ASCII Format)

Original Data Packed into an Even
Number of 32-bit Words

-hostwidth

 32 16 8

1111222233334444 33334444 33334444 4444 44

11112222 11112222 3333 44

2222 33

1111 33

22

22

11

11

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-26 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

FINAL_INIT Blocks

The final 256-instructions of the .ldr file contain the instructions for the
IVT. The instructions are initialized by a special self-modifying
subroutine in the boot kernel (see Listing 7-2). To support the self-modi-
fying code, the loader utility modifies the FINAL_INIT block as follows:

1. Places a multi-function instruction at the fifth instruction of the
block:
The loader utility places the instruction R0=R0-R0, DM(I4,M5)=R9,
PM(I12,M13)=R11; at RESET vector location. The instruction over-
writes whatever instruction is at that address. The opcode for this
instruction is 0x39732D802000.

2. Places an RTI instruction in the IVT:
The loader utility inserts an RTI instruction
(opcode 0x0B3E00000000) at the first address in the IVT entry asso-
ciated with the boot-source. Unlike the multifunction instruction
placed at RESET vector location which overwrites the data, the
loader utility preserves the user-specified instruction which the
RTI replaces. This instruction is stored in the header for
FINAL_INIT as shown in Listing 7-2.

• For parallel boot mode, the RTI is placed at address 0x80050
for ADSP-2126x processors, at 0x90050 for
ADSP-2136x/2137x processors, and at 0x8C050 for
ADSP-214xx processors.

• For all SPI boot modes, the RTI is placed at address
0x80030 for ADSP-2126x processors, at 0x90030 for
ADSP-2136x/2137x processors, and at 0x8C030 for
ADSP-214xx processors (high priority SPI interrupt).

3. Saves an IVT instruction in the FINAL_INIT block header.
The count and address of a FINAL_INIT block are constant; to avoid
any redundancy, the count and address are not placed into the
block header. Instead, the 32-bit count and address words are used

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-27

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

to hold the instruction that overwrites the RTI inserted into the
IVT. Listing 7-2 illustrates the block header for FINAL_INIT if, for
example, the opcode 0xAABBCCDDEEFF is assumed to be the
user-intended instruction for the IVT.

Listing 7-2. FINAL_INIT Block Header Format

0x00000000 /* FINAL_INIT tag = 0x0 */

0xEEFF0000 /* LSBs of instructions */

0xAABBCCDD /* 4 MSBs of instructions */

Listing 7-3. FINAL_INIT Section (ADSP-2126x)

/* ====================== FINAL_INIT ======================== */
/* The FINAL_INIT subroutine in the boot kernel program sets up

a DMA to overwrite itself. The code is the very last piece that

runs in the kernel; it is self-modifying code, It uses a DMA

to overwrite itself, initializing the 256 instructions that

reside in the Interrupt Vector Table. */

/* -- */

final_init:

/* ----------- Setup for IVT instruction patch ------------- */

I8=0x80030; /* Point to SPI vector to patch from PX */

R9=0xb16b0000; /* Load opcode for “PM(0,I8)=PX” into R9 */

PX=pm(0x80002); /* User instruction destined for 0x80030

is passed in the section-header for
FINAL_INIT. That instr. is initialized

upon completion of this DMA (see com

ments below) using the PX register. */

R11=BSET R11 BY 9; /* Set IMDW to 1 for inst. write */

DM(SYSCTL)=R11; /* Set IMDW to 1 for inst. write */

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-28 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

/* ------ Setup loop for self-modifying instruction ------- */

I4=0x80004; /* Point to 0x080004 for self-modifying

code inserted by the loader at 0x80004

in bootstream */

R9=pass R9, R11=R12; /* Clear AZ, copy power-on value

of SYSCTL to R11 */

DO 0x80004 UNTIL EQ; /* Set bottom-of-loop address (loopstack)

to 0x80004 and top-of-loop (PC Stack)
to the address of the next
instruction. */

PCSTK=0x80004; /* Change top-of-loop value from the

address of this instruction to

 0x80004. */

/* ------------- Setup final DMA parameters --------------- */

R1=0x80000;DM(IISX)=R1; /* Setup DMA to load over ldr */

R2=0x180; DM(CSX)=R2; /* Load internal count */

DM(IMSX)=M6; /* Set to increment internal ptr */

/*----------------- Enable SPI interrupt -------------------*/

bit clr IRPTL SPIHI; /* Clear any pending SPI interr. latch */

bit set IMASK SPIHI; /* Enable SPI receive interrupt */

bit set MODE1 IRPTEN; /* Enable global interrupts */

FLUSH CACHE; /* Remove any kernel instr’s from cache */

/*---------- Begin final DMA to overwrite this code -------- */

ustat1=dm(SPIDMAC);

bit set ustat1 SPIDEN;

dm(SPIDMAC)=ustat1; /* Begin final DMA transfer */

/*------------ Initiate self-modifying sequence ----------- */

JUMP 0x80004 (DB); /* Causes 0x80004 to be the return

address when this DMA completes and

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-29

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

the RTI at 0x80030 is executed. */

IDLE; /* After IDLE, patch then start */

IMASK=0; /* Clear IMASK on way to 0x80004 */

/* == */

/* When this final DMA completes, the high-priority SPI interrupt

is latched, which triggers the following chain of events:

1) The IDLE in the delayed branch to completes

2) IMASK is cleared

3) The PC (now 0x80004 due to the “JUMP RESET (db)”) is pushed

on the PC stack and the processor vectors to 0x80030 to

service the interrupt.

Meanwhile, the loader (anticipating this sequence) has auto-
matically inserted an “RTI” instruction at 0x80030. The user
instruction intended for that address is instead placed

in the FINAL_INIT section-header and has loaded into PX before
the DMA was initiated.)

4) The processor executes the RTI at 0x80030 and vectors to the

address stored on the PC stack (0x80004).

Again, the loader has inserted an instruction into the boot

stream and has placed it at 0x80005 (opcode x39732D802000):
R0=R0-R0,DM(I4,M5)=R9,PM(I12,M13)=R11;

This instruction does the following.

A) Restores the power-up value of SYSCTL (held in R11).

B) Overwrites itself with the instruction “PM(0,I8)=PX;”

The first instruction of FINAL_INIT places the opcode for

this new instruction, 0xB16B00000000, into R9.

C) R0=R0-R0 causes the AZ flag to be set.

This satisfies the termination-condition of the loop set up

in FINAL_INIT (“DO RESET UNTIL EQ;”). When a loop condition

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-30 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

is achieved within the last three instructions of a loop,

the processor branches to the top-of-loop address (PCSTK)
one final time.

5) We manually changed this top-of-loop address 0x80004, and so

to conclude the kernel, the processor executes the instruction

at 0x80004 *again*.

6) There’s a new instruction at 0x80004: “PM(0,I8)=PX;”. This

initializes the user-intended instruction at 0x80030 (the vec-

tor for the High-Priority-SPI interrupt).

At this point, the kernel is finished, and execution continues

at 0x80005, with the only trace as if nothing happened! */

/* == */

ADSP-21368/2146x Multi-Application (Multi-DXE)
Management

Up to four ADSP-21368 processors/two ADSP-2146x processors can be
clustered together and supported by the CrossCore Embedded Studio
loader utility. In PROM boot mode, all of the processors can boot from
the same PROM. The loader utility assigns an input executable (.dxe) file
to a processor ID or to a number of processor IDs, provided a correspond-
ing loader option is selected on the property page or on the command line.
The loader utility inserts the ID into the output boot stream using the
multiprocessor tag MULTI_PROC (see Table 7-10). The loader utility also
inserts the offset (the 32-bit word count of the boot stream built from the
input executable (.dxe) file) into the boot stream. The MULTI_PROC tag
enables the boot kernel to identify each section of the boot stream with
the executable (.dxe) file from which that section was built. Figure 7-2
shows the multiprocessor boot stream structure.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-31

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

The processor ID of the corresponding processor is indicated in a 32-bit
word, which has the Nth bit set for the .dxe file corresponding to ID=N.
Table 7-14 shows all possible ID fields.

The multiprocessor tag, processor ID, and the offset are encapsulated in a
multiprocessor header. The multiprocessor header includes three 32-bit
words: the multiprocessor tag; the ID (0–7) of the associated processor

Figure 7-2. Multiprocessor Boot Stream

Table 7-14. Multiprocessor ID Fields

Processor ID Number Loader ID Field

0 0x00000001

1 0x00000002

2 0x00000004

3 0x00000008

4 0x00000010

5 0x00000020

6 0x00000040

7 0x00000080

1 && 4 0x00000012

6 && 7 0x000000C0

 BOOT KERNEL

 1ST .dxe BLOCK HEADER

 1ST .dxe DATA BLOCKS

 2ND .dxe BLOCK HEADER

 2ND .dxe DATA BLOCKS

 . . .

 . . .

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-32 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

.dxe file in the lowest byte of a word; and the offset to the next multipro-
cessor tag. The loader -id#exe=filename switch is used to assign a
processor ID number to an executable file. The loader -id#ref=N switch is
used to share the same executable file by setting multiple bits in the ID
field. Figure 7-3 shows the multiprocessor header structure.

ADSP-2126x/2136x/2137x Processors Compression
Support

 Compression is not supported on the ADSP-214xx processors.

The loader utility for the ADSP-2126x/2136x/2137x processors offers a
loader file (boot stream) compression mechanism known as zLib. The zLib
compression is supported by a third party dynamic link library,
zLib1.dll. Additional information about the library can be obtained from
the http://www.zlib.net Web site.

The zLib1 dynamic link library is included with CrossCore Embedded
Studio. The library functions perform the boot stream compression and
decompression procedures when the appropriate options are selected for
the loader utility.

The boot kernel with built-in decompression mechanism must perform
the decompression on the compressed boot stream in a booting process.
The default boot kernel with decompression functions are included with
CrossCore Embedded Studio.

The loader -compression switch directs the loader utility to perform the
boot stream compression from the command line. The IDE also offers a

Figure 7-3. Multiprocessor Header

 0xB

 PROCESSOR IDS

OFFSET TO NEXT MULITPROCESSOR HEADER

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-33

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

dedicated loader property page (Compression) to manage the compression
from the graphical user interface.

The loader utility takes two steps to compress a boot stream. First, the
utility generates the boot stream in the conventional way (builds data
blocks), then applies the compression to the boot stream. The decompres-
sion initialization is the reversed process: the loader utility decompresses
the compressed stream first, then loads code and data into memory seg-
ments in the conventional way.

The loader utility compresses the boot stream on the .dxe-by-.dxe basis.
For each input .dxe file, the utility compresses the code and data together,
including all code and data from any associated shared memory (.sm) files.
The loader utility, however, does not compress automatically any data
from any associated overlay files. To compress data and code from the
overlay file, call the utility with the -compressionOverlay switch, either
from the property page or from the command line.

Compressed Streams

The basic structure of a loader file with compressed streams is shown in
Figure 7-4.

Figure 7-4. Loader File With Compressed Streams

 KERNEL WITH DECOMPRESSION ENGINE

 1ST .dxe COMPRESSED STREAM

 1ST .dxe UNCOMPRESSED STREAM

 2ND .dxe COMPRESSED STREAM

 2ND .dxe UNCOMPRESSED STREAM

 . . .

 . . .

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-34 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The kernel code with the decompression engine is on the top of the loader
file. This section is loaded into the processor first and is executed first
when a boot process starts. Once the kernel code is executed, the rest of
the stream is brought into the processor. The kernel code calls the decom-
pression routine to perform the decompression operation on the stream,
and then loads the decompressed stream into the processor’s memory in
the same manner a conventional kernel does when it encounters a com-
pressed stream.

Figure 7-5 shows the structure of a compressed boot stream.

Compressed Block Headers

A compressed stream always has a header, followed by the payload com-
pressed stream.

The compressed block header is comprised of three 32-bit words. The
structure of a compressed block header is shows in Figure 7-6.

The first 32-bit word of the compressed block header holds the compres-
sion flag, 0x00002000, which indicates that it is a compressed block
header.

Figure 7-5. Compressed Block

Figure 7-6. Compressed Block Header

 COMPRESSED BLOCK HEADER

 COMPRESSED STREAM

 0X00002000 COMPRESSION TAG/FLAG

 0XWBIT0PAD WINDOW SIZE/PADDED WORD COUNT

0XBYTEBYTE COMPRESSED BYTE COUNT

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-35

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

The second 32-bit word of the compressed block header hold the size of
the compression window (takes the upper 16 bits) and padded word count
(takes the lower 16 bits). For the ADSP-2126x/2136x/2137x processors,
the loader utility always rounds the byte count of the compressed stream
to be a multiple of 4. The loader utility also pads 3 bytes to the com-
pressed stream if the byte count of the compressed stream from the loader
compression engine is not a multiple of 4. An actual padded byte count is
a value between 0x0000 and 0x0003.

The compression window size is 8–15 bits, with the default value of 9 bits.
The compression window size specifies to the compression engine a num-
ber of bytes taken from the window during the compression. The window
size is the 2’s exponential value.

The next 32 bits of the compressed block header holds the value of the
compressed stream byte count, excluding the byte padded.

A window size selection affects, more or less, the outcome of the data
compression. Streams in decompression windows of different sizes are, in
general, different and most likely not compatible to each other. If you are
building a custom decompression kernel, ensure the same compression
window size is used for both the loader utility and the kernel. In general, a
bigger compression window size leads to a smaller outcome stream. How-
ever, the benefit of a big window size is marginal in some cases. An
outcome of the data compression depends on a number of factors, and a
compression window size selection is only one of them. The other impor-
tant factor is the coding structure of an input stream. A compression
window size selection can not cause a much smaller outcome stream if the
compression ability of the input stream is low.

Uncompressed Streams

Following the compressed streams, the loader utility file includes the
uncompressed streams. The uncompressed streams include application
codes, conflicted with the code in the initialization blocks in the proces-
sor’s memory spaces, and a final block. The uncompressed stream includes

ADSP-2126x/2136x/2137x/214xx Processor Booting

7-36 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

only a final block if there is no conflicted code. The final block can have a
zero byte count. The final block indicates the end of the application to the
initialization code.

Overlay Compression

The loader utility compresses the code and data from the executable .dxe
and shared memory .sm files when the -compression command-line
switch is used alone, and leaves the code and data from the overlay (.ovl)
files uncompressed. The -compressionOverlay switch directs the loader
utility to compress the code and data from the .ovl files, in addition to
compressing the code and data from the .dxe and .sm files.

The -compressionOverlay switch must be used in conjunction with
-compression.

Booting Compressed Streams

Figure 7-7 shows the booting sequence of a loader file with compressed
streams. The loader file is pre-stored in the flash memory.

1. A a booting process is initialized by the processor.

2. The processor brings the 256 words of the boot kernel from the
flash memory to the processor’s memory for execution.

3. The decompression engine is brought in.

4. The compressed stream is brought in, then decompressed and
loaded into the memory.

5. The uncompressed stream is brought and loaded into memory,
possibly to overwrite the memory spaces taken by the compressed
code.

6. The final block is brought and loaded into the memory to over-
write the memory spaces taken by the boot kernel.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-37

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

Decompression Kernel File

As stated before, a decompression kernel .dxe file must be used when
building a loader file with compressed streams. The decompression kernel
file has a built-in decompression engine to decompress the compressed
streams from the loader file.

A decompression kernel file can be specified from the loader property page
or from the command line via the -l userkernel switch. CrossCore
Embedded Studio includes the default decompression kernel files, which
the loader utility uses if no other kernel file is specified. If building a cus-
tom decompression kernel, ensure that you use the same decompression
function, and use the same compression window size for both the kernel
and the loader utility.

Figure 7-7. ADSP-2126x/2136x/2137x Compressed Loader Stream:
Booting Sequence

BOOT KERNEL

 DECOMPRESSION
ENGINE

COMPRESSED
STREAM

UNCOMPRESSED
STREAM

FINAL BLOCK

FLASH MEMORY

MEMORY

PROCESSOR
1
2

3

5

4

6

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide

7-38 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The default decompression kernel files are stored in the
<install_path>\2126x\ldr\zlib and \2136x\ldr\zlib directories of
CrossCore Embedded Studio. The loader utility uses the window size of 9
bits to perform the compression operation. The compression window size
can be changed through the loader property page or the -compressWS #
command-line switch. The valid range for the window size is from 8 to 15
bits.

ADSP-2126x/2136x/2137x/214xx
Processor Loader Guide

Loader operations depend on the loader options, which control how the
loader utility processes executable files. You select features such as boot
modes, boot kernels, and output file formats via the loader options. These
options are specified on the loader utility’s command line or via the
General loader page of the Tool Settings tab in the IDE.

The loader pages consist of multiple panes. For information specific to the
ADSP-2126x/2136x/2137x/2146x/2147x/2148x processor, refer to the
online help for that processor. When you open the loader page, the default
loader settings for the selected processor are already set. Use the Addi-
tional Options loader page of the Tool Settings tab to enter options that
have no dialog box equivalent.

 Option settings on the loader pages correspond to switches dis-
played on the command line.

These sections describe how to produce a bootable loader file (.ldr):

• “Using ADSP-2126x/2136x/2137x/214xx Loader Command Line”
on page 7-39

• “Using Interface (Load Page)” on page 7-46

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-39

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

Using ADSP-2126x/2136x/2137x/214xx Loader
Command Line

Use the following syntax for the SHARC loader command line.

elfloader inputfile -proc processor -switch [switch …]

where:

• inputfile—Name of the executable file (.dxe) to be processed
into a single boot-loadable file. An input file name can include the
drive and directory. Enclose long file names within straight quotes,
“long file name”.

• -proc processor—Part number of the processor (for example,
-proc ADSP-21262) for which the loadable file is built. The -proc
switch is mandatory.

• -switch …—One or more optional switches to process. Switches
select operations and boot modes for the loader utility. A list of all
switches and their descriptions appear in Table 7-16.

 Command-line switches are not case-sensitive and may be placed
on the command line in any order.

The following command line,

elfloader Input.dxe -bSPIflash -proc ADSP-21262

runs the loader utility with:

• Input.dxe—Identifies the executable file to process into a
boot-loadable file. Note that the absence of the -o switch causes the
output file name to default to Input.ldr.

• -bspiflash—Specifies SPI flash port booting as the boot type for
the boot-loadable file.

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide

7-40 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

• -proc ADSP-21262 —Specifies ADSP-21262 as the target
processor.

File Searches

File searches are important in loader processing. The loader utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-18.

File Extensions

Some loader switches take a file name as an optional parameter.
Table 7-15 lists the expected file types, names, and extensions.

Table 7-15. File Extensions

Extension File Description

.dxe Executable files and boot kernel files. The loader utility recognizes overlay memory
files (.ovl) and shared memory files (.sm), but does not expect these files on the
command line. Place .ovl and .sm files in the same directory as the .dxe file that
refers to them. The loader utility finds the files when processing the .dxe file. The
.ovl and .sm files may also be placed in the .ovl and .sm file output directory
specified in the .ldf file.

.ldr Loader output file

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-41

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

Loader Command-Line Switches

Table 7-16 is a summary of the ADSP-2126x, ADSP-2136x,
ADSP-2137x, and ADSP-214xx loader switches.

Table 7-16. ADSP-2126x/2136x/2137x/214xx Loader Command-Line
Switches

Switch Description

-bprom
-bspislave|-bspi
-bspimaster
-bspiprom
-bspiflash
-blink

Specifies the boot mode. The -b switch directs the loader utility to
prepare a boot-loadable file for the specified boot mode.
The valid modes (boot types) are PROM, SPI slave, SPI master, SPI
PROM, SPI flash, and link port (ADSP-2146x processors).

If -b does not appear on the command line, the default is -bprom.
To use a custom boot kernel, the boot type selected with the -b
switch must correspond with the boot kernel selected with the -l
switch. Otherwise, the loader utility automatically selects a default
boot kernel based on the selected boot type
(see “ADSP-2126x/2136x/2137x/214xx Processors Boot Kernels” on
page 7-15). Do not use with the -nokernel switch.

-compression Directs the loader utility to compress the application data and code,
including all data and code from the application-associated shared
memory files (see “ADSP-2126x/2136x/2137x Processors Compres-
sion Support” on page 7-32). The data and code from the overlay
files are not compressed if this switch is used alone
(see -compressionOverlay).

-compressionOverlay Directs the loader utility to compress the application data and code
from the associated overlay files (see “Overlay Compression” on
page 7-36).

NOTE: This switch must be used with -compression.

-compressWS # The -compressWS # switch specifies a compression window size in
bytes. The number is a 2’s exponential value to be used by the com-
pression engine. The valid values are [8–15], with the default of 9.

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide

7-42 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-fhex
-fASCII
-fbinary
-finclude
-fs1
-fs2
-fs3

Specifies the format of a boot-loadable file (Intel hex-32, ASCII,
binary, include). If the -f switch does not appear on the command
line, the default boot file format is
Intel hex-32 for PROM and SPI PROM, ASCII for SPI slave, SPI
flash, and SPI master.

Available formats depend on the boot type selection (-b switch):
• For PROM and SPI PROM boot types, select a hex, ASCII, s1, s2,

s3, or include format.
• For other SPI boot types, select an ASCII or binary format.

-h
or
-help

Invokes the command-line help, outputs a list of command-line
switches to standard output, and exits.
By default, the -h switch alone provides help for the loader driver. To
obtain a help screen for the target processor, add the -proc switch to
the command line.

For example: type elfloader -proc ADSP-21262 -h to obtain
help for the ADSP-21262 processor.

-hostwidth # Sets up the word width for the .ldr file. By default, the word width
for PROM and SPI PROM boot modes is 8; for SPI slave, SPI flash,
and SPI master boot modes is 32. The valid word widths are:
• 8 for Intel hex 32 and Motorola S-records formats;
• 8, 16, or 32 for ASCII, binary, and include formats

-id#exe=filename Specifies the processor ID. Directs the loader utility to use the proces-
sor ID (#) for a corresponding executable file (the filename parame-
ter) when producing a boot-loadable file. This switch is used to
produce a boot-loadable file to boot multiple processors. Valid values
for # are 1, 2, 3, 4.

Do not use this switch for single-processor systems. For single-proces-
sor systems, use filename as a parameter without a switch.

NOTE: This switch is applicable to the ADSP-21368/2146x proces-
sors only.

Table 7-16. ADSP-2126x/2136x/2137x/214xx Loader Command-Line
Switches (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-43

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

-id#ref=N Directs the loader utility to share the boot stream for processor N with
processor #. If the executable file of the # processor is identical to the
executable of the N processor, the switch can be used to set the start
address of the processor with ID of # to be the same as that of the
processor with ID of N. This effectively reduces the size of the loader
file by providing a single copy of the file to two or more processors in
a multiprocessor system.

NOTE: This switch is applicable to the ADSP-21368/2146x proces-
sors only.

-l userkernel Directs the loader utility to use the specified userkernel and to
ignore the default boot kernel for the boot-loading routine in the
output boot-loadable file.
NOTE: The boot kernel file selected with this switch must corre-
spond to the boot type selected with the -b switch).
If the -l switch does not appear on the command line, the loader
utility searches for a default boot kernel file in the installation direc-
tory, (see “ADSP-2126x/2136x/2137x/214xx Processors Boot Ker-
nels” on page 7-15). For kernels with the decompression engine, see
“Decompression Kernel File” on page 7-37.

NOTE: The loader utility does not search for any kernel file if
-nokernel is selected.

-nokernel[message1,
message2]

Supports internal boot mode. The -nokernel switch directs the
loader utility:
• Not to include the boot kernel code into the loader (.ldr) file.
• Not to perform any special handling for the 256 instructions

located in the IVT.
• To put two 32-bit hex messages in the final block header

(optional).
• Not to include the initial word in the loader file.
For more information, see “Boot Kernel Modification and Loader
Issues” on page 7-16.

-o filename Directs the loader utility to use the specified filename as the name
for the loader’s output file. If the -o filename is absent, the default
name is the root name of the input file with an .ldr extension.

Table 7-16. ADSP-2126x/2136x/2137x/214xx Loader Command-Line
Switches (Cont’d)

Switch Description

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide

7-44 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-noZeroBlock The -noZeroBlock switch directs the loader utility not to build zero
blocks.

-paddress Specifies the PROM offset start address. This PROM address corre-
sponds to 0x80000 (ADSP-2126x processors) or to external bank MS1
for ADSP-2136x/2137x/214xx processors. The -p switch starts the
boot-loadable file at the specified offset address in the EPROM.

If the p switch does not appear on the command line, the loader util-
ity starts the EPROM file at offset address 0x0.

-proc processor Specifies the processor. This is a mandatory switch. The processor
argument is one of the following:
ADSP-21261 ADSP-21262 ADSP-21266
ADSP-21362 ADSP-21363 ADSP-21364
ADSP-21365 ADSP-21366 ADSP-21367
ADSP-21368 ADSP-21369 ADSP-21371
ADSP-21375 ADSP-21462 ADSP-21465
ADSP-21467 ADSP-21469 ADSP-21471
ADSP-21472 ADSP-21475 ADSP-21478
ADSP-21479 ADSP-21481 ADSP-21482
ADSP-21483 ADSP-21485 ADSP-21486
ADSP-21487 ADSP-21488 ADSP-21489

-retainSecond-
StageKernel

Directs the loader utility to retain the decompression code in the
memory at runtime.

NOTE: The -retainSecondStageKernel switch must be used with
-compression.

Table 7-16. ADSP-2126x/2136x/2137x/214xx Loader Command-Line
Switches (Cont’d)

Switch Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 7-45

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

-si-revision
#|none|any

The -si-revision {#|none|any} switch provides a silicon revision
of the specified processor.
The switch parameter represents a silicon revision of the processor
specified by the -proc processor switch. The parameter takes one
of three forms:
• The none value indicates that CrossCore Embedded Studio

ignores silicon errata.
• The #.# value indicates one or more decimal digits, followed by a

point, followed by one or two decimal digits. Examples of revisions
are: 0.0 - 0.5.

• The any value indicates that CrossCore Embedded Studio pro-
duces an output file that can be run at any silicon revision.

The switch generates either a warning about any potential anomalous
conditions or an error if any anomalous conditions occur.

CAUTION: In the absence of the switch parameter (a valid revision
value)—-si-revision alone or with an invalid value—the loader
utility generates an error.

-splitter
section_name

 The -splitter section_name switch provides for selectively
extracting a section (section_name) from the DXE and writing it to a
non-bootable .ldr file. The section name is a required argument for
-splitter. It specifies what section the loader is to extract content
from. All other sections are ignored.

This switch is provided for the ADSP-214xx processors only. The
-splitter section_name provides support for SW (VISA) sections
or NW (normal-word).

-v Outputs verbose loader messages and status information as the loader
utility processes files.

-version Directs the loader utility to show its version information. Type
elfloader -version to display the version of the loader drive.

Add the -proc switch, for example,
elfloader -proc ADSP-21262 -version to display version infor-
mation of both loader drive and SHARC loader.

Table 7-16. ADSP-2126x/2136x/2137x/214xx Loader Command-Line
Switches (Cont’d)

Switch Description

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide

7-46 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Using Interface (Load Page)
Set your project’s target type as Loader Image at the project creation or
change it later on the Build Artifact tab of the Settings view (set Artifact
Type as Loader File). Then modify the default loader options on the Gen-
eral loader page of the Tool Settings tab. Click Apply to save the
selections.

CrossCore Embedded Studio invokes the elfloader utility to build the
output file. Dialog box buttons and fields correspond to command-line
switches and parameters (see Table 7-16).

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 8-1

8 SPLITTER FOR SHARC
PROCESSORS

This chapter explains how the splitter utility (elfspl21k.exe) is used to
convert executable (.dxe) files into non-bootable files for the ADSP-21xxx
SHARC processors. Non-bootable PROM image files execute from
external memory of a processor. For SHARC processors, the utility creates
a 64-/48-/40-/32-bit image file or an image file to match a physical mem-
ory size.

 Users who are migrating from VisualDSP++

VisualDSP++ legacy splitter projects cannot be imported into the
CrossCore Embedded Studio IDE. There is no SHARC splitter
build artifact in the IDE. If attempting to import a VisualDSP++
legacy splitter project, a status of “Not Converted” appears along
with the following error messages:

createProjectDescription: Unable to find the project type

sharc.projecttype.bnm.

NullPointerException thrown. See error log for further

details.

The legacy SHARC splitter elfspl21k.exe is available with Cross-
Core Embedded Studio for command-line usage.

Splitter functionality for SHARC processors beginning with the
ADSP-214xx family is available through the SHARC loader instead
of the through the legacy splitter utility.

For SHARC processors, the splitter utility also properly packs the external
memory data or code to match the specified external memory widths if the

Splitter Command Line

8-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

logical width of the data or code is different from that of the physical
memory.

In most instances, developers working with SHARC processors use the
loader utility instead of the splitter. One of the exceptions is a SHARC
system that can execute instructions from external memory. Refer to
“Introduction” on page 1-1 for the splitter utility overview; the introduc-
tory material applies to both processor families.

Splitter Command Line
Use the following syntax for the SHARC splitter command line.

elfspl21k [-switch …] -pm &|-dm &|-64 &| -proc part_number

inputfile

or
elfspl21k [-switch …] -s section_name inputfile

where:

• inputfile—Specifies the name of the executable file (.dxe) to be
processed into a non-bootable file for a single-processor system.
The name of the inputfile file must appear at the end of the
command. The name can include the drive, directory, file name,
and file extension. Enclose long file names within straight quotes;
for example, “long file name”.

• -switch …—One or more optional switches to process. Switches
select operations for the splitter utility. Switches may be used in
any order. A list of the splitter switches and their descriptions
appear in Table 8-2.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 8-3

Splitter for SHARC Processors

• -pm &| -dm &| -64—For SHARC processors, the &| symbol between
the switches indicates AND/OR. The splitter command line must
include one or more of -pm, -dm, or -64 (or the -s switch). The -64
switch corresponds to DATA64 memory space.

• -s section_name—The -s switch can be used without the -pm, -dm,
or -64 switch. The splitter command line must include one or
more of the -pm, -dm, and, -64 switches or the -s switch.

 Most items in the splitter command line are not case sensitive; for
example, -pm and -PM are interchangeable. However, the names of
memory sections must be identical, including case, to the names
used in the executable.

Each of the following command lines,

elfspl21k -pm -o pm_stuff my_proj.dxe -proc ADSP21161

elfspl21k -dm -o dm_stuff my_proj.dxe -proc ADSP21161

elfspl21k -64 -o 64_stuff my_proj.dxe -proc ADSP21161

elfspl21k -s seg-code -o seg-code my_proj.dxe

runs the splitter utility for the ADSP-21161 processor. The first command
produces a PROM file for program memory. The second command pro-
duces a PROM file for data memory. The third command produces a
PROM file for DATA64 memory. The fourth command produces a PROM
file for section seg-code.

Splitter Command Line

8-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The switches on these command lines are as follows.

File Searches
File searches are important in the splitter process. The splitter utility sup-
ports relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
described on page 1-18.

Output File Extensions
The splitter utility follows the conventions shown in Table 8-1 for output
file extensions.

-pm
-dm
-64

Selects program memory (-pm), data memory (-dm), or DATA64
memory (-64) as sources in the executable for extraction and placement
into the image.
Because these are the only switches used to identify the memory source,
the specified sources are PM, DM, or DATA64 memory sections. Because
no other content switches appear on these command lines, the output
file format defaults to a Motorola 32-bit format, and the PROM word
width of the output defaults to 8 bits for all PROMs.

-o pm_stuff
-o dm_stuff
-o seg-code

Specify names for the output files. Use different names so the output of
a run does not overwrite the output of a previous run. The output
names are pm_stuff.s_# and dm_stuff.s_#. The splitter utility adds
the .s_# file extension to the output files; # is a number that differenti-
ates one output file from another.

my_proj.dxe Specifies the name of the input (.dxe) file to be processed into
non-bootable PROM image files.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 8-5

Splitter for SHARC Processors

Splitter Command-Line Switches
A list of the splitter command-line switches appears in Table 8-2.

Table 8-1. Output File Extensions

Extension File Description

.s_# Motorola S-record format file. The # indicates the position (0 = least significant,
1 = next-to-least significant, and so on). For info about Motorola S-record file for-
mat, refer to “Output Files in Motorola S-Record Format” on page A-10.

.h_# Intel hex-32 format file. The # indicates the position (0 = least significant,
1 = next-to-least significant, and so on). For information about Intel hex-32 file for
mat, refer to “Splitter Output Files in Intel Hex-32 Format” on page A-12.

.stk Byte-stacked format file. These files are intended for host transfer of data, not for
PROMs. For more information about byte stacked file format, format files, refer to
“Splitter Output Files in Byte-Stacked Format” on page A-12.

Table 8-2. Splitter Command-Line Switches

Item Description

-64 The -64 (include DATA64 memory) switch directs the splitter utility to
extract all sections declared as 64-bit memory sections from the input
.dxe file. The switch influences the operation of the -ram and -norom
switches, adding 64-bit data memory as their target.

-dm The -dm (include data memory) switch directs the splitter utility to
extract memory sections declared as data memory ROM from the input
.dxe file. The -dm switch influences the operation of the -ram and
-norom switches, adding data memory as their target.

Splitter Command Line

8-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-f h
-f s1
-f s2
-f s3
-f b

The -f (PROM file format) switch directs the splitter utility to gener-
ate a non-bootable PROM image file in the specified format.
Available selection include:
• h—Intel hex-32 format
• s1—Motorola EXORciser format
• s2—Motorola EXORMAX format
• s3—Motorola 32-bit format
• b—byte stacked format
If the -f switch does not appear on the command line, the default
format for the PROM file is Motorola 32-bit (s3).
For information on file formats, see “Build Files” on page A-4.

-norom The -norom (no ROM in PROM) switch directs the splitter utility to
ignore ROM memory sections in the inputfile when extracting
information for the output image. The -dm and -pm switches select data
memory or program memory. The operation of the -s switch is not
influenced by the -norom switch.

-o imagefile The -o (output file) switch directs the splitter utility to use imagefile
as the name of the splitter output file(s).
If not specified, the default name for the splitter output file
is inputfile.ext, where ext depends on the output format.

-pm The -pm (include program memory) switch directs the splitter utility to
extract memory sections declared program memory ROM from the
input.dxe file. The -pm switch influences the operation of the -ram
and -norom switches, adding program memory as the target.

-proc part_number Specifies the processor type to the splitter utility. This is a mandatory
switch. Valid processors are:
• ADSP-21160, ADSP-21161
• ADSP-21261, ADSP-21262, ADSP-21266
• ADSP-21363, ADSP-21364, ADSP-21365, ADSP-21366,
ADSP-21367, ADSP-21368, ADSP-21369,

• ADSP-21371, ADSP-21375

Table 8-2. Splitter Command-Line Switches (Cont’d)

Item Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual 8-7

Splitter for SHARC Processors

-r # [# …] The -r (PROM widths) switch specifies the number of PROM files and
their width in bits. The splitter utility can create PROM files for 8-,
16-, and 32-bit wide PROMs. The default width is 8 bits.
Each # parameter specifies the width of one PROM file.
Place # parameters in order from most significant to least significant.
The sum of the # parameters must equal the bit width of the destina-
tion memory (40 bits for DM, 48 bits for PM, or 64 bits for 64-bit
memory).
Example:
elfspl21k –dm –r 16 16 8 myfile.dxe
This command extracts data memory ROM from myfile.dxe and cre-
ates the following output PROM files.
• myfile.s_0—8 bits wide, contains bits 7–0
• myfile.s_1—16 bits wide, contains bits 23–8
• myfile.s_2—16 bits wide, contains bits 39–24
The width of the three output files is 40 bits.

-ram The -ram (include RAM in PROM) switch directs the splitter utility to
extract RAM sections from the inputfile. The -dm, -pm, and -64
switches select the memory. The -s switch is not influenced by the
-ram switch.

-s section_name The -s (include memory section) switch directs the splitter utility to
extract the content of one memory section (section_name) from the
executable. The section_name argument is case sensitive and must

exactly match the name as it appears in the LDF for the executable.
You must also specify the switch -dm or -pm or -64 for the memory
type. Rerun the splitter for any additional sections that are required,
changing the memory type switch and output file as needed for each
invocation.
Note: Short-word sections are not supported in the legacy SHARC
splitter. To split a SW section into a raw (non-bootable) format, use the
new -splitter section_name switch in the SHARC ADSP-214xx
loader.

Table 8-2. Splitter Command-Line Switches (Cont’d)

Item Description

Splitter Command Line

8-8 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-si-revision
#|none|any

The -si-revision {#|none|any} switch provides a silicon revision
of the specified processor.
The switch parameter represents a silicon revision of the processor spec-
ified by the -proc processor switch. The parameter takes one of three
forms:
• The none value indicates that CrossCore Embedded Studio ignores

silicon errata.
• The #.# value indicates one or more decimal digits, followed by a

point, followed by one or two decimal digits. Examples of revisions
are: 0.0, 0.1, 0.2, 0.3.

• The any value indicates that CrossCore Embedded Studio produces
an output file that can be run at any silicon revision.

The switch generates either a warning about any potential anomalous
conditions or an error if any anomalous conditions occur.
In the absence of the silicon revision switch, the loader selects the great-
est silicon revision it is aware of, if any.

In the absence of the switch parameter (a valid revision value)—
-si-revision alone or with an invalid value—the loader generates an
error.

-splitter
section_name

The -splitter section_name switch provides for selectively
extracting a section (section_name) from the DXE and writing it to a

non-bootable .ldr file.

This switch is provided for the ADSP-214xx processors only. The
-splitter section_name provides support for SW (VISA) sections
or NW (normal-word).

-u # (Byte-stacked format files only) The -u (user flags) switch, which may
be used only in combination with the -f b switch, directs the splitter
utility to use the number # in the user-flags field of a byte stacked for-
mat file.
If the -u switch is not used, the default value for the number is 0. By
default, # is decimal. If # is prefixed with 0x, the splitter utility inter-
prets the number as hexadecimal. For more information, see “Splitter
Output Files in Byte-Stacked Format” on page A-12.

-version Directs the splitter utility to show its version information.

Table 8-2. Splitter Command-Line Switches (Cont’d)

Item Description

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual A-1

A FILE FORMATS

CrossCore Embedded Studio supports many file formats, in some cases
several for each development tool. This appendix describes file formats
that are prepared as inputs and produced as outputs.

The appendix describes three types of files:

• “Source Files” on page A-1

• “Build Files” on page A-4

• “Debugger Files” on page A-15

Most of the development tools use industry-standard file formats. These
formats are described in “Format References” on page A-16.

Source Files
This section describes the following source (input) file formats.

• “C/C++ Source Files” on page A-2

• “Assembly Source Files” on page A-2

• “Assembly Initialization Data Files” on page A-2

• “Header Files” on page A-3

• “Linker Description Files” on page A-4

• “Linker Command-Line Files” on page A-4

Source Files

A-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

C/C++ Source Files
C/C++ source files are text files (.c, .cpp, .cxx, and so on) containing
C/C++ code, compiler directives, possibly a mixture of assembly code and
directives, and, typically, preprocessor commands.

Several dialects of C code are supported: pure (portable) ANSI C, and at
least two subtypes1 of ANSI C with ADI extensions. These extensions
include memory type designations for certain data objects, and segment
directives used by the linker to structure and place executable files.

The C/C++ compiler, run-time library, as well as a definition of ADI
extensions to ANSI C, are detailed in the C/C++ Compiler and Library
Manual.

Assembly Source Files
Assembly source files (.asm) are text files containing assembly instructions,
assembler directives, and (optionally) preprocessor commands. For infor-
mation on assembly instructions, see the Programming Reference manual
for your processor.

The processor’s instruction set is supplemented with assembly directives.
Preprocessor commands control macro processing and conditional assem-
bly or compilation.

For information on the assembler and preprocessor, see the Assembler and
Preprocessor Manual.

Assembly Initialization Data Files
Assembly initialization data files (.dat) are text files that contain fixed- or
floating-point data. These files provide initialization data for an assembler
.VAR directive or serve in other tool operations.

1 With and without built-in function support; a minimal differentiator. There are others dialects.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual A-3

File Formats

When a .VAR directive uses a .dat file for data initialization, the assembler
reads the data file and initializes the buffer in the output object file (.doj).
Data files have one data value per line and may have any number of lines.

The .dat extension is explanatory or mnemonic. A directive to
#include <filename> can take any file name and extension as an
argument.

Fixed-point values (integers) in data files may be signed, and they may be
decimal, hexadecimal, octal, or binary based values. The assembler uses
the prefix conventions listed in Table A-1 to distinguish between numeric
formats.

For all numeric bases, the assembler uses words of different sizes for data
storage. The word size varies by the processor family,

Header Files
Header files (.h) are ASCII text files that contain macros or other prepro-
cessor commands which the preprocessor substitutes into source files. For
information on macros and other preprocessor commands, see the Assem-
bler and Preprocessor Manual.

Table A-1. Numeric Formats

Convention Description

0xnumber
H#number
h#number

Hexadecimal number

number
D#number
d#number

Decimal number

B#number
b#number

Binary number

O#number
o#number

Octal number

Build Files

A-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Linker Description Files
Linker description files (.ldf) are ASCII text files that contain commands
for the linker in the linker scripting language. For information on the
scripting language, see the Linker and Utilities Manual.

Linker Command-Line Files
Linker command-line files (.txt) are ASCII text files that contain
command-line inputs for the linker. For more information on the linker
command line, see the Linker and Utilities Manual.

Build Files
Build files are produced by CrossCore Embedded Studio while building a
project. This section describes the following build file formats.

• “Assembler Object Files” on page A-5

• “Library Files” on page A-5

• “Linker Output Files” on page A-5

• “Memory Map Files” on page A-6

• “Loader Output Files in Intel Hex-32 Format” on page A-6

• “Loader Output Files in Include Format” on page A-8

• “Loader Output Files in Binary Format” on page A-10

• “Output Files in Motorola S-Record Format” on page A-10

• “Splitter Output Files in Intel Hex-32 Format” on page A-12

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual A-5

File Formats

• “Splitter Output Files in Byte-Stacked Format” on page A-12

• “Splitter Output Files in ASCII Format” on page A-14

Assembler Object Files
Assembler output object files (.doj) are binary object and linkable files
(ELF). Object files contain relocatable code and debugging information
for a DSP program’s memory segments. The linker processes object files
into an executable file (.dxe). For information on the object file’s ELF for-
mat, see “Format References” on page A-16.

Library Files
Library files (.dlb), the output of the archiver, are binary, object and link-
able files (ELF). Library files (called archive files in previous software
releases) contain one or more object files (archive elements).

The linker searches through library files for library members used by the
code. For information on the ELF format used for executable files, refer to
“Format References” on page A-16.

 The archiver automatically converts legacy input objects from
COFF to ELF format.

Linker Output Files
The linker’s output files (.dxe, .sm, .ovl) are binary executable files
(ELF). The executable files contain program code and debugging
information. The linker fully resolves addresses in executable files. For
information on the ELF format used for executable files, see the TIS Com-
mittee texts cited in “Format References” on page A-16.

The loaders/splitter utilities are used to convert executable files into
boot-loadable or non-bootable files.

Build Files

A-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Executable files are converted into a boot-loadable file (.ldr) for the ADI
processors using a splitter utility. Once an application program is fully
debugged, it is ready to be converted into a boot-loadable file.
A boot-loadable file is transported into and run from a processor’s internal
memory. This file is then programmed (burned) into an external memory
device within your target system.

A splitter utility generates non-bootable, PROM-image files by processing
executable files and producing an output PROM file. A non-bootable,
PROM-image file executes from processor external memory.

Memory Map Files
The linker can output memory map files (.xml), which are ASCII text files
that contain memory and symbol information for the executable files. The
.xml file contains a summary of memory defined with the MEMORY{} com-
mand in the .ldf file, and provides a list of the absolute addresses of all
symbols.

Loader Output Files in Intel Hex-32 Format
The loader utility can output Intel hex-32 format files (.ldr). The files
support 8-bit-wide PROMs and are used with an industry-standard
PROM programmer to program memory devices. One file contains data
for the whole series of memory chips to be programmed.

The following example shows how Intel hex-32 format appears in the
loader’s output file. Each line in the Intel hex-32 file contains an extended
linear address record, a data record, or the end-of-file record.

:020000040000FA Extended linear address record

:0402100000FE03F0F9 Data record

:00000001FF End-of-file record

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual A-7

File Formats

Extended linear address records are used because data records have a
4-character (16-bit) address field, but in many cases, the required PROM
size is greater than or equal to 0xFFFF bytes. Extended linear address
records specify bits 31–16 for the data records that follow.

Table A-2 shows an example of an extended linear address record.

Table A-3 shows the organization of a sample data record.

Table A-2. Extended Linear Address Record Example

Field Purpose

:020000040000FA Example record

: Start character

02 Byte count (always 02)

0000 Address (always 0000)

04 Record type

0000 Offset address

FA Checksum

Table A-3. Data Record Example

Field Purpose

:0402100000FE03F0F9 Example record

: Start character

04 Byte count of this record

0210 Address

00 Record type

00 First data byte

F0 Last data byte

F9 Checksum

Build Files

A-8 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Table A-4 shows an end-of-file record.

CrossCore Embedded Studio includes a utility program to convert an
Intel hexadecimal file to Motorola S-record or data file. Refer to “hexutil –
Hex-32 to S-Record File Converter” on page B-1 for details.

Loader Output Files in Include Format
The loader utility can output include format files (.ldr). These files per-
mit the inclusion of the loader file in a C program.

The word width (8- or16-bit) of the loader file depends on the specified
boot type. Similar to Intel hex-32 output, the loader output in include
format have some basic parts in the following order.

1. Initialization code (some Blackfin processors)

2. Boot kernel (some Blackfin and SHARC processors)

3. User application code

Table A-4. End-of-File Record Example

Field Purpose

:00000001FF End-of-file record

: Start character

00 Byte count (zero for this record)

0000 Address of first byte

01 Record type

FF Checksum

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual A-9

File Formats

4. Saved user code in conflict with the initialization code (some
Blackfin processors)

5. Saved user code in conflict with the kernel code (some Blackfin and
SHARC processors)

The initialization code is an optional first part for some Blackfin proces-
sors, while the kernel code is the part for some Blackfin and SHARC
processors. User application code is followed by the saved user code.

Files in include format are ASCII text files that consist of 48-bit
instructions, one per line (on SHARC processors). Each instruction is pre-
sented as three 16-bit hexadecimal numbers. For each 48-bit instruction,
the data order is lower, middle, and then upper 16 bits. Example lines
from an include format file are:

0x005c, 0x0620, 0x0620,

0x0045, 0x1103, 0x1103,

0x00c2, 0x06be, 0x06be

This example shows how to include this file in a C program:

const unsigned loader_file[] =

{

#include “foo.ldr”

};

const unsigned loader_file_count = sizeof loader_file

/ sizeof loader_file[0];

The loader_file_count reflects the actual number of elements in the
array and cannot be used to process the data.

Build Files

A-10 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Loader Output Files in Binary Format
The loader utility can output binary format files (.ldr) to support a vari-
ety of PROM and microcontroller storage applications.

Binary format files use less space than the other loader file formats. Binary
files have the same contents as the corresponding ASCII file, but in binary
format.

Output Files in Motorola S-Record Format
The loader and splitter utilities can output Motorola S-record format files
(.s_#), which conform to the Intel standard. The three file formats sup-
ported by the loader and PROM splitter utilities differ only in the width
of the address field: S1 (16 bits), S2 (24 bits), or S3 (32 bits).

An S-record file begins with a header record and ends with a termination
record. Between these two records are data records, one per line:

S00600004844521B Header record
S10D00043C4034343426142226084C Data record (S1)
S903000DEF Termination record (S1)

Table A-5 shows the organization of an example header record.

Table A-5. Header Record Example

Field Purpose

S00600004844521B Example record

S0 Start character

06 Byte count of this record

0000 Address of first data byte

484452 Identifies records that follow

1B Checksum

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual A-11

File Formats

Table A-6 shows the organization of an S1 data record.

The S2 data record has the same format, except that the start character is
S2 and the address field is six characters wide. The S3 data record is the
same as the S1 data record except that the start character is S3 and the
address field is eight characters wide.

Termination records have an address field that is 16-, 24-, or 32 bits wide,
whichever matches the format of the preceding records. Table A-7 shows
the organization of an S1 termination record.

The S2 termination record has the same format, except that the start char-
acter is S8 and the address field is six characters wide.

Table A-6. S1 Data Record Example

Field Purpose

S10D00043C4034343426142226084C Example record

S1 Record type

0D Byte count of this record

0004 Address of the first data byte

3C First data byte

08 Last data byte

4C Checksum

Table A-7. S1 Termination Record Example

Field Purpose

S903000DEF Example record

S9 Start character

03 Byte count of this record

000D Address

EF Checksum

Build Files

A-12 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

The S3 termination record is the same as the S1 format, except the start
character is S7 and the address field is eight characters wide.

For more information, see “hexutil – Hex-32 to S-Record File Converter”
on page B-1.

Splitter Output Files in Intel Hex-32 Format
The splitter utility can output Intel hex-32 format (.h_#) files. These
ASCII files support a variety of PROM devices. For an example of how
the Intel hex-32 format appears for an 8-bit wide PROM, see “Loader
Output Files in Intel Hex-32 Format” on page A-6.

The splitter utility prepares a set of PROM files. Each PROM holds a por-
tion of each instruction or data. This configuration differs from the loader
output.

Splitter Output Files in Byte-Stacked Format
The splitter utility can output files in byte-stacked (.stk) format. These
files are not intended for PROMs, but are ideal for microcontroller data
transfers.

A file in byte-stacked format comprises a series of one line headers, each
followed by a block (one or more lines) of data. The last line in the file is a
header that signals the end of the file.

Lines consist of ASCII text that represents hexadecimal digits. Two
characters represent one byte. For example, F3 represents a byte whose
decimal value is 243.

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual A-13

File Formats

Table A-8 shows an example of a header record in byte-stacked format.

In the above example, the start address and block length fields are 32
(0x20) bits wide. The file contains program memory data (the MSB is the
only flag currently used in the PROM splitter flags field). No user flags are
set. The address of the first location in the block is 0x08. The block con-
tains 30 (1E) bytes (5 program memory code words). The number of bytes
that follow (until next header record or termination record) must be non-
zero.

A block of data records follows its header record, five bytes per line for
data memory, and six byte per line for program memory or in other phys-
ical memory width. For example:

Program Memory Section (Code or Data)

3C4034343426

142226083C15

Data Memory Section

3C40343434

2614222608

Table A-8. Example – Header Record in Byte-Stacked Format

Field Purpose

20008000000000080000001E Example record

20 Width of address and length fields (in bits)

00 Reserved

80 PROM splitter flags (80 = PM, 00 = DM)

00 User defined flags (loaded with -u switch)

00000008 Start address of data block

0000001E Number of bytes that follow

Build Files

A-14 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

DATA64 Memory Section

1122334455667788

99AABBCCDDEEFF00

The bytes are ordered left to right, most significant to least.

The termination record has the same format as the header record, except
for the rightmost field (number of records), which is all zeros.

Splitter Output Files in ASCII Format
When the Blackfin splitter utility is invoked as a splitter utility, its output
can be an ASCII format file with the .ldr extension. ASCII format files
are text representations of ROM memory images that can be post-pro-
cessed by users.

Data Memory (DM) Example:

ext_data { TYPE(DM ROM) START(0x010000) END(0x010003) WIDTH(8) }

The above DM section results in the following code.

00010000 /* 32-bit logical address field */

00000004 /* 32-bit logical length field */

00020201 /* 32-bit control word: 2x address multiply */

/* 02 bytes logical width, 01 byte physical width */

00000000 /* reserved */

0x12 /* 1st data word, DM data is 8 bits */

0x56

0x9A

0xDE /* 4th (last) data word */

CRC16 /* optional, controlled by the -checksum switch */

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual A-15

File Formats

Debugger Files
Debugger files provide input to the debugger to define support for simula-
tion or emulation of your program. The debugger consumes all the
executable file types produced by the linker (.dxe, .sm, .ovl). To simulate
IO, the debugger also consumes the assembler data file format (.dat) and
the loadable file formats (.ldr).

The standard hexadecimal format for a SPORT data file is one integer
value per line. Hexadecimal numbers do not require a 0x prefix. A value
can have any number of digits but is read into the SPORT register as
follows.

• The hexadecimal number is converted to binary.

• The number of binary bits read in matches the word size set for the
SPORT register and starts reading from the LSB. The SPORT register
then zero-fills bits shorter than the word size or conversely trun-
cates bits beyond the word size on the MSB end.

In the following example (Table A-9), a SPORT register is set for 20-bit
words, and the data file contains hexadecimal numbers. The simulator
converts the hex numbers to binary and then fills/truncates to match the
SPORT word size. The A5A5 is filled and 123456 is truncated.

Table A-9. SPORT Data File Example

Hex Number Binary Number Truncated/Filled

A5A5A 1010 0101 1010 0101 1010 1010 0101 1010 0101 1010

FFFF1 1111 1111 1111 1111 0001 1111 1111 1111 1111 0001

A5A5 1010 0101 1010 0101 0000 1010 0101 1010 0101

5A5A5 0101 1010 0101 1010 0101 0101 1010 0101 1010 0101

11111 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001

123456 0001 0010 0011 0100 0101 0110 0010 0011 0100 0101 0110

Format References

A-16 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Format References
The following texts define industry-standard file formats supported by
CrossCore Embedded Studio.

• Gircys, G.R. (1988) Understanding and Using COFF by O’Reilly &
Associates, Newton, MA

• (1995) Executable and Linkable Format (ELF) V1.1 from the
Portable Formats Specification V1.2, Tools Interface Standards
(TIS) Committee.

http://refspecs.freestandards.org/elf/elf.pdf

• (1992) Debugging Information Format (DWARF) V1.1.0 from the
Portable Formats Specification V1.1, UNIX International, Inc.

http://dwarfstd.org/doc/dwarf_1_1_0.pdf

• (2001-2005) uClinux - BFLT Binary Flat Format by Craig Peacock
from beyondlogic.org.

http://www.beyondlogic.org/uClinux/bflt.htm

http://refspecs.freestandards.org/elf/elf.pdf
http://dwarfstd.org/doc/dwarf_1_1_0.pdf
http://www.beyondlogic.org/uClinux/bflt.htm

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual B-1

B UTILITIES

CrossCore Embedded Studio includes several utility programs, some of
which run from a command line only.

This appendix describes the following utilities.

• “hexutil – Hex-32 to S-Record File Converter” on page B-1

• “elf2flt – ELF to BFLT File Converter” on page B-2

• “elf2elf – ELF to ELF File Converter” on page B-4

• “fltdump – BFLT File Dumper” on page B-5

Other CrossCore Embedded Studio utilities, for example, the ELF file
dumper, are described in the Linker and Utilities Manual or online help.

 VisualDSP++ executables are not upwardly compatible to Cross-
Core Embedded Studio executables. The ELF format has changed.

hexutil – Hex-32 to S-Record File
Converter

The hex-to-S file converter (hexutil.exe) utility transforms a loader
(.ldr) file in Intel hexadecimal 32-bit format to Motorola S-record format
or produces an unformatted data file.

Syntax: %hexutil input_file [-s1|s2|s3|StripHex] [-o file_name]

elf2flt – ELF to BFLT File Converter

B-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

where:

input_file is the name of the .ldr file generated by the CrossCore
Embedded Studio splitter utility.

Table B-1 shows optional switches used with the %hexutil command.

The Intel hex-32 and Motorola S-record file formats are described
on page A-6 and on page A-10, respectively.

elf2flt – ELF to BFLT File Converter
The ELF-to-BFLT file converter (elf2flt.exe) utility converts a (.dxe)
file in Executable and Linkable Format (ELF) to Binary Flat Format
(BFLT).

The .bflt file contains three output sections: text, data, and bss. Output
sections are defined by the ELF file standard. The .bflt file can be loaded
and executed in an environment running a uClinux operating system.

For more information on the BFLT file format, see uClinux Web site:
http://www.beyondlogic.org/uClinux/bflt.htm.

Table B-1. Hex to S-Record File Converter Command-Line Switches

Switch Description

-s1 Specifies Motorola output format S1

-s2 Specifies Motorola output format S2

-s3 Specifies the default output format – Motorola S3. That is, when no switch
appears on the command lines, the output file format defaults to S3.

-StripHex Generates an unformatted data file

-o Names the output file; in the absence of the -o switch, causes the output file
name to default to input_file.s.

http://www.beyondlogic.org/uClinux/bflt.htm

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual B-3

Utilities

The elf2flt currently supports ELF files compiled for Blackfin and
SHARC architectures. The elf2flt implements revision 5 flat relocation
type. For more information, see the BFLT relocation structure defined in
flat.h.

 Elf2flt does not support ELF files with position-independent
code and global offset table (PIC with GOT).

Elf2flt is not capable of compressing text and data segments with
gzip tool.

Syntax: elf2flt [-V|r|k] [-s #] [-o file_name] elf_input_file

where:

elf_input_file is the name of the .dxe file generated by the
CrossCore Embedded Studio linker.

Table B-2 shows optional switches used with the elf2flt command.

Table B-2. ELF to BFLT File Converter Command-Line Switches

Switch Description

-V Verbose operation

-r Forces load to RAM

-k Enables kernel trace on load (for debug)

-s# Sets application stack-size number

-o file_name Names the output file

-h Prints the list of the elf2flt switches

-v Prints version information

elf2elf – ELF to ELF File Converter

B-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

elf2elf – ELF to ELF File Converter
The elf2elf utility is a command-line utility available for upgrading exe-
cutables built using VisualDSP++ 5.0 to the new CrossCore Embedded
Studio ELF format.

 VisualDSP++ executables are not upwardly compatible to Cross-
Core Embedded Studio executables. The ELF format has changed.

The loaders and splitters take executable files in ELF format as input.
These are files with the suffixes DXE, OVL, or SM. The CrossCore Embedded
Studio loaders and splitters expect input in the CrossCore Embedded Stu-
dio ELF format, which has significant differences from the VisualDSP++
ELF format.

You do not need to use elf2elf when:

• Creating new projects in the CrossCore Embedded Studio IDE

• Importing VisualDSP++ legacy projects into the CrossCore
Embedded Studio IDE and rebuilding all code from source

In both cases, CrossCore Embedded Studio creates the executables in the
expected ELF format.

The following unrecoverable error is reported by the CrossCore Embed-
ded Studio loaders and splitters if any DXE/OVL/SM in the build was one
built with VisualDSP++:

[Error ldxxxx]: File in legacy ELF format created with
VisualDSP++ 5.0 or earlier.

Rebuild from source or upgrade using the elf2elf
utility: <filename>

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual B-5

Utilities

If you do not have sources to rebuild your code, the elf2elf utility is
available.

Syntax: elf2elf [options] [infile]

Table B-3 shows optional switches used with the elf2elf command.

Example: elf2elf OldKernel.dxe –o OldKernel-new.dxe

fltdump – BFLT File Dumper
The BFLT file dumper (fltdump.exe) utility extracts data from
BFLT-format executable (.bflt) files and yields text showing the BFLT
file’s contents.

The fltdump utility prints the entire contents of the .bflt file in hex. In
addition, the fltdump prints contents of the text section as a list of disas-
sembled machine instructions.

For more information on the BFLT file format, see uClinux Web site:
http://www.beyondlogic.org/uClinux/bflt.htm.

Table B-3. ELF to ELF File Converter Command-Line Switches

Switch Description

-o file Produces the output file with a name given by file.

-version Displays the version number of the ELF Conversion Tool.

-verbose Displays details about the conversions that are being done by the ELF Con-
version Tool.

-keep Prevents any temporary files that have been created by the ELF Conversion
Tool from being deleted.

infile An ELF input file produced by CrossCore Embedded Studio

http://www.beyondlogic.org/uClinux/bflt.htm

fltdump – BFLT File Dumper

B-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Syntax: fltdump [switch…] [object_file]

where:

object_file is the name of the .bflt file whose contents is to be printed.

Table B-4 shows optional switches used with the fltdump command.

Table B-4. BFLT File Dumper Command-Line Switches

Switch Description

-D Dumps the file built for the specified processor

-help Prints the list of the elfdump switches to stdout

-v Prints version information

-o file_name Prints s the output to the specified file

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual I-1

I INDEX

Numerics
-64 splitter switch, 8-5
16- to 48-bit word packing, 5-9
48- to 8-bit word packing, 5-7
4- to 48-bit word packing, 5-12
8- to 48-bit word packing, 5-8, 5-9, 6-5, 6-8

A
ACK pin, 5-5, 5-8, 5-10, 6-7
ADDR23-0 address lines, 6-8
ADDR31-0 address lines, 5-7
address records, linear format, A-7
ADSP-21160 processors

ADSP-21160 boot modes, 5-2, 5-5
boot sequence, 5-3
direct memory access, See DMA, DMACx

ADSP-21161 processors
boot modes, 6-2, 6-5
boot sequence, 6-3
direct memory access, See DMA, DMACx
multiprocessor support, 6-21

ADSP-2126x/36x/37x/46x processors
boot modes, 7-2, 7-5, 7-9
boot sequence, 7-3
compression support, 7-32

ADSP-2136x/37x/46x processors
multiprocessor support, 7-30

ADSP-BF50x processors
boot modes, 2-3
multi-dxe loader files, 2-19

ADSP-BF51x processors

boot modes, 2-3
multi-dxe loader files, 2-19

ADSP-BF52x/54x processors
boot modes, 2-4
multi-dxe loader files, 2-19

ADSP-BF531/2/3/4/6/7/8/9 processors
ADSP-BF534/6/7 (only) boot modes, 3-6
boot modes, 3-3
boot streams, 3-8, 3-9
compression support, 3-33
memory ranges, 3-18
multi-dxe loader files, 3-30
on-chip boot ROM, 3-3, 3-7, 3-8, 3-18, 3-31

ADSP-BF561 processors
boot modes, 3-20
boot streams, 3-22, 3-24
dual-core architecture, 3-19, 3-22
memory ranges, 3-29
multi-dxe loader files, 3-30
multiprocessor support, 3-28
on-chip boot ROM, 3-19, 3-21, 3-27, 3-28,

3-29, 3-31
application loading (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors,
3-11, 3-32

ADSP-BF561 processors, 3-21, 3-22, 3-28,
3-29, 3-32

application loading (SHARC processors)
ADSP-21161 processors, 6-3, 6-5, 6-9
ADSP-2126x/36x/37x/46x processors, 7-4
ADSP-2126x/36x/37x processors, 7-27

applications

Index

I-2 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

See also blocks of application code
loading, introduction to, 1-16
code start address, 2-17, 2-22, 3-49, 3-56,

4-5, 5-3, 5-15, 6-5
default code start address, 2-22, 3-56, 4-5
development flow, 1-8
multiple-dxe files, 2-19

archive files, See library files (.dlb)
archiver, A-5
ASCII file format, 2-11, 3-44, A-4, A-14
.asm (assembly) source files, 1-9, A-2
assembling, introduction to, 1-9
assembly

directives, A-2
initialization data files (.dat), A-2
object files (.doj), A-5
source text files (.asm), 1-9, A-2

asynchronous FIFO boot mode,
ADSP-BF52x/54x processors, 2-4

B
baud rate (Blackfin processors), 3-23
BFLAG_CALLBACK block flag, 2-11
BFLAG_QUICKBOT block flag, 2-17
BFLAG_SAVE block flag, 2-18
BFLT file dumper, B-5
binary flat format (.bflt), B-2, B-5
binary format files (.ldr), 2-11, 3-44, A-10
bit-reverse option (SHARC processors), 7-11
block

of application code, introduction to, 1-17
byte counts (Blackfin processors), 2-15, 3-47
packing, See data packing
tags, 5-15, 6-17, 7-17, 7-22

block headers (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-7,

3-10
ADSP-BF561 processors, 3-23, 3-27

block headers (SHARC processors)
ADSP-21161 processors, 6-16

ADSP-2126x/36x/37x processors, 7-17, 7-20
blocks of application code (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-7
ADSP-BF561 processors, 3-22

blocks of application code (SHARC processors)
ADSP-21161 processors, 6-16
ADSP-2126x/36x/37x processors, 7-20

BMODE1-0 pins
ADSP-BF531/2/3/8/9 processors, 3-5, 3-15,

3-59
BMODE2-0 pins

ADSP-BF51x processors, 2-3
ADSP-BF534/6/7 processors, 3-6

BMODE3-0 pins
ADSP-BF52x/54x processors, 2-4

BMS pins
ADSP-21160 processors, 5-9, 5-12, 5-20
ADSP-21161 processors, 6-4, 6-6, 6-9, 6-13,

6-14, 6-21
boot

sequences, introduction to, 1-12
ROM, See on-chip boot ROM

boot differences (Blackfin processors), 3-3,
3-19, 3-21, 3-22

boot differences (SHARC processors), 7-10,
7-14

boot file formats
specifying for Blackfin processors, 2-11, 2-22,

3-44, 3-55, 4-5
specifying for SHARC processors, 5-24, 6-27,

7-42
boot kernels

introduction to, 1-16
boot-loadable files

introduction to, 1-10, 1-11
versus non-bootable file, 1-16

boot modes (Blackfin processors)
ADSP-BF50x processors, 2-3
ADSP-BF51x processors, 2-3
ADSP-BF52x/54x processors, 2-4

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual I-3

Index

ADSP-BF531/2/3/8/9 processors, 2-6
ADSP-BF534/6/7 processors, 3-6
ADSP-BF561 processors, 3-20
specifying, 2-10, 2-22, 3-43, 3-55, 4-5

boot mode select pins (Blackfin processors)
ADSP-BF51x processors, 2-3
ADSP-BF52x/54x processors, 2-4
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-5

boot mode select pins (SHARC processors)
ADSP-21161 processors, 6-4
ADSP-2116x/160 processors, 5-4
ADSP-2126x/36x/37x processors, 7-5

boot modes (SHARC processors)
ADSP-21160 processors, 5-2, 5-5
ADSP-21161 processors, 6-2, 6-5
ADSP-2126x/36x/37x processors, 7-5, 7-6
specifying, 5-24, 6-27, 7-5, 7-6, 7-41

boot process, introduction to, 1-10
boot sequences (Blackfin processors)

ADSP-BF561 processors, 3-19
boot sequences (SHARC processors)

ADSP-21161 processors, 6-3
ADSP-2116x/160 processors, 5-3
ADSP-2126x/36x/37x/46x processors, 7-3

bootstraps, 1-15, 1-16
boot streams, introduction to, 1-15, 1-16
boot streams (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-8,
3-31

ADSP-BF561 processors, 3-22, 3-24, 3-31
boot streams (SHARC processors)

ADSP-21160 processors, 5-14
ADSP-21161 processors, 6-16
ADSP-2126x/36x/37x processors, 7-17, 7-20

-b prom|flash|spi|spislave|UART|TWI|FIFO,
loader switch for ADSP-BF53x processors,
3-43

-b
prom|flash|spi|spislave|UART|TWI|FIFO|
OTP|NAND, loader switch for
ADSP-BF51x/52x/54x processors, 2-5,
2-10

-bprom|host|link|JTAG, loader switch for
ADSP-21160 processors, 5-24

-bprom|host|link|spi, loader switch for
ADSP-21161 processors, 6-27

-bprom|spislave|spiflash|spimaster|spiprom,
loader switch for
ADSP-2126x/36x/37x/46x processors,
7-14, 7-41

BSO bit, 5-7
build file formats, list of, A-4
BUSLCK bit, 5-10, 5-11
bypass mode, See no-boot mode
byte-stacked format files (.stk), 8-5, 8-6, 8-8,

A-12

C
-caddress, loader switch for ADSP-21160

processors, 5-24
-callback, loader switch for Blackfin, 2-11
C and C++ source files, 1-9, A-2
CEP0 register, 6-8, 6-9, 6-11, 6-12
CLB0 register, 6-13, 6-14
CLKPL bit, 7-10
COFF to ELF file conversion, A-5
command line

loader for SHARC processors, 5-22, 6-24,
7-39

loader/splitter for Blackfin processors, 2-8,
3-41

splitter, 8-2, 8-5
compilation, introduction to, 1-9
compressed block headers

Blackfin processors, 3-11, 3-35
SHARC processors, 7-34

compressed streams

Index

I-4 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Blackfin processors, 3-34, 3-38
SHARC processors, 7-33, 7-36

-compression
loader switch for Blackfin, 3-34, 3-43
loader switch for SHARC, 7-32, 7-36, 7-41

Compression (Load) page (Blackfin processors),
3-56

-compressionOverlay, loader switch for
SHARC, 7-33, 7-36, 7-41

compression support
ADSP-2126x/36x/37x/46x processors, 7-32
ADSP-BF531/2/3/4/6/7/8/9 processors,

3-33, 3-56
compression window, 3-36, 3-40, 7-35, 7-38
-compressWS

loader switch for Blackfin, 3-40, 3-43
loader switch for SHARC, 7-38, 7-41

conversion utilities, B-1
count headers (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-30
ADSP-BF561 processors, 3-23, 3-27, 3-30

CPEP0 register, 6-8, 6-11
CPHASE bit, 7-10
CPLB0 register, 6-14
-CRC32, loader switch for Blackfin, 2-10
CS pin, 5-10, 6-11, 7-9
CSRX register, 6-15
customer support, xviii
Cx register, 5-6, 5-8, 5-12

D
D39-32 bits, 5-7
data

initialization files (.dat), A-2
memory (dm) sections, 8-3, 8-5
records in Intel hex-32 format, A-7
transfers, See DMA transfers

DATA23-16 pins, 6-6
DATA39-32 pins, 5-6
DATA63-32 pins, 5-9

DATA64 memory sections, 8-4, 8-5
data banks (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-18
ADSP-BF561 processors, 3-29

DataFlash devices, 3-5
data packing (SHARC processors)

ADSP-21160 processors, 5-7, 5-8, 5-9, 5-12
ADSP-21161 processors, 6-5, 6-8
ADSP-2126x/36x/37x/46x processors, 7-7,

7-23, 7-24
data streams

encrypting from application, 3-44
encrypting from kernel, 3-46

.dat (data) initialization files, A-2
debugger file formats, 1-9, A-15
debugging targets, 1-10
decompression

initialization files, 3-39
kernel files, 7-37

DEN register, 6-7, 6-11
.dlb (library) files, A-5
-dm, splitter switch, 8-5
DMA (ADSP-21160 processors)

channels, See channels by name (DMACx)
buffers, 5-10
channel control registers, 5-8, 5-9, 5-10,

5-11, 5-12, 5-13
channel interrupts, 5-10, 5-11, 5-12
channel parameter registers, 5-6, 5-7, 5-8,

5-9, 5-13
controller, 5-2, 5-6, 5-7, 5-8
transfers, 5-7, 5-8, 5-9, 5-10, 5-13, 5-15

DMA (ADSP-21161 processors)
channels, See channels by name (DMACx)
buffers, 6-22
channel control registers, 6-5, 6-6, 6-9, 6-10,

6-11, 6-16
channel interrupts, 6-9, 6-12
channel parameter registers, 6-7, 6-9, 6-10,

6-12, 6-13, 6-15, 6-16

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual I-5

Index

controller, 6-5, 6-7, 6-8, 6-9
transfers, 6-3, 6-8, 6-15, 6-16, 6-21

DMA (ADSP-2126x/36x/37x/46x processors)
code example, 7-27
parameter registers, 7-9, 7-28
transfers, 7-15

DMAC0 channel (ADSP-21160 processors),
5-9

DMAC10 channels
ADSP-21160 processors, 5-2, 5-3, 5-6, 5-7,

5-9, 5-12
ADSP-21161 processors, 6-5, 6-6, 6-7, 6-9,

6-10
DMAC6 channel (ADSP-21160 processors),

5-2, 5-7, 5-9, 5-12
DMAC8 channels

ADSP-21160 processors, 5-2, 5-9, 5-12
ADSP-21161 processors, 6-2, 6-12, 6-13,

6-14, 6-15
DMA differences (SHARC processors), 6-6,

6-10, 6-13
-dmawidth #, loader switch for Blackfin, 2-11,

3-44
DMISO bit, 7-10
.doj (object) files, A-5
DTYPE register, 5-9, 6-7, 6-11
dual-core architectures, See ADSP-BF561

processors
DWARF-2 debugging information, 1-9
.dxe (executable) files, 1-16, 2-9, 3-42, 5-23,

7-40, A-5, A-15

E
EBOOT pins

ADSP-21160 processors, 5-4, 5-5, 5-9, 5-12
ADSP-21161 processors, 6-4, 6-5, 6-6, 6-9,

6-13, 6-14, 6-22
ECEP0 register, 6-7, 6-8, 6-9, 6-11
ECx register, 5-6, 5-8, 5-9

-e filename, loader switch for ADSP-21160
processors, 5-24

-efilename, loader switch for SHARC, 6-27
EIEP0 register, 6-8, 6-11
EIx register, 5-6, 5-9
elf2flt utility, B-2, B-4
elfloader, See loader
ELF to BFLT file converter, B-2, B-4
EMEP0 register, 6-8, 6-11
EMx register, 5-6, 5-9
-enc dll_filename, loader switch for Blackfin,

3-44
encryption functions, 3-44, 3-46, 3-50
end-of-file records, A-8
EP0I vector, 5-10, 6-9, 6-12
EPB0 buffer, 5-9
EPROM boot mode (SHARC processors)

ADSP-21160 processors, 5-2, 5-4, 5-5, 5-7,
5-8, 5-19, 5-20

ADSP-21161 processors, 6-2, 6-4, 6-5
multiprocessor systems, 6-21

EPROM flash memory devices, 1-14
executable and linkable format (ELF)

executable files (.dxe), 1-3, 1-9, 1-12, A-5
object files (.doj), A-5
reference information, A-16
to binary flat format (BFLT) converter, B-2

external
memory boot, 1-11
resistors, 5-6
vector tables, 5-19

external memory (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-3,

3-6, 3-30
ADSP-BF561 processors, 3-27, 3-30
multiprocessor support, 3-30

external memory (SHARC processors)
ADSP-21160 processors, 5-5, 5-7, 5-11,

5-13, 5-16, 5-19, 5-26

Index

I-6 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-21161 processors, 6-4, 6-16, 6-20,
6-30

ADSP-2126x/36x/37x/46x processors, 7-7
ADSP-2126x/36x/37x processors), 7-22

external ports (SHARC processors)
ADSP-21160 processors, 5-4, 5-5, 5-7, 5-9,

5-10, 5-11, 5-12, 5-16, 5-20
ADSP-21161 processors, 6-4, 6-5, 6-6, 6-7,

6-8, 6-9, 6-10, 6-12, 6-22
external vector tables, 6-21
EZ-KIT Lite board targets, 1-10

F
-f h|s1|s2|s3|b, splitter switch, 8-6
-f hex|ascii|binary|include, loader switch for

Blackfin, 2-11, 3-44
-fhex|ascii|binary|include|s1|s2|s3, loader switch

for SHARC, 5-24, 6-27, 7-42
file formats

list of, 2-9, 3-42
ASCII, 2-11, 3-44, A-14
binary, 2-11, 3-44
build files, A-4
byte-stacked (.stk), 8-5, 8-6, 8-8
debugger input files, A-15
hexadecimal (Intel hex-32), 2-11, 3-44, 8-5,

8-6
include, 2-11, 3-44
reference information, A-16
s-record (Motorola), 8-5, 8-6

file formatting
selecting for output, 2-14, 3-46
specifying word width, 3-51

file search rules, 1-18
-FillBlock, loader switch for Blackfin, 2-5, 2-11
final blocks

See also last blocks (Blackfin processors)
introduction to, 1-16
SHARC processors, 5-15, 7-17, 7-26

FLAG pins, ADSP-21160 processors, 5-20

flag words (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-10
ADSP-BF561 processors, 3-23, 3-27

flash memory
ADSP-BF51x processors, 2-3
ADSP-BF52x/54x processors, 2-4
devices, 1-10

FLG0 signal, 7-10
fltdump utility, B-5
frequency, 5-12, 6-13

G
-ghc #, loader switch for Blackfin, 3-44
global header cookies (Blackfin processors),

3-44
global headers (Blackfin processors)

ADSP-BF561 processors, 3-23
GPEP0 register, 6-8, 6-11
GPLB0 register, 6-14
GPSRX register, 6-15

H
-h|help

loader switch for Blackfin, 2-11, 3-45
loader switch for SHARC, 5-25, 6-28, 7-42

HBG pin, 5-10
HBR pin, 6-11
header files (.h), A-3

See also global headers
header records

byte-stacked format (.stk), A-13
s-record format (.s_#), A-10

hexutil utility, B-1
.h_# (Intel hex-32) file format, 8-5, 8-6, A-6,

A-12
hold time cycles, 3-23
host boot mode, introduction to, 1-15
host boot mode (SHARC processors)

ADSP-21160 processors, 5-2, 5-9, 5-10, 5-20

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual I-7

Index

ADSP-21161 processors, 6-2, 6-9
ADSP-2126x/36x/37x/46x processors, 7-14

host DMA boot mode, ADSP-BF52x/54x
processors, 2-4

-hostwidth #, loader switch for SHARC, 6-28,
7-13, 7-23, 7-42

HPM bit, 5-9

I
-id#exe=filename

loader switch for SHARC, 5-20, 5-25, 6-22,
6-28, 7-42

-id#exe=N, loader switch for SHARC, 6-28
IDLE instruction, 5-4, 5-11, 5-16, 5-17, 6-6,

6-10, 6-13, 6-15
idle state, 3-22
-id#ref=N, loader switch for SHARC, 5-25,

7-43
ignore blocks (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-11
ADSP-BF561 processors, 3-23

IIEP0 register, 6-8, 6-11
IILB0 register, 6-14
IISRX register, 6-15
IIVT bit, 5-19, 6-21
IIx register, 5-6, 5-12
image files, See PROM, non-bootable files
IMASK register, 5-10, 5-11, 5-12
IMDW register, 5-11, 7-27
IMEP0 register, 6-8, 6-11
IMLB0 register, 6-14
IMSRX register, 6-15
IMx register, 5-6
include file format, A-8
-initcall, ADSP-BF52x/54x Blackfin loader

switch, 2-13, 2-20
-init filename, loader switch for Blackfin, 2-12,

2-16, 2-19, 3-11, 3-32, 3-39, 3-45, 3-49
initialization

file inclusion, 2-12, 2-22, 3-45, 3-56, 4-5

initialization blocks
(ADSP-2126x/36x/37x/46x processors),
7-21, 7-23, 7-24, 7-25, 7-27

initialization blocks (Blackfin processors), 2-19
ADSP-BF531/2/3/4/6/7/8/9 processors,

3-11, 3-12, 3-32
ADSP-BF561 processors, 3-27, 3-28, 3-32
code example, 3-13, 3-32

initialization calls, 2-13
initial word option (SHARC processors), 7-12,

7-13
INIT_L16 blocks, 7-24
INIT_L48 blocks, 7-23
INIT_L64 blocks, 7-25
input file formats, See source file formats
input files

executable (.dxe) files, 2-9, 3-42, 5-22, 6-24,
7-39

extracting memory sections from, 8-5, 8-7
instruction SRAM (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-18
ADSP-BF561 processors, 3-28, 3-29

Intel hex-32 file format, 2-6, 2-11, 3-44, A-6
internal memory, boot-loadable file execution,

1-11
internal vector tables, 5-19, 6-21
interrupt vector location, 6-9, 6-12
interrupt vector tables, 5-19, 6-20, 7-17, 7-26,

7-27
IOP registers, 5-10
IRQ vector, 5-6
IVG15 lowest priority interrupt, 3-7, 3-11, 3-21

K
-kb prom|flash|spi|spislave|UART|TWI|FIFO,

loader switch for Blackfin, 3-45
-kb

prom|flash|spi|spislave|uart|twi|fifo|otp|na
nd, loader switch for Blackfin, 2-14

Index

I-8 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

-kenc dll_filename, loader switch for Blackfin,
3-46

Kernel (Load) page (Blackfin processors), 2-22
kernels (ADSP-21160 processors)

boot sequence, 5-3, 5-13
default source files, 5-13, 5-17
loading to processor, 5-7, 5-10
modifying, 5-16
rebuilding, 5-18
replacing with application code, 5-15
specifying user kernel, 5-25

kernels (ADSP-21161 processors)
boot sequence, 6-3
default source files, 6-16, 6-19
modifying, 6-18
rebuilding, 6-18, 6-19

kernels (ADSP-2126x/36x/37x/46x processors)
boot sequence, 7-4, 7-15
compression/decompression, 7-32, 7-33,

7-37
default source files, 7-15
loading to processor, 7-9, 7-11
modifying, 7-16, 7-18
omitting in output, 7-16
rebuilding, 7-18, 7-19

kernels (Blackfin processors)
compression/decompression, 3-34, 3-39
specifying boot mode, 2-14, 2-22, 3-45, 3-55,

4-5
specifying file format, 2-14, 2-15, 3-46
specifying file width, 2-22, 3-47, 3-55, 4-5
specifying hex address, 2-15, 3-46
specifying kernel and app files, 2-24
specifying user kernel, 2-15

-kf hex|ascii|binary|include, loader switch for
Blackfin, 2-14, 3-46

.knl (kernel code) files, 2-9, 3-42
-kp #, loader switch for Blackfin, 2-15, 2-17,

3-46, 3-49

-kWidth #, loader switch for Blackfin, 2-15,
3-47

L
L1 memory (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-7,
3-11, 3-18

ADSP-BF561 processors, 3-22, 3-29
L2 memory (Blackfin processors)

ADSP-BF561 processors, 3-28, 3-29
last blocks (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors,
3-11, 3-12

ADSP-BF561 processors, 3-23
LBOOT pins

ADSP-21161 processors, 5-4, 5-5, 5-9, 6-4,
6-5, 6-6, 6-9, 6-13, 6-14

LCOM register, 5-12
LCTL register, 5-12, 5-15, 6-13
.ldr (loader output) files

ASCII format, A-4, A-14
binary format, A-10
hex-32 format, A-6
include format files, A-8
naming, 2-16, 3-48
specifying host bus width, 6-28, 7-42

least significant bit first (LSB) format, 7-11
library files (.dlb), A-5
link buffers, 5-12, 6-12, 6-13
linker

command-line files (.txt), A-4
description file (LDF) See .ldf files
memory map files (.map), A-6
output files (.dxe, .sm, .ovl), 1-9, A-5

linking, introduction to, 1-9
link port boot mode

ADSP-2146x SHARC processors, 7-41
link port boot mode (SHARC processors)

ADSP-21160 processors, 5-2, 5-4
ADSP-21161 processors, 6-2, 6-4, 6-12

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual I-9

Index

loadable files, See boot-loadable files
loader

operations, 1-12
output file formats, 1-12, 1-16, A-6, A-8,

A-10
setting options, 2-20, 3-53, 4-3, 5-27, 6-31,

7-46
loader for ADSP-21160 processors, 5-1
loader for ADSP-21161 processors, 6-1
loader for ADSP-2126x/36x/37x/469

processors, 7-1
loader for ADSP-BF51x/52x/54x Blackfin

(includes splitter), 2-1
loader for ADSP-BF53x/BF561 Blackfin

(includes splitter), 3-1, 4-1
loader for Blackfin (includes splitter)

command-line syntax, 2-8, 2-9, 3-41, 3-43
default settings, 2-20, 3-53, 4-4
graphical user interface, 2-21, 3-54, 4-4
list of switches, 2-5, 2-10, 3-43

loader kernels, See boot kernels
loader switches, See switches by name
loading, introduction to, 1-10
Load page

SHARC processors, 5-27, 6-31, 7-46
Load (Splitter) page (Blackfin processors), 2-24,

3-57, 4-12
-l userkernel

loader switch for Blackfin, 2-15, 3-31
loader switch for SHARC, 5-25, 6-29, 7-16,

7-37, 7-43

M
-M, loader switch for Blackfin, 2-15, 2-16, 3-47,

3-48
make files, 2-15, 2-16, 3-47, 3-48
.map (memory map) files, A-6
-maskaddr #, loader switch for Blackfin, 2-15,

3-47
masking EPROM address bits, 2-15, 3-47

master (host) boot, introduction to, 1-11
-MaxBlockSize #, loader switch for Blackfin,

2-15, 3-47
-MaxFillBlockSize #, loader switch for Blackfin,

2-16
-MaxZeroFillBlockSize #, loader switch for

Blackfin, 3-47
memory map files (.map), A-6
memory ranges (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-18
ADSP-BF561 processors, 3-29

microcontroller data transfers, A-12
-MM, loader switch for Blackfin, 2-16, 3-47,

3-48
MODE1 register, 5-10
MODE2 register, 5-10, 5-11
-Mo filename, loader switch for Blackfin, 2-16,

3-48
most significant bit first (MSB) format, 7-11
Motorola S-record file format, A-10
MSBF bit, 7-10
MS bit, 7-10
MSWF register, 6-7, 6-11
-Mt filename, loader switch for Blackfin, 2-16,

3-48
Multi, 2-19
multiprocessor booting, introduction to, 1-11
multiprocessor systems (Blackfin processors),

2-19, 3-31
See also dual-core systems

multiprocessor systems (SHARC processors)
ADSP-21160 processors, 5-19, 5-21
ADSP-21161 processors, 6-6, 6-21, 6-22
ADSP-2136x/37x processors, 7-30

N
no-boot mode

introduction to, 1-11, 1-14
selecting with -romsplitter switch, 2-18, 3-50

no-boot mode (Blackfin processors)

Index

I-10 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

ADSP-BF50x processors, 2-3
ADSP-BF51x processors, 2-3
ADSP-BF52x/54x processors, 2-4
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-5
ADSP-BF561 processors, 3-22
selecting, 2-22, 3-15, 3-59, 4-5

no-boot mode (SHARC processors)
ADSP-21160 processors, 5-2, 5-13
ADSP-21161 processors, 6-2, 6-4, 6-16

-NoFillBlock, loader switch for Blackfin, 2-5,
2-16

-nofinalblock, loader switch for Blackfin, 3-48
-nofinaltag, loader switch for Blackfin, 3-48
-noinitcode, loader switch for Blackfin, 2-16,

3-48
-nokernel

loader switch for ADSP-2126x/36x/37x/46x
processors, 7-43

non-bootable files
introduction to, 1-10, 1-11, 1-16
creating from command line, 8-2
ignoring ROM sections, 8-6
specifying format, 8-6
specifying name, 8-6
specifying word width, 8-4, 8-7

NOP instruction, 5-4, 5-11, 5-16, 5-17, 6-6,
6-10, 6-13, 6-15

-norom, splitter switch, 8-6
-nosecondstageloader, loader switch for

Blackfin, 3-48
-nozeroblock, loader switch for SHARC, 6-29,

7-44
numeric formats, A-3

O
-o2, loader switch for Blackfin, 2-14, 2-16,

3-45, 3-46, 3-49
object files (.doj), A-5
-o filename

loader switch for Blackfin, 2-16, 3-48

loader switch for SHARC, 5-25, 6-29, 7-43
splitter switch, 8-6

on-chip boot ROM
introduction to, 1-15
ADSP-BF531/2/3/4/6/7/8/9 processors,

1-16, 3-3, 3-7, 3-8, 3-11, 3-18, 3-31
ADSP-BF561 processors, 3-19, 3-21, 3-27,

3-28, 3-29, 3-31
OTP boot mode, ADSP-BF51x processors, 2-4
OTP boot mode, ADSP-BF52x/54x processors,

2-4
output files

See also -o loader switch
generating kernel and application, 2-16, 3-49
specifying format, 1-13, A-5
specifying name, 2-16, 3-48
specifying with -o switch, B-2
specifying word width, 3-51, 6-28

overlay compression, 7-36
overlay memory files (.ovl), 2-9, 3-42, A-5, A-15

P
-p #

loader switch for Blackfin, 2-17, 3-49
packing boot data, 6-2
-paddress, loader switch for SHARC, 5-26,

6-29, 7-44
parallel/serial PROM devices, 1-15
-pflag #|PF|PG|PH #, loader switch for Blackfin,

3-49, 3-51, 3-52, 3-53, 3-55
PFx signals, 3-49
placement rules, of the command-line, 2-8, 3-41
PMODE register, 5-7, 5-9, 6-7, 6-11
-pm splitter switch, 8-6
processor IDs, 5-20, 6-22

assigning to .dxe file, 5-25, 6-28, 7-42
pointing to jump table, 5-25, 6-28

processor-loadable files, introduction to, 1-14
processor type bits (Blackfin boot streams), 3-10
-proc part_number

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual I-11

Index

loader switch for Blackfin, 2-17, 3-49
loader switch for SHARC, 5-26, 6-29, 7-44
splitter switch, 8-6

program counter settings (ADSP-21160
processors), 5-9

program development flow, 1-8
program memory sections (splitter), 8-3, 8-6
Project Options dialog box, 1-13, 2-5, 2-7,

2-20, 2-22, 3-40, 3-53, 3-55, 4-3, 4-4, 4-5,
7-16

PROM
boot mode, introduction to, 1-15
downloading boot-loadable files, 1-10
memory devices, 7-14, A-6

PROM boot mode, ADSP-2126x/36x/37x/46x
processors, 7-7, 7-19

PROM/flash boot mode (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors, 3-5,

3-6, 3-32
ADSP-BF561 processors, 3-27, 3-32

PROM (image) files
creating from command line, 8-2
ignoring ROM sections, 8-6
specifying format, 8-6
specifying name, 8-6
specifying width, 8-7

pull-up resistors, 6-7
Px register, 5-15, 7-27

Q
-quickboot, loader switch for Blackfin, 2-17

R
-r #, splitter switch, 8-7
-ram, splitter switch, 8-5, 8-7
RBAM bit, 6-7
RBWS bit, 6-7
RD pin, 5-7, 6-8
-readall, loader switch for Blackfin, 2-17

references, file formats, A-16
RESET

interrupt service routine, 3-7, 3-21, 6-12
pin, 5-7, 6-8, 6-11

reset
processor, introduction to, 1-15, 1-16
ADSP-21160 processors, 5-3, 5-5, 5-8, 5-9,

5-13
ADSP-21161 processors, 6-3, 6-6, 6-7, 6-9,

6-10, 6-13, 6-14
ADSP-2126x/36x/37x/46x processors, 7-3,

7-16
ADSP-BF561 processors, 3-15, 3-19, 3-22,

3-59
Blackfin processors, 2-3, 3-2, 3-3
dual-core Blackfin processors, 3-19
vector addresses, 5-3, 5-7, 5-11, 6-20
vector routine, 3-17, 3-60, 6-9

-retainSecondStageKernel, loader switch for
SHARC, 7-44

ROM
memory images as ASCII text files, A-14
memory sections, 8-6
setting splitter options (Blackfin processors),

2-24, 3-57, 4-12
splitter, See splitter

-romsplitter, loader switch for Blackfin, 2-15,
2-18, 3-47, 3-50

Rx registers, 3-27, 3-32, 5-10

S
s1 (Motorola EXORciser) file format, 8-6, A-10
s2 (Motorola EXORMAX) file format, 8-6,

A-10
s3 (Motorola 32-bit) file format, 8-6, A-10
-save section, loader switch for Blackfin, 2-18
scratchpad memory (Blackfin processors)

ADSP-BF561 processors, 3-30
SDCTL register, 6-18

Index

I-12 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

SDRAM/DDR boot mode, ADSP-BF52x/54x
processors, 2-4

SDRAM memory (ADSP-21160 processors),
5-14

SDRAM memory (Blackfin processors)
ADSP-BF531/2/3/4/6/7/8/9 processors,

3-11, 3-14, 3-19
ADSP-BF561 processors, 3-27, 3-29

SDRDIV register, 6-18
second-stage loader

ADSP-BF561 processors, 3-27, 3-28
creating from CrossCore Embedded Studio,

2-23
setting options, 2-22, 3-55, 3-56

SENDZ bit, 7-10
sequential EPROM boot, 6-22
shared memory

Blackfin processors, 3-28, 3-29
file format (.sm), 2-9, 3-28, 3-42, A-5, A-15
in compressed .ldr files, 7-33, 7-36
omitting from loader file, 5-24, 6-27

shift register, See RX registers
-ShowEncryptionMessage, loader switch for

Blackfin, 3-50
silicon revision, setting, 2-18, 3-50, 5-26, 6-30,

7-45, 8-8
simulators, for boot simulation, 1-11
single-processor systems, 5-20, 6-22, 8-2
-si-revision #|none|any

loader switch for Blackfin, 2-18, 3-50
loader switch for SHARC, 5-26, 6-30, 7-45
splitter switch, 8-8

slave processors, 1-11, 1-15, 7-10
.s_# (Motorola S-record) files, 8-5, A-10
.sm (shared memory) files, 2-9, 3-42, 5-24,

6-27, A-5, A-15
software reset, 1-14, 3-7, 3-22
source file formats

assembly text (.asm), A-2
C/C++ text (.c, .cpp, .cxx), A-2

SPI boot modes (SHARC processors)
ADSP-21161 processors, 6-2, 6-4, 6-14
ADSP-2126x/36x/37x/46x processors, 7-9,

7-11, 7-19
SPICLK register, 7-9, 7-10, 7-11, 7-14
SPICTL register, 6-15
SPIDS signal, 7-9
SPI EEPROM boot mode (Blackfin processors)

ADSP-BF561 processors, 3-27
SPIEN bit, 7-10
SPI flash boot mode

(ADSP-2126x/2136x/2137x/21469
processors), 7-14

SPI host boot mode
(ADSP-2126x/36x/37x/46x processors),
7-14

SPI master boot modes
ADSP-2126x/36x/37x/46x processors, 7-10,

7-12
ADSP-2126x/36x/37x processors, 7-17
ADSP-BF51x processors, 2-4
ADSP-BF52x/54x processors, 2-4
ADSP-BF531/2/3/8/9 processors, 3-5
ADSP-BF534/6/7 processors, 2-4, 3-6

SPI memory slave devices, 7-10
SPI PROM boot mode

(ADSP-2126x/36x/37x/46x processors),
7-11, 7-12, 7-14

SPIRCV bit, 7-10
SPIRx register, 6-2, 6-14, 6-15
SPI slave boot mode

(ADSP-2126x/2136x/2137x/21469
processors), 7-9

SPI slave boot mode
(ADSP-2126x/36x/37x/46x processors),
7-9, 7-12

SPI slave boot mode (Blackfin processors)
ADSP-BF51x processors, 2-4
ADSP-BF52x/54x processors, 2-4
ADSP-BF531/2/3/8/9 processors, 3-5

CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual I-13

Index

ADSP-BF534/6/7 processors, 3-6
splitter

introduction to, 1-10, 1-11, 1-13, 1-14
as ROM splitter on Blackfin processors, 2-22,

3-55, 4-5
command-line syntax, 8-2
file extensions, 8-4
list of switches, 8-5
output file formats, A-10, A-12, A-14

SPORT hex data files, A-15
SRAM memory (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-18
ADSP-BF561 processors, 3-21, 3-29

-s section_name, splitter switch, 8-7, 8-8
start addresses

ADSP-21160 application code, 5-3
Blackfin application code, 2-17, 2-22, 3-49,

3-56, 4-5
status information, 2-18, 2-22, 3-50, 4-5
.stk (byte-stacked) files, 8-5, 8-6, 8-8, A-12
supervisor mode (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-7
ADSP-BF561 processors, 3-21

synchronous boot operations, 5-10
SYSCON register (SHARC processors)

ADSP-21160 processors, 5-7, 5-9, 5-10,
5-16, 5-19

ADSP-21161 processors, 6-18, 6-20
SYSCR register (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors, 3-7
ADSP-BF561 processors, 3-21, 3-22

SYSCTL register, 7-28
SYSTAT register, 5-20
system reset configuration register, See SYSCR

register

T
-t#

loader switch for SHARC, 5-26, 6-30
termination records, A-11
text files, A-4, A-14
two-wire interface (TWI) boot mode

ADSP-BF2x/54x processors, 2-4
ADSP-BF534/6/7 processors, 3-6, 3-11

.txt (ASCII text) files, A-4

U
-u, splitter switch, 8-8
UART slave boot mode (Blackfin processors),

2-4, 3-6
UBWM register, 5-8
uncompressed streams, 3-37, 7-35
-use32bitTagsforExternal Memory Blocks,

loader switch for SHARC, 5-26
utility programs, B-1

V
.VAR directive, A-3
vector addresses, 5-17, 6-20
-version

loader switch for SHARC, 5-27, 6-30, 7-45
splitter switch, 8-8

-v (verbose)
loader switch for Blackfin, 2-18, 3-50
loader switch for SHARC, 5-27, 6-30, 7-45

W
WAIT register, 5-7, 5-8, 5-14, 5-16, 6-7, 6-18
wait states, 5-7, 5-12, 6-7, 6-8
-width #, loader switch for Blackfin, 2-18, 3-47,

3-51
WL bit, 7-10
word width, setting for loader output file, 6-28,

7-42

Index

I-14 CrossCore Embedded Studio 1.0.0
Loader and Utilities Manual

Z
zero-fill blocks (Blackfin processors)

ADSP-BF531/2/3/4/6/7/8/9 processors,
3-10, 3-47

ADSP-BF561 processors, 3-23
zero-fill blocks (SHARC processors)

ADSP-21160 processors, 5-15
ADSP-2126x/36x/37x processors, 7-22

zero-padding (ADSP-2126x/36x/37x/46x
processors), 7-23, 7-24

-zeroPadForced #, loader switch for Blackfin,
3-51

	Loader and Utilities Manual, Revision 1.0, March 2012
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions

	1 Introduction
	Importing a Legacy Loader Project
	Importing a Legacy Splitter Project
	Definition of Terms
	Program Development Flow
	Compiling and Assembling
	Linking
	Loading, Splitting, or Both
	Non-Bootable Files Versus Boot-Loadable Files
	Loader Utility Operations
	Splitter Utility Operations

	Boot Modes
	No-Boot Mode
	PROM Boot Mode
	Host Boot Mode

	Boot Kernels
	Boot Streams
	File Searches

	2 Loader/Splitter for ADSP-BF50x/BF51x/BF52x/ BF54x/BF59x Blackfin Processors
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide
	Using Blackfin Loader Command Line
	File Searches
	File Extensions
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Loader Command-Line Switches
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader Files

	Using Studio Loader
	Using Second-Stage Loader
	Using ROM Splitter

	3 Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors
	ADSP-BF53x/BF561 Processor Booting
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ BF538/BF539 Processor Booting
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor On-Chip Boot ROM
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processor Boot Streams
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Block Headers and Flags
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Initialization Blocks

	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor No-Boot Mode
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processor Memory Ranges

	ADSP-BF561 Processor Booting
	ADSP-BF561 Processor On-Chip Boot ROM
	ADSP-BF561 Processor Boot Streams
	ADSP-BF561 Processor Initialization Blocks
	ADSP-BF561 Dual-Core Application Management
	ADSP-BF561 Processor Memory Ranges

	ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support
	Compressed Streams
	Compressed Block Headers
	Uncompressed Streams
	Booting Compressed Streams
	Decompression Initialization Files

	ADSP-BF53x/BF561 Processor Loader Guide
	Using Blackfin Loader Command Line
	File Searches
	File Extensions
	Blackfin Loader Command-Line Switches

	Using Loader
	Using Compression
	Using ROM Splitter
	ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538/BF539 Processor No-Boot Mode

	4 Loader/Splitter for ADSP-BF60x Blackfin Processors
	ADSP-BF60x Processor Booting
	ADSP-BF60x Processor Loader Guide
	Using Studio Loader
	ADSP-BF60x Boot Modes
	ADSP-BF60x BCODE for Memory, RSI and SPI Master Boot
	Building a Dual-Core Application
	Programming Memory on Target Board

	CRC32 Protection
	-CRC32 [PolynomialCoefficient]

	Block Sizes
	Using ROM Splitter
	ADSP-BF60x Loader Collateral
	ROM Code
	Init Code
	ROM Programming

	5 Loader for ADSP-21160 SHARC Processors
	ADSP-21160 Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	ADSP-21160 Boot Modes
	EPROM Boot Mode
	Host Boot Mode
	Link Port Boot Mode
	No-Boot Mode

	ADSP-21160 Boot Kernels
	ADSP-21160 Processor Boot Steams
	Boot Kernel Modification and Loader Issues

	ADSP-21160 Interrupt Vector Table
	ADSP-21160 Multi-Application (Multi-DXE) Management
	ADSP-21160 Processor ID Numbers

	ADSP-21160 Processor Loader Guide
	Using ADSP-21160 Loader Command Line
	File Searches
	File Extensions
	ADSP-21160 Loader Command-Line Switches

	Using Interface (Load Page)

	6 Loader for ADSP-21161 SHARC Processors
	ADSP-21161 Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	ADSP-21161 Processor Boot Modes
	EPROM Boot Mode
	Host Boot Mode
	Link Port Boot Mode
	SPI Port Boot Mode
	No-Boot Mode

	ADSP-21161 Processor Boot Kernels
	ADSP-21161 Processor Boot Streams
	Boot Kernel Modification and Loader Issues
	Rebuilding a Boot Kernel File
	Rebuilding a Boot Kernel Using Command Lines
	Loader File Issues

	ADSP-21161 Processor Interrupt Vector Table
	ADSP-21161 Multi-Application (Multi-DXE) Management
	Boot From a Single EPROM
	Sequential EPROM Boot
	Processor ID Numbers

	ADSP-21161 Processor Loader Guide
	Using ADSP-21161 Loader Command Line
	File Searches
	File Extensions
	Loader Command-Line Switches

	Using Interface (Load Page)

	7 Loader for ADSP-2126x/2136x/2137x/ 214xx SHARC Processors
	ADSP-2126x/2136x/2137x/214xx Processor Booting
	Power-Up Booting Process
	ADSP-2126x/2136x/2137x/214xx Processors Interrupt Vector Table
	General Boot Definitions
	Boot Mode Selection
	Boot DMA Configuration Settings
	PROM Boot Mode
	Packing Options for External Memory
	Multiplexed Parallel Port
	AMI/SDRAM/DDR2
	Packing and Padding Details

	SPI Port Boot Modes
	SPI Slave Boot Mode
	SPI Master Boot Modes
	Bit-Reverse Option for SPI Master Boot Modes
	Initial Word Option for SPI Master Boot Modes

	Booting From an SPI Flash (24-bit address)
	Booting From an SPI PROM (16-bit address)
	Booting From an SPI Host Processor (no address)

	Reserved (No Boot) Mode

	ADSP-2126x/2136x/2137x/214xx Processors Boot Kernels
	Boot Kernel Modification and Loader Issues
	Rebuilding a Boot Kernel File
	Rebuilding a Boot Kernel Using Command Lines
	Loader File Issues

	ADSP-2126x/2136x/2137x/214xx Processor Boot Streams
	Boot Stream Block Tags
	ZERO_INIT Blocks
	INIT_L48 Blocks
	INIT_L16 Blocks
	INIT_L64 Blocks
	MULT_PROC Blocks
	FINAL_INIT Blocks

	ADSP-21368/2146x Multi-Application (Multi-DXE) Management
	ADSP-2126x/2136x/2137x Processors Compression Support
	Compressed Streams
	Compressed Block Headers
	Uncompressed Streams
	Overlay Compression
	Booting Compressed Streams
	Decompression Kernel File

	ADSP-2126x/2136x/2137x/214xx Processor Loader Guide
	Using ADSP-2126x/2136x/2137x/214xx Loader Command Line
	File Searches
	File Extensions
	Loader Command-Line Switches

	Using Interface (Load Page)

	8 Splitter for SHARC Processors
	Splitter Command Line
	File Searches
	Output File Extensions
	Splitter Command-Line Switches

	A File Formats
	Source Files
	C/C++ Source Files
	Assembly Source Files
	Assembly Initialization Data Files
	Header Files
	Linker Description Files
	Linker Command-Line Files

	Build Files
	Assembler Object Files
	Library Files
	Linker Output Files
	Memory Map Files
	Loader Output Files in Intel Hex-32 Format
	Loader Output Files in Include Format
	Loader Output Files in Binary Format
	Output Files in Motorola S-Record Format
	Splitter Output Files in Intel Hex-32 Format
	Splitter Output Files in Byte-Stacked Format
	Splitter Output Files in ASCII Format

	Debugger Files
	Format References

	B Utilities
	hexutil – Hex-32 to S-Record File Converter
	elf2flt – ELF to BFLT File Converter
	elf2elf – ELF to ELF File Converter
	fltdump – BFLT File Dumper

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

