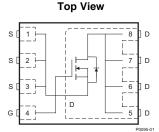


N-Channel NexFET[™] Power MOSFETs

Check for Samples: CSD16323Q3

FEATURES


- **Optimized for 5V Gate Drive**
- Ultra Low Qg and Qgd
- Low Thermal Resistance
- **Avalanche Rated**
- **Pb Free Terminal Plating**
- **RoHS Compliant**
- **Halogen Free**
- SON 3.3mm x 3.3mm Plastic Package

APPLICATIONS

- Point-of-Load Synchronous Buck Converter for Applications in Networking, Telecom and **Computing Systems**
- **Optimized for Control or Synchronous FET** Applications

DESCRIPTION

The NexFET™ power MOSFET has been designed to minimize losses in power conversion and optimized for 5V gate drive applications.

PRODUCT SUMMARY

SLPS224B-AUGUST 2009-REVISED NOVEMBER 2011

V _{DS}	Drain to Source Voltage	25		V
Qg	Gate Charge Total (4.5V)	6.2		nC
Q _{gd}	Gate Charge Gate to Drain	1.1		nC
		$V_{GS} = 3V$	5.4	mΩ
R _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 4.5V$	4.4	mΩ
		$V_{GS} = 8V$	3.8	mΩ
V _{th}	Threshold Voltage	1.1		V

ORDERING INFORMATION

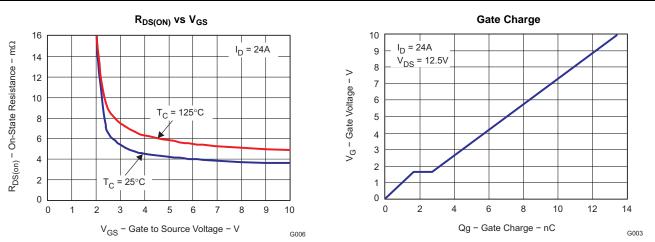
Device	Package	Media	Qty	Ship
CSD16323Q3	SON 3.3 × 3.3 Plastic Package	13-inch reel	2500	Tape and Reel

ABSOLUTE MAXIMUM RATINGS

$T_A = 2$	5°C unless otherwise stated	VALUE	UNIT
V_{DS}	Drain to Source Voltage	25	V
V_{GS}	Gate to Source Voltage	+10 /8	V
	Continuous Drain Current, T _C = 25°C	60	А
ID	Continuous Drain Current ⁽¹⁾	21	А
I _{DM}	Pulsed Drain Current, $T_A = 25^{\circ}C^{(2)}$	112	А
PD	Power Dissipation ⁽¹⁾	3	W
T _J , T _{STG}	Operating Junction and Storage Temperature Range	-55 to 150	°C
E _{AS}	Avalanche Energy, single pulse $I_D = 50A$, L = 0.1mH, $R_G = 25\Omega$	125	mJ

(1) $R_{\theta JA} = 43^{\circ}C/W$ on $1in^2$ Cu (2 oz.) on 0.060" thick FR4 PCB.

(2) Pulse width ≤300µs, duty cycle ≤2%


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NexFET is a trademark of Texas Instruments.

CSD16323Q3

www.ti.com

SLPS224B-AUGUST 2009-REVISED NOVEMBER 2011

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ELECTRICAL CHARACTERISTICS

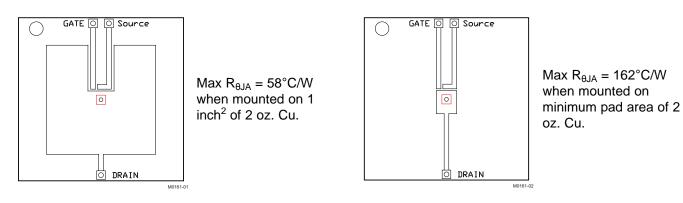
 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Static Cl	haracteristics					
BV _{DSS}	Drain to Source Voltage	$V_{GS} = 0V, I_D = 250\mu A$	25			V
I _{DSS}	Drain to Source Leakage Current	$V_{GS} = 0V, V_{DS} = 20V$			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{DS} = 0V, V_{GS} = +10/-8V$			100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.9	1.1	1.4	V
R _{DS(on)}		$V_{GS} = 3V, I_D = 24A$		5.4	7.2	mΩ
	Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 24A$		4.4	5.5	mΩ
		$V_{GS} = 8V, I_D = 24A$		3.8	4.5	mΩ
9 _{fs}	Transconductance $V_{DS} = 12.5V, I_D = 24A$			108		S
Dynamic	Characteristics	· · · · · · · · · · · · · · · · · · ·				
C _{ISS}	Input Capacitance			1020	1300	pF
C _{OSS}	Output Capacitance	V _{GS} = 0V, V _{DS} = 12.5V, f = 1MHz		740	960	pF
C _{RSS}	Reverse Transfer Capacitance			50	65	pF
R _g	Series Gate Resistance			1.4	2.8	Ω
Qg	Gate Charge Total (4.5V)			6.2	8.4	nC
Q _{gd}	Gate Charge Gate to Drain			1.1		nC
Q _{gs}	Gate Charge Gate to Source	V _{DS} = 12.5V, I _D = 24A		1.8		nC
Qg(th)	Gate Charge at Vth			1		nC
Q _{OSS}	Output Charge	$V_{DS} = 12.5V, V_{GS} = 0V$		14		nC
t _{d(on)}	Turn On Delay Time			5.3		ns
t _r	Rise Time	V _{DS} = 12.5V, V _{GS} = 4.5V I _D = 24A		15		ns
t _{d(off)}	Turn Off Delay Time	$R_G = 2\Omega$		13		ns
t _f	Fall Time			6.3		ns
Diode C	haracteristics	· · · · · · · · · · · · · · · · · · ·				
V _{SD}	Diode Forward Voltage	$I_{S} = 24A, V_{GS} = 0V$		0.85	1	V
Q _{rr}	Reverse Recovery Charge	V _{DD} = 12.5V, I _F = 24A, di/dt = 300A/µs		21		nC
t _{rr}	Reverse Recovery Time	V _{DD} = 12.5V, I _F = 24A, di/dt = 300A/µs		16		ns

SLPS224B-AUGUST 2009-REVISED NOVEMBER 2011

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾⁽²⁾	CSD16323Q3	
		8 PINS	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	42.0	
θ _{JCtop}	Junction-to-case (top) thermal resistance	20.6	
θ_{JB}	Junction-to-board thermal resistance	8.8	°C/M
Ψ _{JT}	Junction-to-top characterization parameter	0.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	8.7	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	0.1	


For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.
 For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.

CSD16323Q3

SLPS224B-AUGUST 2009-REVISED NOVEMBER 2011

www.ti.com

TYPICAL MOSFET CHARACTERISTICS

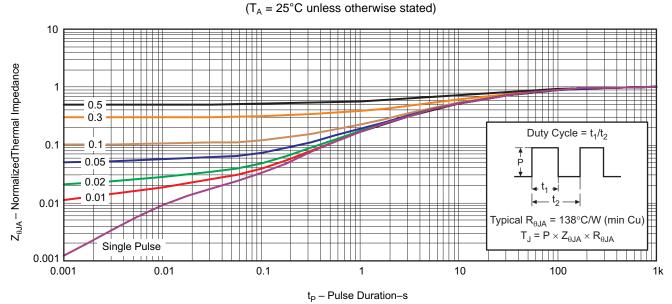
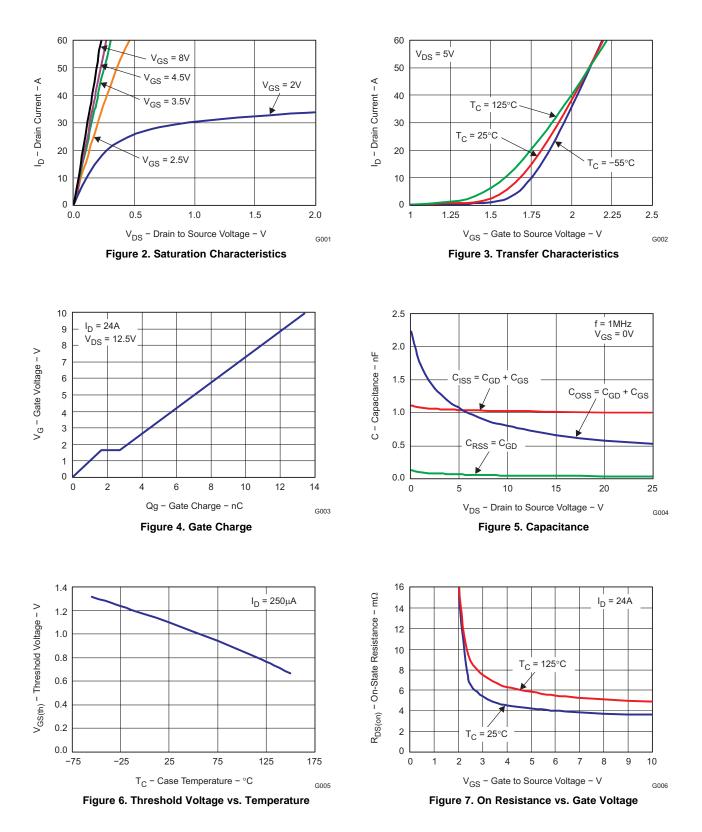


Figure 1. Transient Thermal Impedance

G012



SLPS224B-AUGUST 2009-REVISED NOVEMBER 2011

www.ti.com

TYPICAL MOSFET CHARACTERISTICS (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

SLPS224B-AUGUST 2009-REVISED NOVEMBER 2011

Texas Instruments

www.ti.com

TYPICAL MOSFET CHARACTERISTICS (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

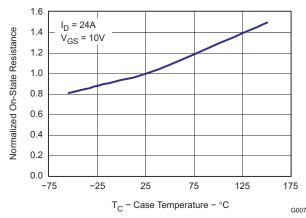


Figure 8. Normalized On Resistance vs. Temperature

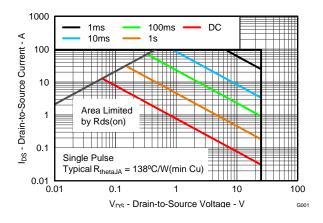


Figure 10. Maximum Safe Operating Area

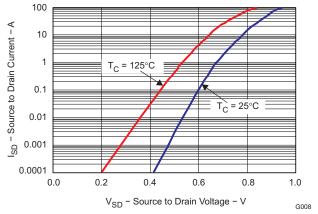


Figure 9. Typical Diode Forward Voltage

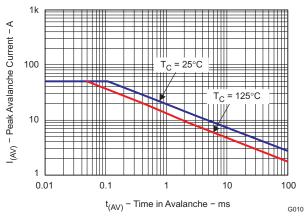
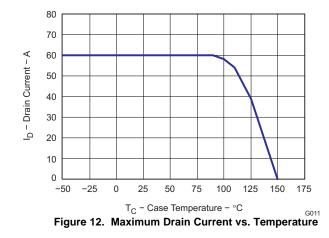
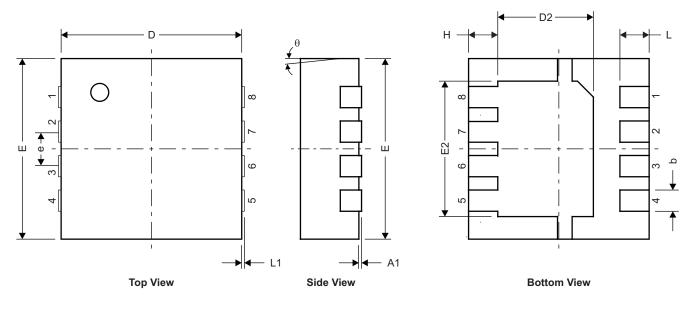
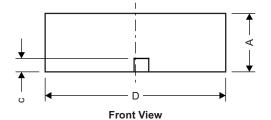



Figure 11. Single Pulse Unclamped Inductive Switching





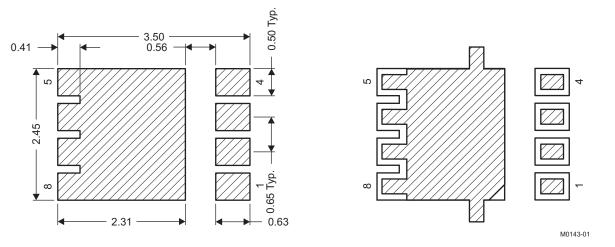
SLPS224B-AUGUST 2009-REVISED NOVEMBER 2011

MECHANICAL DATA

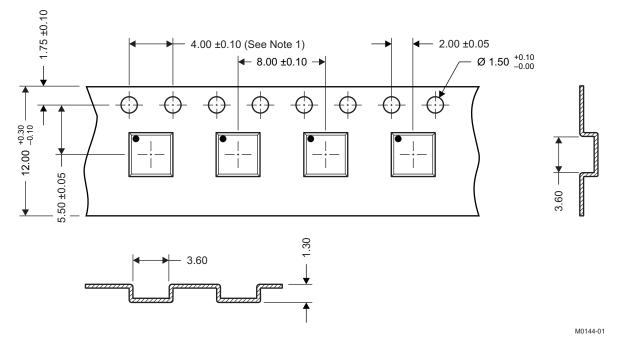
Q3 Package Dimensions

M0142-01

DIM		MILLIMETERS	6		INCHES	
	MIN	NOM	MAX	MIN	NOM	MAX
А	0.950	1.000	1.100	0.037	0.039	0.043
A1	0.000	0.000	0.050	0.000	0.000	0.002
b	0.280	0.340	0.400	0.011	0.013	0.016
С	0.150	0.200	0.250	0.006	0.008	0.010
D	3.200	3.300	3.400	0.126	0.130	0.134
D1	-	_	-	_	_	-
D2	1.650	1.750	1.800	0.065	0.069	0.071
Е	3.200	3.300	3.400	0.126	0.130	0.134
E1	-	_	_	_	_	-
E2	2.350	2.450	2.550	0.093	0.096	0.100
е		0.650 TYP			0.026	
Н	0.35	0.450	0.550	0.014	0.018	0.022
L	0.35	0.450	0.550	0.014	0.018	0.022
L1	-	_	_	_	_	-
θ	_	_	_	_	_	-


Copyright © 2009–2011, Texas Instruments Incorporated

SLPS224B-AUGUST 2009-REVISED NOVEMBER 2011


www.ti.com

Recommended PCB Pattern

For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques.

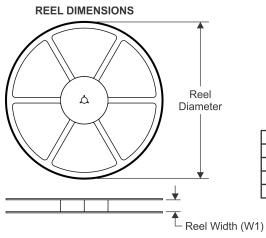
Q3 Tape and Reel Information

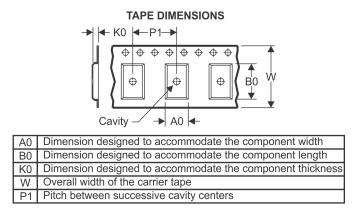
Notes:

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.2
- 2. Camber not to exceed 1mm IN 100mm, noncumulative over 250mm
- 3. Material:black static dissipative polystyrene
- 4. All dimensions are in mm (unless otherwise specified)
- 5. Thickness: 0.30 ±0.05mm
- 6. MSL1 260°C (IR and Convection) PbF Reflow Compatible

SLPS224B-AUGUST 2009-REVISED NOVEMBER 2011

REVISION HISTORY


Changes from Original (August 2009) to Revision A	Page
- Changed $R_{DS(on)}$ - V_{GS} = 3V, I_D = 24A MAX value From: 6.5 To: 7.2	
Deleted the Package Marking Information section	
Changes from Revision A (April 2010) to Revision B	Page
 Changes from Revision A (April 2010) to Revision B Replaced the THERMAL CHARACTERISTICS table with the new Thermal Information Table Replaced Figure 10 - Maximum Safe Operating Area 	

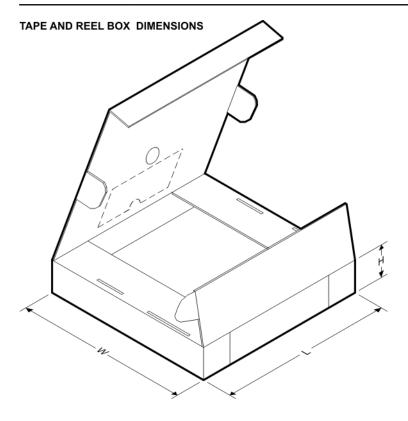

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	-	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD16323Q3	SON	DQG	8	2500	330.0	12.8	3.6	3.6	1.2	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

1-Aug-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD16323Q3	SON	DQG	8	2500	335.0	335.0	32.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated