Features
e Core
— ARM® Cortex®-M3 revision 2.0 running at up to 48 MHz
— Thumb®-2 instruction
— 24-bit SysTick Counter
— Nested Vector Interrupt Controller
* Pin-to-pin compatible with SAM7S legacy products (48- and 64-pin versions) and
SAM3S (48-, 64- and 100-pin versions)
* Memories
— From 16 to 256 Kbytes embedded Flash, 128-bit wide access, memory accelerator,
single plane
— From 4 to 24 Kbytes embedded SRAM
— 16 Kbytes ROM with embedded bootloader routines (UART) and IAP routines
e System
- Embedded voltage regulator for single supply operation
— Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe
operation
— Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure
Detection and optional low power 32.768 kHz for RTC or device clock
— High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz default
frequency for device startup. In-application trimming access for frequency
adjustment
— Slow Clock Internal RC oscillator as permanent low-power mode device clock
— One PLL up to 130 MHz for device clock
— Up to 10 peripheral DMA (PDC) channels
* Low Power Modes
— Sleep and Backup modes, down to 3 pA in Backup mode
- Ultra low power RTC
* Peripherals
— Up to 2 USARTs with RS-485 and SPI mode support. One USART (USARTO0) has
ISO7816, IrDA® and PDC support in addition
— Two 2-wire UARTs
— 2 Two Wire Interface (I12C compatible), 1 SPI
— Up to 6 Three-Channel 16-bit Timer/Counter with capture, waveform, compare and
PWM mode. Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for
Stepper Motor
— 4-channel 16-bit PWM
— 32-bit Real-time Timer and RTC with calendar and alarm features
— Up to 16 channels, 384 KSPS 10-bit ADC
— One 500 KSPS 10-bit DAC
e |/O
— Up to 79 I/O lines with external interrupt capability (edge or level sensitivity),
debouncing, glitch filtering and on-die Series Resistor Termination
— Three 32-bit Parallel Input/Output Controllers
* Packages
— 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm/100-ball TFBGA, 9 x 9 mm, pitch 0.8 mm
— 64-lead LQFP, 10 x 10 mm, pitch 0.5 mm/64-pad QFN 9x9 mm, pitch 0.5 mm
— 48-lead LQFP, 7 x 7 mm, pitch 0.5 mm/48-pad QFN 7x7 mm, pitch 0.5 mm

ATMEL

Y ()

AT91SAM
ARM-based
Flash MCU

ATSAM3N Series

11011B-ATARM-21-Feb-12

1.

2

ATMEL

SAM3N Description

Atmel's SAM3N series is a member of a family of Flash microcontrollers based on the high per-
formance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 48 MHz
and features up to 256 Kbytes of Flash and up to 24 Kbytes of SRAM. The peripheral set
includes 2x USARTSs, 2x UARTSs, 2x TWIs, 3x SPI, as well as 1 PWM timer, 6x general purpose
16-bit timers, an RTC, a 10-bit ADC and a 10-bit DAC.

The SAM3N series is ready for capacitive touch thanks to the QTouch library, offering an easy
way to implement buttons, wheels and sliders.

The SAMB3N device is an entry-level general purpose microcontroller. That makes the SAM3N
the ideal starting point to move from 8- /16-bit to 32-bit microcontrollers.

It operates from 1.62V to 3.6V and is available in 48-pin, 64-pin and 100-pin QFP, 48-pin and
64-pin QFN, and 100-pin BGA packages.

The SAM3N series is the ideal migration path from the SAM3S for applications that require a
reduced BOM cost. The SAM3N series is pin-to-pin compatible with the SAM3S series. Its
aggressive price point and high level of integration pushes its scope of use far into cost-sensi-
tive, high-volume applications.

11011B-ATARM-21-Feb-12

e S AM3N

1.1 Configuration Summary

The SAM3N4/2/1/0/00 differ in memory size, package and features list. Table 1-1 summarizes
the configurations of the 9 devices.

Table 1-1. Configuration Summary
Number PDC
Device Flash SRAM Package of PIOs ADC Timer | Channels | USART | DAC
LQFP48
)
SAM3N4A 256 Kbytes | 24 Kbytes QFN48 34 8 channels 6 8 1 _
SAM3N4B 256 Kbytes | 24 Kbytes LQFP64 47 10 channels 6 10 2 1
QFN64
LQFP100
SAM3N4C 256 Kbytes | 24 Kbytes BGA100 79 16 channels 6 10 2 1
LQFP48
)
SAM3N2A 128 Kbytes 16 Kbytes QFN48 34 8 channels 6 8 1 _
LQFP64
SAM3N2B 128 Kbytes | 16 Kbytes QFPe 47 10 channels 6(@ 10 2 1
QFN64
LQFP100
SAM3N2C 128 Kbytes 16 Kbytes BGA100 79 16 channels 6 10 2 1
LQFP48
)
SAM3N1A 64 Kbytes 8 Kbytes QFN48 34 8 channels 6 8 1 _
LQFP64
@)
SAM3N1B 64 Kbytes 8 Kbytes QFN64 47 10 channels 6 10 2 1
LQFP100
SAM3N1C 64 Kbytes 8 Kbytes BGA100 79 16 channels 6 10 2 1
LQFP48
)
SAM3NOA 32 Kbytes 8 Kbytes QFN48 34 8 channels 6 8 1 _
LQFP64
@)
SAM3NOB 32 Kbytes 8 Kbytes QFN64 47 10 channels 6 10 2 1
LQFP100
SAM3NOC 32 Kbytes 8 Kbytes BGA100 79 16 channels 6 10 2 1
LQFP48
(1
SAM3NOOA 16 Kbytes 4 KBytes QFN48 34 8 channels 6 8 1 _
LQFP64
SAM3NO0OB 16 Kbytes 4 KBytes (SFN:4 47 10 channels 6 10 2 1

Notes: 1. Only two TC channels are accessible through the PIO.
2. Only three TC channels are accessible through the PIO.

ATMEL ;

11011B-ATARM-21-Feb-12

2. SAMB3N Block Diagram

Figure 2-1. SAM3N 100-pin version Block Diagram

o
<&
S
O ¥
OO
\s > &
Yoty & s
QSIS & S &
INZSZAIR s N N
AL A A A * +
System Controller y YYV Volta
TST — b | oltage
PCKO-PCK2 €] |€—— i T ¢ i Regulator
PMC Y
JTAG & Serial Wire I
XN ERTTe—>] os¢ vivet
xout E 320 MHz In-Gircuit Emubtor FLASH SRAM
O - 24-bit N 256 KBytes
M SysTick Counter|, | | 128 KBytes [| 24 KBytes
Cortex-M3 Processor | 64 KBytes 16 KBytes ROM
SUPC Fmax 48 MHz c 32 KBytes 8 KBytes 16 KBytes|
1 16 KBytes 4 KBytes
XIN32 <> >fosc 324
XOUT32 €| |« lI/D ls I 1 1
ERAsE «»| > [RC32
™ PLL
RTC
POR
VDDIO ——]
RSTC
NRST <€ Peripheral
I PIOA I PIOB Bridge
PIOC A,
VDDCORE ——
o
URXDO < > Timer Counter A | « » TCLK[0:2
UTXDO < > PDC 10:2]
-—> | :: > | > TIOA[0:2]
URXD1 <& > UARTA TC0-2] |4 > |« > TIOB[0:2]
UTXD1 < >
RXDO ¢ > >
RO < <P > USARTO
E‘%ES < > |« = D Timer Counter B | < > TCLK[3:5]
CTSO < > > PDC
- < > |« » TIOA[3:5]
RXD1 < <f= > | TC[3..5] ':: > | > TIOB[3:5]
SCK1 > | > <>
SOkl =11 [2 USART1 >
CTS1 == > >
PDC < > |« » NPCSO
1 »| |« NPCST
> | » NPCS2
<> SPI > |-< » NPCS3
PWM[0:3] ¢ < PWM > <l < mlgg
< > | > SPCK
ADTRG PDC > |« > TWCKO
- > > -bi < < >
ADI[0..15] ¢ > > 10-bit ADC <> TWDO
— PDC
ADVREF _{ “— TWH | |« » TWCK1
- > | |« > TWD1
DACO =1 ¢ 10-bit DAC -
DATRG > > [PDC]

11011B-ATARM-21-Feb-12

e S AM3N

» TCLK[0:2]

» TIOA[0:2]

> TIOB[0:2)

NPCSO0

NPCS1

NPCS2

NPCS3

MISO

YYYYYYY

SPCK

TWCKO

\A,

TWDO

» TWCK1

Figure 2-2. SAM3N 64-pin version Block Diagram
o)
&
S
PO ¥
O A
& GJ@ O & &
S S & S o
A 4 F &
QLR $ S S
A A AA * +
ST System Controller Y YVYY Voltage
—> { |
PoKo-PCK2 <> |€— i T ¢ ¢ Regulator
PMC Y
JTAG & Serial Wire I
XIN (—)D(—_> osc * T ¢ * T
xout : 320 MHz In-Circuit Emulator
WDT - FLASH SRAM
= - 24-bit N | | 256 KBytes
SM SysTick Counter| |, | | 128 KBytes | | 24 KBytes
Cortex-M3 Processor | 64 KBytes 16 KBytes ROM
SUPC Fmax 48 MHz c 32 KBytes 8 KBytes 16 KBytes|
Lo 16 KBytes 4 KBytes
XINS2 < >fosc 324
xoUT32 €| [lI/D ls 1 1 I
ERASE <> RC 32k
™ PLL
RTT
RTC
POR
VDDIO —
RSTC
NRST <€ Peripheral
|_Pioa |[PioB | Bridge
VDDCORE ——
)
ldfli_igg D < e Timer Counter A | <
-~ TCp.2] |3 <l
UTXD1 > UART1
RXDO > >
TXDO < <
g@rgg < > > USARTO - Timer Counter B
CTS0 < > EDC
RXD1 > > - TC[3..5]
R0 <> - | c3.9] |
SCK1 - > | > USART1 <>
RTS1 >
CTS1 = > >
[PBC < <l b
<« sPI > |«
PWM[0:3] & < PWM <> < > |<
ADTRG L <
- > > _hi - | |«
e ne > 10-bit ADC >
— PDC
ADVREF — b D
L BT = >
DACO < " 10-bit DAC -
DATRG > > [PoC

11011B-ATARM-21-Feb-12

ATMEL

> TWD1

Figure 2-3. SAMB3N 48-pin version Block Diagram

o
N
S
O ¥
O AV
IO Q> N
S & &P o\é S
PSS N RS
W WY * *
System Controller 'y YVYY Voltage
ST > (] Regulgtor
PoKo-Pek2 <> |€— iT ¢ ¢
PMC Y
JTAG & Serial Wire I
xn e, o vivet
XOUT <€ 3-20 MHz ——
E n-Circuit Emulator FLASH SRAM
= - 24-bit N | | 256 KBytes
m SMm SysTick Counter| ;| | 128 KBytes [| 24 KBytes
Cortex-M3 Processor | 64 KBytes 16 KBytes ROM
SUPC Fmax 48 MHz c 32 KBytes 8 KBytes 16 KBytes|
- = 16 KBytes 4 KBytes
XINS2 <> >fosc 324
XoUT32 €>| [« lI/D ls I 1 1
ERASE <€ RC 32k
™~ PLL
RTC
POR
VDDIO ——]
RSTC
NRST <€ Peripheral

| PIOA || PIOB | Bridge

\s
VDDCORE ——]
e
URXDO > Timer Counter A | < » TCLK[O..1
UTXDO > PDC 10-1]
<> | :: > | » TIOA[0..1]
URXD1 > UARTH TCIO-1] |« > < > TIOB[0..1]
UTXD1 < >
RXDO »>]
TXDO > Timer Counter B

USARTO <>

PDC g

]
o]
X
S

AAAA)

YYVYYVYY
A

A

NPCSO0
NPCS1
NPCS2
NPCS3
MISO

SPCK

A

{poc]

<> SPI

PWM[0:3] < PWM <>

FYYYVYYY
AAAAAAA
YYYYYYY

Yy

PDC

la—>-| TWH

ADTRG
ADI0..7]

< TWCKO
< » TWDO

'y
Y

AA
Yy

10-bit ADC
ADVREF — PDC

A
A\

Y

TWCK1
< > TWD1

ill

11011B-ATARM-21-Feb-12

e S AM3N

3. Signal Description
Table 3-1 gives details on the signal name classified by peripheral.

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level Reference | Comments
Power Supplies
VDDIO Peripherals 1/0O Lines Power Supply Power 1.62V to 3.6V
VDDIN Voltage Regulator, ADC and DAC Power Power 1.8V to 3.6V
Supply
VDDOUT Voltage Regulator Output Power 1.8V Output
VDDPLL Oscillator and PLL Power Supply Power 1.65 Vto 1.95V
Power the core, the embedded memories 1.65Vto 1.95V
VDDCORE and the peripherals Power Connected externally
to VDDOUT
GND Ground Ground
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input Reset State:
XOuT Main Oscillator Output Output - PO Input
- Internal Pull-up
XIN32 Slow Clock Oscillator Input Input disabled®
. - Schmitt Trigger
XOuT32 Slow Clock Oscillator Output Output enabled™
VDDIO | Reset State:
- PIO Input
- Internal Pull-up
PCKO - PCK2 Programmable Clock Output Output enabled
- Schmitt Trigger
enabled"
ICE and JTAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
Reset State:
TDI Test Data In Input - SWJ-DP Mode
- Internal pull-u
TDO/TRACESWO '(I')e;t Data Out/Trace Asynchronous Data Output disabled“? p
VDDIO - Schmitt Trigger
TMS/SWDIO Test Mode Select /Serial Wire Input / /O enabled™
Input/Output
JTAGSEL JTAG Selection Input High Permanent Internal
pull-down

11011B-ATARM-21-Feb-12

ATMEL

ATMEL

Table 3-1. Signal Description List (Continued)

Active Voltage
Signal Name Function Type Level Reference | Comments
Flash Memory
Reset State:
- Erase Input
ERASE CF:I(e)lrsr]t:na;r:]c(i:| NVM Configuration Bits Erase Input High VDDIO ;3:2&2;' pull-down
- Schmitt Trigger
enabled"
Reset/Test
NRST Microcontroller Reset I/0 Low VvDDIO zjlrlTJZnem Internal
TST Test Mode Select Input vDplo | Fermanentinternal
pull-down
Universal Asynchronous Receiver Transceiver - UARTx
URXDx UART Receive Data Input
UTXDx UART Transmit Data Output
PIO Controller - PIOA - PIOB - PIOC
PAO - PA31 Parallel 1O Controller A I/0 Reset State:
PBO - PB14 Parallel 10 Controller B Vo ;g:g or System
VvDDIO - Internal pull-up
PCO - PC31 Parallel 10 Controller C Vo enabled
- Schmitt Trigger
enabled"
Universal Synchronous Asynchronous Receiver Transmitter USARTx
SCKx USARTX Serial Clock I/0
TXDx USARTXx Transmit Data I/O
RXDx USARTXx Receive Data Input
RTSx USARTx Request To Send Output
CTSx USARTXx Clear To Send Input
Timer/Counter - TC
TCLKx TC Channel x External Clock Input Input
TIOAX TC Channel x I/0O Line A /0
TIOBx TC Channel x I/O Line B IO
Pulse Width Modulation Controller- PWMC
PWMx PWM Waveform Output for channel x Output

11011B-ATARM-21-Feb-12

e S AM3N

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference | Comments
Serial Peripheral Interface - SPI
MISO Master In Slave Out I/0
MOSI Master Out Slave In I/0
SPCK SPI Serial Clock I/0
SPI_NPCSO0 SPI Peripheral Chip Select 0 I/0 Low
Si::miggé i SPI Peripheral Chip Select Output Low
Two-Wire Interface- TWIx
TWDx TWIx Two-wire Serial Data I/0
TWCKx TWIx Two-wire Serial Clock /0
Analog
ADVREF ADC and DAC Reference Analog
10-bit Analog-to-Digital Converter - ADC

ADO - AD15 Analog Inputs Analog
ADTRG ADC Trigger Input VDDIO

Digital-to-Analog Converter Controller- DACC
DACO DACC channel analog output Analog
DATRG DACC Trigger Input VvDDIO

Fast Flash Programming Interface
PGMENO-PGMEN2 Programming Enabling Input
PGMMO-PGMMS3 Programming Mode Input
PGMDO-PGMD15 Programming Data /0
PGMRDY Programming Ready Output High
PGMNVALID Data Direction Output Low VbDIO
PGMNOE Programming Read Input Low
PGMCK Programming Clock Input
PGMNCMD Programming Command Input Low
Notes: 1. Schmitt Triggers can be disabled through PIO registers.

1
2. Some PIO lines are shared with System 10s.

3. See Section 5.3 “Typical Powering Schematics” for restriction on voltage range of Analog Cells.
4

. TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up corresponding to this
PIO line must be enabled to avoid current consumption due to floating input.

11011B-ATARM-21-Feb-12

ATMEL

ATMEL

4. Package and Pinout

SAM3N4/2/1/0/00 series is pin-to-pin compatible with SAM3S products. Furthermore
SAM3N4/2/1/0/00 devices have new functionalities referenced in italic inTable 4-1, Table 4-3
and Table 4-4.

41 SAM3NA4/2/1/0/00C Package and Pinout
411 100-lead LQFP Package Outline

Figure 4-1. Orientation of the 100-lead LQFP Package

75 51
1 1
76 — 50
100 L 26
1] 1
1 25

41.2 100-ball TFBGA Package Outline

The 100-Ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its
dimensions are 9 x 9 x 1.1 mm.

Figure 4-2. Orientation of the 100-ball TFBGA Package
TOP VIEW

—_

AN N®OOo
O O O O 0O 0o oo o o
O O O 0O 0O 0 0 0O 0 ©°o
O 0O 0O 0O 0O 0 0o o o o
O 0O 0O O 0O 0O 0O 0o o o
o 0O 0o O 0O 0O 0O o o o
o 0 0o O 0O 0O 0 0 0 o
O 0 o O 0O o 0o 0o o0 o
o 0O 0o O 0O 0O 0o 0o o o
o 0 0o O 0O 0O 0o 0o o o
O o o © 0 0o 0o o o o

g

=

2>
lov)
o
o
m
m
o)
T
[
P

10 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

41.3 100-Lead LQFP Pinout

Table 4-1. 100-lead LQFP SAM3N4/2/1/0/00C Pinout

1 ADVREF 26 GND 51 TDI/PB4 76 | TDO/TRACESWO/PB5
2 GND 27 VDDIO 52 PA6/PGMNOE 77 JTAGSEL

3 PBO/AD4 28 PA16/PGMD4 53 PA5/PGMRDY 78 PC18

4 PC29/AD13 29 PC7 54 PC28 79 TMS/SWDIO/PB6
5 PB1/AD5 30 PA15/PGMD3 55 PA4/PGMNCMD 80 PC19

6 PC30/AD14 31 PA14/PGMD2 56 VDDCORE 81 PA31

7 PB2/AD6 32 PC6 57 PA27 82 PC20

8 PC31/AD15 33 PA13/PGMD1 58 PC8 83 TCK/SWCLK/PB7
9 PB3/AD7 34 PA24 59 PA28 84 PC21
10 VDDIN 35 PC5 60 NRST 85 VDDCORE
11 VDDOUT 36 VDDCORE 61 TST 86 pPC22
12 PA17/PGMD5/ADO 37 PC4 62 PC9 87 ERASE/PB12
13 PC26 38 PA25 63 PA29 88 PB10

14 PA18/PGMD6/AD1 39 PA26 64 PA30 89 PB11

15 PA21/AD8 40 PC3 65 PC10 90 PC23

16 VDDCORE 41 PA12/PGMDO 66 PA3 91 VDDIO

17 pC27 42 PA11/PGMM3 67 PA2/PGMEN2 92 PC24

18 PA19/PGMD7/AD2 43 PC2 68 PC11 93 PB13/DACO

19 PC15/AD11 44 PA10/PGMM2 69 VDDIO 94 PC25
20 PA22/AD9 45 GND 70 GND 95 GND
21 PC13/AD10 46 PA9/PGMM1 71 PC14 96 PB8/XOUT
22 PA23 47 PC1 72 PA1/PGMENT1 97 PB9/PGMCK/XIN
23 PC12/AD12 48 PAli/é'\OAL“JABSZ/ 73 PC16 98 vVDDIO
24 PA20/AD3 49 P@IZ/I/KI({/,\A?_ZI/D 74 PAO/PGMENO 99 PB14
25 PCO 50 VDDIO 75 PC17 100 VDDPLL

ATMEL Y

11011B-ATARM-21-Feb-12

ATMEL

41.4 100-ball TFBGA Pinout

Table 4-2. 100-ball TFBGA SAM3N4/2/1/0/00C Pinout

A1 PB1 C6 PB7 F1 PA18 H6 PC4

A2 PC29 c7 PC16 F2 PC26 H7 PA11

A3 VDDIO c8 PA1 F3 VDDOUT H8 PC1

A4 PB9 Co PC17 F4 GND Ho PAG

A5 PB8 Cc10 PAO F5 VDDIO H10 PB4

A6 PB13 D1 PB3 F6 PA27 J1 PC15
A7 PB11 D2 PBO F7 PC8 J2 PCO

A8 PB10 D3 PC24 F8 PA28 J3 PA16
A9 PB6 D4 PC22 F9 TST J4 PC6
A10 JTAGSEL D5 GND F10 PCO J5 PA24

B1 PC30 D6 GND G PA21 J6 PA25
B2 ADVREF D7 VDDCORE G2 PC27 J7 PA10
B3 GNDANA D8 PA2 G3 PA15 J8 GND
B4 PB14 D9 PC11 G4 VDDCORE J9 VDDCORE
B5 PC21 D10 PC14 G5 VDDCORE J10 VDDIO
B6 PC20 E1 PA17 G6 PA26 Ki PA22
B7 PA3 E2 PC31 G7 PA12 K2 PC13
B8 PC19 E3 VDDIN G8 PC28 K3 PC12
B9 PC18 E4 GND G9 PA4 K4 PA20
B10 PB5 E5 GND G10 PA5 K5 PC5

C1 PB2 E6 NRST H1 PA19 K6 PC3

c2 VDDPLL E7 PA29 H2 PA23 K7 PC2

c3 PC25 E8 PA30 H3 PC7 K8 PA9

c4 PC23 E9 PC10 Ha PA14 K9 PA8

C5 PB12 E10 PA3 H5 PA13 K10 PA7

12 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

4.2 SAM3NA4/2/1/0/00B Package and Pinout

Figure 4-3. Orientation of the 64-pad QFN Package

64 49
guguuuuuuuuuuuuy
1P 48
> O d
P d
P d
P d
P d
P d
P d
P d
P d
P d
P d
P d
-] d
P d
16pP d33
nnnnnnnnnnnninn
17 32

TOP VIEW
Figure 4-4. Orientation of the 64-lead LQFP Package
48 33
0 0
49 d H 32
64 9 P 17
U U

ATMEL 1

11011B-ATARM-21-Feb-12

ATMEL

421 64-Lead LQFP and QFN Pinout
64-pin version SAM3N devices are pin-to-pin compatible with SAM3S products. Furthermore,
SAMS3N products have new functionalities shown in italic in Table 4-3.

Table 4-3. 64-pin SAM3N4/2/1/0/00B Pinout

1 ADVREF 17 GND 33 TDI/PB4 49 | TDO/TRACESWO/PB5
2 GND 18 VDDIO 34 PA6/PGMNOE 50 JTAGSEL

3 PB0/AD4 19 PA16/PGMD4 35 PA5/PGMRDY 51 TMS/SWDIO/PB6
4 PB1AD5 20 PA15/PGMD3 36 PA4/PGMNCMD 52 PA31

5 PB2/AD6 21 PA14/PGMD2 37 PA27/PGMD15 53 TCK/'SWCLK/PB7
6 PB3/AD7 22 PA13/PGMD1 38 PA28 54 VDDCORE

7 VDDIN 23 PA24/PGMD12 39 NRST 55 ERASE/PB12

8 VDDOUT 24 VDDCORE 40 TST 56 PB10

9 PA17/PGMD5/AD0O 25 PA25/PGMD13 41 PA29 57 PB11

10 PA18/PGMD6/AD1 26 PA26/PGMD14 42 PA30 58 VDDIO

11 PA21/PGMD9/AD8 27 PA12/PGMDO 43 PA3 59 PB13/DACO
12 VDDCORE 28 PA11/PGMM3 44 PA2/PGMEN2 60 GND

13 PA19/PGMD7/AD2 29 PA10/PGMM2 45 VDDIO 61 XOUT/PB8

14 PA22/PGMD10/AD9 30 PA9/PGMM1 46 GND 62 XIN/PGMCK/PB9
15 PA23/PGMD11 31 PAS/XOUBSZ/PGMM 47 PA1/PGMEN1 63 PB14

16 PA20/PGMD8/AD3 32 PA?{DX(IETASSGZOL}JDTSZ 48 PAO/PGMENO 64 VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

14 S /A V13 N 50000000 ——

11011B-ATARM-21-Feb-12

e S AM3N

4.3 SAM3NA4/2/1/0/00A Package and Pinout

Figure 4-5. Orientation of the 48-pad QFN Package

48 37
suuuuuuiuuuu
o

36

yuugugyuuuuuu
inannannnnaNN

12 25

1nannnnnannn
13 24

TOP VIEW

Figure 4-6. Orientation of the 48-lead LQFP Package

36 25

1] 1]
37 o b 24

48 o > 13

ATMEL 1

11011B-ATARM-21-Feb-12

ATMEL

4.3.1 48-Lead LQFP and QFN Pinout

Table 4-4. 48-pin SAM3N4/2/1/0/00A Pinout

1 ADVREF 13 VDDIO 25 TDI/PB4 37 TDO/T’TD';\;SES wor

2 GND 14 PA16/PGMD4 26 PA6/PGMNOE 38 JTAGSEL

3 PBO/AD4 15 PA15/PGMDS3 27 PA5/PGMRDY 39 TMS/SWDIO/PB6

4 PB1/AD5 16 PA14/PGMD2 28 PA4/PGMNCMD 40 TCK/SWCLK/PB7

5 PB2/AD6 17 PA13/PGMD1 29 NRST 41 VDDCORE

6 PB3/AD7 18 VDDCORE 30 TST 42 ERASE/PB12

7 VDDIN 19 PA12/PGMDO 31 PA3 43 PB10

8 vVDDOUT 20 PA11/PGMM3 32 PA2/PGMEN2 44 PB11

9 PA17/PGMD5/ADO 21 PA10/PGMM2 33 VDDIO 45 XOUT/PB8

10 | PA18/PGMD6/AD1 22 PA9/PGMM1 34 GND 46 XIN/P/PB9/GMCK

11 PA19/PGMD7/AD2 23 PA8/X3L'\JA'(I')32/PG 35 PA1/PGMENA1 47 VDDIO

12 PA20/AD3 24 PA7/X\I/’\A?_2|/DPGMN 36 PAO/PGMENO 48 VDDPLL
Note: The bottom pad of the QFN package must be connected to ground.
16 S A M 3 N |

11011B-ATARM-21-Feb-12

e S AM3N

5. Power Considerations

5.1 Power Supplies
The SAM3N product has several types of power supply pins:

* VDDCORE pins: Power the core, including the processor, the embedded memories and the
peripherals. Voltage ranges from 1.62V to 1.95V.

¢ VDDIO pins: Power the Peripherals I/O lines, Backup part, 32 kHz crystal oscillator and
oscillator pads. Voltage ranges from 1.62V to 3.6V

* VDDIN pin: Voltage Regulator, ADC and DAC Power Supply. Voltage ranges from 1.8V to
3.6V for the Voltage Regulator

¢ VDDPLL pin: Powers the PLL, the Fast RC and the 3 to 20 MHz oscillators. Voltage ranges
from 1.62V to 1.95V.

5.2 \Voltage Regulator
The SAM3N embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is intended to supply the internal core of SAM3N. It features two different
operating modes:

* In Normal mode, the voltage regulator consumes less than 700 pA static current and draws
60 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current
depending on the required load current. In Wait Mode quiescent current is only 7 pA.

* In Backup mode, the voltage regulator consumes less than 1 pA while its output (VDDOUT)
is driven internally to GND. The default output voltage is 1.80V and the start-up time to reach
Normal mode is less than100 ps.

For adequate input and output power supply decoupling/bypassing, refer to "Voltage Regulator”
in the “Electrical Characteristics” section of the datasheet.

5.3 Typical Powering Schematics

The SAM3N supports a 1.62V-3.6V single supply mode. The internal regulator input connected
to the source and its output feeds VDDCORE. Figure 5-1 shows the power schematics.

As VDDIN powers the voltage regulator and the ADC/DAC, when the user does not want to use
the embedded voltage regulator, it can be disabled by software via the SUPC (note that it is dif-
ferent from Backup mode).

ATMEL L

11011B-ATARM-21-Feb-12

ATMEL

Figure 5-1. Single Supply

VDDIO :
. 4 E]i 1/Os.

pa
Main Supply ‘I’
(1.8V-3.6V)

! ADC, DAC
VDDIN
L
VDDOUT —
4@‘; Voltage
. Regulator

VDDCORE

i
T

VDDPLL

:

Figure 5-2. Core Externally Supplied

Main Supply :

(1.62V-3.6V) —@ i E]i 1/Os.
Can be the i ! '

same supply |

ADC, DAC

- 1
(3V-3.6V) - I | I
! VDDOUT | |<7 Voltage

ADC, DAC Supply ¥ VDDIN

Regulator
VDDCORE Supply _ VDDCORE

(1.62V-1.95V) f

VDDPLL

Note: Restrictions
With Main Supply < 3V, ADC and DAC are not usable.
With Main Supply >= 3V, all peripherals are usable.

Figure 5-3 below provides an example of the powering scheme when using a backup battery.
Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch
off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after
backup reset). External wake-up of the system can be from a push button or any signal. See
Section 5.6 “Wake-up Sources” for further details.

18 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

5.4

5.5

5.5.1

Active Mode

SAM3N

Figure 5-3. Core Externally Supplied (backup battery)
ADC, DAC Supply

(3V-3.6V)
VDDIO .
Backup 1 4 E:Ii 1/0s.
Battery | . ‘I' :
__ ADC, DAC
I VDDIN
Main Supply N out VDDOUT = o
| |‘7 oltage
33(\)/ ! Regulator
VDDCORE
ON/OFF I,r‘—>|:é]

VDDPLL |I|
I E | PIOx (Output)
44:[' WAKEUPX
External wakeup signal T

Note: The two diodes provide a “switchover circuit” (for illustration purpose)
between the backup battery and the main supply when the system is put in
backup mode.

Active mode is the normal running mode with the core clock running from the fast RC oscillator,
the main crystal oscillator or the PLL. The power management controller can be used to adapt
the frequency and to disable the peripheral clocks.

Low Power Modes

Backup Mode

11011B-ATARM-21-Feb-12

The various low-power modes of the SAM3N are described below:

The purpose of backup mode is to achieve the lowest power consumption possible in a system
that is performing periodic wakeups to carry out tasks but not requiring fast startup time
(<0.1ms). Total current consumption is 3 pA typical.

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz
oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The
regulator and the core supply are off.

Backup mode is based on the Cortex-M3 deep sleep mode with the voltage regulator disabled.

The SAM3N can be awakened from this mode through WUPO0-15 pins, the supply monitor (SM),
the RTT or RTC wake-up event.

Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Con-
trol Register of the Cortex-M3 set to 1. (See the “Power Management” description in The ARM
Cortex M3 Processor section of the product datasheet).

Exit from Backup mode happens if one of the following enable wake-up events occurs:

* WKUPENO-15 pins (level transition, configurable debouncing)

ATMEL 1

5.5.2

5.5.3

20

Wait Mode

Sleep Mode

¢ Supply Monitor alarm
¢ RTC alarm
e RTT alarm

The purpose of the wait mode is to achieve very low power consumption while maintaining the
whole device in a powered state for a startup time of less than 10 ps. Current Consumption in
Wait mode is typically 15 pA (total current consumption) if the internal voltage regulator is used
or 8 pA if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core,
peripherals and memories power supplies are still powered. From this mode, a fast start up is
available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in
PMC_FSMR). The Cortex-M3 is able to handle external or internal events in order to wake up
the core (WFE). By configuring the WUPO0-15 external lines as fast startup wake-up pins (refer to
Section 5.7 “Fast Start-Up”). RTC or RTT Alarm wake-up events can be used to wake up the
CPU (exit from WFE).

Entering Wait Mode:

e Select the 4/8/12 MHz fast RC oscillator as Main Clock
¢ Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
* Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN
bit and the effective entry in Wait mode. Depending on the user application, Waiting for
MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired
instructions.

The purpose of sleep mode is to optimize power consumption of the device versus response
time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The
current consumption in this mode is application dependent.

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with
LPM =0 in PMC_FSMR.

The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or
from an event if the WFE instruction is used to enter this mode.

11011B-ATARM-21-Feb-12

e S AM3N

5.5.4 Low Power Mode Summary Table
The modes detailed above are the main low power modes. Each part can be set to on or off sep-
arately and wake up sources can be individually configured. Table 5-1 below shows a summary
of the configurations of the low power modes.
Table 5-1. Low Power Mode Configuration Summary
SUPC,
32 kHz
Oscillator
RTC RTT
Backup
Registers,
POR Core PIO State
(Backup Memory Potential Wake Up | Core at |whilein Low | PIO State |Consumption| Wake Up
Mode Region) |Regulator |Peripherals| Mode Entry Sources Wake Up |Power Mode |at Wake Up @ © Time™"
WFE WUPO-15 pins PIOA &
Backup OFF BOD alarm Previous PIOB & @
Mode ON OFF (Not powered) +SLE,EPDEEP RTC alarm Reset state saved PIOC . SuAtyp <0.1ms
bit = 1 Inputs with
RTT alarm
pull ups
Any Event from: Fast
WFE startup through
Wait Powered | +SLEEPDEEP |WUPO0-15 pins Clocked |Previous ®)
Mode ON ON (Not clocked) bit=0 RTC alarm back state saved Unchanged |5 WA/T5 A <10us
+LPMbit=1 |RTT alarm
USB wake-up
Entry mode = WFI
Interrupt Only; Entry
mode = WFE Any
WFE or WFI |Enabled Interrupt
Sleep Powered”) | +SLEEPDEEP |and/or Any Event |Clocked |Previous) ®
Mode ON ON (Not clocked) bit=0 from: Fast start-up |back state saved Unchanged
+LPMbit=0 [through WUPO-15
pins
RTC alarm
RTT alarm
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works

with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up
time is defined as the time taken for wake up until the first instruction is fetched.

A

Total Current consumption.

(without using internal voltage regulator).

o

Depends on MCK frequency.

Supply Monitor current consumption is not included.

The external loads on PIOs are not taken into account in the calculation.

7. In this mode the core is supplied and not clocked but some peripherals can be clocked.

11011B-ATARM-21-Feb-12

ATMEL

5 puA on VDDCORE, 15 pA for total current consumption (using internal voltage regulator), 8 pA for total current consumption

21

ATMEL

5.6 Wake-up Sources

The wake-up events allow the device to exit backup mode. When a wake-up event is detected,
the Supply Controller performs a sequence which automatically reenables the core power sup-
ply and the SRAM power supply, if they are not already enabled.

Figure 5-4. Wake-up Source

[Boge}—
brown_out /
[Fres
rtc_alarm /
Core
[Rrren |— Sore
rtt_alarm / Raot
[wkupeNo| [wkupiso
Falling/Rising I—
WKUPO | |— Edge
Detector
WKUPT1 | LCK
WKUPT1 [wkupen1| [wkupist | S C|_>>
[
Falling/Rising Debouncer d
WKUP1 D— Edge
| Detector
I
I
| [wkuPENTS| [WKuUPIS15]
I
! Falling/Rising L
WKUP15 D— Edge
Detector
22 SAM3N .|

11011B-ATARM-21-Feb-12

e S AM3N

5.7 Fast Start-Up

11011B-ATARM-21-Feb-12

The SAM3N allows the processor to restart in a few microseconds while the processor is in wait
mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs
(WKUPO to 15 + SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-
up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,
the PMC automatically restarts the embedded 4 MHz fast RC oscillator, switches the master
clock on this 4 MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Sources

RTCEN
rtc_alarm ____ ——————— |

|
T

RTTEN
rtt_alarm

FSTTO fast_restart
High/Low I;
WKUPO Di Level
Detector
|
1
1
| FSTT15
1
High/Low I;
WKUP15 Di Level
Detector

ATMEL 2

ATMEL

6. Input/Output Lines

The SAMB3N has several kinds of input/output (1/0) lines such as general purpose 1/0Os (GPIO)
and system I/Os. GPIOs can have alternate functionality due to multiplexing capabilities of the
P10 controllers. The same PIO line can be used whether in IO mode or by the multiplexed
peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines

GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such
as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing
or input change interrupt. Programming of these modes is performed independently for each 1/0
line through the PIO controller user interface. For more details, refer to the product PIO control-
ler section.

The input output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM3N embeds high speed pads able to handle up to 45 MHz for SPI clock lines and 35
MHz on other lines. See “AC Characteristics” in the “Electrical Characteristics” section of the
datasheet for more details. Typical pull-up and pull-down value is 100 kQ for all I/Os.

Each I/0 line also embeds an ODT (On-Die Termination), (see Figure 6-1). It consists of an
internal series resistor termination scheme for impedance matching between the driver output
(SAM3N) and the PCB trace impedance preventing signal reflection. The series resistor helps to
reduce I/O switching current (di/dt) thereby reducing in turn, EMI. It also decreases overshoot
and undershoot (ringing) due to inductance of interconnect between devices or between boards.
In conclusion ODT helps diminish signal integrity issues.

Figure 6-1. On-Die Termination

”””””””””””””””” Z0 ~ Zout + Rodt

i oDT i

! 36 Ohms Typ. !

Rodt . % %

E E 7 ' Receiver
! SAMS3 Driver with ! PCRB Trace

' Zout ~ 10 Ohms ! 70 ~ 50 Ohms

6.2 System /O Lines

System 1/O lines are pins used by oscillators, test mode, reset and JTAG to name but a few.
Described below are the SAM3N system I/O lines shared with PIO lines:

These pins are software configurable as general purpose I/O or system pins. At startup the
default function of these pins is always used.

24 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

Table 6-1. System I/O Configuration Pin List.
SYSTEM_IO Default function Constraints for
bit number after reset Other function normal start Configuration
12 ERASE PB12 LZ‘iva';tiV?l At
P In Matrix User Interface Registers
7 TCK/SWCLK PB7 - (Refer to the System I/0
6 TMS/SWDIO PB6] Configgration_Register in the Bus
Matrix section of the product
5 TDO/TRACESWO PB5 - datasheet.)
4 TDI PB4 -
- PA7 XIN32 -
See footnote @ below
- PA8 XOUT32 -
- PB9 XIN -
See footnote) below
- PB8 XOuT -

Notes: 1. If PB12is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the
user application sets PB12 into PIO mode.

2. In the product Datasheet Refer to: Slow Clock Generator of the Supply Controller section.

3. In the product Datasheet Refer to: 3 to 20 MHZ Crystal Oscillator information in the PMC section.

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

11011B-ATARM-21-Feb-12

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on
a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference
and reset state, refer to Table 3-1 on page 7.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging
probe. Please refer to the “Debug and Test” section of the product datasheet.

SWJ-DP pins can be used as standard 1/Os to provide users more general input/output pins
when the debug port is not needed in the end application. Mode selection between SWJ-DP
mode (System IO mode) and general IO mode is performed through the AHB Matrix Special
Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing
and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It
integrates a permanent pull-down resistor of about 15 kQto GND, so that it can be left uncon-
nected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire
Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous
trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and
JTAG-DP switching, please refer to the” Debug and Test” section.

ATMEL 2

6.3

6.4

6.5

26

Test Pin

NRST Pin

ERASE Pin

ATMEL

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming
mode of the SAM3N series. The TST pin integrates a permanent pull-down resistor of about 15
kQto GND, so that it can be left unconnected for normal operations. To enter fast programming
mode, see the “Fast Flash Programming Interface” section of the product datasheet. For more
on the manufacturing and test mode, refer to the “Debug and Test” section of the product
datasheet.

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low
to provide a reset signal to the external components or asserted low externally to reset the
microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT
and Supply Controller). There is no constraint on the length of the reset pulse and the reset con-
troller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up
resistor to VDDIO of about 100 k€ By default, the NRST pin is configured as an input.

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased
state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 kQto GND, so
that it can be left unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high
during less than 100 ms, it is not taken into account. The pin must be tied high during more than
220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE
pin is not configured as a PIO pin. If the ERASE pin is used as a standard /O, startup level of
this pin must be low to prevent unwanted erasing. Please refer to Section 9.3 “Peripheral Signal
Multiplexing on 1/O Lines” on page 35. Also, if the ERASE pin is used as a standard I/O output,
asserting the pin to low does not erase the Flash.

11011B-ATARM-21-Feb-12

e S AM3N

7. Product Mapping

7.1 Product Mapping

Figure 7-1. SAM3N4/2/1/0/00 Product Mapping

Code Address Memory Space Peripherals System Controller
0%000000 00 e = = = = = - 00060008 0x40000000 0x400E0000
v i
Boot Memory S Reserved 1 N Reserved
0x00400000 Code 0x40004000 i 0%400E0200
B
Internal Flash S Reserved H N MATRIX
0x00800000 :)leBytg 70x2000000 040808000 . 0x400E0400
Internal ROM oo 0%20100600 o SPI ' ! PMC
.” ’
0%00C00000 Pt SRAM 0£4000C000 2L 0x400E0600 >
Reserved LT S Reserved H N UARTO
P Q .
0x1FFFFFFF - 0%22000000F = === === === === = ,/ 0x40010000 \ 0x408E0740 8
Undefined K 0 1eo H ; CHIPID
0%24000000 S/ +0x40 238 0x4D0E0800
32 MBytes S TCO TC1 H '
bit band alias K Y K UART1 5
0x40000000 +0280[—— H 0x400E0A00
T '
TC2 ' ; EEFC
Peripherals 0x40014000—— =N B Dx400E0C00 6
T
TC3 H N Reserved
0x60000000 H0x40f 26 H J 0x400E0E00
' '
. TC4 : v PIOA
Reserved B +0x80 27 H 3 0x400E1000 11
' TC1 ' '
' TC5 1 ' PIOB
\ 28 ' 12
0xA0000000 ' 0x40018000 H » 0x400E1200
\ TWIO . : PIOC .
Reserved ' 0x4001C000 ' 0x400E1400
\ Wit SYSC pere
0XE0000000 Y 0%40020000 20 +0x10 E
| PWM SY5C¢ supc
\
System '\ 0x40024000 31 +0x30
. Y
\ USARTO SYSC gy
OXFFFFFFFF 1 0x40028000 14 +0x50 3
. USART1 SYSC wor
15
8x4002C000 +0%60 4
\ sysc
' Reserved RTC
0240038000 +0%90 2
offset [) syYsc
\ ADC GPBR
0x4003C000 29 0x400E1600
' DACC 0 Reserved
0x40940000 0x4007FFE)
' Reserved R
.
0x40044000 Lo
\ Reserved Lt
' .
0x40048000 o
.
Y Reserved Lot
0x400E00p0 ' '."
' System Controller H R
L.
0%400E2600 ‘
v i
! Reserved
0x40100000
Reserved
0x40200000 2 MBytes
bit band alias
0x40400000
Reserved
0x60000000

11011B-ATARM-21-Feb-12 I ©

27

ATMEL

7.2 Embedded Memories
7.2.1 Internal SRAM
The SAM3N4 product embeds a total of 24-Kbytes high-speed SRAM.
The SAM3N2 product embeds a total of 16-Kbytes high-speed SRAM.
The SAM3N1 product embeds a total of 8-Kbytes high-speed SRAM.
The SAM3NO product embeds a total of 8-Kbytes high-speed SRAM.
The SAM3NOO product embeds a total of 4-Kbytes high-speed SRAM.
The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.

The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 and 0x23FF
FFFF.

RAM size must be configurable by calibration fuses.

7.2.2 Internal ROM

The SAM3N product embeds an Internal ROM, which contains the SAM Boot Assistant
(SAM-BA), In Application Programming routines (IAP) and Fast Flash Programming Interface
(FFPI).

At any time, the ROM is mapped at address 0x0080 0000.
7.2.3 Embedded Flash

7.2.3.1 Flash Overview
The Flash of the SAM3N4 (256 Kbytes) is organized in one bank of 1024 pages of 256 bytes
(Single plane).

The Flash of the SAM3N2 (128 Kbytes) is organized in one bank of 512 pages of 256 bytes
(Single Plane).

The Flash of the SAM3N1 (64 Kbytes) is organized in one bank of 256 pages of 256 bytes
(Single plane).
The Flash of the SAM3NO (32 Kbytes) is organized in one bank of 128 pages of 256 bytes
(Single plane).
The Flash of the SAM3NOO (16 Kbytes) is organized in one bank of 64 pages of 256 bytes
(Single plane).

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

7.2.3.2 Flash Power Supply
The Flash is supplied by VDDCORE.

7.2.3.3 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the mas-
ters of the system. It enables reading the Flash and writing the write buffer. It also contains a
User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-
bit internal bus. Its 128-bit wide memory interface increases performance.

28 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

7.2.34

7.2.3.5

7.2.3.6

Flash Speed

The user can choose between high performance or lower current consumption by selecting
either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking
sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system
about the Flash organization, thus making the software generic.

The user needs to set the number of wait states depending on the frequency used.

For more details, refer to the AC Characteristics sub section in the “Electrical Characteristics”
section.

Lock Regions

Several lock bits used to protect write and erase operations on lock regions. A lock region is
composed of several consecutive pages, and each lock region has its associated lock bit.

Table 7-1. Lock bit number

Product Number of lock bits Lock region size
SAM3N4 16 16 kbytes (64 pages)
SAM3N2 8 16 kbytes (64 pages)
SAM3N1 4 16 kbytes (64 pages)
SAM3NO 2 16 kbytes (64 pages)
SAM3NO00 1 16 kbytes (64 pages)

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC
triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set
Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

Security Bit Feature

11011B-ATARM-21-Feb-12

The SAMB3N features a security bit, based on a specific General Purpose NVM bit (GPNVM bit
0). When the security is enabled, any access to the Flash, either through the ICE interface or
through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of
the code programmed in the Flash.

This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0” of
the EEFC User Interface. Disabling the security bit can only be achieved by asserting the
ERASE pin at 1, after a full Flash erase is performed. When the security bit is deactivated, all
accesses to the Flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal
operation. However, it is safer to connect it directly to GND for the final application.

ATMEL 2

7.2.3.7

7.2.3.8

7.2.3.9

7.2.3.10

7.2.3.11

7.24

30

ATMEL

Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are
factory configured and cannot be changed by the user. The ERASE pin has no effect on the cal-
ibration bits.

Unique Identifier
Each device integrates its own 128-bit unique identifier. These bits are factory configured and
cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

Fast Flash Programming Interface
The Fast Flash Programming Interface allows programming the device through either a serial
JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang program-
ming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect
commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered
when TST and PAO and PA1are tied low.

SAM-BA Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the
on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UARTO.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.
GPNVM Bits

The SAMB3N features three GPNVM bits that can be cleared or set respectively through the com-
mands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

Table 7-2. General-purpose Non volatile Memory Bits
GPNVMBIt[#] Function
0 Security bit
1 Boot mode selection

Boot Strategies

The system always boots at address 0x0. To ensure a maximum boot possibilities the memory
layout can be changed via GPNVM.

A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the
Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear General-pur-
pose NVM Bit” and “Set General-purpose NVM Bit” of the EEFC User Interface.

Setting the GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the
ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by
default.

11011B-ATARM-21-Feb-12

e S AM3N

8. System Controller

The System Controller is a set of peripherals, which allow handling of key elements of the sys-
tem, such as power, resets, clocks, time, interrupts, watchdog, etc...

See the System Controller block diagram in Figure 8-1 on page 32.

ATMEL s

11011B-ATARM-21-Feb-12

ATMEL

Figure 8-1. System Controller Block Diagram

VDDIO VDDOUT

[]

vr_on
o Software Controlled
= Voltage Regulator ::l VDDIN
Zero-Power Supply
Power-on Reset Controller
I | I VDDIO
bod_on
Supply PloABC —] | PiOx
Monitor brown_out
(Backup) >
wkupo -wkup1s [} >
General Purpose || ADC D ADx
Backup Registers ~
[] Aovrer
rtc_nreset
SLCK D E—
> RTC1 ie_alarm - DAC D DAGO

rtt_nreset

SLCK RTT |
— rtt_alarm

o0sc32k_xtal_en

core_nreset
osc32k_sel =
XIN32 Xtal 32 kHz =
XOUT32 Oscillator bod_core_on Brownout
|core_brown_out Detector
= — (Core)
Embedded
32OkHﬁ RC| osc32k_rc_en
scillator RAM
< S
Backup Power Supply Peripherals
¢ VDDCORE
core_nreset Reset > p;(;?]nr:rsestet Matrix - CO
Controller iF::eIFl:r;sef <> PeEr;pgeral
NRST | |<—> e rage
<@=P>| Cortex-M3
FSTTO- FsTT15 [} >
Embedded S
12/8/4 MHz L] Main Clock <= Flash
RC MAINCK Master Clock
Oscillator MCK
Power
XIN D_ Xtal > | Management >
XOUT D_ Oscillator Controller
PLL [

SLCK —»| Watchdog
Timer

Core Power Supply

FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins, but are not physical pins.

32 SAM 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

8.1 System Controller and Peripheral Mapping
Please refer to Figure 7-1, "SAM3N4/2/1/0/00 Product Mapping" on page 27.

All the peripherals are in the bit band region and are mapped in the bit band alias region.

8.2 Power-on-Reset, Brownout and Supply Monitor
The SAM3N embeds three features to monitor, warn and/or reset the chip:

* Power-on-Reset on VDDIO
¢ Brownout Detector on VDDCORE
* Supply Monitor on VDDIO

8.2.1 Power-on-Reset
The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but
also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For
more information, refer to the “Electrical Characteristics” section of the datasheet.

8.2.2 Brownout Detector on VDDCORE
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by soft-
ware through the Supply Controller (SUPC_MR). It is especially recommended to disable it
during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more infor-
mation, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the
datasheet.

8.2.3 Supply Monitor on VDDIO
The Supply Monitor monitors VDDIO. It is inactive by default. It can be activated by software and
is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled by
the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply monitor
power consumption by a factor of up to 2048. For more information, refer to the Supply COntrol-
ler and Electrical Characteristics sections of the datasheet.

ATMEL s

11011B-ATARM-21-Feb-12

ATMEL

9. Peripherals

9.1 Peripheral Identifiers

Table 9-1 defines the Peripheral Identifiers of the SAM3N4/2/1/0/00. A peripheral identifier is
required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller
and for the control of the peripheral clock with the Power Management Controller.

Table 9-1. Peripheral Identifiers
Instance ID Instance Name NVIC Interrupt PMC Clock Control | Instance Description

0 SUPC X Supply Controller
1 RSTC X Reset Controller
2 RTC X Real Time Clock
3 RTT X Real Time Timer
4 WDT X Watchdog Timer
5 PMC X Power Management Controller
6 EEFC X Enhanced Flash Controller
7 - - Reserved
8 UARTO X X UART 0
9 UART1 X X UART 1
10 - - - Reserved
11 PIOA X X Parallel I/O Controller A
12 PIOB X X Parallel 1/0 Controller B
13 PIOC X X Parallel I/O Controller C
14 USARTO X X USART 0
15 USART1 X X USART 1
16 - - - Reserved
17 - - - Reserved
18 - - - Reserved
19 TWIO X X Two Wire Interface 0
20 TWH X X Two Wire Interface 1
21 SPI X X Serial Peripheral Interface
22 - - - Reserved
23 TCO X X Timer/Counter 0
24 TC1 X X Timer/Counter 1
25 TC2 X X Timer/Counter 2
26 TC3 X X Timer/Counter 3
27 TC4 X X Timer/Counter 4
28 TC5 X X Timer/Counter 5
29 ADC X X Analog-to-Digital Converter
30 DACC X X Digital-to-Analog Converter
31 PWM X X Pulse Width Modulation

34 'S /A V13 1N 15—

11011B-ATARM-21-Feb-12

e S AM3N

9.2 APB/AHB Bridge

The SAM3N4/2/1/0/00 product embeds one peripheral bridge:
The peripherals of the bridge are clocked by MCK.

9.3 Peripheral Signal Multiplexing on I/O Lines

11011B-ATARM-21-Feb-12

The SAM3N product features 2 PIO controllers (48-pin and 64-pin version) or 3 PIO controllers
(100-pin version), PIOA, PIOB and PIOC, that multiplex the I/O lines of the peripheral set.

The SAM3N 64-pin and 100-pin PIO Controller controls up to 32 lines (see Table 9-2, “Multiplex-
ing on PIO Controller A (PIOA),” on page 36). Each line can be assigned to one of three
peripheral functions: A, B or C. The multiplexing tables in the following paragraphs define how
the 1/0 lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column
“Comments” has been inserted in this table for the user's own comments; it may be used to track
how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

ATMEL s

ATMEL

9.3.1 PIO Controller A Multiplexing

Table 9-2. Multiplexing on PIO Controller A (PIOA)

I/0 Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PAO PWMO TIOAO WKUPO High drive
PA1 PWM1 TIOBO WKUP1 High drive
PA2 PWM2 SCKO DATRG WKUP2 High drive
PA3 TWDO NPCS3 High drive
PA4 TWCKO TCLKO WKUP3
PA5 RXDO NPCS3 WKUP4
PAG6 TXDO PCKO
PA7 RTSO0 PWM3 XIN32
PA8 CTSO ADTRG WKUP5 XOUT32
PA9 URXDO NPCS1 WKUP6
PA10 UTXDO NPCS2
PA11 NPCS0 PWMO WKUP7
PA12 MISO PWMH1
PA13 MOSI PWM2
PA14 SPCK PWM3 WKUP8
PA15 TIOA1 WKUP14
PA16 TIOB1 WKUP15
PA17 PCKA1 ADO
PA18 PCK2 AD1
PA19 AD2/WKUP9
PA20 AD3/WKUP10
PA21 RXD1 PCKA1 ADS8 64/100-pin versions
PA22 TXD1 NPCS3 AD9 64/100-pin versions
PA23 SCK1 PWMO 64/100-pin versions
PA24 RTSH PWMH1 64/100-pin versions
PA25 CTSt PWM2 64/100-pin versions
PA26 TIOA2 64/100-pin versions
PA27 TIOB2 64/100-pin versions
PA28 TCLKA1 64/100-pin versions
PA29 TCLK2 64/100-pin versions
PA30 NPCS2 WKUP11 64/100-pin versions
PA31 NPCSH1 PCK2 64/100-pin versions

36 'S /A IV1'3 N 50000000

11011B-ATARM-21-Feb-12

e S AM3N

9.3.2 PIO Controller B Multiplexing
Table 9-3. Multiplexing on P1O Controller B (PIOB)
I/0 Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PBO PWMO AD4
PB1 PWM1 AD5
PB2 URXD1 NPCS2 AD6/WKUP12
PB3 UTXD1 PCK2 AD7
PB4 TWD1 PWM2 TDI
PB5 TWCK1 WKUP13 TR:CI)DEOS/WO
PB6 TMS/SWDIO
PB7 TCK/SWCLK
PB8 XOUuT
PB9 XIN
PB10
PB11
PB12 ERASE
PB13 PCKO DACO 64/100-pin versions
PB14 NPCSH1 PWM3 64/100-pin versions

11011B-ATARM-21-Feb-12

ATMEL

37

ATMEL

9.3.3 PIO Controller C Multiplexing

I/0 Line Peripheral A Peripheral B Peripheral C Extra Function System Function | Comments
PCO 100-pin version
PC1 100-pin version
PC2 100-pin version
PC3 100-pin version
PC4 NPCS1 100-pin version
PC5 100-pin version
PC6 100-pin version
PC7 NPCS2 100-pin version
PC8 PWMO 100-pin version
PC9 PWM1 100-pin version
PC10 PWM2 100-pin version
PC11 PWM3 100-pin version
PC12 AD12 100-pin version
PC13 AD10 100-pin version
PC14 PCK2 100-pin version
PC15 AD11 100-pin version
PC16 PCKO 100-pin version
PC17 PCK1 100-pin version
PC18 PWMO 100-pin version
PC19 PWM1 100-pin version
PC20 PWM2 100-pin version
PC21 PWM3 100-pin version
PC22 PWMO 100-pin version
PC23 TIOA3 100-pin version
PC24 TIOBS3 100-pin version
PC25 TCLKS3 100-pin version
PC26 TIOA4 100-pin version
PC27 TIOB4 100-pin version
PC28 TCLK4 100-pin version
PC29 TIOA5 AD13 100-pin version
PC30 TIOB5 AD14 100-pin version
PC31 TCLK5 AD15 100-pin version

38 'S /A IV1'3 N 50000000

11011B-ATARM-21-Feb-12

e S AM3N

10. ARM Cortex® M3 Processor

10.1 About this section
This section provides the information required for application and system-level software devel-
opment. It does not provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who have
no experience of ARM products.

Note: The information in this section is reproduced from source material provided to Atmel by
ARM Ltd. in terms of Atmel’s license for the ARM Cortex®-M3 processor core. This information is
copyright ARM Ltd., 2008 - 2009.

10.2 Embedded Characteristics
¢ Version 2.0
e Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.
e Harvard processor architecture enabling simultaneous instruction fetch with data load/store.
* Three-stage pipeline.
* Single cycle 32-bit multiply.
e Hardware divide.
e Thumb and Debug states.
¢ Handler and Thread modes.
* Low latency ISR entry and exit.
* SysTick Timer
— 24-bit down counter
— Self-reload capability
— Flexible System timer
¢ Nested Vectored Interrupt Controller
— Thirty Two maskable external interrupts
— Sixteen priority levels
— Processor state automatically saved on interrupt entry, and restored on
— Dynamic reprioritization of interrupts
— Priority grouping
selection of pre-empting interrupt levels and non pre-empting interrupt levels
— Support for tail-chaining and late arrival of interrupts
back-to-back interrupt processing without the overhead of state saving and restoration
between interrupts.

Processor state automatically saved on interrupt entry and restored on interrupt exit, with no
instruction overhead

10.3 About the Cortex-M3 processor and core peripherals

¢ The Cortex-M3 processor is a high performance 32-bit processor designed for the
microcontroller market. It offers significant benefits to developers, including:

e outstanding processing performance combined with fast interrupt handling

ATMEL s

11011B-ATARM-21-Feb-12

ATMEL

* enhanced system debug with extensive breakpoint and trace capabilities
« efficient processor core, system and memories
¢ ultra-low power consumption with integrated sleep modes

Figure 10-1. Typical Cortex-M3 Implementation

Cortex-M3
Processor

NVIC Processor
) Core

Debug Serial
<G——» Access Wire >
Port Viewer
Flash Data

Patch Watchpoints|

vy

Bus Matrix
Code SRAM and
Interface Periphera! Interface
A A
\ \/

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline
Harvard architecture, making it ideal for demanding embedded applications. The processor
delivers exceptional power efficiency through an efficient instruction set and extensively opti-
mized design, providing high-end processing hardware including single-cycle 32x32
multiplication and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly-
coupled system components that reduce processor area while significantly improving interrupt
handling and system debug capabilities. The Cortex-M3 processor implements a version of the
Thumb® instruction set, ensuring high code density and reduced program memory requirements.
The Cortex-M3 instruction set provides the exceptional performance expected of a modern 32-
bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M3 processor closely integrates a configurable nested interrupt controller (NVIC), to
deliver industry-leading interrupt performance. The NVIC provides up to 16 interrupt priority lev-
els. The tight integration of the processor core and NVIC provides fast execution of interrupt
service routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the
hardware stacking of registers, and the ability to suspend load-multiple and store-multiple opera-
tions. Interrupt handlers do not require any assembler stubs, removing any code overhead from
the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from
one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep
sleep function that enables the entire device to be rapidly powered down.

40 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.3.1 System level interface
The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high
speed, low latency memory accesses. It supports unaligned data accesses and implements
atomic bit manipulation that enables faster peripheral controls, system spinlocks and thread-safe
Boolean data handling.

10.3.2 Integrated configurable debug
The Cortex-M3 processor implements a complete hardware debug solution. This provides high
system visibility of the processor and memory through either a traditional JTAG port or a 2-pin
Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside
data watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system
events these generate, a Serial Wire Viewer (SWV) can export a stream of software-generated
messages, data trace, and profiling information through a single pin.

10.3.3 Cortex-M3 processor features and benefits summary
¢ tight integration of system peripherals reduces area and development costs
e Thumb instruction set combines high code density with 32-bit performance
* code-patch ability for ROM system updates
¢ power control optimization of system components
* integrated sleep modes for low power consumption
» fast code execution permits slower processor clock or increases sleep mode time
¢ hardware division and fast multiplier
 deterministic, high-performance interrupt handling for time-critical applications
* extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for
debugging and tracing.

10.3.4 Cortex-M3 core peripherals
These are:

10.3.4.1 Nested Vectored Interrupt Controller
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that sup-
ports low latency interrupt processing.

10.3.4.2 System control block
The System control block (SCB) is the programmers model interface to the processor. It pro-
vides system implementation information and system control, including configuration, control,
and reporting of system exceptions.

10.3.4.3 System timer
The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating Sys-
tem (RTOS) tick timer or as a simple counter.

ATMEL o

11011B-ATARM-21-Feb-12

ATMEL

10.4 Programmers model

This section describes the Cortex-M3 programmers model. In addition to the individual core reg-
ister descriptions, it contains information about the processor modes and privilege levels for
software execution and stacks.

10.4.1 Processor mode and privilege levels for software execution
The processor modes are:

10.4.1.1 Thread mode
Used to execute application software. The processor enters Thread mode when it comes out of
reset.

10.4.1.2 Handler mode
Used to handle exceptions. The processor returns to Thread mode when it has finished excep-
tion processing.

The privilege levels for software execution are:

10.4.1.3 Unprivileged
The software:

* has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
* cannot access the system timer, NVIC, or system control block
* might have restricted access to memory or peripherals.

Unprivileged software executes at the unprivileged level.

10.4.1.4 Privileged
The software can use all the instructions and has access to all resources.

Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see “CONTROL register” on page 52. In Handler mode, software execution is
always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to make
a supetrvisor call to transfer control to privileged software.

10.4.2 Stacks
The processor uses a full descending stack. This means the stack pointer indicates the last
stacked item on the stack memory. When the processor pushes a new item onto the stack, it
decrements the stack pointer and then writes the item to the new memory location. The proces-
sor implements two stacks, the main stack and the process stack, with independent copies of
the stack pointer, see “Stack Pointer” on page 44.

42 S /A V13 N 50000000 ——

11011B-ATARM-21-Feb-12

e S AM3N

In Thread mode, the CONTROL register controls whether the processor uses the main stack or
the process stack, see “CONTROL register” on page 52. In Handler mode, the processor always
uses the main stack. The options for processor operations are:

Table 10-1. Summary of processor mode, execution privilege level, and stack use options

Processor Used to Privilege level for
mode execute software execution Stack used
R Privileged or Main stack or process
Thread Applications unprivileged) stack™
Exception - .
Handler handlers Always privileged Main stack
1. See “CONTROL register” on page 52.

10.4.3 Core registers

The processor core registers are:
e

Low registers

High registers

Stack Pointer
Link Register

Program Counter

11011B-ATARM-21-Feb-12

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

General-purpose registers

SP (R13)

pspt ||

*Banked version of SP

LR (R14)

PC (R15)

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

Program status register

Exception mask registers

CONTROL register

ATMEL

Special registers

43

ATMEL

Table 10-2. Core register set summary
Required
Type | privilege Reset
Name U] @ value Description
RO-R12 RW Either Unknown “General-purpose registers” on page 44
. See “ "
MSP RW Privileged - Stack Pointer” on page 44
description
PSP RW Either Unknown “Stack Pointer” on page 44
LR RW Either OxFFFFFFFF | “Link Register” on page 44
PC RW | Either See “Program Counter” on page 45
description 9 pag
PSR RwW Privileged | 0x01000000 “Program Status Register” on page 46
ASPR RW Either 0x00000000 Application Program Status Register” on
page 47
IPSR RO Privileged | 0x00000000 4Igterrupt Program Status Register” on page
EPSR RO Privileged | 0x01000000 4%xecut|on Program Status Register” on page
PRIMASK RW Privileged | 0x00000000 “Priority Mask Register” on page 50
FAULTMASK | RW Privileged | 0x00000000 “Fault Mask Register” on page 50
BASEPRI RW Privileged | 0x00000000 “Base Priority Mask Register” on page 51
CONTROL RW Privileged | 0x00000000 “CONTROL register’ on page 52
1. Describes access type during program execution in thread mode and Handler mode. Debug
access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.
10.4.3.1 General-purpose registers
R0O-R12 are 32-bit general-purpose registers for data operations.
10.4.3.2 Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indi-
cates the stack pointer to use:
* 0 = Main Stack Pointer (MSP). This is the reset value.
* 1 = Process Stack Pointer (PSP).
On reset, the processor loads the MSP with the value from address 0x00000000.
10.4.3.3 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function
calls, and exceptions. On reset, the processor loads the LR value OxFFFFFFFF.
44 SAM3N |

11011B-ATARM-21-Feb-12

e S AM3N

10.4.3.4 Program Counter
The Program Counter (PC) is register R15. It contains the current program address. Bit[0] is
always 0 because instruction fetches must be halfword aligned. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004.

ATMEL X

11011B-ATARM-21-Feb-12

ATMEL

10.4.3.5 Program Status Register
The Program Status Register (PSR) combines:
* Application Program Status Register (APSR)
* Interrupt Program Status Register (IPSR)
e Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are:

e APSR:
31 30 29 28 27 26 25 24

| N | Z | C | \ | Q | Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

¢ IPSR:
31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

e EPSR:
31 30 29 28 27 26 25 24

| Reserved ICUIT T |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| ICIT Reserved |
7 6 5 4 3 2 1 0

| Reserved |

46 SA M 3 N |

11011B-ATARM-21-Feb-12

e S AM3N

The PSR bit assignments are:

31 30 29 28 27 26 25 24

| N z | C | v | Q ICUIT T |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| ICI/IT Reserved ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

Access these registers individually or as a combination of any two or all three registers, using
the register name as an argument to the MSR or MRS instructions. For example:

* read all of the registers using PSR with the MRS instruction
* write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

Table 10-3. PSR register combinations
Register | Type Combination
PSR Rw ™ @ | APSR, EPSR, and IPSR
IEPSR RO EPSR and IPSR
IAPSR RW(® APSR and IPSR
EAPSR | RW® APSR and EPSR
1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the proces-

sor ignores writes to the these bits.

See the instruction descriptions “MRS” on page 143 and “MSR” on page 144 for more informa-

tion about how to access the program status registers.

10.4.3.6 Application Program Status Register

The APSR contains the current state of the condition flags from previous instruction executions.
See the register summary in Table 10-2 on page 44 for its attributes. The bit assignments are:

N
Negative or less than flag:

0 = operation result was positive, zero, greater than, or equal

1 = operation result was negative or less than.

° Z
Zero flag:

0 = operation result was not zero

1 = operation result was zero.

11011B-ATARM-21-Feb-12

ATMEL

47

ATMEL

e C
Carry or borrow flag:

0 = add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1 = add operation resulted in a carry bit or subtract operation did not result in a borrow bit.
eV

Overflow flag:

0 = operation did not result in an overflow

1 = operation resulted in an overflow.

*Q

Sticky saturation flag:

0 = indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1 = indicates when an ssaT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRs instruction.

10.4.3.7 Interrupt Program Status Register

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).
See the register summary in Table 10-2 on page 44 for its attributes. The bit assignments are:

¢ ISR_NUMBER

This is the number of the current exception:
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV
15 = SysTick
16 = IRQO
26 = IRQ32

see “Exception types” on page 63 for more information.

48 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.4.3.8 Execution Program Status Register
The EPSR contains the Thumb state bit, and the execution state bits for either the:
e [f-Then (IT) instruction

* Interruptible-Continuable Instruction (ICl) field for an interrupted load multiple or store
multiple instruction.

See the register summary in Table 10-2 on page 44 for the EPSR attributes. The bit assign-
ments are:

e ICI
Interruptible-continuable instruction bits, see “Interruptible-continuable instructions” on page 49.

e IT
Indicates the execution state bits of the IT instruction, see “IT” on page 133.

e T

Always set to 1.
Attempts to read the EPSR directly through application software using the MSR instruction
always return zero. Attempts to write the EPSR using the MSR instruction in application software

are ignored. Fault handlers can examine EPSR value in the stacked PSR to indicate the opera-
tion that is at fault. See “Exception entry and return” on page 68

10.4.3.9 Interruptible-continuable instructions
When an interrupt occurs during the execution of an LDM or STM instruction, the processor:
* stops the load multiple or store multiple instruction operation temporarily
* stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:

e returns to the register pointed to by bits[15:12]
* resumes execution of the multiple load or store instruction.
When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

10.4.3.10 If-Then block
The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruc-
tion in the block is conditional. The conditions for the instructions are either all the same, or
some can be the inverse of others. See “IT” on page 133 for more information.

10.4.3.11 Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruc-
tion to change the value of PRIMASK or FAULTMASK. See “MRS” on page 143, “MSR” on page
144, and “CPS” on page 139 for more information.

ATMEL 1

11011B-ATARM-21-Feb-12

ATMEL

10.4.3.12 Priority Mask Register

The PRIMASK register prevents activation of all exceptions with configurable priority. See the
register summary in Table 10-2 on page 44 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved PRIMASK |

¢ PRIMASK

0 = no effect

1 = prevents the activation of all exceptions with configurable priority.

10.4.3.13 Fault Mask Register

The FAULTMASK register prevents activation of all exceptions. See the register summary in
Table 10-2 on page 44 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved FAULTMASK |

e FAULTMASK
0 = no effect

1 = prevents the activation of all exceptions.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

50 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.4.3.14 Base Priority Mask Register
The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is
set to a nonzero value, it prevents the activation of all exceptions with same or lower priority
level as the BASEPRI value. See the register summary in Table 10-2 on page 44 for its attri-
butes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| BASEPRI |

* BASEPRI

Priority mask bits:

0x0000 = no effect

Nonzero = defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” on page 158 for more information. Remember
that higher priority field values correspond to lower exception priorities.

ATMEL s

11011B-ATARM-21-Feb-12

ATMEL

10.4.3.15 CONTROL register
The CONTROL register controls the stack used and the privilege level for software execution
when the processor is in Thread mode. See the register summary in Table 10-2 on page 44 for
its attributes. The bit assignments are:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved |
7 6 5 4 3 2 1 0
; Thread Mode
Active Stack o
Reserved : Privilege
Pointer Leve
e Active stack pointer

Defines the current stack:

0 = MSP is the current stack pointer

1 = PSP is the current stack pointer.

In Handle

r mode this bit reads as zero and ignores writes.

¢ Thread mode privilege level
Defines the Thread mode privilege level:

0 = privile

ged

1 = unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CON-
TROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register.

In an OS
exception

environment, ARM recommends that threads running in Thread mode use the process stack and the kernel and
handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, use the MSR instruc-
tion to set the Active stack pointer bit to 1, see “MSR” on page 144.

When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction. This
ensures that instructions after the ISB execute using the new stack pointer. See “ISB” on page 142

52

11011B-ATARM-21-Feb-12

e S AM3N

10.4.4

10.4.5

10.4.6

Exceptions and interrupts

Data types

The Cortex-M3 processor supports interrupts and system exceptions. The processor and the
Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception
changes the normal flow of software control. The processor uses handler mode to handle all
exceptions except for reset. See “Exception entry” on page 69 and “Exception return” on page
70 for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller” on
page 151 for more information.

The processor:

e supports the following data types:
— 32-bit words
— 16-bit halfwords
— 8-bit bytes
* supports 64-bit data transfer instructions.

* manages all data memory accesses as little-endian. Instruction memory and Private
Peripheral Bus (PPB) accesses are always little-endian. See “Memory regions, types and
attributes” on page 55 for more information.

The Cortex Microcontroller Software Interface Standard

11011B-ATARM-21-Feb-12

For a Cortex-M3 microcontroller system, the Cortex Microcontroller Software Interface Standard
(CMSIS) defines:
* a common way to:
— access peripheral registers
— define exception vectors
e the names of:
— the registers of the core peripherals
— the core exception vectors
* a device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cor-
tex-M3 processor. It also includes optional interfaces for middleware components comprising a
TCP/IP stack and a Flash file system.

CMSIS simplifies software development by enabling the reuse of template code and the combi-
nation of CMSIS-compliant software components from various middleware vendors. Software
vendors can expand the CMSIS to include their peripheral definitions and access functions for
those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions
of the CMSIS functions that address the processor core and the core peripherals.

This document uses the register short names defined by the CMSIS. In a few cases these differ
from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:

ATMEL s

ATMEL

* “Power management programming hints” on page 74

* “Intrinsic functions” on page 78

* “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 151
* “NVIC programming hints” on page 163.

54 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.5 Memory model

This section describes the processor memory map, the behavior of memory accesses, and the
bit-banding features. The processor has a fixed memory map that provides up to 4GB of
addressable memory. The memory map is:

OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OXEOOFFFFF
Pr|vatebpuesr|phera| 1.0MB
0xE0000000
OXDFFFFFFF
External device 1.0GB
0xA0000000
Ox9FFFFFFF
Ox43FFFFFF External RAM 1.0GB
32MB Bit band alias
0x60000000
0x42000000 OXS5FFFFFFF
Ox400FFFFE . . Peripheral 0.5GB
[1MB Bit band region
0x40000000 0x40000000
Ox23FFFFFF Ox3FFFFFFF
32MB Bit band alias SRAM 0.568
0x20000000
0x2200000 0x1FFFFFFF
Code 0.5GB
0x200FFFFF - -
0x20000000. MB_Bitband region | 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic
operations to bit data, see “Bit-banding” on page 59.

The processor reserves regions of the Private peripheral bus (PPB) address range for core
peripheral registers, see “About the Cortex-M3 peripherals” on page 150.

This memory mapping is generic to ARM Cortex-M3 products. To get the specific memory map-
ping of this product, refer to the Memories section of the datasheet.

10.5.1 Memory regions, types and attributes

The memory map split the memory map into regions. Each region has a defined memory type,
and some regions have additional memory attributes. The memory type and attributes determine
the behavior of accesses to the region.

The memory types are:

ATMEL s

11011B-ATARM-21-Feb-12

10.5.1.1

10.5.1.2

10.5.1.3

10.5.1.4

10.5.1.5

10.5.2

56

ATMEL

Normal
The processor can re-order transactions for efficiency, or perform speculative reads.

Device
The processor preserves transaction order relative to other transactions to Device or Strongly-
ordered memory.

Strongly-ordered
The processor preserves transaction order relative to all other transactions.
The different ordering requirements for Device and Strongly-ordered memory mean that the
memory system can buffer a write to Device memory, but must not buffer a write to Strongly-
ordered memory.
The additional memory attributes include.

Shareable
For a shareable memory region, the memory system provides data synchronization between
bus masters in a system with multiple bus masters, for example, a processor with a DMA
controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, software must ensure data
coherency between the bus masters.

Execute Never (XN)

Means the processor prevents instruction accesses. Any attempt to fetch an instruction from an
XN region causes a memory management fault exception.

Memory system ordering of memory accesses
For most memory accesses caused by explicit memory access instructions, the memory system
does not guarantee that the order in which the accesses complete matches the program order of
the instructions, providing this does not affect the behavior of the instruction sequence. Nor-
mally, if correct program execution depends on two memory accesses completing in program
order, software must insert a memory barrier instruction between the memory access instruc-
tions, see “Software ordering of memory accesses” on page 58.

However, the memory system does guarantee some ordering of accesses to Device and
Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs before
A2 in program order, the ordering of the memory accesses caused by two instructions is:

i Strongly-

A2 Normal Device access gly:

A1 access ordered

Non-shareable| Shareable access
Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:

- Means that the memory system does not guarantee the ordering of the accesses.

11011B-ATARM-21-Feb-12

e S AM3N

< Means that accesses are observed in program order, that is, A1 is always observed before A2.

10.5.3 Behavior of memory accesses
The behavior of accesses to each region in the memory map is:

Table 10-4. Memory access behavior

Address Memory Memory
range region type XN Description
0x00000000- Executable region for program code. You can also put
M -
Ox{FFFFFFF | C°d8 Normal data here.
Executable region for data. You can also put code
0x20000000- here.
SRAM Normal® | -
Ox3FFFFFFF This region includes bit band and bit band alias areas,
see Table 10-6 on page 59.
0x40000000- | 5 ool | Device™ | XN This region includes bit band and bit band alias areas,
Ox5FFFFFFF P see Table 10-6 on page 59.
0x60000000- | External .
(1) -
OXOFFFFFFE | RAM Normal Executable region for data.
0xA0000000- | External . .
(1)
OXDFFFFFFF | device Device XN External Device memory
Private . . .
0xE0000000- Perioheral Strongly- XN This region includes the NVIC, System timer, and
OXEOOFFFFF Busp ordered" system control block.
0xE0100000- .
(1)
OXFFFFFFFE Reserved Device XN Reserved
1. See “Memory regions, types and attributes” on page 55 for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends
that programs always use the Code region. This is because the processor has separate buses
that enable instruction fetches and data accesses to occur simultaneously.

10.5.3.1 Additional memory access constraints for shared memory
When a system includes shared memory, some memory regions have additional access con-
straints, and some regions are subdivided, as Table 10-5 shows:

Table 10-5. Memory region share ability policies

Address range Memory region Memory type Shareability
0x00000000-

™)]
Ox1FFFFFFF Code Normal
0x20000000-

1)]
OX3FFFFFFF SRAM Normal
0x40000000- . @))
OXSFFFFFFF Peripheral Device
0x60000000-

@
OX7FFFFFFF WBWA
External RAM Normal (" -
0x80000000-
@

OX9FFFFFFF wT

ATMEL 57

11011B-ATARM-21-Feb-12

10.5.4

10.5.4.1

10.56.4.2

10.5.4.3

58

ATMEL

Table 10-5. Memory region share ability policies (Continued)

Address range Memory region Memory type Shareability
0xA0000000-
(1)
OXBFFFFFFF Shareable
External device Device" -
0xC0000000- Non-
OXxDFFFFFFF shareable ")
0xE0000000- Private Peripheral Strongly-) i
OXEQOFFFFF Bus ordered Shareable
0xE0100000- Vendor-specific Device "))
OXFFFFFFFF device®
1. See “Memory regions, types and attributes” on page 55 for more information.
2. The Peripheral and Vendor-specific device regions have no additional access constraints.

Software ordering of memory accesses

DMB

DSB

ISB

The order of instructions in the program flow does not always guarantee the order of the corre-
sponding memory transactions. This is because:

e the processor can reorder some memory accesses to improve efficiency, providing this does
not affect the behavior of the instruction sequence.

¢ the processor has multiple bus interfaces

e memory or devices in the memory map have different wait states

* some memory accesses are buffered or speculative.
“Memory system ordering of memory accesses” on page 56 describes the cases where the
memory system guarantees the order of memory accesses. Otherwise, if the order of memory

accesses is critical, software must include memory barrier instructions to force that ordering. The
processor provides the following memory barrier instructions:

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions com-
plete before subsequent memory transactions. See “DMB” on page 140.

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transac-
tions complete before subsequent instructions execute. See “DSB” on page 141.

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory
transactions is recognizable by subsequent instructions. See “ISB” on page 142.

Use memory barrier instructions in, for example:

* Vector table. If the program changes an entry in the vector table, and then enables the
corresponding exception, use a DMB instruction between the operations. This ensures that if
the exception is taken immediately after being enabled the processor uses the new exception
vector.

¢ Self-modifying code. If a program contains self-modifying code, use an ISB instruction
immediately after the code modification in the program. This ensures subsequent instruction
execution uses the updated program.

11011B-ATARM-21-Feb-12

e S AM3N

10.5.5

Bit-banding

11011B-ATARM-21-Feb-12

* Memory map switching. If the system contains a memory map switching mechanism, use a
DSB instruction after switching the memory map in the program. This ensures subsequent
instruction execution uses the updated memory map.

* Dynamic exception priority change. When an exception priority has to change when the
exception is pending or active, use DSB instructions after the change. This ensures the
change takes effect on completion of the DSB instruction.

* Using a semaphore in multi-master system. If the system contains more than one bus
master, for example, if another processor is present in the system, each processor must use
a DMB instruction after any semaphore instructions, to ensure other bus masters see the
memory transactions in the order in which they were executed.

Memory accesses to Strongly-ordered memory, such as the system control block, do not require
the use of DMB instructions.

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region.
The bit-band regions occupy the lowest 1MB of the SRAM and peripheral memory regions.

The memory map has two 32MB alias regions that map to two 1MB bit-band regions:

* accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region, as shown
in Table 10-6

* accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band region, as
shown in Table 10-7.

Table 10-6. SRAM memory bit-banding regions

Address Memory
range region Instruction and data accesses
0x20000000- SRAM bit-band Direct accesses to this memory range behgve as SRAM
Ox200FFEFF reqion memory accesses, but this region is also bit addressable
X 9 through bit-band alias.

Data accesses to this region are remapped to bit band

0x22000000- . .) . C . .
SRAM bit-band alias | region. A write operation is performed as read-modify-write.

O0x23FFFFFF X

Instruction accesses are not remapped.

Table 10-7. Peripheral memory bit-banding regions

Address Memory
range region Instruction and data accesses

Direct accesses to this memory range behave as peripheral
memory accesses, but this region is also bit addressable
through bit-band alias.

0x40000000- Peripheral bit-band
0x400FFFFF alias

Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not permitted.

0x42000000- Peripheral bit-band
0x43FFFFFF region

A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM
or peripheral bit-band region.

The following formula shows how the alias region maps onto the bit-band region:

bit_word_offset = (byte offset x 32) + (bit_number x 4)

ATMEL s

ATMEL

bit_word_addr = bit_band_base + bit_word_offset
where:
* Bit_word_offset is the position of the target bit in the bit-band memory region.

e Bit word_addr is the address of the word in the alias memory region that maps to the
targeted bit.

¢ Bit_band_base is the starting address of the alias region.
* Byte offset is the number of the byte in the bit-band region that contains the targeted bit.
e Bit_number is the bit position, 0-7, of the targeted bit.

Figure 10-2 shows examples of bit-band mapping between the SRAM bit-band alias region and
the SRAM bit-band region:

* The alias word at 0x23FFFFEQ maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEQ =
0x22000000 + (OXFFFFF*32) + (0*4).

¢ The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC =
0x22000000 + (OXFFFFF*32) + (7*4).

¢ The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 =
0x22000000 + (0*32) + (0 *4).

¢ The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C =
0x22000000+ (0*32) + (7*4).

Figure 10-2. Bit-band mapping

32MB alias region

I 0x23FFFFFC I O0x23FFFFF8 | O0x23FFFFF4 | 0x23FFFFFO | Ox23FFFFEC | O0x23FFFFE8 | O0x23FFFFE4 I 0x23FFFFEO I
.
.
.
/I 0x2200001C I 0x22000018 0x22000014 0x22000010 | 0x22000! 0x22000008 | 0x22000004 I 0x22000000 I
K 1MB SRAM bit-band region \
\7654321076 3 2107 6 5 4 3 21 07 6 5 4 3 2 10
T 1 T 1 ~ T T
0x200FFFFF 0x200FFFFE \\ 0x200FFFFD 0x200FFFFC
I I I I
.
.
.

7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 0
T 1 U T 1 T 1
0x20000003 0x20000002 0x20000001 0x20000000
I I I I

10.5.5.1 Directly accessing an alias region
Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the tar-
geted bit in the bit-band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit,
and writing a value with bit[0] set to 0 writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as
writing OxFF. Writing 0x00 has the same effect as writing 0xOE.

60 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

Reading a word in the alias region:

» 0x00000000 indicates that the targeted bit in the bit-band region is set to zero
* 0x00000001 indicates that the targeted bit in the bit-band region is set to 1

10.5.5.2 Directly accessing a bit-band region
“Behavior of memory accesses” on page 57 describes the behavior of direct byte, halfword, or
word accesses to the bit-band regions.

10.5.6 Memory endianness
The processor views memory as a linear collection of bytes numbered in ascending order from
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored
word. or “Little-endian format” describes how words of data are stored in memory.

10.5.6.1 Little-endian format
In little-endian format, the processor stores the least significant byte of a word at the lowest-
numbered byte, and the most significant byte at the highest-numbered byte. For example:

Memory Register
7 0
31 2423 1615 87 0
Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+2(B2

A+3 B3 msbyte

10.5.7 Synchronization primitives
The Cortex-M3 instruction set includes pairs of synchronization primitives. These provide a non-
blocking mechanism that a thread or process can use to obtain exclusive access to a memory
location. Software can use them to perform a guaranteed read-modify-write memory update
sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

10.5.7.1 A Load-Exclusive instruction
Used to read the value of a memory location, requesting exclusive access to that location.

10.5.7.2 A Store-Exclusive instruction
Used to attempt to write to the same memory location, returning a status bit to a register. If this
bit is:
0: it indicates that the thread or process gained exclusive access to the memory, and the write
succeeds,

1: it indicates that the thread or process did not gain exclusive access to the memory, and no
write is performed,

The pairs of Load-Exclusive and Store-Exclusive instructions are:

¢ the word instructions LDREX and STREX

ATMEL o

11011B-ATARM-21-Feb-12

ATMEL

¢ the halfword instructions LDREXH and STREXH
¢ the byte instructions LDREXB and STREXB.

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive
instruction.

To perform a guaranteed read-modify-write of a memory location, software must:
* Use a Load-Exclusive instruction to read the value of the location.
* Update the value, as required.

* Use a Store-Exclusive instruction to attempt to write the new value back to the memory
location, and tests the returned status bit. If this bit is:

0: The read-modify-write completed successfully,

1: No write was performed. This indicates that the value returned the first step might be out
of date. The software must retry the read-modify-write sequence,

Software can use the synchronization primitives to implement a semaphores as follows:

¢ Use a Load-Exclusive instruction to read from the semaphore address to check whether the
semaphore is free.

* If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore
address.

¢ If the returned status bit from the second step indicates that the Store-Exclusive succeeded
then the software has claimed the semaphore. However, if the Store-Exclusive failed, another
process might have claimed the semaphore after the software performed the first step.

The Cortex-M3 includes an exclusive access monitor, that tags the fact that the processor has
executed a Load-Exclusive instruction. If the processor is part of a multiprocessor system, the

system also globally tags the memory locations addressed by exclusive accesses by each
processor.

The processor removes its exclusive access tag if:

¢ [t executes a CLREX instruction

* |t executes a Store-Exclusive instruction, regardless of whether the write succeeds.

¢ An exception occurs. This means the processor can resolve semaphore conflicts between
different threads.

In a multiprocessor implementation:

» executing a CLREX instruction removes only the local exclusive access tag for the processor

* executing a Store-Exclusive instruction, or an exception. removes the local exclusive access
tags, and all global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX”
on page 100 and “CLREX” on page 102.

62 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

10.5.8 Programming hints for the synchronization primitives

ANSI C cannot directly generate the exclusive access instructions. Some C compilers provide
intrinsic functions for generation of these instructions:

Table 10-8. C compiler intrinsic functions for exclusive access instructions

Instruction Intrinsic function

LDREX, LDREXH, or . . . -

LDREXB unsigned int __Idrex(volatile void *ptr)
STREX, STREXH, or -
STREXB int __strex(unsigned int val, volatile void *ptr)
CLREX void __clrex(void)

The actual exclusive access instruction generated depends on the data type of the pointer
passed to the intrinsic function. For example, the following C code generates the require
LDREXB operation:

__Idrex((volatile char *) OxFF);

10.6 Exception model
This section describes the exception model.

10.6.1 Exception states
Each exception is in one of the following states:

10.6.1.1 Inactive
The exception is not active and not pending.

10.6.1.2 Pending
The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the correspond-
ing interrupt to pending.

10.6.1.3 Active
An exception that is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case both
exceptions are in the active state.

10.6.1.4 Active and pending

The exception is being serviced by the processor and there is a pending exception from the
same source.

10.6.2 Exception types
The exception types are:

10.6.2.1 Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special
form of exception. When reset is asserted, the operation of the processor stops, potentially at
any point in an instruction. When reset is deasserted, execution restarts from the address pro-

ATMEL e

11011B-ATARM-21-Feb-12

10.6.2.2

10.6.2.3

10.6.2.4

10.6.2.5

10.6.2.6

10.6.2.7

10.6.2.8

64

ATMEL

vided by the reset entry in the vector table. Execution restarts as privileged execution in Thread
mode.

Non Maskable Interrupt (NMI)

Hard fault

Bus fault

Usage fault

SvcCall

PendSV

SysTick

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is
the highest priority exception other than reset. It is permanently enabled and has a fixed priority
of -2.

NMIs cannot be:

* Masked or prevented from activation by any other exception.
* Preempted by any exception other than Reset.

A hard fault is an exception that occurs because of an error during exception processing, or
because an exception cannot be managed by any other exception mechanism. Hard faults have
a fixed priority of -1, meaning they have higher priority than any exception with configurable
priority.

A bus fault is an exception that occurs because of a memory related fault for an instruction or
data memory transaction. This might be from an error detected on a bus in the memory system.

A usage fault is an exception that occurs because of a fault related to instruction execution. This
includes:

* an undefined instruction

¢ an illegal unaligned access

¢ invalid state on instruction execution

e an error on exception return.
The following can cause a usage fault when the core is configured to report them:

* an unaligned address on word and halfword memory access
e division by zero.

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS envi-
ronment, applications can use SVC instructions to access OS kernel functions and device
drivers.

PendSV is an interrupt-driven request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

A SysTick exception is an exception the system timer generates when it reaches zero. Software
can also generate a SysTick exception. In an OS environment, the processor can use this
exception as system tick.

11011B-ATARM-21-Feb-12

e S AM3N

10.6.2.9

11011B-ATARM-21-Feb-12

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use
interrupts to communicate with the processor.

Table 10-9. Properties of the different exception types
IRQ
Exception | number! | Exception Vector address
number M | 1 type Priority or offset @ Activation
1 - Reset _?” the 0x00000004 Asynchronous
highest
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -
Memory)
4 -12 management C(:sc))nflgurable 0x00000010 Synchronous
fault
Synchronous when
5 -1 Bus fault Configurable | 4,00000014 preciss,
asynchronous when
imprecise
Configurable
6 -10 Usage fault @) 0x00000018 Synchronous
7-10 - - - Reserved -
Configurable
11 -5 SVCall @) 0x0000002C Synchronous
12-13 - - - Reserved -
14 2 PendSV Configurable | 4,00000038 Asynchronous
15 -1 SysTick Configurable | o, 0000003¢ Asynchronous
16 and 0and Configurable | 0x00000040 and
above above @ Interrupt (IRQ) ®) above © Asynchronous
1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative

o o~ WD

See “Vector table” on page 67 for more information.
See “System Handler Priority Registers” on page 176.

See “Interrupt Priority Registers” on page 158.
Increasing in steps of 4.

See the “Peripheral Identifiers” section of the datasheet.

values for exceptions other than interrupts. The IPSR returns the Exception number, see
“Interrupt Program Status Register” on page 48.

For an asynchronous exception, other than reset, the processor can execute another instruction
between when the exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 10-9 on page 65 shows as having con-
figurable priority, see:

* “System Handler Control and State Register” on page 179

ATMEL

65

ATMEL

¢ “Interrupt Clear-enable Registers” on page 154.

For more information about hard faults, memory management faults, bus faults, and usage
faults, see “Fault handling” on page 70.

10.6.3 Exception handlers
The processor handles exceptions using:

10.6.3.1 Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ32 are the exceptions handled by ISRs.

10.6.3.2 Fault handlers

Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the
fault handlers.

10.6.3.3 System handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are han-
dled by system handlers.

10.6.4 Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 10-3 on page 67 shows the order of
the exception vectors in the vector table. The least-significant bit of each vector must be 1, indi-
cating that the exception handler is Thumb code.

66 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

Figure 10-3. Vector table

Exception number IRQ number Offset Vector
45 29 IRQ29
0x00B4
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 Systick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -1 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 Reserved
0x0008
1 Reset
0x0004
Initial SP value
0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to
the VTOR to relocate the vector table start address to a different memory location, in the range
0x00000080 to Ox3FFFFF80, see “Vector Table Offset Register” on page 170.

10.6.5 Exception priorities
As Table 10-9 on page 65 shows, all exceptions have an associated priority, with:
* a lower priority value indicating a higher priority
* configurable priorities for all exceptions except Reset, Hard fault.
If software does not configure any priorities, then all exceptions with a configurable priority have
a priority of 0. For information about configuring exception priorities see
* “System Handler Priority Registers” on page 176
* “Interrupt Priority Registers” on page 158.

ATMEL o

11011B-ATARM-21-Feb-12

10.6.6

10.6.7

10.6.7.1

10.6.7.2

68

ATMEL

Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and
NMI exceptions, with fixed negative priority values, always have higher priority than any other
exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1]
means that IRQ[1] has higher priority than IRQ[O0]. If both IRQ[1] and IRQI[0] are asserted, IRQ[1]
is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and
have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a
higher priority exception occurs. If an exception occurs with the same priority as the exception
being handled, the handler is not preempted, irrespective of the exception number. However,
the status of the new interrupt changes to pending.

Interrupt priority grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This
divides each interrupt priority register entry into two fields:

* an upper field that defines the group priority
* a lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is
executing an interrupt exception handler, another interrupt with the same group priority as the
interrupt being handled does not preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines the
order in which they are processed. If multiple pending interrupts have the same group priority
and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see
“Application Interrupt and Reset Control Register” on page 171.

Exception entry and return

Preemption

Return

Descriptions of exception handling use the following terms:

When the processor is executing an exception handler, an exception can preempt the exception
handler if its priority is higher than the priority of the exception being handled. See “Interrupt pri-
ority grouping” on page 68 for more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See
“Exception entry” on page 69 more information.

This occurs when the exception handler is completed, and:

* there is no pending exception with sufficient priority to be serviced
* the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the
interrupt occurred. See “Exception return” on page 70 for more information.

11011B-ATARM-21-Feb-12

e S AM3N

10.6.7.3 Tail-chaining
This mechanism speeds up exception servicing. On completion of an exception handler, if there
is a pending exception that meets the requirements for exception entry, the stack pop is skipped
and control transfers to the new exception handler.

10.6.7.4 Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving
for a previous exception, the processor switches to handle the higher priority exception and initi-
ates the vector fetch for that exception. State saving is not affected by late arrival because the
state saved is the same for both exceptions. Therefore the state saving continues uninterrupted.
The processor can accept a late arriving exception until the first instruction of the exception han-
dler of the original exception enters the execute stage of the processor. On return from the
exception handler of the late-arriving exception, the normal tail-chaining rules apply.

10.6.7.5 Exception entry
Exception entry occurs when there is a pending exception with sufficient priority and either:

¢ the processor is in Thread mode

* the new exception is of higher priority than the exception being handled, in which case the
new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask regis-
ters, see “Exception mask registers” on page 49. An exception with less priority than this is
pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving
exception, the processor pushes information onto the current stack. This operation is referred as
stacking and the structure of eight data words is referred as stack frame. The stack frame con-
tains the following information:

* RO-R3, R12

¢ Return address
* PSR

* LR.

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.
Unless stack alignment is disabled, the stack frame is aligned to a double-word address. If the
STKALIGN bit of the Configuration Control Register (CCR) is set to 1, stack align adjustment is
performed during stacking.

The stack frame includes the return address. This is the address of the next instruction in the
interrupted program. This value is restored to the PC at exception return so that the interrupted
program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the excep-
tion handler start address from the vector table. When stacking is complete, the processor starts
executing the exception handler. At the same time, the processor writes an EXC_RETURN
value to the LR. This indicates which stack pointer corresponds to the stack frame and what
operation mode the was processor was in before the entry occurred.

ATMEL L

11011B-ATARM-21-Feb-12

10.6.7.6

ATMEL

If no higher priority exception occurs during exception entry, the processor starts executing the
exception handler and automatically changes the status of the corresponding pending interrupt
to active.

If another higher priority exception occurs during exception entry, the processor starts executing
the exception handler for this exception and does not change the pending status of the earlier
exception. This is the late arrival case.

Exception return

Exception return occurs when the processor is in Handler mode and executes one of the follow-
ing instructions to load the EXC_RETURN value into the PC:

* a POP instruction that includes the PC

* a BX instruction with any register.

¢ an LDR or LDM instruction with the PC as the destination.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism
relies on this value to detect when the processor has completed an exception handler. The low-
est four bits of this value provide information on the return stack and processor mode. Table 10-
10 shows the EXC_RETURN][3:0] values with a description of the exception return behavior.

The processor sets EXC_RETURN bits[31:4] to oxFFFFFFF. When this value is loaded into the PC
it indicates to the processor that the exception is complete, and the processor initiates the
exception return sequence.

Table 10-10. Exception return behavior
EXC_RETURN[3:0] A Description

bXXX0 Reserved.
Return to Handler mode.
b0001 Exception return gets state from MSP.
Execution uses MSP after return.
b0011 Reserved.
b01X1 Reserved.

Return to Thread mode.
b1001 Exception return gets state from MSP.
Execution uses MSP after return.

Return to Thread mode.

b1101 Exception return gets state from PSP.
Execution uses PSP after return.
b1X11 Reserved.

10.7 Fault handling

70

Faults are a subset of the exceptions, see “Exception model” on page 63. The following gener-
ate a fault:

— a bus error on:

— an instruction fetch or vector table load

— a data access

11011B-ATARM-21-Feb-12

e S AM3N

¢ an internally-detected error such as an undefined instruction or an attempt to change state
with a BX instruction

* attempting to execute an instruction from a memory region marked as Non-Executable (XN).

10.7.1 Fault types
Table 10-11 shows the types of fault, the handler used for the fault, the corresponding fault sta-
tus register, and the register bit that indicates that the fault has occurred. See “Configurable
Fault Status Register” on page 181 for more information about the fault status registers.

Table 10-11. Faults

Fault Handler Bit name Fault status register
Bus error on a vector read VECTTBL “Hard Fault Status
Hard fault e

Fault escalated to a hard fault FORCED Register” on page 187
Bus error: - -

during exception stacking STKERR

during exception unstacking UNSTKERR

during instruction prefetch Bus fault IBUSERR “Bus Fault Status Register”

. 1
Precise data bus error PRECISERR on page 183
. IMPRECISER
Imprecise data bus error R
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction
set state (") Usage INVSTATE “Usage Fault Status
fault Register” on page 185
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO
1. Attempting to use an instruction set other than the Thumb instruction set.

10.7.2 Fault escalation and hard faults
All faults exceptions except for hard fault have configurable exception priority, see “System Han-
dler Priority Registers” on page 176. Software can disable execution of the handlers for these
faults, see “System Handler Control and State Register” on page 179.

Usually, the exception priority, together with the values of the exception mask registers, deter-
mines whether the processor enters the fault handler, and whether a fault handler can preempt
another fault handler. as described in “Exception model” on page 63.

In some situations, a fault with configurable priority is treated as a hard fault. This is called prior-
ity escalation, and the fault is described as escalated to hard fault. Escalation to hard fault
occurs when:

¢ A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard
fault occurs because a fault handler cannot preempt itself because it must have the same
priority as the current priority level.

ATMEL g

11011B-ATARM-21-Feb-12

ATMEL

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is
because the handler for the new fault cannot preempt the currently executing fault handler.

¢ An exception handler causes a fault for which the priority is the same as or lower than the
currently executing exception.

e A fault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not
escalate to a hard fault. This means that if a corrupted stack causes a fault, the fault handler

executes even though the stack push for the handler failed. The fault handler operates but the
stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any
exception other than Reset, NMI, or another hard fault.

10.7.3 Fault status registers and fault address registers
The fault status registers indicate the cause of a fault. For bus faults and memory management
faults, the fault address register indicates the address accessed by the operation that caused
the fault, as shown in Table 10-12.

Table 10-12. Fault status and fault address registers

Status register | Address register

Handler name name Register description

Hard fault HFSR) Hard Fault Status Register” on page
187
“Memory Management Fault Status
Register” 182

Memory MMESR MMEAR egister” on page 18

management fault “Memory Management Fault Address
Register” on page 188
“Bus Fault Status Register” on page 183

Bus fault BFSR BFAR “Bus Fault Address Register” on page
189

Usage fault UFSR) 1lstss,age Fault Status Register” on page

10.7.4 Lockup
The processor enters a lockup state if a hard fault occurs when executing the hard fault han-
dlers. When the processor is in lockup state it does not execute any instructions. The processor
remains in lockup state until:

e it is reset

10.8 Power management
The Cortex-M3 processor sleep modes reduce power consumption:
¢ Backup Mode
* Wait Mode
¢ Sleep Mode

72 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see “System Control Regis-
ter” on page 173. For more information about the behavior of the sleep modes see “Low Power
Modes” in the PMC section of the datasheet.

This section describes the mechanisms for entering sleep mode, and the conditions for waking
up from sleep mode.

10.8.1 Entering sleep mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the
processor. Therefore software must be able to put the processor back into sleep mode after
such an event. A program might have an idle loop to put the processor back to sleep mode.

10.8.1.1 Wait for interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the proces-
sor executes a WFI instruction it stops executing instructions and enters sleep mode. See “WFI”
on page 149 for more information.

10.8.1.2 Wait for event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an
one-bit event register. When the processor executes a WFE instruction, it checks this register:

« if the register is 0 the processor stops executing instructions and enters sleep mode

« if the register is 1 the processor clears the register to 0 and continues executing instructions
without entering sleep mode.

See “WFE” on page 148 for more information.

10.8.1.3 Sleep-on-exit
If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of
an exception handler it returns to Thread mode and immediately enters sleep mode. Use this
mechanism in applications that only require the processor to run when an exception occurs.

10.8.2 Wakeup from sleep mode
The conditions for the processor to wakeup depend on the mechanism that cause it to enter
sleep mode.

10.8.2.1 Wakeup from WFI or sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit to 1
and the FAULTMASK bit to O. If an interrupt arrives that is enabled and has a higher priority than
current exception priority, the processor wakes up but does not execute the interrupt handler
until the processor sets PRIMASK to zero. For more information about PRIMASK and FAULT-
MASK see “Exception mask registers” on page 49.

10.8.2.2 Wakeup from WFE
The processor wakes up if:

¢ it detects an exception with sufficient priority to cause exception entry

ATMEL 7

11011B-ATARM-21-Feb-12

ATMEL

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an
event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to
cause exception entry. For more information about the SCR see “System Control Register” on

page 173.

10.8.3 Power management programming hints
ANSI C cannot directly generate the WFI and WFE instructions. The CMSIS provides the follow-

ing intrinsic functions for these instructions:

void _ WFE(void) // Wait for Event
void _ WFE(void) // Wait for Interrupt

74 S /A V13 N 50000000 ——

11011B-ATARM-21-Feb-12

e S AM3N

10.9

11011B-ATARM-21-Feb-12

Instruction set summary

The processor implements a version of the Thumb instruction set. Table 10-13 lists the sup-
ported instructions.

In Table 10-13:

* angle brackets, <>, enclose alternative forms of the operand

* braces, {}, enclose optional operands

¢ the Operands column is not exhaustive

e Op2 is a flexible second operand that can be either a register or a constant

* most instructions can use an optional condition code sulffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 10-13. Cortex-M3 instructions

Mnemonic Operands Brief description Flags Page
ADC, ADCS |{Rd,} Rn, Op2 Add with Carry N,Z,C,V |page 105
ADD, ADDS |{Rd,} Rn, Op2 Add N,Z,CV |page 105
ADD, ADDW |{Rd,} Rn, #imm12 Add N,Z,C,V |page 105
ADR Rd, label Load PC-relative address - page 88
AND, ANDS |{Rd,} Rn, Op2 Logical AND N,Z,C page 108
ASR, ASRS |Rd, Rm, <Rsl#n> Arithmetic Shift Right N,Z,C page 110
B label Branch - page 130
BFC Rd, #lsb, #width Bit Field Clear - page 126
BFI Rd, Rn, #Isb, #width | Bit Field Insert - page 126
BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C page 108
BKPT #imm Breakpoint - page 138
BL label Branch with Link - page 130
BLX Rm Branch indirect with Link - page 130
BX Rm Branch indirect - page 130
CBNz Rn, label Compare and Branch if Non Zero - page 132
CBz Rn, label Compare and Branch if Zero - page 132
CLREX - Clear Exclusive - page 102
CLz Rd, Rm Count leading zeros - page 112
CMN, CMNS |Rn, Op2 Compare Negative N,Z,C\V page 113
CMP, CMPS | Rn, Op2 Compare N,Z,C\V page 113
CPSID iflags ICrirtilrr:fj;st:’rocessor State, Disable i page 139
CPSIE iflags ICr):earr:SStsProcessor State, Enable i page 139
DMB - Data Memory Barrier - page 140
DSB - Data Synchronization Barrier - page 141
EOR, EORS |{Rd,} Rn, Op2 Exclusive OR N,Z,C page 108

ATMEL

75

76

ATMEL

Table 10-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
ISB - Instruction Synchronization Barrier - page 142
IT - If-Then condition block - page 133
LDM Rn{!}, reglist Load Multiple registers, increment after | - page 97
Il:gl\l\:gi Rn(1}, reglist It;z;dreMultiple registers, decrement page 97
II:BM:TAD Rn{!}, reglist Load Multiple registers, increment after | - page 97
LDR Rt, [Rn, #offset] Load Register with word - page 92
tBEST Rt, [Rn, #offset] Load Register with byte - page 92
LDRD Rt, Rt2, [Rn, #offset] | Load Register with two bytes - page 92
LDREX Rt, [Rn, #offset] Load Register Exclusive - page 92
LDREXB Rt, [Rn] Load Register Exclusive with byte - page 92
LDREXH Rt, [Rn] Load Register Exclusive with halfword | - page 92
LDRH, Rt, [Rn, #offset] Load Register with halfword - page 92
LDRHT

tggggT Rt, [Rn, #offset] Load Register with signed byte - page 92
::ggg:.r Rt, [Rn, #offset] Load Register with signed halfword - page 92
LDRT Rt, [Rn, #offset] Load Register with word - page 92
LSL, LSLS Rd, Rm, <Rsl#n> Logical Shift Left N,z,C page 110
LSR,LSRS |Rd, Rm, <Rsl#n> Logical Shift Right N,Z,C page 110
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result |- page 120
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result - page 120
MOV, MOVS |Rd, Op2 Move N,Z,C page 114
MOVT Rd, #imm16 Move Top - page 116
MOVW, MOV | Rd, #imm16 Move 16-bit constant N,Z,C page 114
MRS Rd, spec_reg lr\gz]\i/set ;:om special register to general | page 143
MSR spec_reg, Rm ?gc;\i/;;:om general register to special N.Z,C.V page 144
MUL, MULS |{Rd,} Rn, Rm Multiply, 32-bit result N,Z page 120
MVN, MVNS |Rd, Op2 Move NOT N,Z,C page 114
NOP - No Operation - page 145
ORN, ORNS |[{Rd,} Rn, Op2 Logical OR NOT N,Z,C page 108
ORR, ORRS |{Rd,} Rn, Op2 Logical OR N,Z,C page 108
POP reglist Pop registers from stack - page 99
PUSH reglist Push registers onto stack - page 99

11011B-ATARM-21-Feb-12

e S AM3N

11011B-ATARM-21-Feb-12

Table 10-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
RBIT Rd, Rn Reverse Bits - page 117
REV Rd, Rn Reverse byte order in a word - page 117
REV16 Rd, Rn Reverse byte order in each halfword - page 117
REVSH Rd, Rn gr?&/zr;i t;))/(tti:(;der in bottom halfword page 117
ROR, RORS | Rd, Rm, <Rsl#n> Rotate Right N,z,C page 110
RRX, RRXS |Rd, Rm Rotate Right with Extend N,Z,C page 110
RSB, RSBS |{Rd,} Rn, Op2 Reverse Subtract N,Z,C,V page 105
SBC, SBCS |{Rd,} Rn, Op2 Subtract with Carry N,Z,C\V page 105
SBFX Rd, Rn, #Isb, #width | Signed Bit Field Extract - page 127
SDIV {Rd,} Rn, Rm Signed Divide - page 122
SEV - Send Event - page 146
SMLAL RdLo, RdHi, Rn, Rm giggz‘zci;\,"gﬁiﬂi’; ‘r’g:”fccum”'ate (82 x page 121
SMULL RdLo, RdHi, Rn, Rm | Signed Multiply (32 x 32), 64-bit result |- page 121
SSAT Rd, #n, Rm {,shift #s} | Signed Saturate Q page 123
STM Rn{!}, reglist Store Multiple registers, increment after | - page 97
2?\'\222 Rn(1}, reglist S;(:cr::eMultiple registers, decrement page 97
§¥M:ZD Rn{!}, reglist Store Multiple registers, increment after | - page 97
STR Rt, [Rn, #offset] Store Register word - page 92
§$SST Rt, [Rn, #offset] Store Register byte - page 92
STRD Rt, Rt2, [Rn, #offset] | Store Register two words - page 92
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive - page 100
STREXB Rd, Rt, [Rn] Store Register Exclusive byte - page 100
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword - page 100
§$EET Rt, [Rn, #offset] Store Register halfword - page 92
STRT Rt, [Rn, #offset] Store Register word - page 92
SUB, SUBS | {Rd,} Rn, Op2 Subtract N,Z,C,V |page 105
SUB, SUBW |{Rd,} Rn, #imm12 Subtract N,Z,C,V page 105
SvC #imm Supervisor Call - page 147
SXTB {Rd,} Rm {,ROR #n} |Sign extend a byte - page 128
SXTH {Rd,} Rm {,ROR #n} |Sign extend a halfword - page 128
TBB [Rn, Rm] Table Branch Byte - page 135
TBH [Rn, Rm, LSL #1] Table Branch Halfword - page 135

ATMEL

77

ATMEL

Table 10-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
TEQ Rn, Op2 Test Equivalence N,Z,C page 118
TST Rn, Op2 Test N,Z,C page 118
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract - page 127
ubIv {Rd,} Rn, Rm Unsigned Divide - page 122

. Unsigned Multiply with Accumulate i

UMLAL RdLo, RdHi, Rn, Rm (32 x 32 + 64), 64-bit result page 121
UMULL RdLo, RdHi, Rn, Rm :Je’;i'ﬁ’”ed Multiply (32 x 32), 64-bit | _ page 121
USAT Rd, #n, Rm {,shift #s} | Unsigned Saturate Q page 123
UXTB {Rd,} Bm {,ROR #n} |Zero extend a byte - page 128
UXTH {Rd,} Rm {,ROR #n} |Zero extend a halfword - page 128
WFE - Wait For Event - page 148
WFI - Wait For Interrupt - page 149

10.10 Intrinsic functions
ANSI cannot directly access some Cortex-M3 instructions. This section describes intrinsic func-
tions that can generate these instructions, provided by the CMIS and that might be provided by a
C compiler. If a C compiler does not support an appropriate intrinsic function, you might have to
use inline assembler to access some instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ANSI cannot
directly access:

Table 10-14. CMSIS intrinsic functions to generate some Cortex-M3 instructions
Instruction CMSIS intrinsic function
CPSIE | void __enable_irq(void)
CPSID | void __disable_irq(void)
CPSIEF void __enable_fault_irg(void)
CPSID F void __disable_fault_irg(void)
ISB void __ISB(void)
DSB void ___DSB(void)
DMB void __DMB(void)
REV uint32_t __REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t __REVSH(uint32_t int value)
RBIT uint32_t __RBIT(uint32_t int value)
SEV void __SEV(void)
WFE void __WFE(void)
WFI void __ WFI(void)
78 'S /A V13 1N 15—

11011B-ATARM-21-Feb-12

e S AM3N

The CMSIS also provides a number of functions for accessing the special registers using MRS

and MSR instructions:

Table 10-15. CMSIS intrinsic functions to access the special registers

Special register | Access | CMSIS function

uint32_t __get_PRIMASK (void)

void __set_PRIMASK (uint32_t value)

uint32_t __get_FAULTMASK (void)

void __set_ FAULTMASK (uint32_t value)

uint32_t __get_BASEPRI (void)

void __set_BASEPRI (uint32_t value)

uint32_t __get_ CONTROL (void)

void __set_ CONTROL (uint32_t value)

uint32_t __get_MSP (void)

void __set_MSP (uint32_t TopOfMainStack)

uint32_t __get_PSP (void)

Read
PRIMASK

Write

Read
FAULTMASK

Write

Read
BASEPRI

Write

Read
CONTROL

Write

Read
MSP

Write

Read
PSP

Write

void __set_PSP (uint32_t TopOfProcStack)

10.11 About the instruction descriptions

The following sections give more information about using the instructions:

¢ “Operands” on page 79

* “Restrictions when using PC or SP” on page 79

* “Flexible second operand” on page 80

* “Shift Operations” on page 81

* “Address alignment” on page 83

* “PC-relative expressions” on page 84

¢ “Conditional execution” on page 84

¢ “Instruction width selection” on page 86.

10.11.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination register.
When there is a destination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. See
“Flexible second operand” .

10.11.2 Restrictions when using PC or SP

Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack
Pointer (SP) for the operands or destination register. See instruction descriptions for more

information.

11011B-ATARM-21-Feb-12

ATMEL

79

ATMEL

Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be
1 for correct execution, because this bit indicates the required instruction set, and the Cortex-M3
processor only supports Thumb instructions.

10.11.3 Flexible second operand
Many general data processing instructions have a flexible second operand. This is shown as
Operand2 in the descriptions of the syntax of each instruction.

Operand?2 can be a:

* “Constant”
* “Register with optional shift” on page 80

10.11.3.1 Constant
You specify an Operand2 constant in the form:

#constant
where constant can be:

* any constant that can be produced by shifting an 8-bit value left by any number of bits within
a 32-bit word

¢ any constant of the form 0x00XY00XY

¢ any constant of the form 0xXYO00XYO00

* any constant of the form OxXYXYXYXY.

In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values.
These are described in the individual instruction descriptions.

When an Operand?2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS,
EORS, BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is
greater than 255 and can be produced by shifting an 8-bit value. These instructions do not affect
the carry flag if Operand2 is any other constant.

10.11.3.2 Instruction substitution
Your assembler might be able to produce an equivalent instruction in cases where you specify a
constant that is not permitted. For example, an assembler might assemble the instruction CMP
Rd, #OxFFFFFFFE as the equivalent instruction CMN Rqg, #0x2.

10.11.3.3 Register with optional shift
You specify an Operand2 register in the form:

Rm {, shift}
where:

Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:
ASR #n arithmetic shift right n bits, 1 <n <32.
LSL #n logical shift left n bits, 1 <n <31.

80 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

LSR #n logical shift right n bits, 1 <n <32.
ROR #n rotate right n bits, 1 <n <31.
RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register Rm remains unchanged. Specifying a
register with shift also updates the carry flag when used with certain instructions. For information
on the shift operations and how they affect the carry flag, see “Shift Operations”

10.11.4 Shift Operations

10.11.4.1 ASR

11011B-ATARM-21-Feb-12

Register shift operations move the bits in a register left or right by a specified number of bits, the
shift length. Register shift can be performed:

« directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a
destination register

* during the calculation of Operand2 by the instructions that specify the second operand as a
register with shift, see “Flexible second operand” on page 80. The result is used by the
instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or “Flexible second operand” on page 80. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length is 0.
The following sub-sections describe the various shift operations and how they affect the carry
flag. In these descriptions, Rm is the register containing the value to be shifted, and nis the shift
length.

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 10-4 on page 81.

You can use the ASR #n operation to divide the value in the register Rm by 2", with the result
being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand?2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.

e If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 10-4. ASR #3

31 543210|:|

ATMEL o

10.11.4.2

10.11.4.3

82

ATMEL

LSR
Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0.
See Figure 10-5.
You can use the LSR #n operation to divide the value in the register Rm by 2", if the value is
regarded as an unsigned integer.
When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.
¢ If nis 32 or more, then all the bits in the result are cleared to 0.
e If nis 33 or more and the carry flag is updated, it is updated to 0.
Figure 10-5. LSR #3
(l) (l) (l) Carry
\ A Flag
31 51413[2[1]0 |:|
A A Al A A
JEEX; XN
. i
LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0.
See Figure 10-6 on page 82.

You can use he LSL #n operation to multiply the value in the register Rm by 2", if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is
updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect
the carry flag when used with LSL #0.

* If nis 32 or more, then all the bits in the result are cleared to 0.
* If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 10-6. LSL #3

, , |]|
1 1 00 O
v I vV V¥
|:|31 5/4(3|2|1/0

Carry 4 4 A A

Flag ? | ? |

11011B-ATARM-21-Feb-12

e S AM3N

10.11.4.4

10.11.4.5

ROR

RRX

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. And it moves the right-hand n bits of the register into
the left-hand n bits of the result. See Figure 10-7.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
rotation, bit[n-1], of the register Rm.

e If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

* ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 10-7. ROR #3

Carry
yYY Flag
31 54|32 (1|0 |:|

A A f | A;A ? f
H }

H !

|, a

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies
the carry flag into bit[31] of the result. See Figure 10-8 on page 83.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of
the register Rm.

Figure 10-8. RRX

Carry
Flag

31|3 110

Tl ... T

10.11.5 Address alignment

11011B-ATARM-21-Feb-12

An aligned access is an operation where a word-aligned address is used for a word, dual word,
or multiple word access, or where a halfword-aligned address is used for a halfword access.
Byte accesses are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:
e LDR, LDRT
¢ LDRH, LDRHT
¢ LDRSH, LDRSHT
e STR, STRT
¢ STRH, STRHT

ATMEL .

ATMEL

All other load and store instructions generate a usage fault exception if they perform an
unaligned access, and therefore their accesses must be address aligned. For more information
about usage faults see “Fault handling” on page 70.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory
regions might not support unaligned accesses. Therefore, ARM recommends that programmers
ensure that accesses are aligned. To avoid accidental generation of unaligned accesses, use
the UNALIGN_TRP bit in the Configuration and Control Register to trap all unaligned accesses,
see “Configuration and Control Register” on page 174.

10.11.6 PC-relative expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or lit-
eral data. It is represented in the instruction as the PC value plus or minus a numeric offset. The
assembler calculates the required offset from the label and the address of the current instruc-
tion. If the offset is too big, the assembler produces an error.

e For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current
instruction plus 4 bytes.

* For all other instructions that use labels, the value of the PC is the address of the current
instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

* Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus
or minus a number, or an expression of the form [PC, #number].

10.11.7 Conditional execution
Most data processing instructions can optionally update the condition flags in the Application
Program Status Register (APSR) according to the result of the operation, see “Application Pro-
gram Status Register” on page 47. Some instructions update all flags, and some only update a
subset. If a flag is not updated, the original value is preserved. See the instruction descriptions
for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another instruc-
tion, either:

* immediately after the instruction that updated the flags

* after any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code
suffixes to instructions. See Table 10-16 on page 85 for a list of the suffixes to add to instructions
to make them conditional instructions. The condition code suffix enables the processor to test a
condition based on the flags. If the condition test of a conditional instruction fails, the instruction:

* does not execute

* does not write any value to its destination register
¢ does not affect any of the flags

* does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction
block. See “IT” on page 133 for more information and restrictions when using the IT instruction.
Depending on the vendor, the assembler might automatically insert an IT instruction if you have
conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch
on the result.

84 SAM3N __|

11011B-ATARM-21-Feb-12

e S AM3N

This section describes:

¢ “The condition flags”
¢ “Condition code suffixes” .

10.11.7.1 The condition flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

\% Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR see “Program Status Register” on page 46.

A carry occurs:

« if the result of an addition is greater than or equal to 2%2

« if the result of a subtraction is positive or zero

¢ as the result of an inline barrel shifter operation in a move or logical instruction.
Overflow occurs if the result of an add, subtract, or compare is greater than or equal to 23!, or
less than —23,

Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

10.11.7.2 Condition code suffixes

11011B-ATARM-21-Feb-12

The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An instruction
with a condition code is only executed if the condition code flags in the APSR meet the specified
condition. Table 10-16 shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch instruc-
tions in code.

Table 10-16 also shows the relationship between condition code suffixes and the N, Z, C, and V
flags.

Table 10-16. Condition code suffixes

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

gg or C=1 Higher or same, unsigned >
CCor .

LO Cc=0 Lower, unsigned <

Mi N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

ATMEL L

ATMEL

Table 10-16. Condition code suffixes (Continued)

Suffix Flags Meaning

VC V=0 No overflow

HI C=1andZ=0 Higher, unsigned >

LS C=0o0or Z=1 Lower or same, unsigned <

GE N=V Greater than or equal, signed >

LT N!=V Less than, signed <

GT Z=0andN=V Greater than, signed >

LE Z=1andN! =V | Lessthan or equal, signed <

AL Can have any AIwa_y_s. This is the default when no suffix is
value specified.

10.11.7.3 Absolute value
The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = R1, setting flags
1T Ml ; IT instruction for the negative condition
RSBMI RO, R1, #0 ; IT negative, RO = -R1

10.11.7.4 Compare and update value
The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater
than R1 and R2 is greater than R3.

CMP RO, R1 ; Compare RO and R1l, setting flags

ITT GT ; IT instruction for the two GT conditions

CMPGT R2, R3 ; If "greater than®, compare R2 and R3, setting flags
MOVGT R4, R5 ; IT still “greater than®, do R4 = R5

10.11.8 Instruction width selection
There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding
depending on the operands and destination register specified. For some of these instructions,
you can force a specific instruction size by using an instruction width suffix. The .W suffix forces
a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction
encoding of the requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the operand is the
label of an instruction or literal data, as in the case of branch instructions. This is because the
assembler might not automatically generate the right size encoding.

10.11.8.1 Instruction width selection
To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The exam-
ple below shows instructions with the instruction width suffix.

BCS.W label ; creates a 32-bit instruction even for a short branch

ADDS.W RO, RO, R1 ; creates a 32-bit instruction even though the same
; operation can be done by a 16-bit instruction

86 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.12 Memory access instructions

11011B-ATARM-21-Feb-12

Table 10-17 shows the memory access instructions:

Table 10-17. Memory access instructions

Mnemonic Brief description See

ADR Load PC-relative address “ADR” on page 88

CLREX Clear Exclusive “CLREX” on page 102

LDM{mode} Load Multiple registers “LDM and STM” on page 97

LDR{type} Load Register using immediate LDR and STR, immediate offset” on
offset page 89

LDR{type} Load Register using register offset 9L2DR and STR, register offset” on page

LDR{type)T | -02d Register with unprivileged “LDR and STR, unprivileged” on page 94
access

LDR Load Register using PC-relative “ DR, PC-relative” on page 95
address

LDREX{type} Load Register Exclusive “LDREX and STREX” on page 100

POP Pop registers from stack “PUSH and POP” on page 99

PUSH Push registers onto stack “PUSH and POP” on page 99

STM{mode} Store Multiple registers “LDM and STM” on page 97

STR{type} Store Register using immediate LDR and STR, immediate offset” on
offset page 89

STR{type} Store Register using register offset 9L2DR and STR, register offset” on page

STR{type}T Store Register with unprivileged “LDR and STR, unprivileged” on page 94
access

STREX({type} Store Register Exclusive “LDREX and STREX” on page 100

ATMEL

87

10.12.1

10.12.1.1

10.12.1.2

10.12.1.3

10.12.1.4

10.12.1.5

ADR

88

ADR

Syntax

Operation

Restrictions

Load PC-relative address.

ADR{cond} Rd, label
where:

cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register.

label is a PC-relative expression. See “PC-relative expressions” on page 84.

ADR determines the address by adding an immediate value to the PC, and writes the result to
the destination register.

ADR produces position-independent code, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that
bit[0] of the address you generate is set to1 for correct execution.

Values of label must be within the range of 4095 to +4095 from the address in the PC.

You might have to use the .W suffix to get the maximum offset range or to generate addresses
that are not word-aligned. See “Instruction width selection” on page 86.

Rd must not be SP and must not be PC.

Condition flags

Examples

This instruction does not change the flags.

R1, TextMessage ; Write address value of a location labelled as

; TextMessage to R1

11011B-ATARM-21-Feb-12

e S AM3N

10.12.2 LDR and STR, immediate offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate

offset.
10.12.2.1 Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

where:

op is one of:

LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 84.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.

10.12.2.2 Operation
LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

10.12.2.3 Offset addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access. The register Rn is unaltered. The assem-
bly language syntax for this mode is:

[Rn, #offset]
10.12.2.4 Pre-indexed addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The

result is used as the address for the memory access and written back into the register Rn. The
assembly language syntax for this mode is:

ATMEL L

11011B-ATARM-21-Feb-12

ATMEL

[Rn, #offset]!

10.12.2.5 Post-indexed addressing
The address obtained from the register Rn is used as the address for the memory access. The
offset value is added to or subtracted from the address, and written back into the register Rn.
The assembly language syntax for this mode is:
[Rn], #offset
The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can
either be signed or unsigned. See “Address alignment” on page 83.

Table 10-18 shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 10-18. Offset ranges

Instruction type Immediate offset | Pre-indexed Post-indexed
Word, halfword, signed
halfword, byte, or signed 255 to 4095 255 to 255 255 to 255
byte
multiple of 4 inthe | multiple of 4 inthe | multiple of 4 in the
Two words range 1020 to range 1020 to range 1020 to
1020 1020 1020

10.12.2.6 Restrictions
For load instructions:
¢ Rtcan be SP or PC for word loads only
¢ Rt must be different from Rt2 for two-word loads
¢ Rn must be different from Rtand Rt2 in the pre-indexed or post-indexed forms.
When Rtis PC in a word load instruction:

¢ bit[0] of the loaded value must be 1 for correct execution
¢ a branch occurs to the address created by changing bit[0] of the loaded value to 0
¢ if the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:
* Rtcan be SP for word stores only
* Rt must not be PC
e Rn must not be PC
¢ Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

10.12.2.7 Condition flags
These instructions do not change the flags.

20 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.12.2.8 Examples
LDR R8, [R10]
LDRNE R2, [R5, #960]!

Loads R8 from the address in R10.

Loads (conditionally) R2 from a word

960 bytes above the address in R5, and
increments R5 by 960.

const-struc Is an expression evaluating
to a constant in the range 0-4095.

Store R3 as halfword data into address in
R4, then increment R4 by 4

Load R8 from a word 32 bytes above the
address in R3, and load R9 from a word 36
bytes above the address in R3

Store RO to address in R8, and store R1 to
a word 4 bytes above the address in RS,
and then decrement R8 by 16.

STR R2, [R9,#const-struc]
STRH R3, [R4], #4

LDRD R8, R9, [R3, #0x20]

STRD RO, R1, [R8], #-16

ATMEL o

11011B-ATARM-21-Feb-12

ATMEL

10.12.3 LDR and STR, register offset

10.12.3.1

10.12.3.2

10.12.3.3

92

Syntax

Operation

Restrictions

Load and Store with register offset.

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]
where:

op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 84.
Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.

LSL #n is an optional shift, with nin the range 0 to 3.

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is
specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or unsigned. See “Address alignment” on page 83.

In these instructions:

* Rn must not be PC
* Rm must not be SP and must not be PC
* Rtcan be SP only for word loads and word stores
* Rtcan be PC only for word loads.
When Rtis PC in a word load instruction:
¢ bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address
« if the instruction is conditional, it must be the last instruction in the IT block.

11011B-ATARM-21-Feb-12

e S AM3N

10.12.3.4 Condition flags
These instructions do not change the flags.

10.12.3.5 Examples

STR RO, [R5, R1] Store value of RO into an address equal to
sum of R5 and R1
Read byte value from an address equal to
sum of R5 and two times R1, sign extended it
to a word value and put it in RO
Stores RO to an address equal to sum of R1
and four times R2

LDRSB RO, [R5, R1, LSL #1]

STR RO, [R1, R2, LSL #2]

ATMEL .

11011B-ATARM-21-Feb-12

10.12.4 LDR and STR,

10.12.4.1 Syntax

10.12.4.2 Operation

10.12.4.3 Restrictions

ATMEL

unprivileged
Load and Store with unprivileged access.

op{type}T{cond} Rt, [Rn {, #offset}] ; Immediate offset
where:

op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 84.
Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.

These load and store instructions perform the same function as the memory access instructions
with immediate offset, see “LDR and STR, immediate offset” on page 89. The difference is that
these instructions have only unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as nor-
mal memory access instructions with immediate offset.

In these instructions:

¢ Rn must not be PC
¢ Rt must not be SP and must not be PC.

10.12.4.4 Condition flags

10.12.4.5 Examples

These instructions do not change the flags.

STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivileged access

LDRHT R2, [R2, #8] ; Load halfword value from an address equal to

; sum of R2 and 8 into R2, with unprivileged access

94 SAM3N __|

11011B-ATARM-21-Feb-12

e S AM3N

10.12.5 LDR, PC-relative
Load register from memory.

10.12.5.1 Syntax
LDR{type}{cond} Rt, label

LDRD{cond} Rt, Rt2, label
where:

type is one of:

; Load two words

B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.

H unsigned halfword, zero extend to 32 bits.

SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 84.
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative expressions” on page 84.

10.12.5.2 Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is
specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-

words can either be signed or unsigned. See “Address alignment” on page 83.

label must be within a limited range of the current instruction. Table 10-19 shows the possible

offsets between label and the PC.

Table 10-19. Offset ranges

Instruction type

Offset range

Word, halfword, signed halfword, byte, signed
byte

4095 to 4095

Two words

1020 to 1020

You might have to use the .W suffix to get the maximum offset range. See “Instruction width

selection” on page 86.

10.12.5.3 Restrictions
In these instructions:
¢ Rtcan be SP or PC only for word loads
¢ Rt2 must not be SP and must not be PC
¢ Rt must be different from R{2.
When Rtis PC in a word load instruction:

ATMEL

11011B-ATARM-21-Feb-12

95

ATMEL

* bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address
¢ if the instruction is conditional, it must be the last instruction in the IT block.

10.12.5.4 Condition flags
These instructions do not change the flags.

10.12.5.5 Examples

LDR RO, LookUpTable ; Load RO with a word of data from an address
; labelled as LookUpTable
LDRSB R7, localdata ; Load a byte value from an address labelled

as localdata, sign extend it to a word
value, and put it in R7

96 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

10.12.6 LDM and STM

10.12.6.1

10.12.6.2

Syntax

Operation

11011B-ATARM-21-Feb-12

Load and Store Multiple registers.

op{addr_mode}{cond} Rn{!}, reglist
where:

op is one of:
LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.

DB Decrement address Before each access.
cond is an optional condition code, see “Conditional execution” on page 84.
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If Iis present the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can
contain register ranges. It must be comma separated if it contains more than one register or reg-
ister range, see “Examples” on page 98.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full
Descending stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending
stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto
Empty Ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending
stacks

LDM instructions load the registers in reglist with word values from memory addresses based on
Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on
Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the
accesses are at 4-byte intervals ranging from Rnto Rn + 4 * (n-1), where nis the number of reg-
isters in reglist. The accesses happens in order of increasing register numbers, with the lowest
numbered register using the lowest memory address and the highest number register using the
highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n-1) is written
back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at
4-byte intervals ranging from Rnto Rn - 4 * (n-1), where n is the number of registers in reglist.

ATMEL o

ATMEL

The accesses happen in order of decreasing register numbers, with the highest numbered regis-
ter using the highest memory address and the lowest number register using the lowest memory
address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” on page
99 for details.

10.12.6.3 Restrictions
In these instructions:
* Rn must not be PC
* reglist must not contain SP
e in any STM instruction, reglist must not contain PC

in any LDM instruction, reglist must not contain PC if it contains LR
* reglist must not contain Rn if you specify the writeback suffix.
When PC is in reglistin an LDM instruction:
¢ bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to
this halfword-aligned address
* if the instruction is conditional, it must be the last instruction in the IT block.

10.12.6.4 Condition flags
These instructions do not change the flags.

10.12.6.5 Examples
LDM R8,{R0O,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!,{R3-R6,R11,R12}

10.12.6.6 Incorrect examples

STM R51,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list
98 SAM3N |

11011B-ATARM-21-Feb-12

e S AM3N

10.12.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

10.12.7.1 Syntax
PUSH{cond} reglist

POP{cond} reglist

where:
cond is an optional condition code, see “Conditional execution” on page 84.
reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges.

It must be comma separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for
the access based on SP, and with the final address for the access written back to the SP. PUSH
and POP are the preferred mnemonics in these cases.

10.12.7.2 Operation
PUSH stores registers on the stack in order of decreasing the register numbers, with the highest
numbered register using the highest memory address and the lowest numbered register using
the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest num-
bered register using the lowest memory address and the highest numbered register using the
highest memory address.

See “LDM and STM” on page 97 for more information.

10.12.7.3 Restrictions

In these instructions:
* reglist must not contain SP
e for the PUSH instruction, reglist must not contain PC
» for the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglistin a POP instruction:
¢ bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to

this halfword-aligned address

« if the instruction is conditional, it must be the last instruction in the IT block.

10.12.7.4 Condition flags
These instructions do not change the flags.

10.12.7.5 Examples
PUSH {RO,R4-R7}
PUSH {R2,LR}
POP {RO,R10,PC}

ATMEL o

11011B-ATARM-21-Feb-12

ATMEL

10.12.8 LDREX and STREX

10.12.8.1

10.12.8.2

10.12.8.3

100

Syntax

Operation

Restrictions

Load and Store Register Exclusive.

LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory
address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a
memory address. The address used in any Store-Exclusive instruction must be the same as the
address in the most recently executed Load-exclusive instruction. The value stored by the Store-
Exclusive instruction must also have the same data size as the value loaded by the preceding
Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see “Syn-
chronization primitives” on page 61

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does
not perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction
writes 0 to the destination register, it is guaranteed that no other process in the system has
accessed the memory location between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-
Exclusive and Store-Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that
used in the preceding Load-Exclusive instruction is unpredictable.

In these instructions:

* do not use PC

¢ do not use SP for Rd and Rt

e for STREX, Rd must be different from both Rt and Rn

* the value of offset must be a multiple of four in the range 0-1020.

11011B-ATARM-21-Feb-12

e S AM3N

10.12.8.4 Condition flags
These instructions do not change the flags.

10.12.8.5 Examples

MOV R1, #0x1 ; Initialize the “lock taken” value
try

LDREX RO, [LockAddr] ; Load the lock value

CMP RO, #0 ; Is the lock free?

ITT EQ ; IT instruction for STREXEQ and CMPEQ

STREXEQ RO, R1, [LockAddr] ; Try and claim the lock

CMPEQ RO, #0 ; Did this succeed?

BNE try ; No — try again

; Yes — we have the lock

AImEl@ 101

11011B-ATARM-21-Feb-12

10.12.9 CLREX
Clear Exclusive.

10.12.9.1 Syntax

CLREX{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 84.

10.12.9.2 Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination
register and fail to perform the store. It is useful in exception handler code to force the failure of
the store exclusive if the exception occurs between a load exclusive instruction and the match-
ing store exclusive instruction in a synchronization operation.

See “Synchronization primitives” on page 61 for more information.

10.12.9.3 Condition flags
These instructions do not change the flags.

10.12.9.4 Examples
CLREX

102 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.13 General data processing instructions

11011B-ATARM-21-Feb-12

Table 10-20 shows the data processing instructions:

Table 10-20. Data processing instructions

Mnemonic | Brief description See

ADC Add with Carry ADD, ADC, SUB, SBC, and RSB” on
page 105

ADD Add ADD, ADC, SUB, SBC, and RSB” on
page 105

ADDW Add ADD, ADC, SUB, SBC, and RSB” on
page 105

AND Logical AND AND, ORR, EOR, BIC, and ORN” on
page 108

ASR Arithmetic Shift Right f}ﬁR' LSL, LSR, ROR, and RRX" on page

BIC Bit Clear AND, ORR, EOR, BIC, and ORN” on
page 108

CLz Count leading zeros “CLZ” on page 112

CMN Compare Negative “CMP and CMN” on page 113

CMP Compare “CMP and CMN” on page 113

EOR Exclusive OR AND, ORR, EOR, BIC, and ORN” on
page 108

LSL Logical Shift Left 1/?%!?, LSL, LSR, ROR, and RRX” on page

LSR Logical Shift Right ﬁgR, LSL, LSR, ROR, and RRX” on page

MOV Move “MOV and MVN” on page 114

MOVT Move Top “MOVT” on page 116

MOVW Move 16-bit constant “MOV and MVN” on page 114

MVN Move NOT “MOV and MVN” on page 114

ORN Logical OR NOT AND, ORR, EOR, BIC, and ORN” on
page 108

ORR Logical OR AND, ORR, EOR, BIC, and ORN” on
page 108

RBIT Reverse Bits REV, REV16, REVSH, and RBIT” on
page 117

REV Reverse byte order in a word REV, REV16, REVSH, and RBIT” on
page 117

REV16 Reverse byte order in each halfword REV, REV16, REVSH, and RBIT" on
page 117

Reverse byte order in bottom halfword and | “REV, REV16, REVSH, and RBIT” on
REVSH .
sign extend page 117
ROR Rotate Right ASR, LSL, LSR, ROR, and RRX” on page

110

ATMEL

103

104

ATMEL

Table 10-20. Data processing instructions (Continued)

Mnemonic | Brief description See

RRX Rotate Right with Extend f}ﬁR' LSL, LSR, ROR, and RRX" on page

RSB Reverse Subtract ADD, ADC, SUB, SBC, and RSB” on
page 105

SBC Subtract with Carry ADD, ADC, SUB, SBC, and RSB” on
page 105

SUB Subtract ADD, ADC, SUB, SBC, and RSB” on
page 105

SUBW Subtract ADD, ADC, SUB, SBC, and RSB” on
page 105

TEQ Test Equivalence “TST and TEQ” on page 118

TST Test “TST and TEQ” on page 118

11011B-ATARM-21-Feb-12

e S AM3N

10.13.1

10.13.1.1

10.13.1.2

10.13.1.3

ADD, ADC, SUB, SBC, and RSB

Syntax

Operation

Restrictions

11011B-ATARM-21-Feb-12

Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #imml2 ; ADD and SUB only
where:
op is one of:
ADD Add.

ADC Add with Carry.
SUB Subtract.

SBC Subtract with Carry.
RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 84.

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.
See “Flexible second operand” on page 80 for details of the options.

imm12 is any value in the range 0-4095.

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is
clear, the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful
because of the wide range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see “Multiword arithmetic examples” on
page 107.

See also “ADR” on page 88.

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the
SUB syntax that uses the imm12 operand.

In these instructions:

¢ Operand2 must not be SP and must not be PC

AImEl@ 105

ATMEL

* Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP
— any shift in Operand2 must be limited to a maximum of 3 bits using LSL
* Rncan be SP only in ADD and SUB
¢ Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— you must not specify the S suffix
— Rm must not be PC and must not be SP
— if the instruction is conditional, it must be the last instruction in the IT block

¢ with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and
SUB, and only with the additional restrictions:

— you must not specify the S suffix
— the second operand must be a constant in the range 0 to 4095.

— When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded
to b00 before performing the calculation, making the base address for the calculation
word-aligned.

— If you want to generate the address of an instruction, you have to adjust the constant
based on the value of the PC. ARM recommends that you use the ADR instruction
instead of ADD or SUB with Rn equal to the PC, because your assembler
automatically calculates the correct constant for the ADR instruction.

When Rdis PC in the ADD{cond} PC, PC, Rm instruction:

¢ bit[0] of the value written to the PC is ignored
¢ a branch occurs to the address created by forcing bit[0] of that value to 0.

10.13.1.4 Condition flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.

10.13.1.5 Examples

ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, RO, R3 ; Only executed if C flag set and Z
; flag clear
106 SAM3N]

11011B-ATARM-21-Feb-12

e S AM3N

10.13.1.6 Multiword arithmetic examples

10.13.1.7 64-bit addition
The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer con-
tained in RO and R1, and place the result in R4 and R5.

ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

10.13.1.8 96-bit subtraction

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit
integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,
and R2.

SUBS R6, R6, R9 ; subtract the least significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry

AImEl@ 107

11011B-ATARM-21-Feb-12

ATMEL

10.13.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

10.13.2.1 Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 84.

cond is an optional condition code, see See “Conditional execution” on page 84..

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 80 for
details of the options.

10.13.2.2 Operation
The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations
on the values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand?.

10.13.2.3 Restrictions
Do not use SP and do not use PC.

10.13.2.4 Condition flags
If S is specified, these instructions:
¢ update the N and Z flags according to the result
e can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 80
* do not affect the V flag.

108 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.13.2.5 Examples

AND RO,
ORREQ R2,
ANDS RO,
EORS R7,
BIC RO,
ORN R7,
ORNS R7,

11011B-ATARM-21-Feb-12

R2, #0OxFFOO

RO, R5

R8, #0x19

R11, #0x18181818
R1, #Oxab

R11, R14, ROR #4
R11, R14, ASR #32

ATMEL

109

ATMEL

10.13.3 ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with
Extend.

10.13.3.1 Syntax
op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm
where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 84.

Rd is the destination register.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32
ROR shift length from 1 to 31.
MOV{S}cond} Rd, Rm is the preferred syntax for LSL{S}{cond} Rd, Rm, #0.

10.13.3.2 Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of
places specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains
unchanged. For details on what result is generated by the different instructions, see “Shift Oper-
ations” on page 81.

10.13.3.3 Restrictions
Do not use SP and do not use PC.

10.13.3.4 Condition flags
If S is specified:

e these instructions update the N and Z flags according to the result

110 SAM3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

¢ the C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift
Operations” on page 81.

10.13.3.5 Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, R5 ; Rotate right with extend

AImEl@ 111

11011B-ATARM-21-Feb-12

Y)
10.13.4 CLZ
Count Leading Zeros.

10.13.4.1 Syntax
CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register.

Rm is the operand register.

10.13.4.2 Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result
in Rd. The result value is 32 if no bits are set in the source register, and zero if bit[31] is set.

10.13.4.3 Restrictions
Do not use SP and do not use PC.

10.13.4.4 Condition flags
This instruction does not change the flags.

10.13.4.5 Examples
CLz R4,R9
CLZNE R2,R3

112 SAM3N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.13.5 CMP and CMN
Compare and Compare Negative.

10.13.5.1 Syntax
CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional execution” on page 84.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 80 for
details of the options.

10.13.5.2 Operation
These instructions compare the value in a register with Operand2. They update the condition
flags on the result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as
a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an
ADDS instruction, except that the result is discarded.

10.13.5.3 Restrictions
In these instructions:
¢ do not use PC
¢ Operand2 must not be SP.

10.13.5.4 Condition flags
These instructions update the N, Z, C and V flags according to the result.

10.13.5.5 Examples
CMP R2, R9
CMN RO, #6400
CMPGT SP, R7, LSL #2

AImEl@ 113

11011B-ATARM-21-Feb-12

10.13.6 MOV and MVN

Restrictions

Move and Move NOT.

MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #imml1l6
MVN{S}{cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 84.

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible second operand” on page 80 for
details of the options.

imm16 is any value in the range 0-65535.

The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred
syntax is the corresponding shift instruction:
¢ ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, ASR #n
¢ LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nif n!=0
¢ LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, LSR #n
* ROR{S}Kcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n
* RRX{SKcond} Rd, Rm is the preferred syntax for MOV{S}cond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift
instructions:
* MOV{S}cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs
e MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs
* MOV{S}cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
* MOV{S}¥cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX” on page 110.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on
the value, and places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16
operand.

You can use SP and PC only in the MOV instruction, with the following restrictions:

¢ the second operand must be a register without shift
¢ you must not specify the S suffix.
When Rdis PC in a MOV instruction:

11011B-ATARM-21-Feb-12

e S AM3N

¢ bit[0] of the value written to the PC is ignored
* a branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of
a BX or BLX instruction to branch for software portability to the ARM instruction set.

10.13.6.4 Condition flags
If S is specified, these instructions:
 update the N and Z flags according to the result

¢ can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 80
* do not affect the V flag.

10.13.6.5 Example
MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get updated

MOV R1, #OxFAO5 ; Write value of OxFAO5 to R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10, flags get updated

MOV R3, #23 ; Write value of 23 to R3

MOV R8, SP ; Write value of stack pointer to R8

MVNS R2, #OxF ; Write value of OxXFFFFFFFO (bitwise inverse of OxF)

; to the R2 and update flags

AImEl@ 115

11011B-ATARM-21-Feb-12

Y)
10.13.7 MOVT
Move Top.

10.13.7.1 Syntax
MOVT{cond} Rd, #imml6

where:

cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register.

imm16 is a 16-bit immediate constant.

10.13.7.2 Operation
MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination
register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

10.13.7.3 Restrictions
Rd must not be SP and must not be PC.

10.13.7.4 Condition flags
This instruction does not change the flags.

10.13.7.5 Examples
MOVT R3, #0xF123 ; Write OxF123 to upper halfword of R3, lower halfword
; and APSR are unchanged

116 SAM3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.13.8 REV, REV16, REVSH, and RBIT

10.13.8.1 Syntax

10.13.8.2 Operation

10.13.8.3 Restrictions

Reverse bytes and Reverse bits.

op{cond} Rd, Rn
where:

op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register.
Rn is the register holding the operand.

Use these instructions to change endianness of data:

REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data
into big-endian data.

REV16 converts 16-bit big-endian data into little-endian data or 16-bit little-endian data
into big-endian data.

REVSH converts either:
16-bit signed big-endian data into 32-bit signed little-endian data
16-bit signed little-endian data into 32-bit signed big-endian data.

Do not use SP and do not use PC.

10.13.8.4 Condition flags

10.13.8.5 Examples
REV R3, R7
REV16 RO, RO
REVSH RO, R5
REVHS R3, R7
RBIT R7, R8

11011B-ATARM-21-Feb-12

These instructions do not change the flags.

; Reverse byte order of value in R7 and write it to R3

; Reverse byte order of each 16-bit halfword in RO

; Reverse Signed Halfword

; Reverse with Higher or Same condition

; Reverse bit order of value in R8 and write the result to R7

AImEl@ 117

10.13.9 TST and TEQ
Test bits and Test Equivalence.

10.13.9.1 Syntax
TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional execution” on page 84.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 80 for
details of the options.

10.13.9.2 Operation

These instructions test the value in a register against Operand2. They update the condition flags
based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand2. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rnis 0 or 1, use the TST instruction with an Operand2 constant that has
that bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value
of Operand2. This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.
TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

10.13.9.3 Restrictions
Do not use SP and do not use PC.

10.13.9.4 Condition flags
These instructions:
* update the N and Z flags according to the result

e can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 80

* do not affect the V flag.

10.13.9.5 Examples

TST RO, #0x3F8 ; Perform bitwise AND of RO value to Ox3F8,
; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to

; value in R9, APSR is updated but result is discarded

118 SAM3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.14 Multiply and divide instructions
Table 10-21 shows the multiply and divide instructions:

Table 10-21. Multiply and divide instructions

Mnemonic | Brief description See

MLA Multiply with Accumulate, 32-bit result | “MUL, MLA, and MLS” on page 120

MLS Multiply and Subtract, 32-bit result “MUL, MLA, and MLS” on page 120

MUL Multiply, 32-bit result “MUL, MLA, and MLS” on page 120

SDIV Signed Divide “SDIV and UDIV” on page 122

SMLAL Signed Multiply with Accumulate “UMULL, UMLAL, SMULL, and SMLAL” on
(32x32+64), 64-bit result page 121

SMULL Signed Multiply (32x32), 64-bit result | o Mo-L, UMLAL, SMULL, and SMLAL" on

page 121

ubDIV Unsigned Divide “SDIV and UDIV” on page 122

UMLAL Unsigned Multiply with Accumulate “UMULL, UMLAL, SMULL, and SMLAL” on
(32x32+64), 64-bit result page 121
Unsigned Multiply (32x32), 64-bit “UMULL, UMLAL, SMULL, and SMLAL” on

UMULL
result page 121

AImEl@ 119

11011B-ATARM-21-Feb-12

10.14.1

ATMEL

MUL, MLA, and MLS

10.14.1.1 Syntax

10.14.1.2 Operation

10.14.1.3 Restrictions

10.14.1.4

10.14.1.5 Examples

120

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and pro-
ducing a 32-bit result.

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where:

cond is an optional condition code, see “Conditional execution” on page 84.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 84.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32
bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places
the least significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value
from Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or
unsigned.

In these instructions, do not use SP and do not use PC.
If you use the S suffix with the MUL instruction:

* Rd, Rn, and Rm must all be in the range RO to R7
¢ Rd must be the same as Rm
¢ you must not use the cond suffix.

Condition flags

If S is specified, the MUL instruction:

¢ updates the N and Z flags according to the result
* does not affect the C and V flags.

MUL R10, R2, R5 ; Multiply, R10 = R2 x R5

MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2

MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2

MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)

11011B-ATARM-21-Feb-12

e S AM3N

10.14.2 UMULL, UMLAL, SMULL, and SMLAL

10.14.2.1

10.14.2.2

10.14.2.3

10.14.2.4

10.14.2.5

UMULL
SMLAL

Syntax

Operation

Restrictions

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and pro-
ducing a 64-bit result.

op{cond} RdLo, RdHi, Rn, Rm
where:

op is one of:

UMULL Unsigned Long Multiply.

UMLAL Unsigned Long Multiply, with Accumulate.

SMULL Signed Long Multiply.

SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional execution” on page 84.
RdHi, RdLo are the destination registers.

For UMLAL and SMLAL they also hold the accumulating value.

Rn, Rm are registers holding the operands.

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most signifi-
cant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers, adds the 64-bit result to the 64-bit unsigned integer contained in RdHiand RdLo,
and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed inte-
gers. It multiplies these integers and places the least significant 32 bits of the result in RdLo, and
the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed inte-
gers. It multiplies these integers, adds the 64-bit result to the 64-bit signed integer contained in
RdHi and RdLo, and writes the result back to RdHi and RdLo.

In these instructions:

* do not use SP and do not use PC
* RdHiand RdLo must be different registers.

Condition flags

Examples

11011B-ATARM-21-Feb-12

RO, R4, R5, R6 ; Unsigned (R4,R0)
R4, R5, R3, R8 ; Signed (R5,R4) =

These instructions do not affect the condition code flags.

= R5 x R6
(R5,R4) + R3 x R8

AImEl@ 121

10.14.3 SDIV and UDIV
Signed Divide and Unsigned Divide.

10.14.3.1 Syntax
SDIV{cond} {Rd,} Rn, Rm

ubDIv{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

10.14.3.2 Operation
SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded
towards zero.

10.14.3.3 Restrictions
Do not use SP and do not use PC.

10.14.3.4 Condition flags
These instructions do not change the flags.

10.14.3.5 Examples
SDIV RO, R2, R4 ; Signed divide, RO = R2/R4
ubDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1

122 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.15 Saturating instructions
This section describes the saturating instructions, SSAT and USAT.

10.15.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

10.15.1.1 Syntax
op{cond} Rd, #n, Rm {, shift #s}

where:
op is one of:
SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register.
n specifies the bit position to saturate to:

nranges from 1 to 32 for SSAT
nranges from 0 to 31 for USAT.

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the following:
ASR #s where sis in the range 1 to 31
LSL #s where sis in the range 0 to 31.

10.15.1.2 Operation
These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -
2 <x 21,

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 <x <2"1.
For signed n-bit saturation using SSAT, this means that:

« if the value to be saturated is less than 2™, the result returned is 2™
« if the value to be saturated is greater than 2771, the result returned is 2"'4
* otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:

¢ if the value to be saturated is less than 0, the result returned is 0
« if the value to be saturated is greater than 2", the result returned is 2™
¢ otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If satura-
tion occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag
unchanged. To clear the Q flag to 0, you must use the MSR instruction, see “MSR” on page 144.

To read the state of the Q flag, use the MRS instruction, see “MRS” on page 143.

AImEl@ 123

11011B-ATARM-21-Feb-12

ATMEL

10.15.1.3 Restrictions
Do not use SP and do not use PC.

10.15.1.4 Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

10.15.1.5 Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
saturate it as a signed 16-bit value and
; write it back to R7
USATNE RO, #7, R5 ; Conditionally saturate value in R5 as an
; unsigned 7 bit value and write it to RO

124 SA VS N 500000000000

11011B-ATARM-21-Feb-12

e S AM3N

10.16 Bitfield instructions
Table 10-22 shows the instructions that operate on adjacent sets of bits in registers or bitfields:

11011B-ATARM-21-Feb-12

Table 10-22. Packing and unpacking instructions
Mnemonic | Brief description See
BFC Bit Field Clear “BFC and BFI” on page 126
BFI Bit Field Insert “BFC and BFI” on page 126
SBFX Signed Bit Field Extract “SBFX and UBFX” on page 127
SXTB Sign extend a byte “SXT and UXT” on page 128
SXTH Sign extend a halfword “SXT and UXT” on page 128
UBFX Unsigned Bit Field Extract “SBFX and UBFX” on page 127
UXTB Zero extend a byte “SXT and UXT” on page 128
UXTH Zero extend a halfword “SXT and UXT” on page 128

ATMEL

125

10.16.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

10.16.1.1 Syntax
BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lIsb, #width

where:
cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-sb.

10.16.1.2 Operation
BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position /sb.
Other bits in Rd are unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at
the low bit position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

10.16.1.3 Restrictions
Do not use SP and do not use PC.

10.16.1.4 Condition flags
These instructions do not affect the flags.

10.16.1.5 Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
; bit O to bit 11 from R2

126 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.16.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

10.16.2.1 Syntax
SBFX{cond} Rd, Rn, #lIsb, #width

UBFX{cond} Rd, Rn, #lIsb, #width

where:
cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-sb.

10.16.2.2 Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the
destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the
destination register.

10.16.2.3 Restrictions
Do not use SP and do not use PC.

10.16.2.4 Condition flags
These instructions do not affect the flags.

10.16.2.5 Examples
SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign
; extend to 32 bits and then write the result to RO.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11l and zero
; extend to 32 bits and then write the result to R8

AImEl@ 127

11011B-ATARM-21-Feb-12

ATMEL

10.16.3 SXT and UXT
Sign extend and Zero extend.

10.16.3.1 Syntax
SXTextend{cond} {Rd,} Rm {, ROR #n}

UXTextend{cond} {Rd}, Rm {, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

10.16.3.2 Operation
These instructions do the following:
* Rotate the value from Rm right by 0, 8, 16 or 24 bits.
 Extract bits from the resulting value:
SXTB extracts bits[7:0] and sign extends to 32 bits.

UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.

10.16.3.3 Restrictions
Do not use SP and do not use PC.

10.16.3.4 Condition flags
These instructions do not affect the flags.

10.16.3.5 Examples

SXTH R4, R6, ROR #16 Rotate R6 right by 16 bits, then obtain the lower
halfword of the result and then sign extend to
32 bits and write the result to R4.
Extract lowest byte of the value in R10 and zero

extend it, and write the result to R3

UXTB R3, R10

128 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.17 Branch and control instructions

11011B-ATARM-21-Feb-12

Table 10-23 shows the branch and control instructions:

Table 10-23. Branch and control instructions
Mnemonic | Brief description See
B Branch “B, BL, BX, and BLX” on page 130
BL Branch with Link “B, BL, BX, and BLX” on page 130
BLX Branch indirect with Link “B, BL, BX, and BLX” on page 130
BX Branch indirect “B, BL, BX, and BLX” on page 130
CBNz Compare and Branch if Non Zero “CBZ and CBNZ” on page 132
CBz Compare and Branch if Non Zero “CBZ and CBNZ” on page 132
IT If-Then “IT” on page 133
TBB Table Branch Byte “TBB and TBH” on page 135
TBH Table Branch Halfword “TBB and TBH” on page 135

ATMEL

129

10.17.1 B, BL, BX, and BLX
Branch instructions.

10.17.1.1 Syntax
B{cond} label

BL{cond} label
BX{cond} Rm
BLX{cond} Rm

where:

B is branch (immediate).

BL is branch with link (immediate).

BX is branch indirect (register).

BLX is branch indirect with link (register).

cond is an optional condition code, see “Conditional execution” on page 84.

label is a PC-relative expression. See “PC-relative expressions” on page 84.

Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must

be 1, but the address to branch to is created by changing bit[0] to O.

10.17.1.2 Operation
All these instructions cause a branch to /abel, or to the address indicated in Rm. In addition:

e The BL and BLX instructions write the address of the next instruction to LR (the link register,
R14).
e The BX and BLX instructions cause a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All
other branch instructions must be conditional inside an IT block, and must be unconditional out-
side the IT block, see “IT” on page 133.

Table 10-24 shows the ranges for the various branch instructions.

Table 10-24. Branch ranges

Instruction Branch range

B label -16 MB to +16 MB
Beond label (outside IT block) 4 MBto +1 MB

Beond label (inside IT block) -16 MB to +16 MB
BL{cond} label 16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

You might have to use the .W suffix to get the maximum branch range. See “Instruction width
selection” on page 86.

10.17.1.3 Restrictions
The restrictions are:

130 S/A VIS N 50000000000

11011B-ATARM-21-Feb-12

e S AM3N

¢ do not use PC in the BLX instruction
e for BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target

address created by changing bit[0] to O

* when any of these instructions is inside an IT block, it must be the last instruction of the IT

block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it
has a longer branch range when it is inside an IT block.

10.17.1.4 Condition flags

These instructions do not change the flags.

10.17.1.5 Examples
B loopA ;
BLE ng
B.W target ;
BEQ target ;
BEQ.W target ;

BL funC ;
BX LR

BXNE RO ;
BLX RO ;

11011B-ATARM-21-Feb-12

Branch to loopA

; Conditionally branch to label ng

Branch to target within 16MB range

Conditionally branch to target

Conditionally branch to target within 1MB

Branch with link (Call) to function funC, return address
stored in LR

; Return from function call

Conditionally branch to address stored in RO
Branch with link and exchange (Call) to a address stored
in RO

AImEl@ 131

ATMEL

10.17.2 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

10.17.2.1 Syntax
CBZ Rn, label

CBNZ Rn, label

where:
Rn is the register holding the operand.
label is the branch destination.

10.17.2.2 Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the
number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0
BNE label

10.17.2.3 Restrictions
The restrictions are:
* Rn must be in the range of RO to R7
e the branch destination must be within 4 to 130 bytes after the instruction
* these instructions must not be used inside an IT block.

10.17.2.4 Condition flags
These instructions do not change the flags.

10.17.2.5 Examples
CBz R5, target ; Forward branch if R5 is zero
CBNZ RO, target ; Forward branch if RO is not zero

132 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.17.3

10.17.3.1

10.17.3.2

10.17.3.3

IT

Syntax

Operation

Restrictions

11011B-ATARM-21-Feb-12

If-Then condition instruction.

IT{x{y{z}}} cond

where:

X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.

z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.

E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of
the instructions in the IT block must be unconditional, and each of x, y, and z must be T or omit-
ted but not E.

The IT instruction makes up to four following instructions conditional. The conditions can be all
the same, or some of them can be the logical inverse of the others. The conditional instructions
following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond}
part of their syntax.

Your assembler might be able to generate the required IT instructions for conditional instructions
automatically, so that you do not need to write them yourself. See your assembler documenta-
tion for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an
IT block. Such an exception results in entry to the appropriate exception handler, with suitable
return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a PC-modi-
fying instruction is permitted to branch to an instruction in an IT block.

The following instructions are not permitted in an IT block:

o IT
* CBZ and CBNZ
* CPSID and CPSIE.
Other restrictions when using an IT block are:

AImEl@ 133

ATMEL

* a branch or any instruction that modifies the PC must either be outside an IT block or must be
the last instruction inside the IT block. These are:

— ADD PC, PC, Rm

— MOV PC, Rm

- B, BL, BX, BLX

— any LDM, LDR, or POP instruction that writes to the PC
— TBB and TBH

* do not branch to any instruction inside an IT block, except when returning from an exception
handler

e all conditional instructions except Bcond must be inside an IT block. Bcond can be either
outside or inside an IT block but has a larger branch range if it is inside one

¢ each instruction inside the IT block must specify a condition code suffix that is either the
same or logical inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the
use of assembler directives within them.

10.17.3.4 Condition flags
This instruction does not change the flags.

10.17.3.5 Example
ITTE NE ; Next 3 instructions are conditional
ANDNE RO, RO, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags

MOVEQ R2, R3 ; Conditional move

CMP RO, #9 ; Convert RO hex value (0 to 15) into ASCII
; (707-"9%, TAT-TFT)

ITE GT ; Next 2 instructions are conditional

ADDGT R1, RO, #55 ; Convert OxA -> "A"
ADDLE R1, RO, #48 ; Convert Ox0 -> "0OF

1T GT ; IT block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional

MOVEQ RO, R1 ; Conditional move

ADDEQ R2, R2, #10 ; Conditional add

ANDNE R3, R3, #1 ; Conditional AND

BNE.W dloop ; Branch instruction can only be used in the last
; Instruction of an IT block

1T NE ; Next instruction is conditional
ADD RO, RO, R1 ; Syntax error: no condition code used in IT block

134 SAM3N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.17.4 TBB and TBH

10.17.4.1 Syntax

10.17.4.2 Operation

10.17.4.3 Restrictions

Table Branch Byte and Table Branch Halfword.

TBB [Rn, Rm]
TBH [Rn, Rm, LSL #1]
where:

Rn is the register containing the address of the table of branch lengths. If Rnis PC,
then the address of the table is the address of the byte immediately following the TBB or TBH
instruction.

Rm is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.

These instructions cause a PC-relative forward branch using a table of single byte offsets for
TBB, or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index
into the table. For TBB the branch offset is twice the unsigned value of the byte returned from
the table. and for TBH the branch offset is twice the unsigned value of the halfword returned
from the table. The branch occurs to the address at that offset from the address of the byte
immediately after the TBB or TBH instruction.

The restrictions are:

¢ Rn must not be SP
¢ Rm must not be SP and must not be PC

¢ when any of these instructions is used inside an IT block, it must be the last instruction of the
IT block.

10.17.4.4 Condition flags

11011B-ATARM-21-Feb-12

These instructions do not change the flags.

AImEl@ 135

ATMEL

10.17.4.5 Examples
ADR.W RO, BranchTable_Byte
TBB [RO, R1] ; R1 is the index, RO is the base address of the
; branch table

Casel

; an instruction sequence follows

Case2

; an instruction sequence follows

Case3

; an instruction sequence follows

BranchTable_Byte
DCB 0
DCB ((Case2-Casel)/2)
DCB ((Case3-Casel)/2)
TBH [PC, R1, LSL #1]

Casel offset calculation

Case2 offset calculation

Case3 offset calculation

R1 is the index, PC is used as base of the
branch table

BranchTable_H
DCI ((CaseA - BranchTable_H)/2)
DCI ((CaseB - BranchTable_H)/2)
DCI ((CaseC - BranchTable_H)/2)

CaseA offset calculation
CaseB offset calculation
CaseC offset calculation

CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows

136 E;I\J\":BPJ __
11011B-ATARM-21-Feb-12

e S AM3N

10.18 Miscellaneous instructions
Table 10-25 shows the remaining Cortex-M3 instructions:

Table 10-25.

Miscellaneous instructions

Mnemonic

Brief description

See

BKPT

Breakpoint

“BKPT” on page 138

CPSID

Change Processor State, Disable
Interrupts

“CPS” on page 139

CPSIE

Change Processor State, Enable
Interrupts

“CPS” on page 139

DMB

Data Memory Barrier

“DMB” on page 140

DSB

Data Synchronization Barrier

“DSB” on page 141

ISB

Instruction Synchronization Barrier

“ISB” on page 142

MRS

Move from special register to register

“MRS” on page 143

MSR

Move from register to special register

“MSR” on page 144

NOP

No Operation

“NOP” on page 145

SEV

Send Event

“SEV” on page 146

SvC

Supervisor Call

“SVC” on page 147

WFE

Wait For Event

“WFE” on page 148

WFI

Wait For Interrupt

“WFI” on page 149

11011B-ATARM-21-Feb-12

ATMEL

137

10.18.1 BKPT
Breakpoint.
10.18.1.1 Syntax
BKPT #imm
where:
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

10.18.1.2 Operation
The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional informa-
tion about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaf-
fected by the condition specified by the IT instruction.

10.18.1.3 Condition flags
This instruction does not change the flags.

10.18.1.4 Examples
BKPT OxAB ; Breakpoint with immediate value set to OxAB (debugger can
; extract the immediate value by locating it using the PC)

138 SUATVI S N 00000000000

11011B-ATARM-21-Feb-12

e S AM3N

10.18.2 CPS
Change Processor State.

10.18.2.1 Syntax
CPSeffect iflags

where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
[Set or clear PRIMASK.
f Set or clear FAULTMASK.

10.18.2.2 Operation
CPS changes the PRIMASK and FAULTMASK special register values. See “Exception mask
registers” on page 49 for more information about these registers.

10.18.2.3 Restrictions
The restrictions are:

* use CPS only from privileged software, it has no effect if used in unprivileged software
e CPS cannot be conditional and so must not be used inside an IT block.

10.18.2.4 Condition flags
This instruction does not change the condition flags.

10.18.2.5 Examples
CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID ¥ ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE T ; Enable interrupts and fault handlers (clear FAULTMASK)

AImEl@ 139

11011B-ATARM-21-Feb-12

10.18.3 DMB
Data Memory Barrier.

10.18.3.1 Syntax

DMB{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 84.

10.18.3.2 Operation
DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in
program order, before the DMB instruction are completed before any explicit memory accesses
that appear, in program order, after the DMB instruction. DMB does not affect the ordering or
execution of instructions that do not access memory.

10.18.3.3 Condition flags
This instruction does not change the flags.

10.18.3.4 Examples
DMB ; Data Memory Barrier

140 SAM3N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.18.4 DSB
Data Synchronization Barrier.

10.18.4.1 Syntax

DSB{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 84.

10.18.4.2 Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the
DSB, in program order, do not execute until the DSB instruction completes. The DSB instruction
completes when all explicit memory accesses before it complete.

10.18.4.3 Condition flags
This instruction does not change the flags.

10.18.4.4 Examples
DSB ; Data Synchronisation Barrier

AImEl@ 141

11011B-ATARM-21-Feb-12

10.18.5 ISB
Instruction Synchronization Barrier.

10.18.5.1 Syntax
1SB{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 84.

10.18.5.2 Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that
all instructions following the ISB are fetched from memory again, after the ISB instruction has
been completed.

10.18.5.3 Condition flags
This instruction does not change the flags.

10.18.5.4 Examples
ISB ; Instruction Synchronisation Barrier

142 SAM3N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.18.6 MRS

10.18.6.1 Syntax

10.18.6.2 Operation

10.18.6.3 Restrictions

Move the contents of a special register to a general-purpose register.

MRS{cond} Rd, spec_reg

where:
cond is an optional condition code, see “Conditional execution” on page 84.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR,
for example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in
must also be restored. These operations use MRS in the state-saving instruction sequence and
MSR in the state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “MSR” on page 144.

Rd must not be SP and must not be PC.

10.18.6.4 Condition flags

10.18.6.5 Examples

This instruction does not change the flags.

MRS RO, PRIMASK ; Read PRIMASK value and write it to RO

11011B-ATARM-21-Feb-12

AImEl@ 143

ATMEL

10.18.7 MSR
Move the contents of a general-purpose register into the specified special register.

10.18.7.1 Syntax
MSR{cond} spec_reg, Rn

where:
cond is an optional condition code, see “Conditional execution” on page 84.
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

10.18.7.2 Operation
The register access operation in MSR depends on the privilege level. Unprivileged software can
only access the APSR, see “Application Program Status Register’” on page 47. Privileged soft-
ware can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.
When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:

* Rnis non-zero and the current BASEPRI value is 0
* Rnis non-zero and less than the current BASEPRI value.

See “MRS” on page 143.

10.18.7.3 Restrictions
Rn must not be SP and must not be PC.

10.18.7.4 Condition flags
This instruction updates the flags explicitly based on the value in Rn.

10.18.7.5 Examples
MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

144 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.18.8 NOP
No Operation.

10.18.8.1 Syntax

NOP{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 84.

10.18.8.2 Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might
remove it from the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.

10.18.8.3 Condition flags
This instruction does not change the flags.

10.18.8.4 Examples
NOP ; No operation

AImEl@ 145

11011B-ATARM-21-Feb-12

10.18.9 SEV
Send Event.
10.18.9.1 Syntax
SEV{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 84.

10.18.9.2 Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multipro-
cessor system. It also sets the local event register to 1, see “Power management” on page 72.

10.18.9.3 Condition flags
This instruction does not change the flags.

10.18.9.4 Examples
SEV ; Send Event

146 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

10.18.10 SVC
Supervisor Call.

10.18.10.1 Syntax
SVC{cond} #imm

where:
cond is an optional condition code, see “Conditional execution” on page 84.
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

10.18.10.2 Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

10.18.10.3 Condition flags
This instruction does not change the flags.

10.18.10.4 Examples
SVC O0x32 ; Supervisor Call (SVC handler can extract the immediate value
; by locating it via the stacked PC)

AImEl@ 147

11011B-ATARM-21-Feb-12

10.18.11 WFE

10.18.11.1

10.18.11.2 Operation

Syntax

Wait For Event.

WFE{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 84.

WFE is a hint instruction.
If the event register is 0, WFE suspends execution until one of the following events occurs:

¢ an exception, unless masked by the exception mask registers or the current priority level
* an exception enters the Pending state, if SEVONPEND in the System Control Register is set
* a Debug Entry request, if Debug is enabled

¢ an event signaled by a peripheral or another processor in a multiprocessor system using the
SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see “Power management” on page 72.

10.18.11.3 Condition flags

10.18.11.4 Examples

148

WFE

This instruction does not change the flags.

; Wait for event

11011B-ATARM-21-Feb-12

e S AM3N

10.18.12 WFI
Wait for Interrupt.

10.18.12.1 Syntax

WF1{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 84.

10.18.12.2 Operation
WFI is a hint instruction that suspends execution until one of the following events occurs:

* an exception
* a Debug Entry request, regardless of whether Debug is enabled.

10.18.12.3 Condition flags
This instruction does not change the flags.

10.18.12.4 Examples
WF1 ; Wait for interrupt

AImEl@ 149

11011B-ATARM-21-Feb-12

ATMEL

10.19 About the Cortex-M3 peripherals

150

The address map of the Private peripheral bus (PPB) is:

Table 10-26. Core peripheral register regions

Address Core peripheral Description

gigggggggﬁ System control block Table 10-30 on page 164

8§Eggg§gig System timer Table 10-33 on page 191

gigggggig?: gce;itttre; I:a/;actored Interrupt Table 10-27 on page 151

gigggggggg System control block Table 10-30 on page 164

gigggggggg MPU Type Register iRmesllgiqunze%r(01,)indicating no MPU is
gigggggigg gce;itttre; I:a/;actored Interrupt Table 10-27 on page 151

1. Software can read the MPU Type Register at 0xEO00ED90 to test for the presence of a memory

protection unit (MPU).

In register descriptions:

* the register type is described as follows:
RW Read and write.

RO Read-only.
WO Write-only.

* the required privilege gives the privilege level required to access the register, as follows:
Privileged Only privileged software can access the register.

Unprivileged Both unprivileged and privileged software can access the register.

11011B-ATARM-21-Feb-12

e S AM3N

10.20 Nested Vectored Interrupt Controller

This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses.
The NVIC supports:

Table 10-27. NVIC register summary

¢ 1 to 33 interrupts.

* A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower
priority, so level 0 is the highest interrupt priority.

¢ Level and pulse detection of interrupt signals.

* Dynamic reprioritization of interrupts.

* Grouping of priority values into group priority and subpriority fields.
* Interrupt tail-chaining.

The processor automatically stacks its state on exception entry and unstacks this state on
exception exit, with no instruction overhead. This provides low latency exception handling. The

hardware implementation of the NVIC registers is:

Required Reset
Address Name Type privilege value Description
OXEQOOE100 ISERO RwW Privileged 0x00000000 “Interrupt Set-enable Registers” on page 153
OXEOOOE180 ICERO RW Privileged 0x00000000 “Interrupt Clear-enable Registers” on page 154
OXEO00E200 ISPRO RW Privileged 0x00000000 “Interrupt Set-pending Registers” on page 155
OXEO00E280 ICPRO RW Privileged 0x00000000 “Interrupt Clear-pending Registers” on page 156
OXEO00E300 IABRO RO Privileged 0x00000000 “Interrupt Active Bit Registers” on page 157
0xEOOOE400- IPRO- - . . .)
OXEO00E41C IPR8 RW Privileged 0x00000000 Interrupt Priority Registers” on page 158
OXEO0OEFO0 STIR WO %?nflgurable 0x00000000 1%c;ftware Trigger Interrupt Register” on page
1. See the register description for more information.
10.20.1 The CMSIS mapping of the Cortex-M3 NVIC registers

11011B-ATARM-21-Feb-12

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the
CMSIS:

* the Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to
arrays of 32-bit integers, so that:

— the array ISER[0] corresponds to the registers ISERO

— the array ICER[0] corresponds to the registers ICERO
— the array ISPR[0] corresponds to the registers ISPRO
— the array ICPR[0] corresponds to the registers ICPRO

— the array IABR[0] corresponds to the registers IABRO

ATMEL

151

152

ATMEL

¢ the 4-bit fields of the Interrupt Priority Registers map to an array of 4-bit integers, so that the
array IP[0] to IP[32] corresponds to the registers IPRO-IPR8, and the array entry IP[n] holds
the interrupt priority for interrupt n.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Regis-
ters. For more information see the description of the NVIC_SetPriority function in “NVIC
programming hints” on page 163. Table 10-28 shows how the interrupts, or IRQ numbers, map
onto the interrupt registers and corresponding CMSIS variables that have one bit per interrupt.

Table 10-28. Mapping of interrupts to the interrupt variables

CMSIS array elements (!

Interrupts | Set-enable | Clear-enable | Set-pending | Clear-pending | Active Bit
0-32 ISERI[O0] ICERI[O0] ISPRI0] ICPR[0] IABR[0]
1. Each array element corresponds to a single NVIC register, for example the element

ICER[0] corresponds to the ICERQO register.

11011B-ATARM-21-Feb-12

e S AM3N

10.20.2 Interrupt Set-enable Registers
The ISERQO register enables interrupts, and show which interrupts are enabled. See:
e the register summary in Table 10-27 on page 151 for the register attributes
» Table 10-28 on page 152 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| SETENA bits |
23 22 21 20 19 18 17 16

| SETENA bits |
15 14 13 12 11 10 9 8

| SETENA bits |
7 6 5 4 3 2 1 0

| SETENA bits |

¢ SETENA

Interrupt set-enable bits.

Write:

0 = no effect

1 = enable interrupt.
Read:

0 = interrupt disabled
1 = interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, assert-
ing its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its
priority.

AImEl@ 153

11011B-ATARM-21-Feb-12

ATMEL

10.20.3 Interrupt Clear-enable Registers
The ICERO register disables interrupts, and shows which interrupts are enabled. See:

e the register summary in Table 10-27 on page 151 for the register attributes
* Table 10-28 on page 152 for which interrupts are controlled by each register
The bit assignments are:

31 30 29 28 27 26 25 24
| CLRENA

23 22 21 20 19 18 17 16
| CLRENA

15 14 13 12 11 10 9 8
| CLRENA

7 6 5 4 3 2 1 0
| CLRENA
¢ CLRENA
Interrupt clear-enable bits.
Write:
0 = no effect

1 = disable interrupt.
Read:
0 = interrupt disabled

1 = interrupt enabled.

154 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.20.4 Interrupt Set-pending Registers
The ISPRO register forces interrupts into the pending state, and shows which interrupts are

pending. See:
e the register summary in Table 10-27 on page 151 for the register attributes
* Table 10-28 on page 152 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

e SETPEND

Interrupt set-pending bits.

Write:

0 = no effect.

1 = changes interrupt state to pending.
Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to the ISPR bit corresponding to:

e an interrupt that is pending has no effect
* a disabled interrupt sets the state of that interrupt to pending

AImEl@ 155

11011B-ATARM-21-Feb-12

ATMEL

10.20.5 Interrupt Clear-pending Registers
The ICPRO register removes the pending state from interrupts, and show which interrupts are
pending. See:
e the register summary in Table 10-27 on page 151 for the register attributes
* Table 10-28 on page 152 for which interrupts are controlled by each register.
The bit assignments are:
31 30 29 28 27 26 25 24
| CLRPEND
23 22 21 20 19 18 17 16
| CLRPEND
15 14 13 12 11 10 9 8
| CLRPEND
7 6 5 4 3 2 1 0
| CLRPEND
e CLRPEND
Interrupt clear-pending bits.
Write:
0 = no effect.

1 = removes pending state an interrupt.

Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

156

11011B-ATARM-21-Feb-12

e S AM3N

10.20.6 Interrupt Active Bit Registers
The IABRO register indicates which interrupts are active. See:
e the register summary in Table 10-27 on page 151 for the register attributes
» Table 10-28 on page 152 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

« ACTIVE

Interrupt active flags:
0 = interrupt not active
1 = interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

AImEl@ 157

11011B-ATARM-21-Feb-12

10.20.7

10.20.7.1 IPRm

ATMEL

Interrupt Priority Registers

The IPRO-IPRS8 registers provide a 4-bit priority field for each interrupt (See the “Peripheral Iden-
tifiers” section of the datasheet for more details). These registers are byte-accessible. See the
register summary in Table 10-27 on page 151 for their attributes. Each register holds four priority
fields, that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[32], as shown:

31 30 29 28 27 26 25 24
IP[4m+3] |

23 22 21 20 19 18 17 16
IP[4m+2] |

15 14 13 12 11 10 9 8
IP[4m-+1] |

7 6 5 4 3 2 1 0
IP[4m] |

10.20.7.2 IPR4

31 30 29 28 27 26 25 24
IP[19] |

23 22 21 20 19 18 17 16
IP[18] |

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

10.20.7.3 IPR3

31 30 29 28 27 26 25 24
IP[15] |

23 22 21 20 19 18 17 16
IP[14] |

15 14 13 12 11 10 9 8
IP[13] |

7 6 5 4 3 2 1 0
IP[12] |

158

11011B-ATARM-21-Feb-12

e S AM3N

10.20.7.4 IPR2

31 30 29 28 27 26 25 24

| IP[11] |
23 22 21 20 19 18 17 16

| IP[10] |
15 14 13 12 11 10 9 8

I IP[9] |
7 6 5 4 3 2 1 0

I IP[8] |

10.20.7.5 IPR1

31 30 29 28 27 26 25 24

| |
23 22 21 20 19 18 17 16

I IP[6] |
15 14 13 12 11 10 9 8

I IP[5] |
7 6 5 4 3 2 1 0

| IP[4] |

10.20.7.6 IPRO

31 30 29 28 27 26 25 24

I IP[3] |
23 22 21 20 19 18 17 16

| IP[2] |
15 14 13 12 1 10 9 8

I IP[1] |
7 6 5 4 3 2 1 0

I IP[0] |

¢ Priority, byte offset 3
¢ Priority, byte offset 2
¢ Priority, byte offset 1

¢ Priority, byte offset 0
Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt.
The processor implements only bits[7:4] of each field, bits[3:0] read as zero and ignore writes.

See “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 151 for more information about the IP[0] to IP[32]
interrupt priority array, that provides the software view of the interrupt priorities.

AImEl@ 159

11011B-ATARM-21-Feb-12

ATMEL

Find the IPR number and byte offset for interrupt N as follows:

* the corresponding IPR number, M, is given by M= NDIV 4
* the byte offset of the required Priority field in this register is N MOD 4, where:
— byte offset 0 refers to register bits[7:0]
— byte offset 1 refers to register bits[15:8]
— byte offset 2 refers to register bits[23:16]
— byte offset 3 refers to register bits[31:24].

160 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.20.8 Software Trigger Interrupt Register

Write to the STIR to generate a Software Generated Interrupt (SGI). See the register summary
in Table 10-27 on page 151 for the STIR attributes.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the
STIR, see “System Control Register” on page 173.

Only privileged software can enable unprivileged access to the STIR.

The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved INTID |
7 6 5 4 3 2 1 0

| INTID |

¢ INTID

Interrupt ID of the required SGi, in the range 0-239. For example, a value of b000000011 specifies interrupt IRQ3.

11011B-ATARM-21-Feb-12

AImEl@ 161

ATMEL

10.20.9 Level-sensitive interrupts
The processor supports level-sensitive interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typ-
ically this happens because the ISR accesses the peripheral, causing it to clear the interrupt
request.

When the processor enters the ISR, it automatically removes the pending state from the inter-
rupt, see “Hardware and software control of interrupts” . For a level-sensitive interrupt, if the
signal is not deasserted before the processor returns from the ISR, the interrupt becomes pend-
ing again, and the processor must execute its ISR again. This means that the peripheral can
hold the interrupt signal asserted until it no longer needs servicing.

10.20.9.1 Hardware and software control of interrupts
The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the fol-
lowing reasons:
* the NVIC detects that the interrupt signal is HIGH and the interrupt is not active
* the NVIC detects a rising edge on the interrupt signal
e software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-

pending Registers” on page 155, or to the STIR to make an SGI pending, see “Software
Trigger Interrupt Register” on page 161.

A pending interrupt remains pending until one of the following:

The processor enters the ISR for the interrupt. This changes the state of the interrupt from pend-
ing to active. Then:

— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC
samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately re-enter the
ISR. Otherwise, the state of the interrupt changes to inactive.

— If the interrupt signal is not pulsed while the processor is in the ISR, when the
processor returns from the ISR the state of the interrupt changes to inactive.

» Software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt
does not change. Otherwise, the state of the interrupt changes to inactive.

162 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.20.10 NVIC design hints and tips
Ensure software uses correctly aligned register accesses. The processor does not support
unaligned accesses to NVIC registers. See the individual register descriptions for the supported

10.20.10.1

11011B-ATARM-21-Feb-12

access sizes.

A interrupt can enter pending state even it is disabled.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the
new vector table are setup for fault handlers and all enabled exception like interrupts. For more
information see “Vector Table Offset Register” on page 170.

NVIC programming hints

Software uses the CPSIE | and CPSID | instructions to enable and disable interrupts. The
CMSIS provides the following intrinsic functions for these instructions:

void _ disable_irq(void) // Disable Interrupts

void __enable_irq(void) // Enable Interrupts
In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 10-29. CMSIS functions for NVIC control

CMSIS interrupt control function

Description

void NVIC_SetPriorityGrouping(uint32_t
priority_grouping)

Set the priority grouping

void NVIC_EnablelRQ(IRQn_t IRQnN)

Enable IRQN

void NVIC_DisablelRQ(IRQn_t IRQN)

Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQnN)

Return true if IRQn is pending

void NVIC_SetPendinglRQ (IRQn_t IRQN)

Set IRQn pending

void NVIC_ClearPendinglRQ (IRQn_t IRQN)

Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQN)

Return the IRQ number of the active
interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority)

Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQnN)

Read priority of IRQn

void NVIC_SystemReset (void)

Reset the system

For more information about these functions see the CMSIS documentation.

ATMEL

163

ATMEL

10.21 System control block

The System control block (SCB) provides system implementation information, and system con-
trol. This includes configuration, control, and reporting of the system exceptions. The system
control block registers are:

Table 10-30. Summary of the system control block registers

Required | Reset
Address Name Type privilege value Description
0xEOOOE008 ACTLR RW Privileged | 0x00000000 “Auxiliary Control Register” on page 165
0xEOOOEDO00 CPUID RO Privileged | 0x412FC230 “CPUID Base Register” on page 166
OxEOOOEDO04 ICSR Rw® Privileged | 0x00000000 “Interrupt Control and State Register” on page 167
OxEOOOEDO08 VTOR RW Privileged | 0x00000000 “Vector Table Offset Register” on page 170
OXEOOOEDOC AIRCR RW (M Privileged | 0XxFA050000 1,°;ﬁpllcat|on Interrupt and Reset Control Register” on page
O0xEOOOED10 SCR RW Privileged | 0x00000000 “System Control Register” on page 173
OxEOOOED14 CCR RW Privileged | 0x00000200 “Configuration and Control Register” on page 174
OxEOOOED18 SHPR1 RW Privileged | 0x00000000 “System Handler Priority Register 1” on page 177
0xEOOOED1C SHPR2 RW Privileged | 0x00000000 “System Handler Priority Register 2" on page 178
OxEOOOED20 SHPR3 RW Privileged | 0x00000000 “System Handler Priority Register 3" on page 178
OxEOOOED24 SHCRS RW Privileged | 0x00000000 “System Handler Control and State Register” on page 179
O0xEOOOED28 CFSR RW Privileged | 0x00000000 “Configurable Fault Status Register” on page 181
OXEOOOED28 MMSR® RW Privileged | 0x00 1I\ggmory Management Fault Address Register” on page
OXxEOOOED29 | BFSR®@ RW Privileged | 0x00 “Bus Fault Status Register” on page 183
OXEOOOED2A | UFSR® RW Privileged | 0x0000 “Usage Fault Status Register” on page 185
0xEO00ED2C HFSR RW Privileged | 0x00000000 “Hard Fault Status Register” on page 187
OXEOOOED34 MMAR RW Privileged | Unknown 1I\ggmory Management Fault Address Register” on page
OxEOOOED38 BFAR RW Privileged | Unknown “Bus Fault Address Register” on page 189

Notes: 1. See the register description for more information.
2. A subregister of the CFSR.

10.21.1 The CMSIS mapping of the Cortex-M3 SCB registers
To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the
CMSIS, the byte array SHP[0] to SHP[12] corresponds to the registers SHPR1-SHPRS.

164 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.21.2 Auxiliary Control Register
The ACTLR provides disable bits for the following processor functions:
* |T folding
¢ write buffer use for accesses to the default memory map
e interruption of multi-cycle instructions.
See the register summary in Table 10-30 on page 164 for the ACTLR attributes. The bit assign-

ments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved | DISFOLD | DISDEFWBUF DISMCYCINT |

e DISFOLD
When set to 1, disables IT folding. see “About IT folding” on page 165 for more information.

e DISDEFWBUF

When set to 1, disables write buffer use during default memory map accesses. This causes all bus faults to be precise bus
faults but decreases performance because any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M3 processor.

e DISMCYCINT
When set to 1, disables interruption of load multiple and store multiple instructions. This increases the interrupt latency of
the processor because any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

10.21.2.1 About IT folding
In some situations, the processor can start executing the first instruction in an IT block while it is
still executing the IT instruction. This behavior is called IT folding, and improves performance,
However, IT folding can cause jitter in looping. If a task must avoid jitter, set the DISFOLD bit to
1 before executing the task, to disable IT folding.

AImEl@ 165

11011B-ATARM-21-Feb-12

ATMEL

10.21.3 CPUID Base Register

The CPUID register contains the processor part number, version, and implementation informa-
tion. See the register summary in Table 10-30 on page 164 for its attributes. The bit assignments

are:
31 30 29 28 27 26 25 24

| Implementer |
23 22 21 20 19 18 17 16

| Variant Constant |
15 14 13 12 11 10 9 8

| PartNo |
7 6 5 4 3 2 1 0

| PartNo Revision |

¢ Implementer

Implementer code:

0x41 = ARM

e Variant

Variant number, the r value in the rnpn product revision identifier:

0x2 =r2p0

e Constant

Reads as OxF

¢ PartNo

Part number of the processor:

0xC23 = Cortex-M3

¢ Revision

Revision number, the p value in the rnpn product revision identifier:

0x0 =r2p0

166 SAM3N |

11011B-ATARM-21-Feb-12

e S AM3N

10.21.4 Interrupt Control and State Register
The ICSR:

* provides:
— set-pending and clear-pending bits for the PendSV and SysTick exceptions

* indicates:
— the exception number of the exception being processed
— whether there are preempted active exceptions
— the exception number of the highest priority pending exception
— whether any interrupts are pending.

See the register summary in Table 10-30 on page 164, and the Type descriptions in Table 10-33
on page 191, for the ICSR attributes. The bit assignments are:

31 30 29 28 27 26 25 24
Reserved Reserved | PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR | Reserved
23 22 21 20 19 18 17 16
Reserved for | sopENDING VECTPENDING
Debug
15 14 13 12 1 10 9 8
| VECTPENDING | RETTOBASE Reserved | VECTACTIVE |
7 6 5 4 3 2 1 0
| VECTACTIVE |

* PENDSVSET
RW

PendSV set-pending bit.

Write:

0 = no effect

1 = changes PendSV exception state to pending.
Read:

0 = PendSV exception is not pending

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.
e PENDSVCLR

WO

PendSV clear-pending bit.

Write:

0 = no effect

1 = removes the pending state from the PendSV exception.

AImEl@ 167

11011B-ATARM-21-Feb-12

* PENDSTSET
RW

SysTick exception set-pending bit.

Write:

0 = no effect

1 = changes SysTick exception state to pending.

Read:

0 = SysTick exception is not pending

1 = SysTick exception is pending.

e PENDSTCLR

WO

SysTick exception clear-pending bit.

Write:

0 = no effect

1 = removes the pending state from the SysTick exception.

This bit is WO. On a register read its value is Unknown.

¢ Reserved for Debug use

RO

This bit is reserved for Debug use and reads-as-zero when the processor is not in Debug.
¢ ISRPENDING

RO

Interrupt pending flag, excluding Faults:

0 = interrupt not pending

1 = interrupt pending.

e VECTPENDING

RO

Indicates the exception number of the highest priority pending enabled exception:
0 = no pending exceptions

Nonzero = the exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

168 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

* RETTOBASE
RO

Indicates whether there are preempted active exceptions:

0 = there are preempted active exceptions to execute

1 =there are no active exceptions, or the currently-executing exception is the only active exception.
e VECTACTIVE

RO

Contains the active exception number:

0 = Thread mode

Nonzero = The exception number (") of the currently active exception.

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” on page 48.

When you write to the ICSR, the effect is Unpredictable if you:

e write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
e write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

Note: 1. This is the same value as IPSR bits [8:0] see “Interrupt Program Status Register” on page 48.

AImEl@ 169

11011B-ATARM-21-Feb-12

ATMEL

10.21.5 Vector Table Offset Register

The VTOR indicates the offset of the vector table base address from memory address
0x00000000. See the register summary in Table 10-30 on page 164 for its attributes.

The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved | TBLOFE |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

[TBLOFF | Reserved |

« TBLOFF

Vector table base offset field. It contains bits[29:7] of the offset of the table base from the bottom of the memory map.
Bit[29] determines whether the vector table is in the code or SRAM memory region:

0 = code

1 = SRAM.

Bit[29] is sometimes called the TBLBASE bit.

When setting TBLOFF, you must align the offset to the number of exception entries in the vector table. The minimum align-
ment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the alignment by rounding up to the next power
of two. For example, if you require 21 interrupts, the alignment must be on a 64-word boundary because the required table
size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

170 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.21.6 Application Interrupt and Reset Control Register

The AIRCR provides priority grouping control for the exception model, endian status for data
accesses, and reset control of the system. See the register summary in Table 10-30 on page

164 and Table 10-33 on page 191 for its attributes.

To write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor

ignores the write.

The bit assignments are:

31 30 29 28 27 26 25 24

| On Read: VECTKEYSTAT, On Write: VECTKEY |
23 22 21 20 19 18 17 16

| On Read: VECTKEYSTAT, On Write: VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANESS | Reserved | PRIGROUP |
7 6 5 4 3 2 1 0

VECTCLR-
Reserved SYSRESETREQ AGTIVE VECTRESET

e VECTKEYSTAT
Register Key:

Reads as OxFA05

¢ VECTKEY

Register key:

On writes, write Ox5FA to VECTKEY, otherwise the write is ignored.

¢ ENDIANESS

RO

Data endianness bit:

0 = Little-endian

ENDIANESS is set from the BIGEND configuration signal during reset.

* PRIGROUP
R/W

Interrupt priority grouping field. This field determines the split of group priority from subpriority, see “Binary point” on page

172.

¢ SYSRESETREQ

WO

System reset request:

0 = no effect

1 = asserts a proc_reset_signal.

This is intended to force a large system reset of all major components except for debug.

This bit reads as 0.
Y)

11011B-ATARM-21-Feb-12

171

* VECTCLRACTIVE
WO

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is

Unpredictable.

* VECTRESET

ATMEL

WO
Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is
Unpredictable.
10.21.6.1 Binary point
The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the
Interrupt Priority Registers into separate group priority and subpriority fields. Table 10-31 shows
how the PRIGROUP value controls this split.
Table 10-31. Priority grouping
Interrupt priority level value, PRI_N[7:0] Number of
Binary Group priority | Subpriority Group
PRIGROUP | point ™ bits bits priorities Subpriorities
b011 bxxxx.0000 [7:4] None 16 1
b100 bxxx.y0000 [7:5] [4] 8 2
b101 bxx.yy0000 [7:6] [5:4] 4 4
b110 bx.yyy0000 [7] [6:4] 2 8
b111 b.yyyy0000 None [7:4] 1 16
1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a sub-
priority field bit.
Determining preemption of an exception uses only the group priority field, see “Interrupt priority
grouping” on page 68.
172 SAM3N |

11011B-ATARM-21-Feb-12

e S AM3N

10.21.7 System Control Register

The SCR controls features of entry to and exit from low power state. See the register summary
in Table 10-30 on page 164 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved SEVONPEND Reserved SLEEPDEEP SLEEONEXIT Reserved |

e SEVONPEND
Send Event on Pending bit:

0 = only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded
1 = enabled events and all interrupts, including disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not
waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an sev instruction or an external event.
e SLEEPDEEP

Controls whether the processor uses sleep or deep sleep as its low power mode:

0 = sleep

1 = deep sleep.

e SLEEPONEXIT

Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0 = do not sleep when returning to Thread mode.

1 = enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

AIMEL 173

11011B-ATARM-21-Feb-12

ATMEL

10.21.8 Configuration and Control Register
The CCR controls entry to Thread mode and enables:
¢ the handlers for hard fault and faults escalated by FAULTMASK to ignore bus faults
e trapping of divide by zero and unaligned accesses

¢ access to the STIR by unprivileged software, see “Software Trigger Interrupt Register” on
page 161.

See the register summary in Table 10-30 on page 164 for the CCR attributes.

The bit assignments are:

31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved STKALIGN | BFHFNMIGN |
7 6 5 4 3 2 1 0
UNALIGN_T USERSETM NONBASET
Reserved DIV_O_TRP RP Reserved PEND HRDENA
e STKALIGN

Indicates stack alignment on exception entry:

0 = 4-byte aligned

1 = 8-byte aligned.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack alignment. On return from the excep-

tion it uses this stacked bit to restore the correct stack alignment.

* BFHFNMIGN

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0 = data bus faults caused by load and store instructions cause a lock-up

1 = handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.
Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

e DIV_O_TRP

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0:
0 = do not trap divide by 0

1 = trap divide by 0.

When this bit is set to 0,a divide by zero returns a quotient of 0.

e UNALIGN_TRP

Enables unaligned access traps:

0 = do not trap unaligned halfword and word accesses

174 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

1 = trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.
e USERSETMPEND

Enables unprivileged software access to the STIR, see “Software Trigger Interrupt Register” on page 161:

0 = disable

1 =enable.

¢ NONEBASETHRDENA

Indicates how the processor enters Thread mode:

0 = processor can enter Thread mode only when no exception is active.

1 = processor can enter Thread mode from any level under the control of an EXC_RETURN value, see “Exception return”
on page 70.

AImEl@ 175

11011B-ATARM-21-Feb-12

ATMEL

10.21.9 System Handler Priority Registers
The SHPR1-SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have
configurable priority.

SHPR1-SHPR3 are byte accessible. See the register summary in Table 10-30 on page 164 for
their attributes.

The system fault handlers and the priority field and register for each handler are:

Table 10-32. System fault handler priority fields

Handler Field Register description
Memory management PRI 4
fault
Bus fault PRL5 System Handler Priority Register 1” on page 177
Usage fault PRI_6
SVCall PRI_11 “System Handler Priority Register 2” on page 178
PendSV PRI_14

“System Handler Priority Register 3” on page 178
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:4] of each field, and
bits[3:0] read as zero and ignore writes.

176 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.21.9.1 System Handler Priority Register 1
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_7: Reserved |
23 22 21 20 19 18 17 16

| PRI_6 |
15 14 13 12 11 10 9 8

| PRL5 |
7 6 5 4 3 2 1 0

| PRI_4 |

* PRI_7

Reserved

* PRIL6

Priority of system handler 6, usage fault

e PRL5
Priority of system handler 5, bus fault

e PRI_4
Priority of system handler 4, memory management fault

AImEl@ 177

11011B-ATARM-21-Feb-12

10.21.9.2 System Handler Priority Register 2
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_11 |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

* PRI_11

Priority of system handler 11, SVCall

10.21.9.3 System Handler Priority Register 3
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

e PRI_15

Priority of system handler 15, SysTick exception

e PRI_14
Priority of system handler 14, PendSV

178 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.21.10 System Handler Control and State Register
The SHCSR enables the system handlers, and indicates:

¢ the pending status of the bus fault, memory management fault, and SVC exceptions

¢ the active status of the system handlers.

See the register summary in Table 10-30 on page 164 for the SHCSR attributes. The bit assign-

ments are:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved USGFAULTENA BUSFAULTENA MEMFAULTENA |
15 14 13 12 11 10 9 8
SVCALI[_)PENDE BUSFAEI[_)TPEND MEMFS\EJIID_TPEN USGFAILEJBTPEND SYSTICKACT PENDSVACT Reserved MONITORACT
7 6 5 4 3 2 1 0
| SVCALLAVCT | Reserved USGFAULTACT Reserved BUSFAULTACT MEMFAULTACT

¢ USGFAULTENA
Usage fault enable bit, set to 1 to enable ("

e BUSFAULTENA
Bus fault enable bit, set to 1 to enable®

¢ MEMFAULTENA
Memory management fault enable bit, set to 1 to enable®

e SVCALLPENDED
SVC call pending bit, reads as 1 if exception is pending @

¢ BUSFAULTPENDED
Bus fault exception pending bit, reads as 1 if exception is pending®

¢ MEMFAULTPENDED
Memory management fault exception pending bit, reads as 1 if exception is pending®

e USGFAULTPENDED
Usage fault exception pending bit, reads as 1 if exception is pending®

e SYSTICKACT
SysTick exception active bit, reads as 1 if exception is active

* PENDSVACT

PendSV exception active bit, reads as 1 if exception is active

—_

Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.

2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to change the pending
status of the exceptions.

3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change the active status of
the exceptions, but see the Caution in this section.

11011B-ATARM-21-Feb-12

AIMEL 179

e MONITORACT
Debug monitor active bit, reads as 1 if Debug monitor is active

e SVCALLACT
SVC call active bit, reads as 1 if SVC call is active

e USGFAULTACT
Usage fault exception active bit, reads as 1 if exception is active

e BUSFAULTACT
Bus fault exception active bit, reads as 1 if exception is active

e MEMFAULTACT
Memory management fault exception active bit, reads as 1 if exception is active

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

You can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the
active bits to perform a context switch that changes the current exception type.

» Software that changes the value of an active bit in this register without correct adjustment to the stacked content can
cause the processor to generate a fault exception. Ensure software that writes to this register retains and subsequently
restores the current active status.

* After you have enabled the system handlers, if you have to change the value of a bit in this register you must use a read-
modify-write procedure to ensure that you change only the required bit.

180 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.21.11 Configurable Fault Status Register

The CFSR indicates the cause of a memory management fault, bus fault, or usage fault. See the
register summary in Table 10-30 on page 164 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24
| Usage Fault Status Register: UFSR |

23 22 21 20 19 18 17 16
| Usage Fault Status Register: UFSR |

15 14 13 12 11 10 9 8
| Bus Fault Status Register: BFSR |

7 6 5 4 3 2 1 0
| Memory Management Fault Status Register: MMFSR |

The following subsections describe the subregisters that make up the CFSR:

* “Memory Management Fault Status Register’ on page 182
» “Bus Fault Status Register” on page 183
¢ “Usage Fault Status Register” on page 185.
The CFSR is byte accessible. You can access the CFSR or its subregisters as follows:

* access the complete CFSR with a word access to 0OXEOOOED28

* access the MMFSR with a byte access to 0OXEOOOED28

e access the MMFSR and BFSR with a halfword access to OXEOOOED28
¢ access the BFSR with a byte access to OxEOOOED29

e access the UFSR with a halfword access to OXEOOOED2A.

AImEl@ 181

11011B-ATARM-21-Feb-12

ATMEL

10.21.11.1 Memory Management Fault Status Register
The flags in the MMFSR indicate the cause of memory access faults. The bit assignments are:

7 6 5 4 3 2 1 0
[MMARVALID | Reserved | MSTKERR | wmunstkerr [Reserved [DACCviOL | 1ACCVIOL
e MMARVALID

Memory Management Fault Address Register (MMAR) valid flag:
0 = value in MMAR is not a valid fault address
1 = MMAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose MMAR value
has been overwritten.

e MSTKERR

Memory manager fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to the MMAR.

e MUNSTKERR

Memory manager fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the MMAR.

e DACCVIOL

Data access violation flag:

0 = no data access violation fault

1 = the processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the MMAR with the address of the attempted access.

e |IACCVIOL

Instruction access violation flag:

0 = no instruction access violation fault

1 = the processor attempted an instruction fetch from a location that does not permit execution.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the MMAR.

182 SUA VIS N 000000000

11011B-ATARM-21-Feb-12

e S AM3N

10.21.11.2 Bus Fault Status Register
The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

7 6 5 4 3 2 1 0
[BFRVALID | Reserved | STKERR | UNSTKERR | mpreciserr | PRECISERR | IBUSERR
» BFARVALID

Bus Fault Address Register (BFAR) valid flag:
0 = value in BFAR is not a valid fault address
1 = BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This pre-
vents problems if returning to a stacked active bus fault handler whose BFAR value has been overwritten.

e STKERR

Bus fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the BFAR.

e UNSTKERR

Bus fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

e IMPRECISERR
Imprecise data bus error:
0 = no imprecise data bus error

1 = a data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
both IMPRECISERR set to 1 and one of the precise fault status bits set to 1.

AImEl@ 183

11011B-ATARM-21-Feb-12

ATMEL

¢ PRECISERR
Precise data bus error:

0 = no precise data bus error

1 = a data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

When the processor sets this bit is 1, it writes the faulting address to the BFAR.

* IBUSERR
Instruction bus error:

0 = no instruction bus error
1 = instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit is 1, it does not write a fault address to the BFAR.

184 SUA VIS N 0000000000

11011B-ATARM-21-Feb-12

e S AM3N

10.21.11.3 Usage Fault Status Register
The UFSR indicates the cause of a usage fault. The bit assignments are:

15 14 13 12 11 10 9 8
| Reserved | DIVBYZERO | UNALIGNED |
7 6 5 4 3 2 1 0
| Reserved | NOCP | INVPC | INVSTATE | UNDEFINSTR |
e DIVBYZERO

Divide by zero usage fault:
0 = no divide by zero fault, or divide by zero trapping not enabled
1 = the processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero.

Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR to 1, see “Configuration and Control Register’
on page 174.

e UNALIGNED

Unaligned access usage fault:

0 = no unaligned access fault, or unaligned access trapping not enabled

1 =the processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the CCR to 1, see “Configuration and Control
Register” on page 174.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN_TRP.
¢ NOCP

No coprocessor usage fault. The processor does not support coprocessor instructions:

0 = no usage fault caused by attempting to access a coprocessor

1 = the processor has attempted to access a coprocessor.

e INVPC

Invalid PC load usage fault, caused by an invalid PC load by EXC_RETURN:

0 = no invalid PC load usage fault

1 = the processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

¢ INVSTATE
Invalid state usage fault:

0 = no invalid state usage fault

1 = the processor has attempted to execute an instruction that makes illegal use of the EPSR.

AImEl@ 185

11011B-ATARM-21-Feb-12

ATMEL

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal use
of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

¢ UNDEFINSTR

Undefined instruction usage fault:

0 = no undefined instruction usage fault

1 = the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

186 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.21.12 Hard Fault Status Register
The HFSR gives information about events that activate the hard fault handler. See the register
summary in Table 10-30 on page 164 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing
1 to any bit clears that bit to 0. The bit assignments are:

31 30 29 28 27 26 25 24

| DEBUGEVT FORCED | Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved | VECTTBL | Reserved |

e DEBUGEVT

Reserved for Debug use. When writing to the register you must write 0 to this bit, otherwise behavior is Unpredictable.

* FORCED

Indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0 = no forced hard fault

1 = forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.
e VECTTBL

Indicates a bus fault on a vector table read during exception processing:

0 = no bus fault on vector table read

1 = bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is set to 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

AImEl@ 187

11011B-ATARM-21-Feb-12

ATMEL

10.21.13 Memory Management Fault Address Register
The MMFAR contains the address of the location that generated a memory management fault.
See the register summary in Table 10-30 on page 164 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

« ADDRESS

When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the location that generated the memory
management fault

When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction
can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid. See “Memory Manage-
ment Fault Status Register” on page 182.

188 SUA VIS N 0000000000

11011B-ATARM-21-Feb-12

e S AM3N

10.21.14 Bus Fault Address Register

The BFAR contains the address of the location that generated a bus fault. See the register sum-
mary in Table 10-30 on page 164 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

« ADDRESS

When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the location that generated the bus fault

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even if it is not the

address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid. See “Bus Fault Status Regis-

ter” on page 183.

11011B-ATARM-21-Feb-12

ATMEL

189

ATMEL

10.21.15 System control block design hints and tips

Ensure software uses aligned accesses of the correct size to access the system control block
registers:

* except for the CFSR and SHPR1-SHPRS, it must use aligned word accesses

» for the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to system control block registers.
In a fault handler. to determine the true faulting address:

¢ Read and save the MMFAR or BFAR value.

* Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or
BFAR address is valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change the
MMFAR or BFAR value. For example, if a higher priority handler preempts the current fault han-
dler, the other fault might change the MMFAR or BFAR value.

190 S/A VI3 N 500000000000

11011B-ATARM-21-Feb-12

e S AM3N

10.22 System timer, SysTick

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to
zero, reloads (wraps to) the value in the LOAD register on the next clock edge, then counts
down on subsequent clocks.

When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

Table 10-33. System timer registers summary

Required | Reset
Address Name Type privilege value Description
0xEOOOEO10 CTRL RW Privileged | 0x00000004 “SysTick Control and Status Register” on page 192
OxEOOOEO14 LOAD RW Privileged | 0x00000000 “SysTick Reload Value Register” on page 193
OxEOOOEO018 VAL RW Privileged | 0x00000000 “SysTick Current Value Register’ on page 194
O0xEO0OE0O1C | CALIB RO Privileged | 0x0002904 (" | “SysTick Calibration Value Register” on page 195
1. SysTick calibration value.

AImEl@ 191

11011B-ATARM-21-Feb-12

ATMEL

10.22.1 SysTick Control and Status Register
The SysTick CTRL register enables the SysTick features. See the register summary in Table 10-
33 on page 191 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved COUNTFLAG |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved CLKSOURCE TICKINT ENABLE |

¢ COUNTFLAG
Returns 1 if timer counted to 0 since last time this was read.

e CLKSOURCE
Indicates the clock source:

0 =MCK/8
1 =MCK
e TICKINT

Enables SysTick exception request:

0 = counting down to zero does not assert the SysTick exception request

1 = counting down to zero to asserts the SysTick exception request.

Software can use COUNTFLAG to determine if SysTick has ever counted to zero.
e ENABLE

Enables the counter:

0 = counter disabled

1 = counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the LOAD register and then counts down. On reach-
ing 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

192 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.22.2 SysTick Reload Value Register

The LOAD register specifies the start value to load into the VAL register. See the register sum-
mary in Table 10-33 on page 191 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| -RELOAD |

« RELOAD

Value to load into the VAL register when the counter is enabled and when it reaches 0, see “Calculating the RELOAD
value” .

10.22.2.1 Calculating the RELOAD value
The RELOAD value can be any value in the range 0x00000001-0xO0FFFFFF. A start value of O

is possible, but has no effect because the SysTick exception request and COUNTFLAG are acti-
vated when counting from 1 to 0.

The RELOAD value is calculated according to its use:

* To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD
value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set
RELOAD to 99.

* To deliver a single SysTick interrupt after a delay of N processor clock cycles, use a RELOAD
of value N. For example, if a SysTick interrupt is required after 400 clock pulses, set RELOAD
to 400.

AImEl@ 193

11011B-ATARM-21-Feb-12

ATMEL

10.22.3 SysTick Current Value Register
The VAL register contains the current value of the SysTick counter. See the register summary in
Table 10-33 on page 191 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| CURRENT |
15 14 13 12 11 10 9 8

| CURRENT |
7 6 5 4 3 2 1 0

| CURRENT |

e CURRENT

Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SysTick CTRL.COUNTFLAG bit to 0.

194 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

10.22.4 SysTick Calibration Value Register

The CALIB register indicates the SysTick calibration properties. See the register summary in
Table 10-33 on page 191 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

[NOREF | skew | Reserved |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

e NOREF

Reads as zero.

e SKEW
Reads as zero

* TENMS

Read as 0x0002904. The SysTick calibration value is fixed at 0x0002904 (10500), which allows the generation of a time
base of 1 ms with SysTick clock at 6 MHz (48/8 = 6 MHz)

10.22.5 SysTick design hints and tips

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power
mode, the SysTick counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

AImEl@ 195

11011B-ATARM-21-Feb-12

10.23 Glossary

ATMEL

This glossary describes some of the terms used in technical documents from ARM.
Abort

A mechanism that indicates to a processor that the value associated with a memory access is
invalid. An abort can be caused by the external or internal memory system as a result of
attempting to access invalid instruction or data memory.

Aligned

A data item stored at an address that is divisible by the number of bytes that defines the data
size is said to be aligned. Aligned words and halfwords have addresses that are divisible by four
and two respectively. The terms word-aligned and halfword-aligned therefore stipulate
addresses that are divisible by four and two respectively.

Banked register

A register that has multiple physical copies, where the state of the processor determines which
copy is used. The Stack Pointer, SP (R13) is a banked register.

Base register

In instruction descriptions, a register specified by a load or store instruction that is used to hold
the base value for the instruction’s address calculation. Depending on the instruction and its
addressing mode, an offset can be added to or subtracted from the base register value to form
the address that is sent to memory.

See also “Index register”
“Little-endian (LE)” See also “Little-endian memory” .Breakpoint

A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of
register contents, memory locations, variable values at fixed points in the program execution to
test that the program is operating correctly. Breakpoints are removed after the program is suc-
cessfully tested.

Condition field

A four-bit field in an instruction that specifies a condition under which the instruction can
execute.

Conditional execution

If the condition code flags indicate that the corresponding condition is true when the instruction
starts executing, it executes normally. Otherwise, the instruction does nothing.

Context

The environment that each process operates in for a multitasking operating system. In ARM pro-
cessors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

Coprocessor

A processor that supplements the main processor. Cortex-M3 does not support any
COprocessors.

196 SUA VIS N 0000000000

11011B-ATARM-21-Feb-12

e S AM3N

Debugger

A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

Direct Memory Access (DMA)

An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

Doubleword

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise
stated.

Doubleword-aligned
A data item having a memory address that is divisible by eight.
Endianness

Byte ordering. The scheme that determines the order that successive bytes of a data word are
stored in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)”
Exception

An event that interrupts program execution. When an exception occurs, the processor suspends
the normal program flow and starts execution at the address indicated by the corresponding
exception vector. The indicated address contains the first instruction of the handler for the
exception.

An exception can be an interrupt request, a fault, or a software-generated system exception.
Faults include attempting an invalid memory access, attempting to execute an instruction in an
invalid processor state, and attempting to execute an undefined instruction.

Exception service routine
See “Interrupt handler” .
Exception vector

See “Interrupt vector” .
Flat address mapping

A system of organizing memory in which each physical address in the memory space is the
same as the corresponding virtual address.

Halfword

A 16-bit data item.

lllegal instruction

An instruction that is architecturally Undefined.
Implementation-defined

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Implementation-specific

AImEl@ 197

11011B-ATARM-21-Feb-12

ATMEL

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the
option chosen does not affect software compatibility.

Index register

In some load and store instruction descriptions, the value of this register is used as an offset to
be added to or subtracted from the base register value to form the address that is sent to mem-
ory. Some addressing modes optionally enable the index register value to be shifted prior to the
addition or subtraction.

See also “Base register”

Instruction cycle count

The number of cycles that an instruction occupies the Execute stage of the pipeline.
Interrupt handler

A program that control of the processor is passed to when an interrupt occurs.
Interrupt vector

One of a number of fixed addresses in low memory, or in high memory if high vectors are config-
ured, that contains the first instruction of the corresponding interrupt handler.

Little-endian (LE)

Byte ordering scheme in which bytes of increasing significance in a data word are stored at
increasing addresses in memory.

See also “Little-endian (LE)” See also “Little-endian memory” .Breakpoint”, “.” , “Endianness” .
Little-endian memory
Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the
word at that address

a byte at a halfword-aligned address is the least significant byte within the halfword at that
address.

Load/store architecture

A processor architecture where data-processing operations only operate on register contents,
not directly on memory contents.

Prefetching

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline
before the preceding instructions have finished executing. Prefetching an instruction does not
mean that the instruction has to be executed.

Read

Reads are defined as memory operations that have the semantics of a load. Reads include the
Thumb instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

198 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

Region
A partition of memory space.
Reserved

A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These
fields are reserved for use in future extensions of the architecture or are implementation-specific.
All reserved bits not used by the implementation must be written as 0 and read as 0.

Should Be One (SBO)

Write as 1, or all 1s for bit fields, by software. Writing as 0 produces Unpredictable results.
Should Be Zero (SBZ)

Write as 0, or all Os for bit fields, by software. Writing as 1 produces Unpredictable results.
Should Be Zero or Preserved (SBZP)

Write as 0, or all Os for bit fields, by software, or preserved by writing the same value back that
has been previously read from the same field on the same processor.

Thread-safe

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when access-
ing shared resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction

One or two halfwords that specify an operation for a processor to perform. Thumb instructions
must be halfword-aligned.

Unaligned

A data item stored at an address that is not divisible by the number of bytes that defines the data
size is said to be unaligned. For example, a word stored at an address that is not divisible by
four.

Undefined
Indicates an instruction that generates an Undefined instruction exception.
Unpredictable (UNP)

You cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset

Also known as a core reset. Initializes the majority of the processor excluding the debug control-
ler and debug logic. This type of reset is useful if you are using the debugging features of a
processor.

Word
A 32-bit data item.
Write

Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.

AImEl@ 199

11011B-ATARM-21-Feb-12

ATMEL

200 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

11. Debug and Test Features

11.1 Description

The SAMS3 Series Microcontrollers feature a number of complementary debug and test
capabilities. The Serial Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port
(SW-DP) and JTAG Debug(JTAG-DP) port is used for standard debugging functions, such as
downloading code and single-stepping through programs. It also embeds a serial wire trace.

11.2 Embedded Characteristics

e Debug access to all memory and registers in the system, including Cortex-M3 register bank
when the core is running, halted, or held in reset.

¢ Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
¢ Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches

» Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and
system profiling

* Instrumentation Trace Macrocell (ITM) for support of printf style debugging

* IEEE1149.1 JTAG Boundary-can on All Digital Pins

Figure 11-1. Debug and Test Block Diagram

TMS

L [

TCK/SWCLK

[]| o

[l

Boundary SWJ-DP JTAGSEL

TAP

TDO/TRACESWO

[l

POR

Reset =
and

Test I:l TST

AImEl@ 201

11011B-ATARM-21-Feb-12

ATMEL

11.3 Application Examples

11.3.1 Debug Environment
Figure 11-2 shows a complete debug environment example. The SWJ-DP interface is used for
standard debugging functions, such as downloading code and single-stepping through the pro-
gram and viewing core and peripheral registers.

Figure 11-2. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM3

SAMS3-based Application Board

11.3.2 Test Environment
Figure 11-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent
and interpreted by the tester. In this example, the “board in test” is designed using a number of
JTAG-compliant devices. These devices can be connected to form a single scan chain.

202 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

Figure 11-3. Application Test Environment Example

Test Adaptor Tester
JTAG
Probe
JTAG .)
Connector| | Chip ny == Chip 2
I
SAMB-based Application Board In Test
11.4 Debug and Test Pin Description
Table 11-1. Debug and Test Signal List
Signal Name Function Type Active Level
Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input
SWDNTAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
TDO/TRACESWO Test Data Out/Trace Asynchronous Output)
Data Out
TMS/SWDIO Test Mode Select/Serial Wire Input
Input/Output
JTAGSEL JTAG Selection Input High

1.TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal
pull-up corresponding to this PIO line must be enabled to avoid current consumption due to float-

ing input.

11011B-ATARM-21-Feb-12

ATMEL

203

ATMEL

11.5 Functional Description

11.5.1

11.5.2

Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low
level during power-up, the device is in normal operating mode. When at high level, the device is
in test mode or FFPI mode. The TST pin integrates a permanent pull-down resistor of about 15
kQ so that it can be left unconnected for normal operation. Note that when setting the TST pin to
low or high level at power up, it must remain in the same state during the duration of the whole
operation.

Debug Architecture

Figure 11-4 shows the Debug Architecture used in the SAM3. The Cortex-M3 embeds four func-
tional units for debug:

¢ SWJ-DP (Serial Wire/JTAG Debug Port)

¢ FPB (Flash Patch Breakpoint)

* DWT (Data Watchpoint and Trace)

* ITM (Instrumentation Trace Macrocell)

¢ TPIU (Trace Port Interface Unit)

The debug architecture information that follows is mainly dedicated to developers of SWJ-DP
Emulators/Probes and debugging tool vendors for Cortex M3-based microcontrollers. For further
details on SWJ-DP see the Cortex M3 technical reference manual.

Figure 11-4. Debug Architecture

DWT

4 watchpoints

PC sampler

data address sampler

data sampler

interrupt trace

CPU statistics

FPB
SWJ-DP
6 breakpoints
SWDATAG
IT™
software trace SWO trace
32 channels
TPIU
time stamping

11.5.3

204

Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M3 embeds a SWJ-DP Debug port which is the standard CoreSight™ debug port. It
combines Serial Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port(JTAG-DP), 5
pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables JTAG-DP and enables SW-DP.

11011B-ATARM-21-Feb-12

e S AM3N

When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asyn-
chronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace
can only be used with SW-DP, not JTAG-DP.

Table 11-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO TMS SWDIO
TCK/SWCLK TCK SWCLK

TDI TDI

TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly
between SWJ-DP and JTAG boundary scan operations. A chip reset must be performed after
JTAGSEL is changed.

11.5.3.1 SW-DP and JTAG-DP Selection Mechanism
Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-
DP is selected by default after reset.
¢ Switch from JTAG-DP to SW-DP. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
— Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (Ox79E7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
* Switch from SWD to JTAG. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
— Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (Ox3CE7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

11.5.4 FPB (Flash Patch Breakpoint)
The FPB:
* Implements hardware breakpoints
¢ Patches code and data from code space to system space.
The FPB unit contains:
* Two literal comparators for matching against literal loads from Code space, and remapping to
a corresponding area in System space.

¢ Six instruction comparators for matching against instruction fetches from Code space and
remapping to a corresponding area in System space.

e Alternatively, comparators can also be configured to generate a Breakpoint instruction to the
processor core on a match.

1155 DWT (Data Watchpoint and Trace)
The DWT contains four comparators which can be configured to generate the following:

¢ PC sampling packets at set intervals
¢ PC or Data watchpoint packets

AImEl@ 205

11011B-ATARM-21-Feb-12

ATMEL

¢ Watchpoint event to halt core
The DWT contains counters for the items that follow:

¢ Clock cycle (CYCCNT)

¢ Folded instructions

¢ Load Store Unit (LSU) operations

¢ Sleep Cycles

¢ CPI (all instruction cycles except for the first cycle)
* Interrupt overhead

11.5.6 ITM (Instrumentation Trace Macrocell)
The ITM is an application driven trace source that supports printf style debugging to trace Oper-
ating System (OS) and application events, and emits diagnostic system information. The ITM
emits trace information as packets which can be generated by three different sources with sev-
eral priority levels:

» Software trace: Software can write directly to ITM stimulus registers. This can be done
thanks to the “printf” function. For more information, refer to Section 11.5.6.1 “How to
Configure the ITM”.

* Hardware trace: The ITM emits packets generated by the DWT.

* Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp.

11.5.6.1 How to Configure the ITM
The following example describes how to output trace data in asynchronous trace mode.

* Configure the TPIU for asynchronous trace mode (refer to Section 11.5.6.3 “5.4.3. How to
Configure the TPIU”)

* Enable the write accesses into the ITM registers by writing “OXxC5ACCES5” into the
Lock Access Register (Address: 0xEOOOOFBO)

e Write 0x00010015 into the Trace Control Register:
— Enable ITM
— Enable Synchronization packets
— Enable SWO behavior
— Fixthe ATB ID to 1
* Write 0x1 into the Trace Enable Register:
— Enable the Stimulus port 0
* Write 0x1 into the Trace Privilege Register:

— Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will
result in the corresponding stimulus port being accessible in user mode.)

* Write into the Stimulus port 0 register: TPIU (Trace Port Interface Unit)
The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macro-
cell (ITM).

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

206 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

11.5.6.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRAC-
ESWO pin. The TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port.
As a consequence, asynchronous trace mode is only available when the Serial Wire Debug
mode is selected since TDO signal is used in JTAG debug mode.

Two encoding formats are available for the single pin output:

¢ Manchester encoded stream. This is the reset value.
* NRZ_based UART byte structure

11.5.6.3 5.4.3. How to Configure the TPIU
This example only concerns the asynchronous trace mode.
* Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to
enable the use of trace and debug blocks.
* Write 0x2 into the Selected Pin Protocol Register
— Select the Serial Wire Output — NRZ
* Write 0x100 into the Formatter and Flush Control Register

* Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the
baud rate of the asynchronous output (this can be done automatically by the debugging tool).

11.5.7 IEEE® 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST, is tied to low while JTAG SEL is high
during power-up and must be kept in this state during the whole boundary scan operation. The
SAMPLE,EXTEST and BYPASS functions are implemented. In SWD/JTAG debug mode, the
ARM processor responds with a non-JTAG chip ID that identifies the processor. This is not IEEE
1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port opera-
tions. A chip reset must be performed after JTAGSEL is changed. A Boundary-scan Descriptor
Language (BSDL) file is provided on Atmel’s web site site to set up the test.

11.5.7.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins
and associated control signals.

Each SAMS input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit con-
tains data that can be forced on the pad. The INPUT bit facilitates the observability of data
applied to the pad. The CONTROL bit selects the direction of the pad.

For more information, please refer to BDSL files available for the SAM3 Series.

AImEl@ 207

11011B-ATARM-21-Feb-12

11.5.8 ID Code Register
Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER |
23 22 21 20 19 18 17 16

| PART NUMBER |

15 14 13 12 11 10 9 8

| PART NUMBER MANUFACTURER IDENTITY |
7 6 5 4 3 2 1 0

| MANUFACTURER IDENTITY 1 |

¢ VERSION[31:28]: Product Version Number
Set to 0x0.

e PART NUMBER[27:12]: Product Part Number

Chip Name Chip ID
SAM3N 0x05B2E

e MANUFACTURER IDENTITY[11:1]
Set to Ox01F.

* Bit[0] Required by IEEE Std. 1149.1.

Set to 0x1.
Chip Name JTAG ID Code
SAM3N 0x05B2EO3F

208 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

12. Reset Controller (RSTC)

12.1 Description

The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the sys-
tem without any external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the
peripheral and processor resets.

12.2 Embedded Characteristics
The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.

The Reset Controller is capable to return to the software the source of the last reset, either a
general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin input/output. It
is capable to shape a reset signal for the external devices, simplifying to a minimum connection
of a push-button on the NRST pin to implement a manual reset.

The configuration of the Reset Controller is saved as supplied on VDDIO.

12.3 Block Diagram

Figure 12-1. Reset Controller Block Diagram

Reset Controller

core_backup_reset >

——> rstc_irq

vddcore_nreset >

Reset > proc_nreset

user_reset State

NRST Manager

D NRST > periph_nreset

Manager
nrst_out
exter_nreset
WDRPROC
wd_fault >

SLCK

AImEl@ 209

11011B-ATARM-21-Feb-12

ATMEL

12.4 Functional Description

1241 Reset Controller Overview
The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at
Slow Clock and generates the following reset signals:
* proc_nreset: Processor reset line. It also resets the Watchdog Timer.
¢ periph_nreset: Affects the whole set of embedded peripherals.
* nrst_out: Drives the NRST pin.
These reset signals are asserted by the Reset Controller, either on external events or on soft-

ware action. The Reset State Manager controls the generation of reset signals and provides a
signal to the NRST Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling
external device resets.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Con-
troller, is powered with VDDIO, so that its configuration is saved as long as VDDIO is on.

12.4.2 NRST Manager
After power-up, NRST is an output during the ERSTL time period defined in the RSTC_MR.
When ERSTL has elapsed, the pin behaves as an input and all the system is held in reset if
NRST is tied to GND by an external signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the
Reset State Manager. Figure 12-2 shows the block diagram of the NRST Manager.

Figure 12-2. NRST Manager

RSTC_MR
RSTC_SR URSTIEN
URSTS

—> rstc_irq
NRSTL | rsTC_MR Other [2
-URSTEN interrupt
sources
4| . > user_reset

NRST RSTC_MR
Dﬁ ERSTL
| nrst_out

I External Reset Timer f«——— exter_nreset

12.4.2.1 NRST Signal or Interrupt

The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low,
a User Reset is reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of
NRST occurs. Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR.
As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only
when RSTC_SR is read.

210 SA M 3 N L __|
11011B-ATARM-21-Feb-12

124.2.2

12.4.3

12.4.4

12.4.4.1

211

Reset States

ATMEL

The Reset Controller can also be programmed to generate an interrupt instead of generating a
reset. To do so, the bit URSTIEN in RSTC_MR must be written at 1.

NRST External Reset Control

The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this
occurs, the “nrst_out” signal is driven low by the NRST Manager for a time programmed by the
field ERSTL in RSTC_MR. This assertion duration, named EXTERNAL_RESET_LENGTH, lasts
2(ERSTL+1) glow Clock cycles. This gives the approximate duration of an assertion between 60 ps
and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that
the NRST line is driven low for a time compliant with potential external devices connected on the
system reset.

As the ERSTL field is within RSTC_MR register, which is backed-up, it can be used to shape the
system power-up reset for devices requiring a longer startup time than the Slow Clock Oscillator.

Brownout Manager

The Brownout manager is embedded within the Supply Controller, please refer to the product
Supply Controller section for a detailed description.

The Reset State Manager handles the different reset sources and generates the internal reset
signals. It reports the reset status in the field RSTTYP of the Status Register (RSTC_SR). The
update of the field RSTTYP is performed when the processor reset is released.

General Reset

A general reset occurs when a Power-on-reset is detected, a Brownout or a Voltage regulation
loss is detected by the Supply controller. The vddcore_nreset signal is asserted by the Supply
Controller when a general reset occurs.

All the reset signals are released and the field RSTTYP in RSTC_SR reports a General Reset.
As the RSTC_MR is reset, the NRST line rises 2 cycles after the vddcore_nreset, as ERSTL
defaults at value 0x0.

Figure 12-3 shows how the General Reset affects the reset signals.

11011B-ATARM-21-Feb-12

ATMEL

Figure 12-3. General Reset State

sk L L L L L S
A
" LML L LY
backup_nreset % %
Processor Startup
proc_nreset <« =2cycles S S
ReTTY® XXX 0x0 = General Reset % % XXX
periph_nreset g g
NRST % %
(nrst_out)
EXTERNAL RESET LENGTH

=2 cycles

12.4.4.2 Backup Reset

A Backup reset occurs when the chip returns from Backup mode. The core_backup_reset signal
is asserted by the Supply Controller when a Backup reset occurs.

The field RSTTYP in RSTC_SR is updated to report a Backup Reset.

12.4.4.3 User Reset
The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in
RSTC_MR is at 1. The NRST input signal is resynchronized with SLCK to insure proper behav-
ior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset
and the Peripheral Reset are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle
processor startup. The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, the RSTTYP field of the Status Register
(RSTC_SR) is loaded with the value 0x4, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for
EXTERNAL_RESET_LENGTH Slow Clock cycles, as programmed in the field ERSTL. How-
ever, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is driven low
externally, the internal reset lines remain asserted until NRST actually rises.

212 SA M 3 N L __|
11011B-ATARM-21-Feb-12

ATMEL

Figure 12-4. User Reset State

so L[LML LML Loy
MK o gEpEpERE
NRST 1\ /

Resynch. Resynch. Processor Startup
2 cycles 2 cycles =2 cycles
proc_nreset /
RSTTYP Any XXX 0x4 = User Reset
periph_nreset
NRST /
(nrst_out)

<
<

>= EXTERNAL RESET LENGTH

12.4.4.4 Software Reset

The Reset Controller offers several commands used to assert the different reset signals. These
commands are performed by writing the Control Register (RSTC_CR) with the following bits at 1:

* PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer.

* PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory
system, and, in particular, the Remap Command. The Peripheral Reset is generally used for
debug purposes.

Except for debug purposes , PERRST must always be used in conjunction with PROCRST
(PERRST and PROCRST set both at 1 simultaneously).

e EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field
ERSTL in the Mode Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these com-
mands can be performed independently or simultaneously. The software reset lasts 3 Slow
Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is
detected on the Master Clock (MCK). They are released when the software reset is left, i.e.; syn-
chronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field
ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field
RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in
RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Prog-
ress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is left.

213 SA M 3 N L __|
11011B-ATARM-21-Feb-12

ATMEL

No other software reset can be performed while the SRCMP bit is set, and writing any value in
RSTC_CR has no effect.

Figure 12-5. Software Reset

SLCK

MCK

Write RSTC_CR

proc_nreset
if PROCRST=1

RSTTYP

periph_nreset
if PERRST=1

NRST
(nrst_out)
if EXTRST=1

SRCMP in RSTC_SR

12.4.4.5

214

L L

Any
Freq.

JEpSREEEEEREEEEE RN
JEpEREREEREREEEEE RN

Resynch|Processor Startup)
1 cycle =2 cycles
Any XXX 0x3 = Software Reset

S XX A D

A
Y

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

Y

S

Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock
cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in
WDT_MR:

¢ [f WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST
line is also asserted, depending on the programming of the field ERSTL. However, the
resulting low level on NRST does not result in a User Reset state.

¢ If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a
processor reset if WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog
Reset, and the Watchdog is enabled by default and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset
controller.

11011B-ATARM-21-Feb-12

ATMEL

Figure 12-6. Watchdog Reset

sew | L L L L L L L L LY
o piglginipigint
wd_fault / N

Processor Startup|
2cycles

1]

proc_nreset /

RSTTYP Any XXX 0x2 = Watchdog Reset

periph_nreset

Only if
WDRPROC = 0

NRST
(nrst_out)

A
A

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

12.45 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources,

given in descending order:
* General Reset
¢ Backup Reset
¢ Watchdog Reset
* Software Reset
* User Reset
Particular cases are listed below:

e When in User Reset:

— A watchdog event is impossible because the Watchdog Timer is being reset by the
proc_nreset signal.

— A software reset is impossible, since the processor reset is being activated.
¢ When in Software Reset:
— A watchdog event has priority over the current state.
— The NRST has no effect.
* When in Watchdog Reset:
— The processor reset is active and so a Software Reset cannot be programmed.
— A User Reset cannot be entered.

215 SAM 3 N L __|
11011B-ATARM-21-Feb-12

ATMEL

12.4.6 Reset Controller Status Register
The Reset Controller status register (RSTC_SR) provides several status fields:

* RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

* SRCMP bit: This field indicates that a Software Reset Command is in progress and that no
further software reset should be performed until the end of the current one. This bit is
automatically cleared at the end of the current software reset.

* NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on
each MCK rising edge.

* URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR
register. This transition is also detected on the Master Clock (MCK) rising edge (see Figure
12-7). If the User Reset is disabled (URSTEN = 0) and if the interruption is enabled by the
URSTIEN bit in the RSTC_MR register, the URSTS bit triggers an interrupt. Reading the
RSTC_SR status register resets the URSTS bit and clears the interrupt.

Figure 12-7. Reset Controller Status and Interrupt

read
Peripheral Access RSTC SR
2 cycle 2 cycle
resync¢hronizatipn resynchionizatiory
N

NRST _\/— /‘—\

NRSTL
URSTS /
rstc_irq
if (URSTEN = 0) and _

(URSTIEN = 1)

216 SA M 3 N L __|
11011B-ATARM-21-Feb-12

|
AIMEL
12.5 Reset Controller (RSTC) User Interface

Table 12-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register RSTC_CR Write-only -

0x04 Status Register RSTC_SR Read-only 0x0000_0000

0x08 Mode Register RSTC_MR Read-write 0x0000 0001
217 S A M 3 N |

11011B-ATARM-21-Feb-12

A IIIIEI% O

12.5.1 Reset Controller Control Register

Name: RSTC_CR

Address: 0x400E1400

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I I - |
7 6 5 4 3 2 1 0

| = | - | - | - [EXTRST | PERRST | - [PROCRST |

e PROCRST: Processor Reset
0 = No effect.

1 = If KEY is correct, resets the processor.
¢ PERRST: Peripheral Reset

0 = No effect.

1 = If KEY is correct, resets the peripherals.
e EXTRST: External Reset

0 = No effect.

1 = If KEY is correct, asserts the NRST pin.

* KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

218 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

12.5.2 Reset Controller Status Register

A |I|'|||E|%D O

Name: RSTC_SR

Address: 0x400E1404

Access: Read-only
31 30 29 28 27 26 25 24

- T - T - - [- [- T - —]
23 22 21 20 19 18 17 16

| - | - | - - | - [- [SRCMP NRSTL |
15 14 13 12 11 10 9 8

| - | - | - - | - | RSTTYP |
7 6 5 4 3 2 1 0

I - I - I - - I - I - - URSTS |

* URSTS: User Reset Status
0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.

1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

e RSTTYP: Reset Type

Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

RSTTYP Reset Type Comments
0 0 0 General Reset First power-up Reset
0 0 1 Backup Reset Return from Backup mode
0 1 0 Watchdog Reset Watchdog fault occurred
0 1 1 Software Reset Processor reset required by the software
1 0 0 User Reset NRST pin detected low

e NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

¢ SRCMP: Software Reset Command in Progress

0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

219 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

ATMEL

12.5.3 Reset Controller Mode Register
Name: RSTC_MR
Address: 0x400E1408
Access: Read-write
31 30 29 28 27 26 25 24
| KEY |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
I - I - I - I - I ERSTL |
7 6 5 4 3 2 1 0
| - | - | | URSTIEN | - - - URSTEN |
e URSTEN: User Reset Enable
0 = The detection of a low level on the pin NRST does not generate a User Reset.
1 = The detection of a low level on the pin NRST triggers a User Reset.
¢ URSTIEN: User Reset Interrupt Enable
0 = USRTS bit in RSTC_SR at 1 has no effect on rstc_irq.
1 = USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.
e ERSTL: External Reset Length
ERSTL+1

This field defines the external reset length. The external reset is asserted during a time of 2!
allows assertion duration to be programmed between 60 ys and 2 seconds.

¢ KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

220

) Slow Clock cycles. This

11011B-ATARM-21-Feb-12

s S AM3N

13. Real-time Timer (RTT)

13.1 Description

The Real-time Timer is built around a 32-bit counter used to count roll-over events of the
programmable16-bit prescaler which enables counting elapsed seconds from a 32 kHz slow
clock source. It generates a periodic interrupt and/or triggers an alarm on a programmed value.

13.2 Embedded Characteristics
¢ 32-bit Free-running Counter on prescaled slow clock
* 16-bit Configurable Prescaler
e Interrupt on Alarm

13.3 Block Diagram

Figure 13-1. Real-time Timer

RTT_MR RTT_MR
| RTTRSTl |RTPRES

reload

SLCK | 16-bit

Divider

RTT_MR

0

|

RTTRST |—A\ 1 0 /
|

32-bit

RTT_VR

RTT_AR

> Counter

set

RTT_MR

RTTINCIEN

il

ETN_I

reset

RTT_SR

read ¢

RTT_SR

reset

> set

RTT_SR

11011B-ATARM-21-Feb-12

ATMEL

rtt_int

] o

RTT_MR

ALMIEN

rtt_alarm

-

221

ATMEL

13.4 Functional Description

222

The Real-time Timer can be used to count elapsed seconds. It is built around a 32-bit counter
fed by Slow Clock divided by a programmable 16-bit value. The value can be programmed in the
field RTPRES of the Real-time Mode Register (RTT_MR).

Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz
signal (if the Slow Clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corre-
sponding to more than 136 years, then roll over to 0.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best
accuracy is achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but
may result in losing status events because the status register is cleared two Slow Clock cycles
after read. Thus if the RTT is configured to trigger an interrupt, the interrupt occurs during 2 Slow
Clock cycles after reading RTT_SR. To prevent several executions of the interrupt handler, the
interrupt must be disabled in the interrupt handler and re-enabled when the status register is
clear.

The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time
Value Register). As this value can be updated asynchronously from the Master Clock, it is advis-
able to read this register twice at the same value to improve accuracy of the returned value.

The current value of the counter is compared with the value written in the alarm register
RTT_AR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in
RTT_SR is set. The alarm register is set to its maximum value, corresponding to OxFFFF_FFFF,
after a reset.

The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit
can be used to start a periodic interrupt, the period being one second when the RTPRES is pro-
grammed with 0x8000 and Slow Clock equal to 32.768 Hz.

Reading the RTT_SR status register resets the RTTINC and ALMS fields.

Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the
new programmed value. This also resets the 32-bit counter.

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK):
1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2
slow clock cycles after the write of the RTTRST bit in the RTT_MR register.
2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the
RTT_SR (Status Register).

11011B-ATARM-21-Feb-12

SAM3N

Figure 13-2. RTT Counting

APB cycle APB cycle
<> <>
< (UUUUUUUUUTUUTUUTU UYL
RTPRES - 1
1

Prescaler / / /
0 1

RTT 0 Amvit X aumy [Xatmvar X a2 [aimy+a
RTTINC (RTT_SR) / /
ALMS (RTT_SR) / N
APB Interface AN
read RTT_SR

AI“IE'.@ 223

11011B-ATARM-21-Feb-12

13.5 Real-time Timer (RTT) User Interface

Table 13-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register RTT_MR Read-write 0x0000_8000
0x04 Alarm Register RTT_AR Read-write OxFFFF_FFFF
0x08 Value Register RTT_VR Read-only 0x0000_0000
0x0C Status Register RTT_SR Read-only 0x0000_0000

224 S /A V13 1N 50000000

11011B-ATARM-21-Feb-12

s S AM3N

13.5.1 Real-time Timer Mode Register

Register Name: RTT_MR

Address: 0x400E1430

Access Type: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | RTTRST | RTTINCIEN | ALMIEN |
15 14 13 12 11 10 9 8

| RTPRES |
7 6 5 4 3 2 1 0

| RTPRES |

¢ RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:

RTPRES = 0: The prescaler period is equal to 2'® * SCLK period.
RTPRES = 0: The prescaler period is equal to RTPRES * SCLK period.
e ALMIEN: Alarm Interrupt Enable

0 = The bit ALMS in RTT_SR has no effect on interrupt.

1 = The bit ALMS in RTT_SR asserts interrupt.

¢ RTTINCIEN: Real-time Timer Increment Interrupt Enable

0 =The bit RTTINC in RTT_SR has no effect on interrupt.

1 = The bit RTTINC in RTT_SR asserts interrupt.

e RTTRST: Real-time Timer Restart

0 = No effect.

1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

ATMEL

11011B-ATARM-21-Feb-12

225

13.5.2 Real-time Timer Alarm Register

Register Name: RTT_AR

Address: 0x400E1434

Access Type: Read/Write
31 30 29 28 27 26 25 24

| ALMV |
23 22 21 20 19 18 17 16

| ALMV |
15 14 13 12 11 10 9 8

| ALMV |
7 6 5 4 3 2 1 0

| ALMV |

e ALMYV: Alarm Value
Defines the alarm value (ALMV+1) compared with the Real-time Timer.

226 SV S N 1500000000000

11011B-ATARM-21-Feb-12

s S AM3N

13.5.3 Real-time Timer Value Register

Register Name: RTT_VR

Address: 0x400E1438

Access Type: Read-only
31 30 29 28 27 26 25 24

| CRTV |
23 22 21 20 19 18 17 16

| CRTV |
15 14 13 12 11 10 9 8

| CRTV |
7 6 5 4 3 2 1 0

| CRTV |

e CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.

AImEl@ 227

11011B-ATARM-21-Feb-12

s S AM3N

13.5.4 Real-time Timer Status Register

Register Name: RTT_SR

Address: 0x400E143C

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RTTINC| ALMS |

e ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occurred since the last read of RTT_SR.

1 = The Real-time Alarm occurred since the last read of RTT_SR.
¢ RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.

1 = The Real-time Timer has been incremented since the last read of the RTT_SR.

ATMEL

11011B-ATARM-21-Feb-12

228

e S AM3N

14. Real Time Clock (RTC)

14.1 Description
The Real-time Clock (RTC) peripheral is designed for very low power consumption.
It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian calen-

dar, complemented by a programmable periodic interrupt. The alarm and calendar registers are
accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format
can be 24-hour mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel
capture on the 32-bit data bus. An entry control is performed to avoid loading registers with
incompatible BCD format data or with an incompatible date according to the current
month/year/century.

14.2 Embedded Characteristics
¢ Low Power Consumption
* Full asynchronous design
* Two hundred year calendar
* Programmable Periodic Interrupt
* Alarm and update parallel load
¢ Control of alarm and update Time/Calendar Data In

14.3 Block Diagram

Figure 14-1. RTC Block Diagram

Slow Clock: SLCK 32768 Divider Time Date
Bus Interface == Bus Interface |« % % >
Entry Interrupt RTC Interrupt
Control Control

AImEl@ 229

11011B-ATARM-21-Feb-12

ATMEL

14.4 Product Dependencies

14.41 Power Management

The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller
has no effect on RTC behavior.

14.4.2 Interrupt
RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC
interrupt requires the interrupt controller to be programmed first.

14.5 Functional Description
The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year
(with leap years), month, date, day, hours, minutes and seconds.
The valid year range is 1900 to 2099 in Gregorian mode, a two-hundred-year calendar.
The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years). This is correct
up to the year 2099.

14.5.1 Reference Clock
The reference clock is Slow Clock (SLCK). It can be driven internally or by an external 32.768
kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical.
The crystal selection has to take into account the current consumption for power saving and the
frequency drift due to temperature effect on the circuit for time accuracy.

14.5.2 Timing

The RTC is updated in real time at one-second intervals in normal mode for the counters of sec-
onds, at one-minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain
that the value read in the RTC registers (century, year, month, date, day, hours, minutes, sec-
onds) are valid and stable, it is necessary to read these registers twice. If the data is the same
both times, then it is valid. Therefore, a minimum of two and a maximum of three accesses are
required.

1453 Alarm
The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:
* If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted
and an interrupt generated if enabled) at a given month, date, hour/minute/second.
¢ If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to
the user ranging from minutes to 365/366 days.

230 SA M 3 N L __|
11011B-ATARM-21-Feb-12

ATMEL

14.5.4 Error Checking
Verification on user interface data is performed when accessing the century, year, month, date,
day, hours, minutes, seconds and alarms. A check is performed on illegal BCD entries such as
illegal date of the month with regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is
set in the validity register. The user can not reset this flag. It is reset as soon as an acceptable
value is programmed. This avoids any further side effects in the hardware. The same procedure
is done for the alarm.

The following checks are performed:

Century (check if it is in range 19 - 20)

Year (BCD entry check)

Date (check range 01 - 31)

Month (check if it is in BCD range 01 - 12, check validity regarding “date”)

Day (check range 1 - 7)

Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is
not set if RTC is set in 24-hour mode; in 12-hour mode check range 01 - 12)

7. Minute (check BCD and range 00 - 59)

8. Second (check BCD and range 00 - 59)

Note: If the 12-hour mode is selected by means of the RTC_MODE register, a 12-hour value can be pro-
grammed and the returned value on RTC_TIME will be the corresponding 24-hour value. The
entry control checks the value of the AM/PM indicator (bit 22 of RTC_TIME register) to determine
the range to be checked.

o0k~ 0N~

14.5.5 Updating Time/Calendar
To update any of the time/calendar fields, the user must first stop the RTC by setting the corre-
sponding field in the Control Register. Bit UPDTIM must be set to update time fields (hour,
minute, second) and bit UPDCAL must be set to update calendar fields (century, year, month,
date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Regis-
ter. Once the bit reads 1, it is mandatory to clear this flag by writing the corresponding bit in
RTC_SCCR. The user can now write to the appropriate Time and Calendar register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control

When entering programming mode of the calendar fields, the time fields remain enabled. When
entering the programming mode of the time fields, both time and calendar fields are stopped.
This is due to the location of the calendar logic circuity (downstream for low-power consider-
ations). It is highly recommended to prepare all the fields to be updated before entering
programming mode. In successive update operations, the user must wait at least one second
after resetting the UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these
bits again. This is done by waiting for the SEC flag in the Status Register before setting
UPDTIM/UPDCAL bit. After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.

231 SA M 3 N L __|
11011B-ATARM-21-Feb-12

A “'|||E|%D O

Figure 14-2. Update Sequence
Begin

Prepare TIme or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

<€
Read RTC_SR
Polling or
IRQ (if enabled)
ACKUPD No
=17
Yes

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit in
RTC_CR

End

232 SAM 3 N L __|
11011B-ATARM-21-Feb-12

ATMEL

14.6 Real Time Clock (RTC) User Interface

Table 14-1. Register Mapping
Offset Register Name Access Reset
0x00 Control Register RTC_CR Read-write 0x0
0x04 Mode Register RTC_MR Read-write 0x0
0x08 Time Register RTC_TIMR Read-write 0x0
0x0C Calendar Register RTC_CALR Read-write 0x01210720
0x10 Time Alarm Register RTC_TIMALR Read-write 0x0
0x14 Calendar Alarm Register RTC_CALALR Read-write 0x01010000
0x18 Status Register RTC_SR Read-only 0x0
0x1C Status Clear Command Register RTC_SCCR Write-only -
0x20 Interrupt Enable Register RTC_IER Write-only -
0x24 Interrupt Disable Register RTC_IDR Write-only -
0x28 Interrupt Mask Register RTC_IMR Read-only 0x0
0x2C Valid Entry Register RTC_VER Read-only 0x0
0x30-0xEO Reserved Register - - -
OxE4 Write Protect Mode Register RTC_WPMR Read-write 0x00000000
OxE8-0xF8 Reserved Register - - -
OxFC Reserved Register - - -
Note: if an offset is not listed in the table it must be considered as reserved.

233

11011B-ATARM-21-Feb-12

ATMEL

14.6.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1460

Access: Read-write
31 30 29 28 27 26 25 24

| - | - I - | - | - | - | - - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | CALEVSEL |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TIMEVSEL |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | upbcaL | upDTIVM |

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 246.

e UPDTIM: Update Request Time Register

0 = No effect.

1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and

acknowledged by the bit ACKUPD of the Status Register.

e UPDCAL: Update Request Calendar Register
0 = No effect.

1 = Stops the RTC calendar counting.
Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set.

* TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

Value Name Description
0 MINUTE Minute change
1 HOUR Hour change
MIDNIGHT Every day at midnight
NOON Every day at noon
e CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL
Value Name Description
0 WEEK Week change (every Monday at time 00:00:00)
1 MONTH Month change (every 01 of each month at time 00:00:00)
YEAR Year change (every January 1 at time 00:00:00)
3 —

234 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

14.6.2 RTC Mode Register

Name: RTC_MR

Address: 0x400E1464

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 5 0

I - I - I - I - I - I - I - | HRMOD |

e HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.

1 = 12-hour mode is selected.

All non-significant bits read zero.

235 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

ATMEL

14.6.3 RTC Time Register

Name: RTC_TIMR

Address: 0x400E1468

Access: Read-write
31 30 29 28 27 26 25 24

I R - - - -]
23 22 21 20 19 18 17 16

| — | Awpm | HOUR |
15 14 13 12 11 10 9 8

| - | MIN |
7 6 5 4 3 2 1 0

| - | SEC |

e SEC: Current Second
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.
¢ MIN: Current Minute

The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e HOUR: Current Hour
The range that can be setis 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

e AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.
0=AM.

1=PM.

All non-significant bits read zero.

236 SA M 3 N L __|
11011B-ATARM-21-Feb-12

A IIIIEI% O

14.6.4 RTC Calendar Register

Name: RTC_CALR

Address: 0x400E146C

Access: Read-write
31 30 29 28 27 26 25 24

| - | - | DATE |
23 22 21 20 19 18 17 16

| DAY MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

| - | CENT |

e CENT: Current Century
The range that can be set is 19 - 20 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

¢ YEAR: Current Year
The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e MONTH: Current Month
The range that can be set is 01 - 12 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

e DAY: Current Day in Current Week
The range that can be setis 1 - 7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

e DATE: Current Day in Current Month
The range that can be set is 01 - 31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

237 'S /A V13 1N 500000

11011B-ATARM-21-Feb-12

ATMEL

14.6.5 RTC Time Alarm Register

Name: RTC_TIMALR

Address: 0x400E1470

Access: Read-write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| HOUREN | AmpPm | HOUR |
15 14 13 12 11 10 9 8

[MINEN | MIN |
7 6 5 4 3 2 1 0

[SECEN | SEC |

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 246.

e SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.

e SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.
1 = The second-matching alarm is enabled.

e MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

¢ MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.
1 = The minute-matching alarm is enabled.

e HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

e AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

e HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.

1 = The hour-matching alarm is enabled.

238 SA M 3 N L __|
11011B-ATARM-21-Feb-12

14.6.6 RTC Calendar Alarm Register

Name: RTC_CALALR

Address: 0x400E1474

Access: Read-write
31 30 29 28 27 26 25 24

| DATEEN | — | DATE |
23 22 21 20 19 18 17 16

| MTHEN | - | - | MONTH |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 246.

e MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

¢ MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.
1 = The month-matching alarm is enabled.

e DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

e DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.

1 = The date-matching alarm is enabled.

239 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

14.6.7 RTC Status Register

Name: RTC_SR

Address: 0x400E1478

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [_ | - | cAlev | TMEV | SEC | ALARM | AckupD |

e ACKUPD: Acknowledge for Update
0 = Time and calendar registers cannot be updated.

1 = Time and calendar registers can be updated.

e ALARM: Alarm Flag

0 = No alarm matching condition occurred.

1 = An alarm matching condition has occurred.

e SEC: Second Event

0 = No second event has occurred since the last clear.

1 = At least one second event has occurred since the last clear.

e TIMEV: Time Event

0 = No time event has occurred since the last clear.

1 = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).
e CALEV: Calendar Event

0 = No calendar event has occurred since the last clear.

1 = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.

240 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

ATMEL

14.6.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: 0x400E147C

Access: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - [- [- | - [-]
23 22 21 20 19 18 17 16

. - - r - { - [- [- | - [-
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

CALCLR | TIMCLR | SECCLR | ALRCLR | ACKCLR |

ACKCLR: Acknowledge Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

¢ ALRCLR: Alarm Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

SECCLR: Second Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).
¢ TIMCLR: Time Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

CALCLR: Calendar Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

oM S /A V13 1N 500000

11011B-ATARM-21-Feb-12

14.6.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: 0x400E1480

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

[- [- | - | CALEN | TIMEN [SECEN | ALREN | ACKEN |

ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.

1 = The acknowledge for update interrupt is enabled.
¢ ALREN: Alarm Interrupt Enable
0 = No effect.

1 = The alarm interrupt is enabled.

SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

e TIMEN: Time Event Interrupt Enable

0 = No effect.

1 = The selected time event interrupt is enabled.
e CALEN: Calendar Event Interrupt Enable

0 = No effect.

* 1 =The selected calendar event interrupt is enabled.

242 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

14.6.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: 0x400E1484

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — [= | - | cabis | TiMDIS | SECDIS | ALRDIS | ACKDIS |

e ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.

1 = The acknowledge for update interrupt is disabled.
e ALRDIS: Alarm Interrupt Disable

0 = No effect.

1 = The alarm interrupt is disabled.

e SECDIS: Second Event Interrupt Disable

0 = No effect.

1 = The second periodic interrupt is disabled.

¢ TIMDIS: Time Event Interrupt Disable
0 = No effect.

1 = The selected time event interrupt is disabled.

e CALDIS: Calendar Event Interrupt Disable
0 = No effect.

1 = The selected calendar event interrupt is disabled.

243 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

14.6.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1488

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | CAL | TIM | SEC | ALR | ACK |

¢ ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.
¢ ALR: Alarm Interrupt Mask

0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

e SEC: Second Event Interrupt Mask

0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.

e TIM: Time Event Interrupt Mask

0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

e CAL: Calendar Event Interrupt Mask

0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

244 S/ IVES TN 15—

11011B-ATARM-21-Feb-12

14.6.12 RTC Valid Entry Register

Name: RTC_VER

Address: 0x400E148C

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [_ | _ | - | NvCALALR [NvTIMALR [NvecAL | NvTim |

¢ NVTIM: Non-valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).

1 = RTC_TIMR has contained invalid data since it was last programmed.

¢ NVCAL: Non-valid Calendar

0 = No invalid data has been detected in RTC_CALR (Calendar Register).

1 = RTC_CALR has contained invalid data since it was last programmed.

e NVTIMALR: Non-valid Time Alarm

0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1 = RTC_TIMALR has contained invalid data since it was last programmed.

e NVCALALR: Non-valid Calendar Alarm

0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1 = RTC_CALALR has contained invalid data since it was last programmed.

245 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

14.6.13 RTC Write Protect Mode Register
Name: RTC_WPMR

Address: 0x400E1544

Access: Read-write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

= 1 - 1 = 1 = [= 1 = T = T W]

¢ WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x525443 (“RTC” in ASCII).
Protects the registers:

“RTC Mode Register”

“RTC Mode Register”

“RTC Time Alarm Register”

“RTC Calendar Alarm Register”

246 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

15. Watchdog Timer (WDT)

15.1 Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds
(slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition,
it can be stopped while the processor is in debug mode or idle mode.

15.2 Embedded Characteristics
* 16-bit key-protected only-once-Programmable Counter
* Windowed, prevents the processor to be in a dead-lock on the watchdog access.

15.3 Block Diagram

Figure 15-1. Watchdog Timer Block Diagram

write WDT_MR
WDT_MR
WDT_CR \\ WDV
|WDRSTT | reload - l
0—[) \‘_jo
12-bit Down
Counter
WDT_MR
reload
WDD Current .
Value < 1/128 SLCK
<=WDD
WDT_MR
y WDRSTEN
=0
:I N\ ‘ wdt_fault
1_/ N (to Reset Controller)
set

[woune] ————y el i
set reset

WDERR I r
read WDT_SR reset WDFIEN

or L4
reset WDT_MR

AImEl@ 247

11011B-ATARM-21-Feb-12

ATMEL

15.4 Functional Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in
the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock
divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow
Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is OxFFF, corresponding to the maximum value of
the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup
Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must
either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must
reprogram it to meet the maximum Watchdog period the application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset
resets it. Writing the WDT_MR register reloads the timer with the newly programmed mode
parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer under-
flow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The
Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow
Clock 128 divider is reset and restarted. The WDT_CR register is write-protected. As a result,
writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur,
the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode
Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register
(WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the
Watchdog must occur while the Watchdog counter is within a window between 0 and WDD,
WDD is defined in the WatchDog Mode Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD
results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the
WDT_SR and the “wdt_fault” signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the
WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole
range [0; WDV] and does not generate an error. This is the default configuration on reset (the
WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an inter-
rupt, provided the bit WDFIEN is set in the mode register. The signal “wdt_fault” to the reset
controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset
controller programmer Datasheet. In that case, the processor and the Watchdog Timer are
reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared,
and the “wdt_fault” signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on
the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

248 SA M 3 N L __|
11011B-ATARM-21-Feb-12

ATMEL

Figure 15-2. Watchdog Behavior

Watchdog Error ——— Watchdog Underflow
if WDRSTEN is 1
FFF
Normal behavior if WDRSTEN is 0
WDV. \ <
Forbidden
Window -t
WDD ad
Permitted \ \ \

~ N "

WDT_CR =WDRSTT

o Watchdog
Fault

249 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

ATMEL

15.5 Watchdog Timer (WDT) User Interface

Table 15-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read-write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000

250 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

ATMEL

15.5.1 Watchdog Timer Control Register

Name: WDT_CR

Address: 0x400E1450

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

- T - T - -~ T - - — -]
15 14 13 12 11 10 9 8

- T - T - — T - - — T -]
7 6 4 2 1 0

- T - T - -~ T - - — T vorstT]

e WDRSTT: Watchdog Restart

0: No effect.

1: Restarts the Watchdog.

e KEY: Password

Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

251

11011B-ATARM-21-Feb-12

15.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: 0x400E1454

Access: Read-write Once
31 30 29 28 27 26 25 24

| [[WDIDLEHLT | WDDBGHLT WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 11 10 9 8

| WDDIS | wprPROC | WDRSTEN WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

e WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.

¢ WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

e WDD: Watchdog Delta Value
Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.

e WDDBGHLT: Watchdog Debug Halt
0: The Watchdog runs when the processor is in debug state.

1: The Watchdog stops when the processor is in debug state.

* WDIDLEHLT: Watchdog Idle Halt
0: The Watchdog runs when the system is in idle mode.

1: The Watchdog stops when the system is in idle state.

e WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.

1: Disables the Watchdog Timer.

252 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

15.5.3 Watchdog Timer Status Register

Name: WDT_SR

Address: 0x400E1458

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | WDERR | WDUNF |

WDUNF: Watchdog Underflow
: No Watchdog underflow occurred since the last read of WDT_SR.

o

1: At least one Watchdog underflow occurred since the last read of WDT_SR.

WDERR: Watchdog Error
: No Watchdog error occurred since the last read of WDT_SR.

o

1: At least one Watchdog error occurred since the last read of WDT_SR.

253 SA M 3 N L __|
11011B-ATARM-21-Feb-12

ATMEL

254 SA M 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

16. Supply Controller (SUPC)

16.1 Description

The Supply Controller (SUPC) controls the supply voltage of the Core of the system and man-
ages the Backup Low Power Mode. In this mode, the current consumption is reduced to a few
microamps for Backup power retention. Exit from this mode is possible on multiple wake-up
sources including events on WKUP pins, or a Clock alarm. The SUPC also generates the Slow
Clock by selecting either the Low Power RC oscillator or the Low Power Crystal oscillator.

16.2 Embedded Characteristics

* Manages the Core Power Supply VDDCORE and the Backup Low Power Mode by
Controlling the Embedded Voltage Regulator

* Generates the Slow Clock SLCK, by Selecting Either the 22-42 kHz Low Power RC Oscillator
or the 32 kHz Low Power Crystal Oscillator

e Supports Multiple Wake Up Sources, for Exit from Backup Low Power Mode
— Force Wake Up Pin, with Programmable Debouncing
— 16 Wake Up Inputs, with Programmable Debouncing
— Real Time Clock Alarm
— Real Time Timer Alarm

— Supply Monitor Detection on VDDIO, with Programmable Scan Period and Voltage
Threshold

¢ A Supply Monitor Detection on VDDIO or a Brownout Detection on VDDCORE can Trigger a
Core Reset

* Embeds:
— One 22 to 42 kHz Low Power RC Oscillator
— One 32 kHz Low Power Crystal Oscillator
— One Zero-Power Power-On Reset Cell
— One Software Programmable Supply Monitor, on VDDIO Located in Backup Section
— One Brownout Detector on VDDCORE Located in the Core

AImEl@ 255

11011B-ATARM-21-Feb-12

ATMEL

16.3 Block Diagram

Figure 16-1. Supply Controller Block Diagram

VDDIO VDDOUT 1
[] '
1
1
1
1
vr_on 1
Software Controlled
vr_mode Voltage Regulator EI VDDIN :
1
1
Zero-Power Supply 1
Power-on Reset Controller 1
VDDIO 1
1
bod_on 1
Supply PIOA/B/C —| | PlOx 1
Monitor brown_out 1
(Backup) 1
WKUPO - WKUP15 [] > :
General Purpose - ADC —D ADx 1
Backup Registers 1
1
rtc_nreset D ADVREF I
SLCK S
L RTC rtc_alarm — DAC —D DACOx :
1
1
rtt_nreset 1
SLCK
RTT rit_alarm, 1
1
1
1
0sc32k_xtal_en I
core_nreset 1
0sc32k_sel =
XIN32 Xtal 32 kHz = 1
XOUT32 Oscillator bod_core_on Brownout 1
|core_brown_out | Detector 1
(Core) 1
Embedded 1
3% kHﬁ RC | osc32k_rc_en 1
scillator
PR SRAM 1
1
1
Backup Power Supply Peripherals :
1
- -
core_nreset Reset —> prOf:,hnreset t Matrix - VDDCORE
Controller _»E}:"zr;';;fse > Per;l;?geral
NRST | |<—> = ridge
<@ Cortex-M3
A .
FSTTO - FSTT15 I:: >
Embedded EEChE
12/8/4 MHz [N_Main Clock €| Flash
RC MAINCK Master Clock
Oscillator MCK
Power
XIN D_ Xtal Management
Controller

XOUT D_ Oscillator

PLL

SLCK —»| Watchdog
Timer

Core Power Supply

FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins, but are not physical pins.

256 SAM 3 N L __|
11011B-ATARM-21-Feb-12

ATMEL

16.4 Supply Controller Functional Description

16.4.1

257

Supply Controller Overview

The device can be divided into two power supply areas:

e The VDDIO Power Supply: including the Supply Controller, a part of the Reset Controller, the
Slow Clock switch, the General Purpose Backup Registers, the Supply Monitor and the Clock
which includes the Real Time Timer and the Real Time Clock

* The Core Power Supply: including the other part of the Reset Controller, the Brownout
Detector, the Processor, the SRAM memory, the FLASH memory and the Peripherals

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC
intervenes when the VDDIO power supply rises (when the system is starting) or when the
Backup Low Power Mode is entered.

The SUPC also integrates the Slow Clock generator which is based on a 32 kHz crystal oscilla-
tor and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the
software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller and the VDDIO power supply have a reset circuitry based on a zero-
power power-on reset cell. The zero-power power-on reset allows the SUPC to start properly as
soon as the VDDIO voltage becomes valid.

At startup of the system, once the voltage VDDIO is valid and the embedded 32 kHz RC oscilla-
tor is stabilized, the SUPC starts up the core by sequentially enabling the internal Voltage
Regulator, waiting that the core voltage VDDCORE is valid, then releasing the reset signal of the
core “vddcore_nreset” signal.

Once the system has started, the user can program a supply monitor and/or a brownout detec-
tor. If the supply monitor detects a voltage on VDDIO that is too low, the SUPC can assert the
reset signal of the core “vddcore_nreset” signal until VDDIO is valid. Likewise, if the brownout
detector detects a core voltage VDDCORE that is too low, the SUPC can assert the reset signal
“vddcore_nreset” until VDDCORE is valid.

When the Backup Low Power Mode is entered, the SUPC sequentially asserts the reset signal
of the core power supply “vddcore_nreset” and disables the voltage regulator, in order to supply
only the VDDIO power supply. In this mode the current consumption is reduced to a few micro-
amps for Backup part retention. Exit from this mode is possible on multiple wake-up sources
including an event on WKUP pins, or a Clock alarm. To exit this mode, the SUPC operates in the
same way as system startup.

11011B-ATARM-21-Feb-12

ATMEL

16.4.2 Slow Clock Generator
The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power
supply. As soon as the VDDIO is supplied, both the crystal oscillator and the embedded RC
oscillator are powered up, but only the embedded RC oscillator is enabled. This allows the slow
clock to be valid in a short time (about 100 ps).

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more
accurate frequency. The command is made by writing the Supply Controller Control Register
(SUPC_CR) with the XTALSEL bit at 1.This results in a sequence which first configures the PIO
lines multiplexed with XIN32 and XOUT32 to be driven by the oscillator, then enables the crystal
oscillator. then waits for 32,768 slow clock cycles, then switches the slow clock on the output of
the crystal oscillator and then disables the RC oscillator to save power. The switch of the slow
clock source is glitch free. The OSCSEL bit of the Supply Controller Status Register (SUPC_SR)
allows knowing when the switch sequence is done.

Coming back on the RC oscillator is only possible by shutting down the VDDIO power supply.

If the user does not need the crystal oscillator, the XIN32 and XOUT32 pins should be left
unconnected.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In
this case, the user has to provide the external clock signal on XIN32. The input characteristics of
the XIN32 pin are given in the product electrical characteristics section. In order to set the
bypass mode, the OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs
to be setat 1.

16.4.3 Voltage Regulator Control/Backup Low Power Mode
The Supply Controller can be used to control the embedded 1.8V voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load
current. Please refer to the electrical characteristics section.

The programmer can switch off the voltage regulator, and thus put the device in Backup mode,
by writing the Supply Controller Control Register (SUPC_CR) with the VROFF bit at 1.

This can be done also by using WFE (Wait for Event) Cortex-M3 instruction with the deep mode
bit set to 1.

The Backup mode can also be entered by executing the WFI (Wait for Interrupt) or WFE (Wait for
Event) Cortex-M3 instructions. To select the Backup mode entry mechanism, two options are
available, depending on the SLEEPONEXIT bit in the Cortex-M3 System Control register:
* Sleep-now: if the SLEEPONEXIT bit is cleared, the device enters Backup mode as soon as
the WFI or WFE instruction is executed.

¢ Sleep-on-exit: if the SLEEPONEXIT bit is set when the WFI instruction is executed, the
device enters Backup mode as soon as it exits the lowest priority ISR.

This asserts the vddcore_nreset signal after the write resynchronization time which lasts, in the
worse case, two slow clock cycles. Once the vddcore_nreset signal is asserted, the processor
and the peripherals are stopped one slow clock cycle before the core power supply shuts off.

When the user does not use the internal voltage regulator and wants to supply VDDCORE by an
external supply, it is possible to disable the voltage regulator. Note that it is different from the
Backup mode. Depending on the application, disabling the voltage regulator can reduce power
consumption as the voltage regulator input (VDDIN) is shared with the ADC and DAC. This is
done through ONREG bit in SUPC_MR.

258 SAM 3 N L __|
11011B-ATARM-21-Feb-12

16.4.4

259

ATMEL

Supply Monitor

The Supply Controller embeds a supply monitor which is located in the VDDIO Power Supply
and which monitors VDDIO power supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state
if the Main power supply drops below a certain level.

The threshold of the supply monitor is programmabile. It can be selected from 1.9V to 3.4V by
steps of 100 mV. This threshold is programmed in the SMTH field of the Supply Controller Sup-
ply Monitor Mode Register (SUPC_SMMR).

The supply monitor can also be enabled during one slow clock period on every one of either 32,
256 or 2048 slow clock periods, according to the choice of the user. This can be configured by
programming the SMSMPL field in SUPC_SMMR.

Enabling the supply monitor for such reduced times allows to divide the typical supply monitor
power consumption respectively by factors of 32, 256 or 2048, if the user does not need a con-
tinuous monitoring of the VDDIO power supply.

A supply monitor detection can either generate a reset of the core power supply or a wake up of
the core power supply. Generating a core reset when a supply monitor detection occurs is
enabled by writing the SMRSTEN bit to 1 in SUPC_SMMR.

Waking up the core power supply when a supply monitor detection occurs can be enabled by
programming the SMEN bit to 1 in the Supply Controller Wake Up Mode Register
(SUPC_WUMR).

The Supply Controller provides two status bits in the Supply Controller Status Register for the
supply monitor which allows to determine whether the last wake up was due to the supply
monitor:

e The SMOS bit provides real time information, which is updated at each measurement cycle
or updated at each Slow Clock cycle, if the measurement is continuous.

¢ The SMS bit provides saved information and shows a supply monitor detection has occurred
since the last read of SUPC_SR.

The SMS bit can generate an interrupt if the SMIEN bit is set to 1 in the Supply Controller Supply
Monitor Mode Register (SUPC_SMMR).

11011B-ATARM-21-Feb-12

ATMEL

Figure 16-2. Supply Monitor Status Bit and Associated Interrupt
Continuous Sampling (SMSMPL = 1)

|

e e e e e e e e e e e e e et et e e e e e e e e e e e e e -
Supply Monitor ON ! | | | |‘(Periodic Sampling | |

|

|

|

T

3.3V

|
Threshold r\

ov

l Read SUPC_SR

SMS and SUPC interrupt

260 S/A VIS TN 1500000000000

11011B-ATARM-21-Feb-12

ATMEL

16.4.5 Power Supply Reset

16.4.5.1 Raising the Power Supply
As soon as the voltage VDDIO rises, the RC oscillator is powered up and the zero-power
power-on reset cell maintains its output low as long as VDDIO has not reached its target voltage.
During this time, the Supply Controller is entirely reset. When the VDDIO voltage becomes valid
and zero-power power-on reset signal is released, a counter is started for 5 slow clock cycles.
This is the time it takes for the 32 kHz RC oscillator to stabilize.

After this time, the voltage regulator is enabled. The core power supply rises and the brownout
detector provides the bodcore_in signal as soon as the core voltage VDDCORE is valid. This
results in releasing the vddcore_nreset signal to the Reset Controller after the bodcore_in signal
has been confirmed as being valid for at least one slow clock cycle.

Figure 16-3. Raising the VDDIO Power Supply

7 x Slow Clock Cycles Ton Voltage 3 x Slow Clock 3 x Slow Clock 6.5 x Slow Clock
Regulator Cycles Cycles Cycles

uUuuryryryry gy Ly e

Zero-Power POR
Backup Power Supply

Zero-Power Power-On
Reset Cell output A

|
|
|
|
L
|
|
|

T I

Oscillator output

vr_on

Core Power Supply

Fast RC
Oscillator output

i 1

i | Il

bodcore_in

vddcore_nreset

NRST

LT

periph_nreset

proc_nreset

22 - 42 kHz RC UL !
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Note: After “proc_nreset” rising, the core starts fecthing instructions from Flash at 4 MHz.

261 SAM3N

11011B-ATARM-21-Feb-12

16.4.6

16.4.6.1

16.4.6.2

16.4.7

262

ATMEL

Core Reset
The Supply Controller manages the vddcore_nreset signal to the Reset Controller, as described
previously in Section 16.4.5 "Power Supply Reset”. The vddcore_nreset signal is normally
asserted before shutting down the core power supply and released as soon as the core power
supply is correctly regulated.
There are two additional sources which can be programmed to activate vddcore_nreset:
¢ a supply monitor detection
* a brownout detection
Supply Monitor Reset

The supply monitor is capable of generating a reset of the system. This can be enabled by set-
ting the SMRSTEN bit in the Supply Controller Supply Monitor Mode Register (SUPC_SMMR).

If SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is imme-
diately activated for a minimum of 1 slow clock cycle.

Brownout Detector Reset

The brownout detector provides the bodcore_in signal to the SUPC which indicates that the volt-
age regulation is operating as programmed. If this signal is lost for longer than 1 slow clock
period while the voltage regulator is enabled, the Supply Controller can assert vddcore_nreset.
This feature is enabled by writing the bit, BODRSTEN (Brownout Detector Reset Enable) to 1 in
the Supply Controller Mode Register (SUPC_MR).

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low),
the vddcore_nreset signal is asserted for a minimum of 1 slow clock cycle and then released if
bodcore_in has been reactivated. The BODRSTS bit is set in the Supply Controller Status Reg-
ister (SUPC_SR) so that the user can know the source of the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.

Wake Up Sources

The wake up events allow the device to exit backup mode. When a wake up event is detected,
the Supply Controller performs a sequence which automatically reenables the core power

supply.

11011B-ATARM-21-Feb-12

ATMEL

Figure 16-4. Wake Up Sources

EEIEN N
sm_out ___ ————— | /
[Feen—
rtc_alarm ____ ——————— |)
Core
[Rren}— Sore
rtt_alarm ___ ——————— | / o),
[wkuPENO| | wKuUPISO
Falling/Rising I—
WKUPO Di Edge
Detector
FwrupTT | SLCK
WKUPT1 [wkupen1| [wkupist | NS
: L
Falling/Rising Debouncer ¢
WKUP1 Di Edge
j Detector
1
1
X [wkupPeN1s| | wkuPIS15|
1
! Falling/Rising L
WKUP15 Di Edge
Detector

16.4.7.1 Wake Up Inputs
The wake up inputs, WKUPO to WKUP15, can be programmed to perform a wake up of the core
power supply. Each input can be enabled by writing to 1 the corresponding bit, WKUPENO to
WKUPEN 15, in the Wake Up Inputs Register (SUPC_WUIR). The wake up level can be
selected with the corresponding polarity bit, WKUPPLO to WKUPPL15, also located in
SUPC_WUIR.

All the resulting signals are wired-ORed to trigger a debounce counter, which can be pro-
grammed with the WKUPDBC field in the Supply Controller Wake Up Mode Register
(SUPC_WUMR). The WKUPDBC field can select a debouncing period of 3, 32, 512, 4,096 or
32,768 slow clock cycles. This corresponds respectively to about 100 ps, about 1 ms, about
16 ms, about 128 ms and about 1 second (for a typical slow clock frequency of 32 kHz). Pro-
gramming WKUPDBC to 0x0 selects an immediate wake up, i.e., an enabled WKUP pin must be
active according to its polarity during a minimum of one slow clock period to wake up the core
power supply.

If an enabled WKUP pin is asserted for a time longer than the debouncing period, a wake up of
the core power supply is started and the signals, WKUPO to WKUP15 as shown in Figure 16-4,
are latched in the Supply Controller Status Register (SUPC_SR). This allows the user to identify
the source of the wake up, however, if a new wake up condition occurs, the primary information
is lost. No new wake up can be detected since the primary wake up condition has disappeared.

263 SAM 3 N L __|
11011B-ATARM-21-Feb-12

ATMEL

16.4.7.2 Clock Alarms

The RTC and the RTT alarms can generate a wake up of the core power supply. This can be
enabled by writing respectively, the bits RTCEN and RTTEN to 1 in the Supply Controller Wake
Up Mode Register (SUPC_WUMR).

The Supply Controller does not provide any status as the information is available in the User
Interface of either the Real Time Timer or the Real Time Clock.

16.4.7.3 Supply Monitor Detection

The supply monitor can generate a wakeup of the core power supply. See Section 16.4.4 "Sup-
ply Monitor”.

264 S /A V13 1N 50000000

11011B-ATARM-21-Feb-12

ATMEL

16.5 Supply Controller (SUPC) User Interface
The User Interface of the Supply Controller is part of the System Controller User Interface.

16.5.1 System Controller (SYSC) User Interface

Table 16-1. System Controller Registers

Offset System Controller Peripheral Name
0x00-0x0c Reset Controller RSTC
0x10-0x2C Supply Controller SUPC
0x30-0x3C Real Time Timer RTT
0x50-0x5C Watchdog WDT
0x60-0x7C Real Time Clock RTC
0x90-0xDC | General Purpose Backup Register GPBR

16.5.2 Supply Controller (SUPC) User Interface

Table 16-2. Register Mapping

Offset Register Name Access Reset
0x00 Supply Controller Control Register SUPC_CR Write-only N/A
0x04 Supply Controller Supply Monitor Mode Register SUPC_SMMR Read-write 0x0000_0000
0x08 Supply Controller Mode Register SUPC_MR Read-write 0x0000_5A00
0x0C Supply Controller Wake Up Mode Register SUPC_WUMR Read-write 0x0000_0000
0x10 Supply Controller Wake Up Inputs Register SUPC_WUIR Read-write 0x0000_0000
0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0800
0x18 Reserved

265 SAM3N |

11011B-ATARM-21-Feb-12

ATMEL

16.5.3 Supply Controller Control Register

Name: SUPC_CR

Address: 0x400E1410

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I I - |
7 6 5 4 3 2 1 0

| - | - | - | - | XTALSEL | VROFF | - | - |

¢ VROFF: Voltage Regulator Off
0 (NO_EFFECT) = no effect.

1 (STOP_VREG) = if KEY is correct, asserts vddcore_nreset and stops the voltage regulator.

e XTALSEL: Crystal Oscillator Select
0 (NO_EFFECT) = no effect.
1 (CRYSTAL_SEL) = if KEY is correct, switches the slow clock on the crystal oscillator output.

¢ KEY: Password
Should be written to value 0xA5. Writing any other value in this field aborts the write operation.

266 SAM 3 N L __|
11011B-ATARM-21-Feb-12

A |I|'|||E|%D O

16.5.4 Supply Controller Supply Monitor Mode Register

Name: SUPC_SMMR

Address: 0x400E1414

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | — | SMIEN | SMRSTEN | — | SMSMPL |
7 6 5 4 3 2 1 0

| - | - | - | - | SMTH |

e SMTH: Supply Monitor Threshold

Value Name Description
0x0 1_9V 1.9V
0x1 2_0V 20V
0x2 2_1V 21V
0x3 2.2V 22V
Ox4 2.3V 2.3V
0x5 2_4V 24V
0x6 2_5V 25V
0x7 2_6V 26V
0x8 2.7V 2.7V
0x9 2.8V 2.8V
OxA 2.9V 29V
0xB 3_0V 3.0V
0xC 3_1V 3.1V
0xD 3_2V 32V
OxE 3_3V 3.3V
OxF 3_4V 34V

267 SAM 3 N L __|
11011B-ATARM-21-Feb-12

e SMSMPL: Supply Monitor Sampling Period

Value Name Description
0x0 SMD Supply Monitor disabled
0x1 CSM Continuous Supply Monitor
0x2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods
0x3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods
0x4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods
0x5-0x7 Reserved Reserved

e SMRSTEN: Supply Monitor Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a supply monitor detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a supply monitor detection occurs.
e SMIEN: Supply Monitor Interrupt Enable
0 (NOT_ENABLE) = the SUPC interrupt signal is not affected when a supply monitor detection occurs.

1 (ENABLE) = the SUPC interrupt signal is asserted when a supply monitor detection occurs.

268 SAM 3 N L __|
11011B-ATARM-21-Feb-12

16.5.5 Supply Controller Mode Register

Name: SUPC_MR

Address: 0x400E1418

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

| - | - | - | OSCBYPASS | - | - | - | - |
15 14 13 12 11 10 9 8

| - | ONREG | BODDIS | BODRSTEN | - | — | — | — |
7 6 5 4 3 2 1 0

e BODRSTEN: Brownout Detector Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a brownout detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a brownout detection occurs.
e BODDIS: Brownout Detector Disable

0 (ENABLE) = the core brownout detector is enabled.

1 (DISABLE) = the core brownout detector is disabled.

* ONREG: Voltage Regulator enable

0 (ONREG_UNUSED) = Voltage Regulator is not used

1 (ONREG_USED) = Voltage Regulator is used

e OSCBYPASS: Oscillator Bypass

0 (NO_EFFECT) = no effect. Clock selection depends on XTALSEL value.

1 (BYPASS) = the 32-KHz XTAL oscillator is selected and is put in bypass mode.

e KEY: Password Key
Should be written to value OxA5. Writing any other value in this field aborts the write operation.

269 SAM 3 N L __|
11011B-ATARM-21-Feb-12

ATMEL

16.5.6 Supply Controller Wake Up Mode Register

Name: SUPC_WUMR

Address: 0x400E141C

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| = | WKUPDBC [- [- | - | - |
7 6 5 4 3 2 1 0

| - | - | - | - | RTCEN | RTTEN | SMEN | - |

e SMEN: Supply Monitor Wake Up Enable
0 (NOT_ENABLE) = the supply monitor detection has no wake up effect.

1 (ENABLE) = the supply monitor detection forces the wake up of the core power supply.
¢ RTTEN: Real Time Timer Wake Up Enable

0 (NOT_ENABLE) = the RTT alarm signal has no wake up effect.

1 (ENABLE) = the RTT alarm signal forces the wake up of the core power supply.

e RTCEN: Real Time Clock Wake Up Enable

0 (NOT_ENABLE) = the RTC alarm signal has no wake up effect.

1 (ENABLE) = the RTC alarm signal forces the wake up of the core power supply.

e WKUPDBC: Wake Up Inputs Debouncer Period

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.
1 3_SCLK WKUPXx shall be in its active state for at least 3 SLCK periods
2 32_SCLK WKUPXx shall be in its active state for at least 32 SLCK periods
3 512_SCLK WKUPXx shall be in its active state for at least 512 SLCK periods
4 4096_SCLK WKUPXx shall be in its active state for at least 4,096 SLCK periods
5 32768_SCLK WKUPXx shall be in its active state for at least 32,768 SLCK periods
6 Reserved Reserved
7 Reserved Reserved

270 SAM 3 N L __|
11011B-ATARM-21-Feb-12

16.5.7 System Controller Wake Up Inputs Register

Name: SUPC_WUIR

Address: 0x400E1420

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPT15 | WKUPT14 | WKUPT13 | WKUPT12 | WKUPT11 | WKUPT10 | WKUPT9 | WKUPTS8 |
23 22 21 20 19 18 17 16

| WKUPT7 | WKUPT6 | WKUPT5 | WKUPT4 | WKUPT3 | WKUPT2 | WKUPTH1 | WKUPTO |
15 14 13 12 11 10 9 8

| WKUPEN15 | WKUPEN14 | WKUPEN13 | WKUPEN12 | WKUPEN11 | WKUPEN10 | WKUPEN9 | WKUPENS |

7 6 5 4 3 2 1 0
| WKUPEN7 | WKUPENG6 | WKUPENS5 | WKUPEN4 | WKUPEN3 | WKUPEN2 | WKUPEN1 | WKUPENO |

¢ WKUPENO - WKUPEN15: Wake Up Input Enable 0 to 15
0 (NOT_ENABLE) = the corresponding wake-up input has no wake up effect.

1 (ENABLE) = the corresponding wake-up input forces the wake up of the core power supply.

¢ WKUPTO - WKUPT15: Wake Up Input Transition 0 to 15
0 (HIGH_TO_LOW) = a high to low level transition on the corresponding wake-up input forces the wake up of the core
power supply.

1 (LOW_TO_HIGH) = a low to high level transition on the corresponding wake-up input forces the wake up of the core
power supply.

271 S /A V13 1N 50000000

11011B-ATARM-21-Feb-12

16.5.8 Supply Controller Status Register

Name: SUPC_SR

Address: 0x400E1424

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPIS15 | WKUPIS14 | WKUPIS13 | WKUPIS12 | WKUPIS11 | WKUPIS10 | WKUPIS9 | WKUPIS8 |
23 22 21 20 19 18 17 16

| WKUPIS7 | WKUPIS6 | WKUPIS5 | WKUPIS4 | WKUPIS3 | WKUPIS2 | WKUPIS1 | WKUPISO |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| OSCSEL | SMOS | SMS | SMRSTS | BODRSTS | SMWS | WKUPS | - |

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK), the status register flag reset is
taken into account only 2 slow clock cycles after the read of the SUPC_SR.

e WKUPS: WKUP Wake Up Status

0 (NO) = no wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.
e SMWS: Supply Monitor Detection Wake Up Status

0 (NO) = no wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

e BODRSTS: Brownout Detector Reset Status

0 (NO) = no core brownout rising edge event has been detected since the last read of the SUPC_SR.

1 (PRESENT) = at least one brownout output rising edge event has been detected since the last read of the SUPC_SR.
When the voltage remains below the defined threshold, there is no rising edge event at the output of the brownout detec-
tion cell. The rising edge event occurs only when there is a voltage transition below the threshold.

e SMRSTS: Supply Monitor Reset Status

0 (NO) = no supply monitor detection has generated a core reset since the last read of the SUPC_SR.

1 (PRESENT) = at least one supply monitor detection has generated a core reset since the last read of the SUPC_SR.

e SMS: Supply Monitor Status

0 (NO) = no supply monitor detection since the last read of SUPC_SR.

1 (PRESENT) = at least one supply monitor detection since the last read of SUPC_SR.

e SMOS: Supply Monitor Output Status

0 (HIGH) = the supply monitor detected VDDIO higher than its threshold at its last measurement.

1 (LOW) = the supply monitor detected VDDIO lower than its threshold at its last measurement.

272 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

17. General Purpose Backup Registers (GPBR)

17.1 Description
The System Controller embeds Eight general-purpose backup registers.

17.2 Embedded Characteristics
Eight 32-bit General Purpose Backup Registers

17.3 General Purpose Backup Registers (GPBR) User Interface

Table 17-1. Register Mapping

Offset Register Name Access Reset
0x0 General Purpose Backup Register 0 SYS_GPBRO Read-write -
0x1C General Purpose Backup Register 7 SYS_GPBR7 Read-write -

AIMEL 273

11011B-ATARM-21-Feb-12

s S AM3N

17.3.0.1 General Purpose Backup Register x

Name: SYS_GPBRXx

Addresses: 0x400E1490 [0] .. 0x400E149C [3]

Access: Read-write
31 30 29 28 27 26 25 24

| GPBR_VALUEX |
23 22 21 20 19 18 17 16

| GPBR_VALUEx |
15 14 13 12 11 10 9 8

| GPBR_VALUEX |
7 6 5 4 3 2 1 0

GPBR_VALUEX

* GPBR_VALUEX: Value of GPBR x

11011B-ATARM-21-Feb-12

ATMEL

274

e S AM3N

18. Enhanced Embedded Flash Controller (EEFC)

18.1 Description

The Enhanced Embedded Flash Controller (EEFC) ensures the interface of the Flash block with
the 32-bit internal bus.

Its 128-bit or 64-bit wide memory interface increases performance. It also manages the pro-
gramming, erasing, locking and unlocking sequences of the Flash using a full set of commands.
One of the commands returns the embedded Flash descriptor definition that informs the system
about the Flash organization, thus making the software generic.

18.2 Product Dependencies

18.2.1 Power Management

The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Man-
agement Controller has no effect on its behavior.

18.2.2 Interrupt Sources
The Enhanced Embedded Flash Controller (EEFC) interrupt line is connected to the Nested
Vectored Interrupt Controller (NVIC). Using the Enhanced Embedded Flash Controller (EEFC)
interrupt requires the NVIC to be programmed first. The EEFC interrupt is generated only on
FRDY bit rising.
Table 18-1. Peripheral IDs
Instance ID

EFC 6

18.3 Functional Description

18.3.1 Embedded Flash Organization
The embedded Flash interfaces directly with the 32-bit internal bus. The embedded Flash is
composed of:
* One memory plane organized in several pages of the same size.
* Two 128-bit or 64-bit read buffers used for code read optimization.
* One 128-bit or 64-bit read buffer used for data read optimization.

* One write buffer that manages page programming. The write buffer size is equal to the page
size. This buffer is write-only and accessible all along the 1 MByte address space, so that
each word can be written to its final address.

 Several lock bits used to protect write/erase operation on several pages (lock region). A lock
bit is associated with a lock region composed of several pages in the memory plane.

 Several bits that may be set and cleared through the Enhanced Embedded Flash Controller
(EEFC) interface, called General Purpose Non Volatile Memory bits (GPNVM bits).

The embedded Flash size, the page size, the lock regions organization and GPNVM bits defini-
tion are described in the product definition section. The Enhanced Embedded Flash Controller
(EEFC) returns a descriptor of the Flash controlled after a get descriptor command issued by the
application (see “Getting Embedded Flash Descriptor” on page 280).

AImEl@ 275

11011B-ATARM-21-Feb-12

ATMEL

Figure 18-1. Embedded Flash Organization

Memory Plane

Start Address Fage D

Lock Region 0 <— LockBit0

Page (m-1)

Lock Region 1 <— LockBit 1

Start Address + Flash size -1

Page (n*m-1)

276 SAM 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

18.3.2 Read Operations
An optimized controller manages embedded Flash reads, thus increasing performance when the
processor is running in Thumb2 mode by means of the 128- or 64- bit wide memory interface.

The Flash memory is accessible through 8-, 16- and 32-bit reads.

As the Flash block size is smaller than the address space reserved for the internal memory area,
the embedded Flash wraps around the address space and appears to be repeated within it.

The read operations can be performed with or without wait states. Wait states must be pro-
grammed in the field FWS (Flash Read Wait State) in the Flash Mode Register (EEFC_FMR).
Defining FWS to be 0 enables the single-cycle access of the embedded Flash. Refer to the Elec-
trical Characteristics for more details.

18.3.2.1 128-bit or 64-bit Access Mode
By default the read accesses of the Flash are performed through a 128-bit wide memory inter-
face. It enables better system performance especially when 2 or 3 wait state needed.

For systems requiring only 1 wait state, or to privilege current consumption rather than perfor-
mance, the user can select a 64-bit wide memory access via the FAM bit in the Flash Mode
Register (EEFC_FMR)

Please refer to the electrical characteristics section of the product datasheet for more details.

18.3.2.2 Code Read Optimization
A system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize sequential Code Fetch.

Note: Immediate consecutive code read accesses are not mandatory to benefit from this optimization.

Figure 18-2. Code Read Optimization for FWS =0

wserces [L[L L L L L L1
S N T M N MU MU M

@Byte 0 @Byte 4 @Byte 8 @Byte 12 @Byte 16 @Byte 20 @Byte 24 @Byte 28 @Byte 32
Flash Access X Bytes 0-15 X Bytes 16-31 X X X Bytes 32-47 X X X
Buffer 0 (128bits) X xxx X Bytes 0-15 X Bytes 32-47
Buffer 1 (128bits) X XXX X Bytes 16-31

Data To ARM XXX X Bytes 0-3 X Bytes 47 X Bytes 8-11 XBytes 12-15 X Bytes 16-19 Bytes 20-23 X Bytes 24-27 X Bytes 28-31

Note: When FWS is equal to 0, all the accesses are performed in a single-cycle access.

AImEl@ 277

11011B-ATARM-21-Feb-12

ATMEL

Figure 18-3. Code Read Optimization for FWS = 3

wreses 1 tttttt ittt ot

@Byte 0 @4 @8 @12 @16 @20 @24 @28 @32 @36 @40 @44 @48 @52
Flash Access X Bytes 0-15 X Bytes 16-31 X Bytes 32-47 X Bytes 48-63
Buffer 0 (128bits) XXX X Bytes 0-15 X Bytes 32-47
Buffer 1 (128bits) XXX X Bytes 16-31

Data To ARM X XXX 4-7 X 8-11 X12-15 X1 6-19X20-23X 24-27X 28-31X32-35X 36-39X 40-43X 44-47X 48-51

Note: When FWS is included between 1 and 3, in case of sequential reads, the first access takes (FWS+1) cycles, the other ones only
1 cycle.

18.3.2.3 Data Read Optimization

The organization of the Flash in 128 bits (or 64 bits) is associated with two 128-bit (or 64-bit)
prefetch buffers and one 128-bit (or 64-bit) data read buffer, thus providing maximum system
performance. This buffer is added in order to store the requested data plus all the data contained
in the 128-bit (64-bit) aligned data. This speeds up sequential data reads if, for example, FWS is
equal to 1 (see Figure 18-4).

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 18-4. Data Read Optimization for FWS = 1

wsercoo | | L] L L L L L L L L L L
(= S S S S SN S S S S

@Byte 0 @4 @es @12 @16 @20 @24 @28 @32 @ 36
Flash Access xxx X Bytes0-15 X X Bytes 16:31 X X Bytes 32-47
Buffer (128bits) X XXX X Bytes 0-15 X Bytes 16-31

Data To ARM X XXX YovesosX 47 X 811 X 12115 X Xi6-19X 2023 X 24-27 X 2831 X X32-35

278 SAM 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

18.3.3 Flash Commands
The Enhanced Embedded Flash Controller (EEFC) offers a set of commands such as program-
ming the memory Flash, locking and unlocking lock regions, consecutive programming and
locking and full Flash erasing, etc.

Commands and read operations can be performed in parallel only on different memory planes.
Code can be fetched from one memory plane while a write or an erase operation is performed
on another.

Table 18-2. Set of Commands

Command Value Mnemonic
Get Flash Descriptor 0x00 GETD
Write page 0x01 WP
Write page and lock 0x02 WPL
Erase page and write page 0x03 EWP
Erase page and write page then lock 0x04 EWPL
Erase all 0x05 EA

Set Lock Bit 0x08 SLB
Clear Lock Bit 0x09 CLB
Get Lock Bit 0x0A GLB
Set GPNVM Bit 0x0B SGPB
Clear GPNVM Bit 0x0C CGPB
Get GPNVM Bit 0x0D GGPB
Start Read Unique Identifier OxO0E STUI
Stop Read Unique Identifier OxOF SPUI
Get CALIB Bit 0x10 GCALB

In order to perform one of these commands, the Flash Command Register (EEFC_FCR) has to
be written with the correct command using the FCMD field. As soon as the EEFC_FCR register
is written, the FRDY flag and the FVALUE field in the EEFC_FRR register are automatically
cleared. Once the current command is achieved, then the FRDY flag is automatically set. If an
interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the corresponding interrupt
line of the NVIC is activated. (Note that this is true for all commands except for the STUI Com-
mand. The FRDY flag is not set when the STUI command is achieved.)

All the commands are protected by the same keyword, which has to be written in the 8 highest
bits of the EEFC_FCR register.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid com-
mand has no effect on the whole memory plane, but the FCMDE flag is set in the EEFC_FSR
register. This flag is automatically cleared by a read access to the EEFC_FSR register.

When the current command writes or erases a page in a locked region, the command has no
effect on the whole memory plane, but the FLOCKE flag is set in the EEFC_FSR register. This
flag is automatically cleared by a read access to the EEFC_FSR register.

AIMEL 279

11011B-ATARM-21-Feb-12

Figure 18-5. Command State Chart

Read Status: MC_FSR <

No
Check if FRDY flag Set

lYes

Write FCMD and PAGENB in Flash Command Register

Y

Read Status: MC_FSR

A

No

Check if FRDY flag Set

Check if FLOCKE flag Set Locking region violation

Check if FCMDE flag Set Bad keyword violation

lNO

Command Successfull

18.3.3.1 Getting Embedded Flash Descriptor

This command allows the system to learn about the Flash organization. The system can take full
advantage of this information. For instance, a device could be replaced by one with more Flash
capacity, and so the software is able to adapt itself to the new configuration.

To get the embedded Flash descriptor, the application writes the GETD command in the
EEFC_FCR register. The first word of the descriptor can be read by the software application in
the EEFC_FRR register as soon as the FRDY flag in the EEFC_FSR register rises. The next
reads of the EEFC_FRR register provide the following word of the descriptor. If extra read oper-

280 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

ations to the EEFC_FRR register are done after the last word of the descriptor has been
returned, then the EEFC_FRR register value is 0 until the next valid command.

Table 18-3. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash Interface Description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes

FL_NB_PLANE 3 Number of planes.

FL_PLANE[O0] 4 Number of bytes in the first plane.

FL_PLANE[FL_NB_PLANE-1] 4 + FL_NB_PLANE - 1 Number of bytes in the last plane.
Number of lock bits. A bit is associated
lock region.

FL_LOCK]O0] 4 + FL_NB_PLANE + 1 Number of bytes in the first lock region.

18.3.3.2 Write Commands

11011B-ATARM-21-Feb-12

Several commands can be used to program the Flash.

Flash technology requires that an erase is done before programming. The full memory plane can
be erased at the same time, or several pages can be erased at the same time (refer to Section
"The Partial Programming mode works only with 128-bit (or higher) boundaries. It cannot be
used with boundaries lower than 128 bits (8, 16 or 32-bit for example).”). Also, a page erase can
be automatically done before a page write using EWP or EWPL commands.

After programming, the page (the whole lock region) can be locked to prevent miscellaneous
write or erase sequences. The lock bit can be automatically set after page programming using
WPL or EWPL commands.

Data to be written are stored in an internal latch buffer. The size of the latch buffer corresponds
to the page size. The latch buffer wraps around within the internal memory area address space
and is repeated as many times as the number of pages within this address space.

Note: Writing of 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
Write operations are performed in a number of wait states equal to the number of wait states for
read operations.

Data are written to the latch buffer before the programming command is written to the Flash
Command Register EEFC_FCR. The sequence is as follows:

* Write the full page, at any page address, within the internal memory area address space.

¢ Programming starts as soon as the page number and the programming command are written
to the Flash Command Register. The FRDY bit in the Flash Programming Status Register
(EEFC_FSR) is automatically cleared.

* When programming is completed, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR,
the corresponding interrupt line of the NVIC is activated.

AImEl@ 281

ATMEL

Two errors can be detected in the EEFC_FSR register after a programming sequence:

* a Command Error: a bad keyword has been written in the EEFC_FCR register.

* a Lock Error: the page to be programmed belongs to a locked region. A command must be
previously run to unlock the corresponding region.

By using the WP command, a page can be programmed in several steps if it has been erased
before (see Figure 18-6).

Figure 18-6. Example of Partial Page Programming

32-bit wide 32-bit wide 32-bit wide
—> > —>
FF FF FF FF FF FF FF FF FF FF FF FF
X words FE FF FF FF FE FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF CA FE CA FE CA FE CA FE
X words FF FF FF FF CA FE CA FE CA FE CA FE
FF FF _FF FF CA FE CA FE | _CA FE CA FE _ |
FF FF FF FF FF FF FF FF DE CA DE CA
XwordsI FF FF FF FF FF FF FF FF DE CA DE CA
FF FF FF FF FF FF FF FF | _DE CA_DE CA _ |
FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FE FF FF FF FE FF FF FF
XwordsI FF_FF FF FF FF _FF FF FF FF FF FF FF
Step 1. Step 2. Step 3.
Erase All Flash Programming of the second part of PageY Programming of the third part of Page Y

So Page Y erased

The Partial Programming mode works only with 128-bit (or higher) boundaries. It cannot be used
with boundaries lower than 128 bits (8, 16 or 32-bit for example).

18.3.3.3 Erase Commands
Erase commands are allowed only on unlocked regions.

The erase sequence is:
¢ Erase starts as soon as one of the erase commands and the FARG field are written in the
Flash Command Register.

* When the programming completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence:

* a Command Error: a bad keyword has been written in the EEFC_FCR register.

* a Lock Error: at least one page to be erased belongs to a locked region. The erase command
has been refused, no page has been erased. A command must be run previously to unlock
the corresponding region.

18.3.3.4 Lock Bit Protection

Lock bits are associated with several pages in the embedded Flash memory plane. This defines
lock regions in the embedded Flash memory plane. They prevent writing/erasing protected
pages.

282 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

The lock sequence is:
* The Set Lock command (SLB) and a page number to be protected are written in the Flash
Command Register.

* When the locking completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

¢ If the lock bit number is greater than the total number of lock bits, then the command has no
effect. The result of the SLB command can be checked running a GLB (Get Lock Bit)
command.

One error can be detected in the EEFC_FSR register after a programming sequence:

* a Command Error: a bad keyword has been written in the EEFC_FCR register.
It is possible to clear lock bits previously set. Then the locked region can be erased or pro-
grammed. The unlock sequence is:
¢ The Clear Lock command (CLB) and a page number to be unprotected are written in the
Flash Command Register.

* When the unlock completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

¢ If the lock bit number is greater than the total number of lock bits, then the command has no
effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

* a Command Error: a bad keyword has been written in the EEFC_FCR register.
The status of lock bits can be returned by the Enhanced Embedded Flash Controller (EEFC).
The Get Lock Bit status sequence is:
* The Get Lock Bit command (GLB) is written in the Flash Command Register, FARG field is
meaningless.

* Lock bits can be read by the software application in the EEFC_FRR register. The first word
read corresponds to the 32 first lock bits, next reads providing the next 32 lock bits as long as
it is meaningful. Extra reads to the EEFC_FRR register return 0.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third lock
region is locked.

One error can be detected in the EEFC_FSR register after a programming sequence:

* a Command Error: a bad keyword has been written in the EEFC_FCR register.
Note: Access to the Flash in read is permitted when a set, clear or get lock bit command is performed.

18.3.3.5 GPNVM Bit
GPNVM bits do not interfere with the embedded Flash memory plane. Refer to the product defi-
nition section for information on the GPNVM Bit Action.

The set GPNVM bit sequence is:

e Start the Set GPNVM Bit command (SGPB) by writing the Flash Command Register with the
SGPB command and the number of the GPNVM bit to be set.

AImEl@ 283

11011B-ATARM-21-Feb-12

ATMEL

* When the GPVNM bit is set, the bit FRDY in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt was enabled by setting the FRDY bit in EEFC_FMR, the
interrupt line of the NVIC is activated.

¢ If the GPNVM bit number is greater than the total number of GPNVM bits, then the command
has no effect. The result of the SGPB command can be checked by running a GGPB (Get
GPNVM Bit) command.

One error can be detected in the EEFC_FSR register after a programming sequence:

* A Command Error: a bad keyword has been written in the EEFC_FCR register.
It is possible to clear GPNVM bits previously set. The clear GPNVM bit sequence is:
» Start the Clear GPNVM Bit command (CGPB) by writing the Flash Command Register with
CGPB and the number of the GPNVM bit to be cleared.

* When the clear completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

e If the GPNVM bit number is greater than the total number of GPNVM bits, then the command
has no effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

e A Command Error: a bad keyword has been written in the EEFC_FCR register.
The status of GPNVM bits can be returned by the Enhanced Embedded Flash Controller
(EEFC). The sequence is:
e Start the Get GPNVM bit command by writing the Flash Command Register with GGPB. The
FARG field is meaningless.

* GPNVM bits can be read by the software application in the EEFC_FRR register. The first
word read corresponds to the 32 first GPNVM bits, following reads provide the next 32
GPNVM bits as long as it is meaningful. Extra reads to the EEFC_FRR register return 0.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third GPNVM
bit is active.
One error can be detected in the EEFC_FSR register after a programming sequence:

* a Command Error: a bad keyword has been written in the EEFC_FCR register.

Note: Access to the Flash in read is permitted when a set, clear or get GPNVM bit command is
performed.

18.3.3.6 Calibration Bit
Calibration bits do not interfere with the embedded Flash memory plane.

It is impossible to modify the calibration bits.

The status of calibration bits can be returned by the Enhanced Embedded Flash Controller
(EEFC). The sequence is:

* Issue the Get CALIB Bit command by writing the Flash Command Register with GCALB (see
Table 18-2). The FARG field is meaningless.

* Calibration bits can be read by the software application in the EEFC_FRR register. The first
word read corresponds to the 32 first calibration bits, following reads provide the next 32
calibration bits as long as it is meaningful. Extra reads to the EEFC_FRR register return 0.

284 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

The 4/8/12 MHz Fast RC oscillator is calibrated in production. This calibration can be read
through the Get CALIB Bit command. The table below shows the bit implementation for each
frequency:

RC Calibration Frequency | EEFC_FRR Bits
8 MHz output [28 - 22]
12 MHz output [38 - 32]

The RC calibration for 4 MHz is set to 1,000,000.

18.3.3.7 Security Bit Protection
When the security is enabled, access to the Flash, either through the JTAG/SWD interface or
through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of
the code programmed in the Flash.

The security bit is GPNVMO.

Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full
Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are
permitted.

18.3.3.8 Unique Identifier
Each part is programmed with a 128-bit Unique Identifier. It can be used to generate keys for
example.

To read the Unique Identifier the sequence is:
¢ Send the Start Read unique Identifier command (STUI) by writing the Flash Command
Register with the STUI command.

* When the Unique ldentifier is ready to be read, the FRDY bit in the Flash Programming
Status Register (EEFC_FSR) falls.

¢ The Unique Identifier is located in the first 128 bits of the Flash memory mapping. So, at the
address 0x80000-0x8000F.

¢ To stop the Unique Identifier mode, the user needs to send the Stop Read unique Identifier
command (SPUI) by writing the Flash Command Register with the SPUI command.

* When the Stop read Unique Identifier command (SPUI) has been performed, the FRDY bit in
the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt was enabled by
setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is activated.

Note that during the sequence, the software can not run out of Flash (or the second plane in
case of dual plane).

AImEl@ 285

11011B-ATARM-21-Feb-12

ATMEL

18.4 Enhanced Embedded Flash Controller (EEFC) User Interface

The User Interface of the Enhanced Embedded Flash Controller (EEFC) is integrated within the System Controller with
base address 0x400E0800.

Table 18-4. Register Mapping

Offset Register Name Access Reset State
0x00 EEFC Flash Mode Register EEFC_FMR Read-write 0x0
0x04 EEFC Flash Command Register EEFC_FCR Write-only -
0x08 EEFC Flash Status Register EEFC_FSR Read-only 0x00000001
0x0C EEFC Flash Result Register EEFC_FRR Read-only 0x0
0x10 Reserved - - -

286 S /A1 3 N 150000000

11011B-ATARM-21-Feb-12

e S AM3N

18.4.1 EEFC Flash Mode Register

Name: EEFC_FMR

Address: 0x400EOA00

Access: Read-write

Offset: 0x00
31 30 29 28 27 26 25 24

- 1 - 1 - T - T - - 1 - AV]
23 22 21 20 19 18 17 16

N N B R R 1 - —]
15 14 13 12 11 10 9 8

| - | - | - | - | FWS |
7 6 5 4 3 2 1 0

I - I I - I - I - - - FROY |

¢ FRDY: Ready Interrupt Enable
0: Flash Ready does not generate an interrupt.

1: Flash Ready (to accept a new command) generates an interrupt.

¢ FWS: Flash Wait State

This field defines the number of wait states for read and write operations:
Number of cycles for Read/Write operations = FWS+1

* FAM: Flash Access Mode

0: 128-bit access in read Mode only, to enhance access speed.

1: 64-bit access in read Mode only, to enhance power consumption.

No Flash read should be done during change of this register.

ATMEL

11011B-ATARM-21-Feb-12

287

ATMEL

18.4.2 EEFC Flash Command Register

Name: EEFC_FCR

Address: 0x400E0A04

Access: Write-only

Offset: 0x04
31 30 29 28 27 26 25 24

| FKEY |
23 22 21 20 19 18 17 16

| FARG |
15 14 13 12 11 10 9 8

| FARG |
7 6 5 4 3 2 1 0

| FCMD |

e FCMD: Flash Command
This field defines the flash commands. Refer to “Flash Commands” on page 279.

¢ FARG: Flash Command Argument

Erase command For erase all command, this field is meaningless.
Programming command FARG defines the page number to be programmed.
Lock command FARG defines the page number to be locked.

GPNVM command FARG defines the GPNVM number.

Get commands Field is meaningless.

Unique Identifier commands Field is meaningless.

¢ FKEY: Flash Writing Protection Key
This field should be written with the value 0x5A to enable the command defined by the bits of the register. If the field is writ-
ten with a different value, the write is not performed and no action is started.

288 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

18.4.3 EEFC Flash Status Register

Name: EEFC_FSR

Address: 0x400EOAO08

Access: Read-only

Offset: 0x08
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | FLOCKE [FCMDE | FRDY |

* FRDY: Flash Ready Status
0: The Enhanced Embedded Flash Controller (EEFC) is busy.

1: The Enhanced Embedded Flash Controller (EEFC) is ready to start a new command.

When it is set, this flags triggers an interrupt if the FRDY flag is set in the EEFC_FMR register.

This flag is automatically cleared when the Enhanced Embedded Flash Controller (EEFC) is busy.

* FCMDE: Flash Command Error Status

0: No invalid commands and no bad keywords were written in the Flash Mode Register EEFC_FMR.

1: An invalid command and/or a bad keyword was/were written in the Flash Mode Register EEFC_FMR.
This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

* FLOCKE: Flash Lock Error Status

0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR.
1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

AImEl@ 289

11011B-ATARM-21-Feb-12

ATMEL

18.4.4 EEFC Flash Result Register

Name: EEFC_FRR

Address: 0x400E0AOC

Access: Read-only

Offset: 0x0C
31 30 29 28 27 26 25 24

| FVALUE |
23 22 21 20 19 18 17 16

| FVALUE |
15 14 13 12 11 10 9 8

| FVALUE |
7 6 5 4 3 2 1 0

| FVALUE |

¢ FVALUE: Flash Result Value
The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, then the next

resulting value is accessible at the next register read.

290 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

19. Fast Flash Programming Interface (FFPI)

19.1

19.2

19.2.1

11011B-ATARM-21-Feb-12

Description

The Fast Flash Programming Interface provides parallel high-volume programming using a stan-
dard gang programmer. The parallel interface is fully handshaked and the device is considered
to be a standard EEPROM. Additionally, the parallel protocol offers an optimized access to all
the embedded Flash functionalities.

Although the Fast Flash Programming Mode is a dedicated mode for high volume programming,

this mode is not designed for in-situ programming.

Parallel Fast Flash Programming

Device Configuration

In Fast Flash Programming Mode, the device is in a specific test mode. Only a certain set of pins
is significant. The rest of the PIOs are used as inputs with a pull-up. The crystal oscillator is in

bypass mode. Other pins must be left unconnected.

Figure 19-1. SAM3NXA (48 bits) Parallel Programming Interface

VDDIO
VDDIO
VDDIO

GND

NCMD
RDY
NOE

NVALID
MODE[3:0]
DATA[7:0]

0 - 50MHz

—>

—>]

—>

—>

—>

TST

PGMENO
PGMEN1
PGMEN2

PGMNCMD
PGMRDY

PGMNOE
PGMNVALID
PGMM[3:0]
PGMD[7:0]

XIN

VDDCORE
VDDIO
VDDPLL

GND

Figure 19-2. SAM3NxB/C (64/100 pins) Parallel Programming Interface

VDDIO
VDDIO
VDDIO

GND

NCMD
RDY
NOE

NVALID
MODE[3:0]
DATA[15:0]

0 - 50MHz

TST

PGMENO
PGMENT1
PGMEN2

PGMNCMD
PGMRDY

PGMNOE
PGMNVALID
PGMM[3:0]
PGMD[15:0]

XIN

l——

ATMEL

VDDCORE
VDDIO
VDDPLL

GND

291

ATMEL

Table 19-1. Signal Description List

Active
Signal Name Function Type Level | Comments
Power
VDDIO I/O Lines Power Supply Power
VDDCORE Core Power Supply Power
VDDPLL PLL Power Supply Power
GND Ground Ground
Clocks
XIN Main Clock Input Input ‘ ‘ 32KHz to 50MHz
Test
TST Test Mode Select Input High Must be connected to VDDIO
PGMENO Test Mode Select Input High Must be connected to VDDIO
PGMENT1 Test Mode Select Input High Must be connected to VDDIO
PGMEN2 Test Mode Select Input Low Must be connected to GND
PIO
PGMNCMD Valid command available Input Low Pulled-up input at reset
PGMRDY ? gz:z: :: lrj:as(;/y for & new command Output High Pulled-up input at reset
PGMNOE Output Enable (active high) Input Low Pulled-up input at reset
. . 01 s in i
PGMNVALID ? gﬁiﬁﬂg;g} Z: Bﬁlﬁg;g}m :z :2 'c:zztl]ﬂ:ize Output Low | Pulled-up input at reset
PGMM[3:0] Specifies DATA type (See Table 19-2) Input Pulled-up input at reset
PGMDI[15:0] or [7:0]® | Bi-directional data bus Input/Output Pulled-up input at reset
Notes: 1. DATA[7:0] pertains to the SAM3NXA (48 bits).
2. PGMDI7:0] pertains to the SAM3NXA (48 bits).
292 S /A3 N 1500000000000

11011B-ATARM-21-Feb-12

e S AM3N

19.2.2

Signal Names

11011B-ATARM-21-Feb-12

Depending on the MODE settings, DATA is latched in different internal registers.

Table 19-2. Mode Coding
MODE[3:0] Symbol Data
0000 CMDE Command Register
0001 ADDRO Address Register LSBs
0010 ADDR1
0011 ADDR2
0100 ADDRS3 Address Register MSBs
0101 DATA Data Register
Default IDLE No register

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] or DATA[7:0]

signals) is stored in the command register.

Note: DATA[7:0] pertains to SAM3NXA (48 pins).

Table 19-3. Command Bit Coding
DATA[15:0] Symbol Command Executed
0x0011 READ Read Flash
0x0012 WP Write Page Flash
0x0022 WPL Write Page and Lock Flash
0x0032 EWP Erase Page and Write Page
0x0042 EWPL Erase Page and Write Page then Lock
0x0013 EA Erase All
0x0014 SLB Set Lock Bit
0x0024 CLB Clear Lock Bit
0x0015 GLB Get Lock Bit
0x0034 SGPB Set General Purpose NVM bit
0x0044 CGPB Clear General Purpose NVM bit
0x0025 GGPB Get General Purpose NVM bit
0x0054 SSE Set Security Bit
0x0035 GSE Get Security Bit
0x001F WRAM Write Memory
0x001E GVE Get Version

ATMEL

293

ATMEL

19.2.3 Entering Programming Mode
The following algorithm puts the device in Parallel Programming Mode:
* Apply GND, VDDIO, VDDCORE and VDDPLL.
* Apply XIN clock within Tpor reser if @an external clock is available.
* Wait for Teor reser
e Start a read or write handshaking.

19.24 Programmer Handshaking
An handshake is defined for read and write operations. When the device is ready to start a new
operation (RDY signal set), the programmer starts the handshake by clearing the NCMD signal.
The handshaking is achieved once NCMD signal is high and RDY is high.

19.2.4.1 Write Handshaking
For details on the write handshaking sequence, refer to Figure 19-3 Figure 19-4 and Table 19-4.

Figure 19-3. SAM3NxB/C (64/100 pins) Parallel Programming Timing, Write Sequence

NCMD @ @
RDY ® ®

NOE

NVALID

®

Figure 19-4. SAM3NXA (48 pins) Parallel Programming Timing, Write Sequence

NCMD @ @
RDY ® ®

NOE

NVALID

®

294 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

Table 19-4. Write Handshake

Step Programmer Action Device Action Data I/O
1 Sets MODE and DATA signals Waits for NCMD low Input
2 Clears NCMD signal Latches MODE and DATA Input
3 Waits for RDY low Clears RDY signal Input
4 Releases MODE and DATA signals Executes command and polls NCMD high Input
5 Sets NCMD signal Executes command and polls NCMD high Input
6 Waits for RDY high Sets RDY Input

19.2.4.2 Read Handshaking
For details on the read handshaking sequence, refer toFigure 19-5 Figure 19-6 and Table 19-5.

Figure 19-5. SAM3NxB/C (64/100 pins) Parallel Programming Timing, Read Sequence

NCMD @ @
RDY ® @/_
NOE ® ®
NVALID @ @)
®@ ® ® ©
parazo] X AdessiN_ Xz X pataout Xx XN

®

Figure 19-6. SAMB3NXA (48 pins) Parallel Programming Timing, Read Sequence

NCMD @ @
RDY ® @/_
NOE ® ®
NVALID @ @)
@ ® ® ©
X pataout Xx XN

paraptso] X AdressiN_ Xz
O]

AImEl@ 295

11011B-ATARM-21-Feb-12

ATMEL

Table 19-5. Read Handshake
Step Programmer Action Device Action DATA I/O
1 Sets MODE and DATA signals Waits for NCMD low Input
2 Clears NCMD signal Latch MODE and DATA Input
3 Waits for RDY low Clears RDY signal Input
4 Sets DATA signal in tristate Waits for NOE Low Input
5 Clears NOE signal Tristate
6 Waits for NVALID low tsh‘ztilggﬁotr’ﬁ;;_c’”tp”t mode and outputs | 41 ¢
7 Clears NVALID signal Output
8 Reads value on DATA Bus Waits for NOE high Output
9 Sets NOE signal Output
10 Waits for NVALID high Sets DATA bus in input mode X
11 Sets DATA in output mode Sets NVALID signal Input
12 Sets NCMD signal Waits for NCMD high Input
13 Waits for RDY high Sets RDY signal Input

296 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

19.25 Device Operations

Several commands on the Flash memory are available. These commands are summarized in
Table 19-3 on page 293. Each command is driven by the programmer through the parallel inter-
face running several read/write handshaking sequences.

When a new command is executed, the previous one is automatically achieved. Thus, chaining
a read command after a write automatically flushes the load buffer in the Flash.
In the following tables, Table 19-6 through Table 19-17

¢ DATA[15:0] pertains to ASAM3NxB/C (64/100 pins)

e DATA[7:0] pertains to SAM3BxA (48 pins)

19.2.5.1 Flash Read Command

11011B-ATARM-21-Feb-12

This command is used to read the contents of the Flash memory. The read command can start
at any valid address in the memory plane and is optimized for consecutive reads. Read hand-
shaking can be chained; an internal address buffer is automatically increased.

Table 19-6. Read Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Read handshaking DATA *Memory Address++
5 Read handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address

n+2 Read handshaking DATA *Memory Address++
n+3 Read handshaking DATA *Memory Address++

Table 19-7. Read Command

Step Handshake Sequence MODE[3:0] DATA[7:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Write handshaking ADDR2 Memory Address

5 Write handshaking ADDR3 Memory Address

6 Read handshaking DATA *Memory Address++
7 Read handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB

AImEl@ 297

ATMEL

Table 19-7. Read Command (Continued)
Step Handshake Sequence MODE[3:0] DATA[7:0]
n+1 Write handshaking ADDR1 Memory Address
n+2 Write handshaking ADDR2 Memory Address
n+3 Write handshaking ADDR3 Memory Address
n+4 Read handshaking DATA *Memory Address++
n+5 Read handshaking DATA *Memory Address++

19.2.5.2 Flash Write Command
This command is used to write the Flash contents.
The Flash memory plane is organized into several pages. Data to be written are stored in a load
buffer that corresponds to a Flash memory page. The load buffer is automatically flushed to the
Flash:
* before access to any page other than the current one
¢ when a new command is validated (MODE = CMDE)
The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be
chained; an internal address buffer is automatically increased.
Table 19-8. Write Command
Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE WP or WPL or EWP or EWPL
2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDRH1 Memory Address
4 Write handshaking DATA *Memory Address++
5 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address
n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++
Table 19-9. Write Command
Step Handshake Sequence MODE[3:0] DATA[7:0]
1 Write handshaking CMDE WP or WPL or EWP or EWPL
2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address
4 Write handshaking ADDR2 Memory Address
298 S /A IVI 3 1N 1500000000 —

11011B-ATARM-21-Feb-12

e S AM3N

Table 19-9. Write Command (Continued)

Step Handshake Sequence MODE[3:0] DATA[7:0]

5 Write handshaking ADDR3 Memory Address

6 Write handshaking DATA *Memory Address++
7 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking ADDR2 Memory Address

n+3 Write handshaking ADDR3 Memory Address

n+4 Write handshaking DATA *Memory Address++
n+5 Write handshaking DATA *Memory Address++

The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command.
However, the lock bit is automatically set at the end of the Flash write operation. As a lock region
is composed of several pages, the programmer writes to the first pages of the lock region using
Flash write commands and writes to the last page of the lock region using a Flash write and lock
command.

The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command.
However, before programming the load buffer, the page is erased.

The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL
commands.

19.2.5.3 Flash Full Erase Command
This command is used to erase the Flash memory planes.

All lock regions must be unlocked before the Full Erase command by using the CLB command.
Otherwise, the erase command is aborted and no page is erased.

Table 19-10. Full Erase Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]
1 Write handshaking CMDE EA
2 Write handshaking DATA 0

19.2.5.4 Flash Lock Commands
Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set
Lock command (SLB). With this command, several lock bits can be activated. A Bit Mask is pro-
vided as argument to the command. When bit 0 of the bit mask is set, then the first lock bit is
activated.

AImEl@ 299

11011B-ATARM-21-Feb-12

ATMEL

In the same way, the Clear Lock command (CLB) is used to clear lock bits.

Table 19-11. Set and Clear Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]
1 Write handshaking CMDE SLB or CLB
2 Write handshaking DATA Bit Mask

Lock bits can be read using Get Lock Bit command (GLB). The n'" lock bit is active when the bit
n of the bit mask is set..

Table 19-12. Get Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]
1 Write handshaking CMDE GLB

Lock Bit Mask Status
2 Read handshaking DATA 0 = Lock bit is cleared

1 = Lock bit is set

19.2.5.5

Flash General-purpose NVM Commands

General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB).
This command also activates GP NVM bits. A bit mask is provided as argument to the com-
mand. When bit 0 of the bit mask is set, then the first GP NVM bit is activated.

In the same way, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM
bits. The general-purpose NVM bit is deactivated when the corresponding bit in the pattern value
issetto 1.

Table 19-13. Set/Clear GP NVM Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]
1 Write handshaking CMDE SGPB or CGPB
2 Write handshaking DATA GP NVM bit pattern value

General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The n"
GP NVM bit is active when bit n of the bit mask is set..

Table 19-14. Get GP NVM Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]
1 Write handshaking CMDE GGPB
GP NVM Bit Mask Status
2 Read handshaking DATA 0 = GP NVM bit is cleared
1 =GP NVM bit is set

300 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

19.2.5.6 Flash Security Bit Command
A security bit can be set using the Set Security Bit command (SSE). Once the security bit is
active, the Fast Flash programming is disabled. No other command can be run. An event on the
Erase pin can erase the security bit once the contents of the Flash have been erased.

Table 19-15. Set Security Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]
1 Write handshaking CMDE SSE
2 Write handshaking DATA 0

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security
bit is to erase the Flash.

In order to erase the Flash, the user must perform the following:
* Power-off the chip
¢ Power-on the chip with TST =0
* Assert Erase during a period of more than 220 ms
¢ Power-off the chip
Then it is possible to return to FFPI mode and check that Flash is erased.

19.2.5.7 Memory Write Command
This command is used to perform a write access to any memory location.

The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking
can be chained; an internal address buffer is automatically increased.

Table 19-16. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WRAM

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++
5 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++

AI“"E',® 301

11011B-ATARM-21-Feb-12

ATMEL

Table 19-17. Write Command

Step Handshake Sequence MODE[3:0] DATA[7:0]

1 Write handshaking CMDE WRAM

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Write handshaking ADDR2 Memory Address

5 Write handshaking ADDR3 Memory Address

6 Write handshaking DATA *Memory Address++
7 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking ADDR2 Memory Address

n+3 Write handshaking ADDR3 Memory Address

n+4 Write handshaking DATA *Memory Address++
n+5 Write handshaking DATA *Memory Address++

19.2.5.8 Get Version Command
The Get Version (GVE) command retrieves the version of the FFPI interface.

Table 19-18. Get Version Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]
1 Write handshaking CMDE GVE
2 Write handshaking DATA Version
302 SAM3N |

11011B-ATARM-21-Feb-12

e S AM3N

20. SAM3N Boot Program

20.1 Description
The SAM-BA® Boot Program integrates an array of programs permitting download and/or upload
into the different memories of the product.

20.2 Hardware and Software Constraints

* SAM-BA Boot uses the first 2048 bytes of the SRAM for variables and stacks. The remaining
available size can be used for user's code.

* UARTO requirements: None

Table 20-1. Pins Driven during Boot Program Execution

Peripheral Pin PIO Line
UARTO URXDO PA9
UARTO UTXDO PA10

20.3 Flow Diagram
The Boot Program implements the algorithm in Figure 20-1.

Figure 20-1. Boot Program Algorithm Flow Diagram

No

Device Character # receive
Setup from UARTO?

Yes

[Run SAM-BA Monitor|

The SAM-BA Boot program uses the internal 12 MHz RC oscillator as source clock for PLL. The
MCK runs from PLL divided by 2. The core runs at 48 MHz.

20.4 Device Initialization
Initialization follows the steps described below:

Stack setup

Setup the Embedded Flash Controller

Switch on internal 12 MHz RC oscillator

Configure PLL to run at 96 MHz

Switch MCK to run on PLL divided by 2

Configure UARTO

Disable Watchdog

Wait for a character on UARTO

Jump to SAM-BA monitor (see Section 20.5 "SAM-BA Monitor”)

© o N O r Db

AI“"E',® 303

11011B-ATARM-21-Feb-12

ATMEL

20.5 SAM-BA Monitor
The SAM-BA boot principle:

Once the communication interface is identified, to run in an infinite loop waiting for different com-

mands as shown in Table 20-2.

Table 20-2. Commands Available through the SAM-BA Boot

Command Action Argument(s) Example

N set Normal mode No argument N#

T set Terminal mode No argument T#

(o] write a byte Address, Value# 0200001,CA#

o read a byte Address, # 0200001, #

H write a half word Address, Value# H200002,CAFE#
h read a half word Address,# h200002,#

w write a word Address, Value# W200000,CAFEDECA#
w read a word Address, # w200000,#

S send a file Address,# S200000,#

R receive a file Address, NbOfBytes# R200000,1234#
G go Address# G200200#

\' display version No argument V#

¢ Mode commands:

— Normal mode configures SAM-BA Monitor to send/receive data in binary format,

— Terminal mode configures SAM-BA Monitor to send/receive data in ascii format.
* Write commands: Write a byte (0O), a halfword (H) or a word (W) to the target.

— Address: Address in hexadecimal.

— Value: Byte, halfword or word to write in hexadecimal.

— Output: *>'.

* Read commands: Read a byte (0), a halfword (h) or a word (w) from the target.

— Address: Address in hexadecimal

— Output. The byte, halfword or word read in hexadecimal following by ‘>’

¢ Send a file (S): Send a file to a specified address

— Address: Address in hexadecimal

— Output: *>'.

Note: There is a time-out on this command which is reached when the prompt >’ appears before the
end of the command execution.

¢ Receive a file (R): Receive data into a file from a specified address

— Address: Address in hexadecimal

— NbOfBytes: Number of bytes in hexadecimal to receive

— Output. >’

¢ Go (G): Jump to a specified address and execute the code

— Address: Address to jump in hexadecimal

304 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

— Output. >’
¢ Get Version (V): Return the SAM-BA boot version
— Output. >’

20.5.1 UARTO Serial Port

Communication is performed through the UARTO initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal
performing this protocol can be used to send the application file to the target. The size of the
binary file to send depends on the SRAM size embedded in the product. In all cases, the size of
the binary file must be lower than the SRAM size because the Xmodem protocol requires some
SRAM memory to work. See, Section 20.2 "Hardware and Software Constraints”

20.5.2 Xmodem Protocol

11011B-ATARM-21-Feb-12

The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-charac-
ter CRC-16 to guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful
transmission. Each block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

— <SOH> =01 hex

— <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to 00H (not
to 01)

— <255-blk #> = 1’s complement of the blk#.
— <checksum> = 2 bytes CRC16
Figure 20-2 shows a transmission using this protocol.

Figure 20-2. Xmodem Transfer Example

Host Device

C

<
<

SOH 01 FE Data[128] CRC CRC

2

ACK

<
<

SOH 02 FD Data[128] CRC CRC

2

ACK

<
<

SOH 03 FC Data[100] CRC CRC

2

ACK

EOT

ACK

AI“"E',® 305

e S AM3N

20.5.3 In Application Programming (IAP) Feature
The IAP feature is a function located in ROM that can be called by any software application.

When called, this function sends the desired FLASH command to the EEFC and waits for the
Flash to be ready (looping while the FRDY bit is not set in the MC_FSR register).

Since this function is executed from ROM, this allows Flash programming (such as sector write)
to be done by code running in Flash.

The IAP function entry point is retrieved by reading the NMI vector in ROM (0x00800008).
This function takes one argument in parameter: the command to be sent to the EEFC.
This function returns the value of the MC_FSR register.

IAP software code example:

(unsigned int) (*IAP_Function) (unsigned long) ;

void main (void) {
unsigned long FlashSectorNum = 200; //
unsigned long flash_cmd = 0;
unsigned long flash_status = 0;

unsigned long EFCIndex = 0; // 0:EEFC0O, 1: EEFC1

/* Initialize the function pointer (retrieve function address from NMI
vector) */

IAP_Function = ((unsigned long) (*) (unsigned long)) 0x00800008;
/* Send your data to the sector here */
/* build the command to send to EEFC */

flash_cmd = (0x5A << 24) | (FlashSectorNum << 8) | AT91C_MC_FCMD_EWP;
/* Call the IAP function with appropriate command */

flash_status = IAP_Function (EFCIndex, flash_cmd) ;

AI“"E',® 306

11011B-ATARM-21-Feb-12

e S AM3N

21. Bus Matrix (MATRIX)

21.1

Description

The Bus Matrix implements a multi-layer AHB that enables parallel access paths between multi-
ple AHB masters and slaves in a system, which increases the overall bandwidth. Bus Matrix
interconnects 3 AHB Masters to 4 AHB Slaves. The normal latency to connect a master to a
slave is one cycle except for the default master of the accessed slave which is connected
directly (zero cycle latency).

The Bus Matrix user interface also provides a Chip Configuration User Interface with Registers
that allow to support application specific features.

21.2 Embedded Characteristics

21.21

21.2.2

Matrix Masters

Matrix Slaves

11011B-ATARM-21-Feb-12

The Bus Matrix of the SAM3N product manages 3 masters, which means that each master can
perform an access concurrently with others, to an available slave.

Each master has its own decoder, which is defined specifically for each master. In order to sim-
plify the addressing, all the masters have the same decodings.

Table 21-1. List of Bus Matrix Masters

Master O Cortex-M3 Instruction/Data
Master 1 Cortex-M3 System
Master 2 Peripheral DMA Controller (PDC)

The Bus Matrix of the SAM3N product manages 4 slaves. Each slave has its own arbiter, allow-
ing a different arbitration per slave.

List of Bus Matrix Slaves

Slave 0 Internal SRAM
Slave 1 Internal ROM
Slave 2 Internal Flash
Slave 3 Peripheral Bridge

AI“"E',® 307

ATMEL

21.2.3 Master to Slave Access

All the Masters can normally access all the Slaves. However, some paths do not make sense,
for example allowing access from the Cortex-M3 S Bus to the Internal ROM. Thus, these paths
are forbidden or simply not wired and shown as “-” in the following table.

Table 21-2. SAMS3N Master to Slave Access

Masters 0 1 2
Slaves Cortex-M3 I/D Cortex-M3 S PDC
Bus Bus
0 Internal SRAM - X X
1 Internal ROM X _ X
2 Internal Flash X . .
3 Peripheral Bridge - X X

21.3 Memory Mapping
Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each AHB
Master several memory mappings. In fact, depending on the product, each memory area may be
assigned to several slaves. Booting at the same address while using different AHB slaves (i.e.
internal ROM or internal Flash) becomes possible.

21.4 Special Bus Granting Techniques

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism allows to reduce latency at first accesses of a
burst or single transfer. The bus granting mechanism allows to set a default master for every
slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

21.41 No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low power mode.

21.4.2 Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

21.4.3 Fixed Default Master

At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master doesn’t change unless the user mod-
ifies it by a software action (field FIXED_DEFMSTR of the related MATRIX_SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that allow to set a default master for each
slave. The Slave Configuration Register contains two fields:

DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field allows to choose
the default master type (no default, last access master, fixed default master) whereas the 4-bit

308 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

21.5 Arbitration

FIXED_DEFMSTR field allows to choose a fixed default master provided that DEFMSTR_TYPE
is set to fixed default master. Please refer to the Bus Matrix user interface description.

The Bus Matrix provides an arbitration mechanism that allows to reduce latency when conflict
cases occur, basically when two or more masters try to access the same slave at the same time.
One arbiter per AHB slave is provided, allowing to arbitrate each slave differently.

The Bus Matrix provides to the user the possibility to choose between 2 arbitration types, and
this for each slave:

1. Round-Robin Arbitration (the default)

2. Fixed Priority Arbitration
This choice is given through the field ARBT of the Slave Configuration Registers
(MATRIX_SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration has to be done, it is realized only under some specific conditions detailed
in the following paragraph.

21.5.1 Arbitration Rules

Each arbiter has the ability to arbitrate between two or more different master’s requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: when a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: when a slave is currently doing a single access.

3. End of Burst Cycles: when the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst (See Section 21.5.1.1 “Undefined Length
Burst Arbitration” on page 309).

4. Slot Cycle Limit: when the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken (See Section 21.5.1.2 “Slot
Cycle Limit Arbitration” on page 310).

21.5.1.1 Undefined Length Burst Arbitration

11011B-ATARM-21-Feb-12

In order to avoid too long slave handling during undefined length bursts (INCR), the Bus Matrix
provides specific logic in order to re-arbitrate before the end of the INCR transfer.

A predicted end of burst is used as for defined length burst transfer, which is selected between
the following:

1. Infinite: no predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. Four beat bursts: predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.

3. Eight beat bursts: predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.

4. Sixteen beat bursts: predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.

AI“"E',® 309

21.5.1.2

215.2

21.5.2.1

21.5.22

21.5.2.3

2153

310

ATMEL

This selection can be done through the field ULBT of the Master Configuration Registers
(MATRIX_MCFG).

Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break too long accesses such as very long bursts on a
very slow slave (e.g. an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (MATRIX_SCFG) and decreased at each clock cycle. When the counter
reaches zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or
word transfer.

Round-Robin Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master’s requests arise at the same
time, the master with the lowest number is first serviced then the others are serviced in a round-
robin manner.

There are three round-robin algorithm implemented:

¢ Round-Robin arbitration without default master
¢ Round-Robin arbitration with last access master
¢ Round-Robin arbitration with fixed default master

Round-Robin arbitration without default master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

Round-Robin arbitration with last access master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performs the access. Other non privileged masters will still get one latency cycle
if they want to access the same slave. This technique can be used for masters that mainly per-
form single accesses.

Round-Robin arbitration with fixed default master

This is another biased round-robin algorithm, it allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master’'s requests
are active at the same time, the master with the highest priority number is serviced first. If two or

11011B-ATARM-21-Feb-12

e S AM3N

more master’s requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (MATRIX_PRAS and MATRIX_PRBS).

21.6 System I/O Configuration

The System I/O Configuration register (CCFG_SYSIO) allows to configure some /O lines in
System I/O mode (such as JTAG, ERASE, etc...) or as general purpose I/O lines. Enabling or
disabling the corresponding 1/O lines in peripheral mode or in PIO mode (PIO_PER or PIO_PDR
registers) in the PIO controller as no effect. However, the direction (input or output), pull-up, pull-
down and other mode control is still managed by the PIO controller.

21.7 Write Protect Registers

11011B-ATARM-21-Feb-12

To prevent any single software error that may corrupt MATRIX behavior, the entire MATRIX
address space from address offset 0x000 to 0x1FC can be write-protected by setting the
WPEN bit in the MATRIX Write Protect Mode Register (MATRIX_WPMR).

If a write access to anywhere in the MATRIX address space from address offset 0x000 to Ox1FC
is detected, then the WPVS flag in the MATRIX Write Protect Status Register (MATRIX_WPSR)
is set and the field WPVSRC indicates in which register the write access has been attempted.

The WPVS flag is reset by writing the MATRIX Write Protect Mode Register (MATRIX_WPMR)
with the appropriate access key WPKEY.

AImEl@ 311

e S AM3N

21.8 Bus Matrix (MATRIX) User Interface

Table 21-3. Register Mapping
Offset Register Name Access Reset
0x0000 Master Configuration Register 0 MATRIX_MCFGO Read-write 0x00000000
0x0004 Master Configuration Register 1 MATRIX_MCFGH1 Read-write 0x00000000
0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read-write 0x00000000
0x000C - 0x003C | Reserved - - -
0x0040 Slave Configuration Register 0 MATRIX_SCFGO Read-write 0x00010010
0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read-write 0x00050010
0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read-write 0x00000010
0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read-write 0x00000010
0x0050 - 0x007C | Reserved - - -
0x0080 Priority Register A for Slave 0 MATRIX_PRASO Read-write 0x00000000
0x0084 Reserved - - -
0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read-write 0x00000000
0x008C Reserved - - -
0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read-write 0x00000000
0x0094 Reserved - - -
0x0098 Priority Register A for Slave 3 MATRIX_PRASS3 Read-write 0x00000000
0x009C - 0x0110 | Reserved - - -
0x0114 System 1/O Configuration register CCFG_SYSIO Read/Write 0x00000000
0x0118- 0x011C | Reserved - - -
0x0120 - 0x010C | Reserved - - -
Ox1E4 Write Protect Mode Register MATRIX_WPMR Read-write 0x0
Ox1E8 Write Protect Status Register MATRIX_WPSR Read-only 0x0
0x0110 - Ox01FC | Reserved - - -

11011B-ATARM-21-Feb-12

ATMEL

312

e S AM3N

21.8.1 Bus Matrix Master Configuration Registers
Name: MATRIX_MCFGO..MATRIX_MCFG2

Address: 0x400E0200

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | ULBT |

¢ ULBT: Undefined Length Burst Type
0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access

The undefined length burst is treated as a succession of single access allowing rearbitration at each beat of the INCR
burst.

2: Four Beat Burst

The undefined length burst is split into a 4-beat bursts allowing rearbitration at each 4-beat burst end.
3: Eight Beat Burst

The undefined length burst is split into 8-beat bursts allowing rearbitration at each 8-beat burst end.
4: Sixteen Beat Burst

The undefined length burst is split into 16-beat bursts allowing rearbitration at each 16-beat burst end.

AI“"E',® 313

11011B-ATARM-21-Feb-12

e S AM3N

21.8.2 Bus Matrix Slave Configuration Registers
Name: MATRIX_SCFGO0..MATRIX_SCFG3

Address: 0x400E0240

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - - - I ARBT |
23 22 21 20 19 18 17 16

| — | — | — | FIXED_DEFMSTR | DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

I - I - I - I - - I - I - I - |
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

e SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reach for a burst it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking very slow slaves when very long bursts are used.

This limit should not be very small though. An unreasonable small value will break every burst and the Bus Matrix will
spend its time to arbitrate without performing any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

e DEFMSTR_TYPE: Default Master Type

0: No Default Master

At the end of current slave access, if no other master request is pending, the slave is disconnected from all masters.

This results in having a one cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of current slave access, if no other master request is pending, the slave stays connected to the last master hav-
ing accessed it.

This results in not having the one cycle latency when the last master re-tries access on the slave again.
2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having the one cycle latency when the fixed master re-tries access on the slave again.

¢ FIXED_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

¢ ARBT: Arbitration Type
0: Round-Robin Arbitration
1: Fixed Priority Arbitration
2: Reserved
3: Reserved

AImEl@ 314

11011B-ATARM-21-Feb-12

e S AM3N

21.8.3 Bus Matrix Priority Registers For Slaves
Name: MATRIX_PRASO..MATRIX_PRASS3

Addresses: 0x400E0280 [0], 0x400E0288 [1], 0x400E0290 [2], 0x400E0298 [3]

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — [— [M3PR [— [- [M2PR |
7 6 5 4 3 2 1 0

| — | — | M1PR | — | — | MOPR |

* MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

AI“"E',® 315

11011B-ATARM-21-Feb-12

ATMEL

21.8.4 System I/0 Configuration Register

Name: CCFG_SYSIO

Address: 0x400E0314

Access Read-write

Reset: 0x0000_0000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | Sysio12 | - I - I - I - |
7 6 5 4 3 2 1 0

| SYSIO7] SYSIO6 | SYSIO5] SYSIO4] - [— [— | - |

e SYSIO4: PB4 or TDI Assignment

0 = TDI function selected.

1 = PB4 function selected.

e SYSIO5: PB5 or TDO/TRACESWO Assignment
0 = TDO/TRACESWO function selected.

1 = PB5 function selected.

e SYSIO6: PB6 or TMS/SWDIO Assignment
0 = TMS/SWDIO function selected.

1 = PB6 function selected.

e SYSIO7: PB7 or TCK/SWCLK Assignment
0 = TCK/SWCLK function selected.

1 = PB7 function selected.

e SYSIO12: PB12 or ERASE Assignment

0 = ERASE function selected.

1 = PB12 function selected.

316 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

21.85 Write Protect Mode Register
Name: MATRIX_WPMR

Address: Ox400E03E4

Access: Read-write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

| - | - | - | - | - | . | - WPEN |

For more details on MATRIX_WPMR, refer to Section 21.7 “Write Protect Registers” on page 311.

¢ WPEN: Write Protect ENable
0 = Disables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).
Protects the entire MATRIX address space from address offset 0x000 to Ox1FC.
e WPKEY: Write Protect KEY (Write-only)

Should be written at value 0x4D4154 (“MAT” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

AIMEL 317

11011B-ATARM-21-Feb-12

21.8.6 Write Protect Status Register
Name: MATRIX_WPSR

Address: 0x400EO3ES8

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

| - | - | - | - | - | . | - WevS |

For more details on MATRIX_WPSR, refer to Section 21.7 “Write Protect Registers” on page 311.
e WPVS: Write Protect Violation Status

0: No Write Protect Violation has occurred since the last write of MATRIX_WPMR.

1: At least one Write Protect Violation has occurred since the last write of MATRIX_WPMR.

¢ WPVSRC: Write Protect Violation Source

Should be written at value 0x4D4154 (“MAT” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

318 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

22. Peripheral DMA Controller (PDC)

22.1 Description

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the
on- and/or off-chip memories. The link between the PDC and a serial peripheral is operated by
the AHB to ABP bridge.

The user interface of each PDC channel is integrated into the user interface of the peripheral it
serves. The user interface of mono directional channels (receive only or transmit only), contains
two 32-bit memory pointers and two 16-bit counters, one set (pointer, counter) for current trans-
fer and one set (pointer, counter) for next transfer. The bi-directional channel user interface
contains four 32-bit memory pointers and four 16-bit counters. Each set (pointer, counter) is
used by current transmit, next transmit, current receive and next receive.

Using the PDC removes processor overhead by reducing its intervention during the transfer.
This significantly reduces the number of clock cycles required for a data transfer, which
improves microcontroller performance.

To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and
receive signals. When the programmed data is transferred, an end of transfer interrupt is gener-
ated by the peripheral itself.

22.2 Embedded Characteristics

¢ Handles data transfer between peripherals and memories
¢ Low bus arbitration overhead
— One Master Clock cycle needed for a transfer from memory to peripheral
— Two Master Clock cycles needed for a transfer from peripheral to memory
* Next Pointer management for reducing interrupt latency requirement
The Peripheral DMA Controller handles transfer requests from the channel according to the fol-
lowing priorities (Low to High priorities):

Table 22-1. Peripheral DMA Controller

Instance name Channel T/R 100 & 64 Pins 48 Pins

TWIO Transmit X X
UARTO Transmit X X
USARTO Transmit X X

DAC Transmit X N/A
SPI Transmit X X
TWIO Receive X X
UARTO Receive X X
USARTO Receive X X
ADC Receive X X
SPI Receive X X

| AImEl 319
I)

11011B-ATARM-21-Feb-12

ATMEL

22.3 Block Diagram

Figure 22-1. Block Diagram

FULL DUPLEX PDC
PERIPHERAL
THR PDC Channel A
RHR PDC Channel B

Status & Control
Control <€ -

HALF DUPLEX

PERIPHERAL Control
THR
PDC Channel C
RHR
Status & Control
Control <€ >

RECEIVE or TRANSMIT

PERIPHERAL
RHR or THR PDC Channel D
Status & Control
Control - >

320 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

22.4 Functional Description

22.41

22.4.2

2243

Configuration

The PDC channel user interface enables the user to configure and control data transfers for
each channel. The user interface of each PDC channel is integrated into the associated periph-
eral user interface.

The user interface of a serial peripheral, whether it is full or half duplex, contains four 32-bit
pointers (RPR, RNPR, TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR,
TNCR). However, the transmit and receive parts of each type are programmed differently: the
transmit and receive parts of a full duplex peripheral can be programmed at the same time,
whereas only one part (transmit or receive) of a half duplex peripheral can be programmed at a
time.

32-bit pointers define the access location in memory for current and next transfer, whether it is
for read (transmit) or write (receive). 16-bit counters define the size of current and next transfers.
It is possible, at any moment, to read the number of transfers left for each channel.

The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for
each channel. The status for each channel is located in the associated peripheral status register.
Transfers can be enabled and/or disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in
the peripheral’s Transfer Control Register.

At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These
flags are visible in the peripheral status register (ENDRX, ENDTX, RXBUFF, and TXBUFE).
Refer to Section 22.4.3 and to the associated peripheral user interface.

Memory Pointers

Each full duplex peripheral is connected to the PDC by a receive channel and a transmit chan-
nel. Both channels have 32-bit memory pointers that point respectively to a receive area and to
a transmit area in on- and/or off-chip memory.

Each half duplex peripheral is connected to the PDC by a bidirectional channel. This channel
has two 32-bit memory pointers, one for current transfer and the other for next transfer. These
pointers point to transmit or receive data depending on the operating mode of the peripheral.

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
respectively by 1, 2 or 4 bytes.

If a memory pointer address changes in the middle of a transfer, the PDC channel continues
operating using the new address.

Transfer Counters

11011B-ATARM-21-Feb-12

Each channel has two 16-bit counters, one for current transfer and the other one for next trans-
fer. These counters define the size of data to be transferred by the channel. The current transfer
counter is decremented first as the data addressed by current memory pointer starts to be trans-
ferred. When the current transfer counter reaches zero, the channel checks its next transfer
counter. If the value of next counter is zero, the channel stops transferring data and sets the
appropriate flag. But if the next counter value is greater then zero, the values of the next
pointer/next counter are copied into the current pointer/current counter and the channel resumes
the transfer whereas next pointer/next counter get zero/zero as values. At the end of this trans-
fer the PDC channel sets the appropriate flags in the Peripheral Status Register.

AImEl@ 321

22.4.4

2245

22.4.5.1

22452

22.4.5.3

322

ATMEL

The following list gives an overview of how status register flags behave depending on the coun-
ters’ values:

* ENDRX flag is set when the PERIPH_RCR register reaches zero.

* RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.

* ENDTX flag is set when the PERIPH_TCR register reaches zero.

* TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.
These status flags are described in the Peripheral Status Register.

Data Transfers

The serial peripheral triggers its associated PDC channels’ transfers using transmit enable
(TXEN) and receive enable (RXEN) flags in the transfer control register integrated in the periph-
eral’s user interface.

When the peripheral receives an external data, it sends a Receive Ready signal to its PDC
receive channel which then requests access to the Matrix. When access is granted, the PDC
receive channel starts reading the peripheral Receive Holding Register (RHR). The read data
are stored in an internal buffer and then written to memory.

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit chan-
nel which then requests access to the Matrix. When access is granted, the PDC transmit
channel reads data from memory and puts them to Transmit Holding Register (THR) of its asso-
ciated peripheral. The same peripheral sends data according to its mechanism.

PDC Flags and Peripheral Status Register
Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the
PDC sends back flags to the peripheral. All these flags are only visible in the Peripheral Status
Register.

Depending on the type of peripheral, half or full duplex, the flags belong to either one single
channel or two different channels.

Receive Transfer End
This flag is set when PERIPH_RCR register reaches zero and the last data has been transferred
to memory.

It is reset by writing a non zero value in PERIPH_RCR or PERIPH_RNCR.

Transmit Transfer End
This flag is set when PERIPH_TCR register reaches zero and the last data has been written into
peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

Receive Buffer Full
This flag is set when PERIPH_RCR register reaches zero with PERIPH_RNCR also set to zero
and the last data has been transferred to memory.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

11011B-ATARM-21-Feb-12

e S AM3N

22.4.5.4 Transmit Buffer Empty
This flag is set when PERIPH_TCR register reaches zero with PERIPH_TNCR also set to zero
and the last data has been written into peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

AI“"E',® 323

11011B-ATARM-21-Feb-12

ATMEL

22.5 Peripheral DMA Controller (PDC) User Interface

Table 22-2. Register Mapping

Offset Register Name Access Reset
0x100 Receive Pointer Register PERIPH"_RPR Read-write 0
0x104 Receive Counter Register PERIPH_RCR Read-write 0
0x108 Transmit Pointer Register PERIPH_TPR Read-write 0
0x10C Transmit Counter Register PERIPH_TCR Read-write 0
0x110 Receive Next Pointer Register PERIPH_RNPR Read-write 0
0x114 Receive Next Counter Register PERIPH_RNCR Read-write 0
0x118 Transmit Next Pointer Register PERIPH_TNPR Read-write 0
0x11C Transmit Next Counter Register PERIPH_TNCR Read-write 0
0x120 Transfer Control Register PERIPH_PTCR Write-only 0
0x124 Transfer Status Register PERIPH_PTSR Read-only 0

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the desired peripheral.)

324 S /A V13 1N 500000

11011B-ATARM-21-Feb-12

e S AM3N

22,51 Receive Pointer Register

Name: PERIPH_RPR

Access: Read-write
31 30 29 28 27 26 25 24

| RXPTR |
23 22 21 20 19 18 17 16

| RXPTR |
15 14 13 12 11 10 9 8

| RXPTR |
7 6 5 4 3 2 1 0

RXPTR |

¢ RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.

When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

11011B-ATARM-21-Feb-12

ATMEL

325

22.5.2 Receive Counter Register

Name: PERIPH_RCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RXCTR |
7 6 5 4 3 2 1 0

| RXCTR |

* RXCTR: Receive Counter Register
RXCTR must be set to receive buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0 = Stops peripheral data transfer to the receiver

1 - 65535 = Starts peripheral data transfer if corresponding channel is active

326 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

22,53 Transmit Pointer Register

Name: PERIPH_TPR

Access: Read-write
31 30 29 28 27 26 25 24

| TXPTR |
23 22 21 20 19 18 17 16

| TXPTR |
15 14 13 12 11 10 9 8

| TXPTR |
7 6 5 4 3 2 1 0

| TXPTR |

e TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.

When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

11011B-ATARM-21-Feb-12

ATMEL

327

e S AM3N

2254 Transmit Counter Register

Name: PERIPH_TCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TXCTR |
7 6 5 4 3 2 1 0

| TXCTR |

e TXCTR: Transmit Counter Register
TXCTR must be set to transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0 = Stops peripheral data transfer to the transmitter

1- 65535 = Starts peripheral data transfer if corresponding channel is active

AI“"E',® 328

11011B-ATARM-21-Feb-12

e S AM3N

22,55 Receive Next Pointer Register

Name: PERIPH_RNPR

Access: Read-write
31 30 29 28 27 26 25 24

| RXNPTR |
23 22 21 20 19 18 17 16

| RXNPTR |
15 14 13 12 11 10 9 8

| RXNPTR |
7 6 5 4 3 2 1 0

| RXNPTR |

¢ RXNPTR: Receive Next Pointer
RXNPTR contains next receive buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

22.5.6 Receive Next Counter Register

Name: PERIPH_RNCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RXNCTR |
7 6 5 4 3 2 1 0

| RXNCTR |

¢ RXNCTR: Receive Next Counter
RXNCTR contains next receive buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

AI“"E',® 329

11011B-ATARM-21-Feb-12

e S AM3N

22.5.7 Transmit Next Pointer Register

Name: PERIPH_TNPR

Access: Read-write
31 30 29 28 27 26 25 24

| TXNPTR |
23 22 21 20 19 18 17 16

| TXNPTR |
15 14 13 12 11 10 9 8

| TXNPTR |
7 6 5 4 3 2 1 0

| TXNPTR |

e TXNPTR: Transmit Next Pointer
TXNPTR contains next transmit buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

22.5.8 Transmit Next Counter Register

Name: PERIPH_TNCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TXNCTR |
7 6 5 4 3 2 1 0

| TXNCTR |

¢ TXNCTR: Transmit Counter Next
TXNCTR contains next transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

AI“"E',® 330

11011B-ATARM-21-Feb-12

e S AM3N

22.5.9 Transfer Control Register

Name: PERIPH_PTCR

Access: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TXTDIS | TXTEN |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RXTDIS | RXTEN |

e RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables PDC receiver channel requests if RXTDIS is not set.

When a half duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

¢ RXTDIS: Receiver Transfer Disable

0 = No effect.

1 = Disables the PDC receiver channel requests.

When a half duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmit-
ter channel requests.

e TXTEN: Transmitter Transfer Enable

0 = No effect.

1 = Enables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not
set. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

e TXTDIS: Transmitter Transfer Disable

0 = No effect.

1 = Disables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.

AI“"E',® 331

11011B-ATARM-21-Feb-12

22.5.10 Transfer Status Register

Name: PERIPH_PTSR

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - | TXTEN |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | RXTEN |

e RXTEN: Receiver Transfer Enable

0 = PDC Receiver channel requests are disabled.

1 = PDC Receiver channel requests are enabled.

e TXTEN: Transmitter Transfer Enable

0 = PDC Transmitter channel requests are disabled.

1 = PDC Transmitter channel requests are enabled.

332 SAM3N |

11011B-ATARM-21-Feb-12

e S AM3N

23. Clock Generator

23.1 Description

The Clock Generator User Interface is embedded within the Power Management Controller and
is described in Section 24.15 "Power Management Controller (PMC) User Interface”. However,
the Clock Generator registers are named CKGR_.

23.2 Embedded Characteristics

11011B-ATARM-21-Feb-12

The Clock Generator is made up of:

¢ A Low Power 32,768 Hz Slow Clock Oscillator with bypass mode
¢ A Low Power RC Oscillator
¢ A 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator which can be bypassed

* A factory programmed Fast RC Oscillator, 3 output frequencies can be selected: 4, 8 or
12 MHz. By default 4 MHz is selected.

* A 60 to 130 MHz programmable PLL (input from 3.5 to 20 MHz), capable of providing the
clock MCK to the processor and to the peripherals.

It provides the following clocks:

* SLCK, the Slow Clock, which is the only permanent clock within the system

* MAINCK is the output of the Main Clock Oscillator selection: either the Crystal or Ceramic
Resonator-based Oscillator or 4/8/12 MHz Fast RC Oscillator

* PLLCK is the output of the Divider and 60 to 130 MHz programmable PLL

AI“"E',® 333

ATMEL

23.3 Block Diagram

Figure 23-1. Clock Generator Block Diagram

Clock Generator

XTALSEL

(Supply Controller)
Embedded
32 kHz 0
RC Oscillator]
Slow Clock
SLCK
XIN32 | I 32768 Hz
Crystal 1
XOUT32 | I Oscillator

Embedded MOSCSEL
4/8/12 MHz
Fast 0
RC Oscillator
Main Clock
J

3.90 MHz MAINCK

Crystal
or
Ceramic
Resonator
Oscillator

XIN

10

XOouT

| PLLand PLL Clock
Divider PLLCK
l Status T Control
Power
Management
Controller
334 SA M 3 N |

11011B-ATARM-21-Feb-12

e S AM3N

23.4 Slow Clock

The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power-
supply. As soon as VDDIO is supplied, both the crystal oscillator and the embedded RC
oscillator are powered up, but only the embedded RC oscillator is enabled. This allows the slow
clock to be valid in a short time (about 100 ps).

The Slow Clock is generated either by the Slow Clock Crystal Oscillator or by the Slow Clock RC
Oscillator.

The selection between the RC or crystal oscillator is made by writing the XTALSEL bit in the
Supply Controller Control Register (SUPC_CR).

23.4.1 Slow Clock RC Oscillator

By default, the Slow Clock RC Oscillator is enabled and selected. The user has to take into
account the possible drifts of the RC Oscillator. More details are given in the section “DC Char-
acteristics” of the product datasheet.

It can be disabled via the XTALSEL bit in the Supply Controller Control Register (SUPC_CR).

23.4.2 Slow Clock Crystal Oscillator

11011B-ATARM-21-Feb-12

The Clock Generator integrates a 32,768 Hz low-power oscillator. In order to use this oscillator,
the XIN32/PA7 and XOUT32/P8 pins must be connected to a 32,768 Hz crystal. Two external
capacitors must be wired as shown in Figure 23-2. More details are given in the section “DC
Characteristics” of the product datasheet.

Note that the user is not obliged to use the Slow Clock Crystal and can use the RC Oscillator
instead.

Figure 23-2. Typical Slow Clock Crystal Oscillator Connection

XIN32 XOUT32 GND
32,768 Hz
Crystal

|

L 1

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more
accurate frequency. The command is made by writing the Supply Controller Control Register
(SUPC_CR) with the XTALSEL bit at 1. This results in a sequence which first configures the PIO
lines multiplexed with XIN32 and XOUT32 to be driven by the oscillator, then enables the crystal
oscillator and then disables the RC oscillator to save power. The switch of the slow clock source
is glitch free. The OSCSEL bit of the Supply Controller Status Register (SUPC_SR) allows
knowing when the switch sequence is done.

Coming back on the RC oscillator is only possible by shutting down the VDDIO power supply. If
the user does not need the crystal oscillator, the XIN32 and XOUT32 pins can be left uncon-
nected since by default the XIN32 and XOUT32 system 1/O pins are in PIO input mode after
reset.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In
this case, the user has to provide the external clock signal on XIN32. The input characteristics of

AI“"E',® 335

23.5 Main Clock

ATMEL

the XIN32 pin are given in the product electrical characteristics section. In order to set the
bypass mode, the OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs
to be set at 1.

The user can set the Slow Clock Crystal Oscillator in bypass mode instead of connecting a crys-
tal. In this case, the user has to provide the external clock signal on XIN32. The input
characteristics of the XIN32 pin under these conditions are given in the product electrical char-
acteristics section.

The programmer has to be sure to set the OSCBYPASS bit in the Supply Controller Mode Reg-
ister (SUPC_MR) and XTALSEL bit in the Supply Controller Control Register (SUPC_CR).

Figure 23-3 shows the Main Clock block diagram.

Figure 23-3. Main Clock Block Diagram

[MoscreeN| [MoscRer |
| |

I e

4/8/12 MH
Fast RC ‘ MOSCSEL MOSCSELS
Oscillator

MOSCXTEN MAINCK
Main Clock
3-20 MHz
XIN Di Crystal

or

XOUT| I Ceramic Resonator
Oscillator
MOSCXTCNT

336

3-20 MHz
ek !
Oscillator MOSCXTS
Slow Clock Counter

MOSCRCEN

MOSCXTEN

"

MOSCSEL

Main Clock
Frequency
Counter

The Main Clock has two sources

¢ 4/8/12 MHz Fast RC Oscillator which starts very quickly and is used at startup
¢ 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator which can be bypassed

SAM3N

11011B-ATARM-21-Feb-12

e S AM3N

23.5.1 4/8/12 MHz Fast RC Oscillator
After reset, the 4/8/12 MHz Fast RC Oscillator is enabled with the 4 MHz frequency selected and
it is selected as the source of MAINCK. MAINCK is the default clock selected to start up the
system.

The Fast RC Oscillator 8 and 12 MHz frequencies are calibrated in production. Note that is not
the case for the 4 MHz frequency.

Please refer to the “DC Characteristics” section of the product datasheet.

The software can disable or enable the 4/8/12 MHz Fast RC Oscillator with the MOSCRCEN bit
in the Clock Generator Main Oscillator Register (CKGR_MOR).

The user can also select the output frequency of the Fast RC Oscillator: either 4 MHz, 8 MHz or
12 MHz are available. It can be done through MOSCRCEF bits in CKGR_MOR. When changing
this frequency selection, the MOSCRCS bit in the Power Management Controller Status Regis-
ter (PMC_SR) is automatically cleared and MAINCK is stopped until the oscillator is stabilized.
Once the oscillator is stabilized, MAINCK restarts and MOSCRCS is set.

When disabling the Main Clock by clearing the MOSCRCEN bit in CKGR_MOR, the MOSCRCS
bit in the Power Management Controller Status Register (PMC_SR) is automatically cleared,
indicating the Main Clock is off.

Setting the MOSCRCS bit in the Power Management Controller Interrupt Enable Register
(PMC_IER) can trigger an interrupt to the processor.

It is recommended to disable the Main Clock as soon as the processor no longer uses it and
runs out of SLCK or PLLCK.

The CAL4, CAL8 and CAL12 values in the PMC_OCR registers are the default values set by
Atmel during production. These values are stored in a specific Flash memory area different from
the main memory plane. These values cannot be modified by the user and cannot be erased by
a Flash erase command or by the ERASE pin. Values written by the user's application in the
PMC_OCR register are reset after each power up or peripheral reset.

23.5.2 4/8/12 MHz Fast RC Oscillator Clock Frequency Adjustment
It is possible for the user to adjust the main RC oscillator frequency through PMC_OCR register.
By default, SEL4/8/12 are low, so the RC oscillator will be driven with Flash calibration bits which
are programmed during chip production.

The user can adjust the trimming of the 4/8/12 MHz Fast RC oscillator through this register in
order to obtain more accurate frequency (to compensate derating factors such as temperature
and voltage).

In order to calibrate the 4 MHz Fast RC oscillator frequency, SEL4 must be set to 1 and a valid
frequency value must be configured in CAL4. Likewise, SEL8/12 must be set to 1 and a trim
value must be configured in CAL8/12 in order to adjust the 8/12 MHz frequency oscillator.

However, the adjustment can not be done to the frequency from which the oscillator is operating.
For example, while running from a frequency of 8 MHz, the user can adjust the 4 and 12 MHz
frequency but not the 8 MHz.

AI“"E',® 337

11011B-ATARM-21-Feb-12

23.5.3

2354

23.5.5

338

ATMEL

3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator

After reset, the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is disabled and it is
not selected as the source of MAINCK.

The user can select the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator to be the
source of MAINCK, as it provides a more accurate frequency. The software enables or disables
the main oscillator so as to reduce power consumption by clearing the MOSCXTEN bit in the
Main Oscillator Register (CKGR_MOR).

When disabling the main oscillator by clearing the MOSCXTEN bit in CKGR_MOR, the
MOSCXTS bit in PMC_SR is automatically cleared, indicating the Main Clock is off.

When enabling the main oscillator, the user must initiate the main oscillator counter with a value
corresponding to the startup time of the oscillator. This startup time depends on the crystal fre-
quency connected to the oscillator.

When the MOSCXTEN bit and the MOSCXTCNT are written in CKGR_MOR to enable the main
oscillator, the MOSCXTS bit in the Power Management Controller Status Register (PMC_SR) is
cleared and the counter starts counting down on the slow clock divided by 8 from the MOSCX-
TCNT value. Since the MOSCXTCNT value is coded with 8 bits, the maximum startup time is
about 62 ms.

When the counter reaches 0, the MOSCXTS bit is set, indicating that the main clock is valid.
Setting the MOSCXTS bit in PMC_IMR can trigger an interrupt to the processor.

Main Clock Oscillator Selection

The user can select either the 4/8/12 MHz Fast RC oscillator or the 3 to 20 MHz Crystal or
Ceramic Resonator-based oscillator to be the source of Main Clock.

The advantage of the 4/8/12 MHz Fast RC oscillator is that it provides fast startup time, this is
why it is selected by default (to start up the system) and when entering Wait Mode.

The advantage of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is that it is very
accurate.

The selection is made by writing the MOSCSEL bit in the Main Oscillator Register
(CKGR_MOR). The switch of the Main Clock source is glitch free, so there is no need to run out
of SLCK or PLLCK in order to change the selection. The MOSCSELS bit of the Power Manage-
ment Controller Status Register (PMC_SR) allows knowing when the switch sequence is done.

Setting the MOSCSELS bit in PMC_IMR can trigger an interrupt to the processor.

Main Clock Frequency Counter

The device features a Main Clock frequency counter that provides the frequency of the Main
Clock.

The Main Clock frequency counter is reset and starts incrementing at the Main Clock speed after
the next rising edge of the Slow Clock in the following cases:

¢ when the 4/8/12 MHz Fast RC oscillator clock is selected as the source of Main Clock and
when this oscillator becomes stable (i.e., when the MOSCRCS bit is set)

e when the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is selected as the
source of Main Clock and when this oscillator becomes stable (i.e., when the MOSCXTS bit
is set)

¢ when the Main Clock Oscillator selection is modified

11011B-ATARM-21-Feb-12

e S AM3N

11011B-ATARM-21-Feb-12

Then, at the 16th falling edge of Slow Clock, the MAINFRDY bit in the Clock Generator Main
Clock Frequency Register (CKGR_MCFR) is set and the counter stops counting. Its value can
be read in the MAINF field of CKGR_MCFR and gives the number of Main Clock cycles during
16 periods of Slow Clock, so that the frequency of the 4/8/12 MHz Fast RC oscillator or 3 to 20
MHz Crystal or Ceramic Resonator-based oscillator can be determined.

AI“"E',® 339

ATMEL

23.6 Divider and PLL Block

The device features a Divider/PLL Block that permits a wide range of frequencies to be selected
on either the master clock, the processor clock or the programmable clock outputs.

Figure 23-4 shows the block diagram of the divider and PLL block.

Figure 23-4. Divider and PLL Block Diagram
oIV

MAINCK

Divider > PLL ——— > PLLCK

PLLCOUNT

SLCK —> PLL LOCK
Counter

23.6.1 Divider and Phase Lock Loop Programming

The divider can be set between 1 and 255 in steps of 1. When the divider field (DIV) is set to 0,
the output of the divider and the PLL output is a continuous signal at level 0. On reset, the DIV
field is set to O, thus the PLL input clock is set to 0.

The PLL allows multiplication of the divider’s output. The PLL clock signal has a frequency that
depends on the respective source signal frequency and on the DIV and MUL parameters. The
factor applied to the source signal frequency is (MUL + 1)/DIV. When MUL is written to 0, the
PLL is disabled and its power consumption is saved. Re-enabling the PLL can be performed by
writing a value higher than 0 in the MUL field.

Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK bit in PMC_SR
is automatically cleared. The value written in the PLLCOUNT field in CKGR_PLLR is loaded in
the PLL counter. The PLL counter then decrements at the speed of the Slow Clock until it
reaches 0. At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the pro-
cessor. The user has to load the number of Slow Clock cycles required to cover the PLL
transient time into the PLLCOUNT field.

The PLL clock can be divided by 2 by writing the PLLDIV2 bit in PMC_MCKR register.

It is forbidden to change 4/8/12 Fast RC oscillator frequency or main selection in CKGR_MOR
register while Master clock source is PLL and PLL reference clock is Fast RC oscillator.

The user must:

» Switch on the Main RC oscillator by writing 1 in CSS field of PMC_MCKR.
¢ Change the frequency (MOSCRCF) or oscillator selection (MOSCSEL) in CKGR_MOR.

* Wait for MOSCRCS (if frequency changes) or MOSCSELS (if oscillator selection changes) in
PMC_IER.

* Disable and then enable the PLL (LOCK in PMC_IDR and PMC_IER register)
¢ Wait for PLLRDY.
* Switch back to PLL.

340 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

24. Power Management Controller (PMC)

24.1 Description

The Power Management Controller (PMC) optimizes power consumption by controlling all sys-
tem and user peripheral clocks. The PMC enables/disables the clock inputs to many of the
peripherals and the Cortex-M3 Processor.

The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The
unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the fast RC oscillator running at
4 MHz.

The user can trim the 8 and 12 MHz RC Oscillator frequency by software.

24.2 Embedded Characteristics

11011B-ATARM-21-Feb-12

The Power Management Controller provides the following clocks:

* MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating
frequency of the device. It is available to the modules running permanently, such as the
Enhanced Embedded Flash Controller.

¢ Processor Clock (HCLK) is automatically switched off when the processor enters Sleep Mode
e Free running processor Clock (FCLK)
¢ the Cortex-M3 SysTick external clock

¢ Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SPI, TWI,
TC, etc.) and are independently controllable. In order to reduce the number of clock names in
a product, the Peripheral Clocks are named MCK in the product datasheet.

* Programmable Clock Outputs can be selected from the clocks provided by the clock
generator and driven on the PCKXx pins.

AImEl@ 341

ATMEL

24.3 Block Diagram

Figure 24-1. General Clock Block Diagram

EXTALSEL

(Supply Controller)

XIN32

X0OuT32

101

XIN

XouT

101

Clock Generator
Processor Processor clock
Clock HCLK
Controller
Sleep Mode int
Embedded
32 kHz RC |—>| O
Oscillator
Divider
gIL%NKCIOCk — /8 SysTick
Master Clock Controller
3?;558‘52 L 1 SLCK (PMC_MCKR) Free runnning clock
Oscillator FCLK
MAINCK
Prescaler Master clock
MOSCSEL MCK
Embedded PLLCK /1,/2,/3,/4,...,/64
4/8/;25’:AHZ ——> 0 Peripherals
RC Oscillator Css E:Flc’iﬂcé C;ggglir
X
Main Clock — ON/OFF .
3-20 MHz MAINCK periph_clK[..]
Crystal
or 1
Ceramic [
Resonator Programmable Clock Controller
Oscillator
SLCK
MAINCH ON/OFF
MCK Prescaler o pek[.]
—> PLL Clock PLLCK 1,/2,/4,..../64 -
PLL and
Divider PLLCK

1SIatus T Control

Power
Management
Controller

24.4 Master Clock Controller

The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is
the clock provided to all the peripherals.

The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting
the Slow Clock provides a Slow Clock signal to the whole device. Selecting the Main Clock
saves power consumption of the PLL.

The Master Clock Controller is made up of a clock selector and a prescaler.

The Master Clock selection is made by writing the CSS field (Clock Source Selection) in
PMC_MCKR (Master Clock Register). The prescaler supports the division by a power of 2 of the
selected clock between 1 and 64, and the division by 3. The PRES field in PMC_MCKR pro-
grams the prescaler.

Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in
PMC_SR. It reads 0 until the Master Clock is established. Then, the MCKRDY bit is set and can
trigger an interrupt to the processor. This feature is useful when switching from a high-speed
clock to a lower one to inform the software when the change is actually done.

342 S /A VS IN 50000000000

11011B-ATARM-21-Feb-12

SAM3N

Figure 24-2. Master Clock Controller
PMC_MCKR PMC_MCKR

SLCK
MAINCK — | || Master Clock + MCK
Prescaler
PLLCK

_ To the Processor
" Clock Controller (PCK)

24.5 Processor Clock Controller
The PMC features a Processor Clock Controller (HCLK) that implements the Processor Sleep
Mode. The Processor Clock can be disabled by executing the WFI (WaitForInterrupt) or the
WFE (WaitForEvent) processor instruction while the LPM bit is at 0 in the PMC Fast Startup
Mode Register (PMC_FSMR).

The Processor Clock HCLK is enabled after a reset and is automatically re-enabled by any
enabled interrupt. The Processor Sleep Mode is achieved by disabling the Processor Clock,
which is automatically re-enabled by any enabled fast or normal interrupt, or by the reset of the
product.

When Processor Sleep Mode is entered, the current instruction is finished before the clock is
stopped, but this does not prevent data transfers from other masters of the system bus.

24.6 SysTick Clock

The SysTick calibration value is fixed at 6000 which allows the generation of a time base of 1 ms
with SysTick clock at 6 MHz (max MCK/8).

24.7 Peripheral Clock Controller
The Power Management Controller controls the clocks of each embedded peripheral by means
of the Peripheral Clock Controller. The user can individually enable and disable the Clock on the
peripherals.

The user can also enable and disable these clocks by writing Peripheral Clock Enable
(PMC_PCER) and Peripheral Clock Disable (PMC_PCDR) registers. The status of the periph-
eral clock activity can be read in the Peripheral Clock Status Register (PMC_PCSR).

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are
automatically disabled after a reset.

In order to stop a peripheral, it is recommended that the system software wait until the peripheral
has executed its last programmed operation before disabling the clock. This is to avoid data cor-
ruption or erroneous behavior of the system.

The bit number within the Peripheral Clock Control registers (PMC_PCER, PMC_PCDR and
PMC_PCSR) is the Peripheral Identifier defined at the product level. The bit number corre-
sponds to the interrupt source number assigned to the peripheral.

AI“"E',® 343

11011B-ATARM-21-Feb-12

ATMEL

24.8 Free Running Processor Clock

The Free running processor clock (FCLK) used for sampling interrupts and clocking debug
blocks ensures that interrupts can be sampled, and sleep events can be traced, while the pro-
cessor is sleeping. It is connected to Master Clock (MCK).

24.9 Programmable Clock Output Controller

344

The PMC controls 3 signals to be output on external pins, PCKx. Each signal can be indepen-
dently programmed via the PMC_PCKXx registers.

PCKx can be independently selected between the Slow Clock (SLCK), the Main Clock
(MAINCK), the PLL Clock (PLLCK) and the Master Clock (MCK) by writing the CSS field in
PMC_PCKXx. Each output signal can also be divided by a power of 2 between 1 and 64 by writing
the PRES (Prescaler) field in PMC_PCKXx.

Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of
PMC_SCER and PMC_SCDR, respectively. Status of the active programmable output clocks
are given in the PCKx bits of PMC_SCSR (System Clock Status Register).

Moreover, like the PCK, a status bit in PMC_SR indicates that the Programmable Clock is actu-
ally what has been programmed in the Programmable Clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching
clocks, it is strongly recommended to disable the Programmable Clock before any configuration
change and to re-enable it after the change is actually performed.

11011B-ATARM-21-Feb-12

e S AM3N

24.10 Fast Startup

11011B-ATARM-21-Feb-12

The SAM3N device allows the processor to restart in less than10 ps while the device is in Wait
mode. The system enters Wait mode either by writing the WAITMODE bit at 1 in the PMC Clock
Generator Main Oscillator Register (CKGR_MOR), or by executing the WaitForEvent (WFE)
instruction of the processor while the LPM bit is at 1 in the PMC Fast Startup Mode Register
(PMC_FSMR).

A Fast Startup is enabled upon the detection of a programmed level on one of the 16 wake-up
inputs (WKUP), SM or upon an active alarm from the RTC and RTT. The polarity of the 16
wake-up inputs is programmable by writing the PMC Fast Startup Polarity Register
(PMC_FSPR).

The Fast Restart circuitry, as shown in Figure 24-3, is fully asynchronous and provides a fast
startup signal to the Power Management Controller. As soon as the fast startup signal is
asserted, this automatically restarts the embedded 4/8/12 MHz Fast RC oscillator.

Figure 24-3. Fast Startup Circuitry

FSTTO

WKUPO Di\
FSTPO FSTTH

WKUP1 P

WKUP15 P

FSTP15 RTTAL

RTT Alarm

FSTT15

:>— — fast_restart

ERENGERNGENGE

RTCAL

RTC Alarm —— :

Each wake-up input pin and alarm can be enabled to generate a Fast Startup event by writing at
1 the corresponding bit in the Fast Startup Mode Register PMC_FSMR.

-

The user interface does not provide any status for Fast Startup, but the user can easily recover
this information by reading the PIO Controller, and the status registers of the RTC and RTT.

AI“"E',® 345

ATMEL

24.11 Clock Failure Detector

346

The clock failure detector allows to monitor the 3 to 20 MHz Crystal or Ceramic Resonator-
based oscillator and to detect an eventual defect of this oscillator (for example if the crystal is
unconnected).

The clock failure detector can be enabled or disabled by means of the CFDEN bit in the PMC
Clock Generator Main Oscillator Register (CKGR_MOR). After reset, the detector is disabled.
However, if the 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator is disabled, the
clock failure detector is disabled too.

A failure is detected by means of a counter incrementing on the 3 to 20 MHzCrystal oscillator or
Ceramic Resonator-based oscillator clock edge and timing logic clocked on the slow clock RC
oscillator controlling the counter. The counter is cleared when the slow clock RC oscillator signal
is low and enabled when the slow clock RC oscillator is high. Thus the failure detection time is 1
slow clock RC oscillator clock period. If, during the high level period of slow clock RC oscillator,
less than 8 fast crystal clock periods have been counted, then a failure is declared.

If a failure of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator clock is detected,
the CFDEYV flag is set in the PMC Status Register (PMC_SR), and can generate an interrupt if it
is not masked. The interrupt remains active until a read operation in the PMC_SR register. The
user can know the status of the clock failure detector at any time by reading the CFDS bit in the
PMC_SR register.

If the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator clock is selected as the source
clock of MAINCK (MOSCSEL = 1), and if the Master Clock Source is PLLCK (CSS = 2), then a
clock failure detection switches automatically the Master Clock on MAINCK. Then whatever the
PMC configuration is, a clock failure detection switches automatically MAINCK on the 4/8/12
MHz Fast RC Oscillator clock. If the Fast RC oscillator is disabled when a clock failure detection
occurs, it is automatically re-enabled by the clock failure detection mechanism.

It takes 2 slow clock RC oscillator cycles to detect and switch from the 3 to 20 MHz Crystal or
Ceramic Resonator-based oscillator to the 4/8/12 MHz Fast RC Oscillator if the Master Clock
Source is Main Clock or 3 slow clock RC oscillator cycles if the Master Clock Source is PLL.

The user can know the status of the fault output at any time by reading the FOS bit in the
PMC_SR register.

11011B-ATARM-21-Feb-12

e S AM3N

24.12 Programming Sequence

1.

Enabling the Main Oscillator:

The main oscillator is enabled by setting the MOSCXTEN field in the CKGR_MOR reg-
ister. The user can define a start-up time. This can be achieved by writing a value in the
MOSCXTST field in the CKGR_MOR register. Once this register has been correctly
configured, the user must wait for MOSCXTS field in the PMC_SR register to be set.
This can be done either by polling the status register, or by waiting the interrupt line to
be raised if the associated interrupt to MOSCXTS has been enabled in the PMC_IER
register.

Start Up Time = 8 * MOSCXTST / SLCK = 56 Slow Clock Cycles.

So, the main oscillator will be enabled (MOSCXTS bit set) after 56 Slow Clock Cycles.

2. Checking the Main Oscillator Frequency (Optional):

11011B-ATARM-21-Feb-12

In some situations the user may need an accurate measure of the main clock frequency.
This measure can be accomplished via the CKGR_MCEFR register.

Once the MAINFRDY field is set in CKGR_MCFR register, the user may read the MAINF
field in CKGR_MCFR register. This provides the number of main clock cycles within sixteen
slow clock cycles.

Setting PLL and Divider:

All parameters needed to configure PLL and the divider are located in the CKGR_PLLR
register.

The DIV field is used to control the divider itself. It must be set to 1 when PLL is used. By
default, DIV parameter is set to 0 which means that the divider is turned off.

The MUL field is the PLL multiplier factor. This parameter can be programmed between 0
and 2047. If MUL is set to 0, PLL will be turned off, otherwise the PLL output frequency is
PLL input frequency multiplied by (MUL + 1).

The PLLCOUNT field specifies the number of slow clock cycles before LOCK bit is set in the
PMC_SR register after CKGR_PLLR register has been written.

Once the PMC_PLL register has been written, the user must wait for the LOCK bit to be set
in the PMC_SR register. This can be done either by polling the status register or by waiting
the interrupt line to be raised if the associated interrupt to LOCK has been enabled in the
PMC_IER register. All parameters in CKGR_PLLR can be programmed in a single write
operation. If at some stage one of the following parameters, MUL, DIV is modified, LOCK bit
will go low to indicate that PLL is not ready yet. When PLL is locked, LOCK will be set again.
The user is constrained to wait for LOCK bit to be set before using the PLL output clock.

Selection of Master Clock and Processor Clock
The Master Clock and the Processor Clock are configurable via the PMC_MCKR register.

The CSS field is used to select the Master Clock divider source. By default, the selected
clock source is main clock.

Once the PMC_MCKR register has been written, the user must wait for the MCKRDY bit to
be set in the PMC_SR register. This can be done either by polling the status register or by
waiting for the interrupt line to be raised if the associated interrupt to MCKRDY has been
enabled in the PMC_IER register.

The PMC_MCKR register must not be programmed in a single write operation. The pre-
ferred programming sequence for the PMC_MCKR register is as follows:

AIMEL 347

ATMEL

¢ |f a new value for CSS field corresponds to PLL Clock,
— Program the PRES field in the PMC_MCKR register.
— Wait for the MCKRDY bit to be set in the PMC_SR register.
— Program the CSS field in the PMC_MCKR register.
— Wait for the MCKRDY bit to be set in the PMC_SR register.
¢ If a new value for CSS field corresponds to Main Clock or Slow Clock,
— Program the CSS field in the PMC_MCKR register.
— Wait for the MCKRDY bit to be set in the PMC_SR register.
— Program the PRES field in the PMC_MCKR register.
— Wait for the MCKRDY bit to be set in the PMC_SR register.
If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY
bit will go low to indicate that the Master Clock and the Processor Clock are not ready yet.

The user must wait for MCKRDY bit to be set again before using the Master and Processor
Clocks.
Note: IF PLL clock was selected as the Master Clock and the user decides to modify it by writing in
CKGR_PLLR, the MCKRDY flag will go low while PLL is unlocked. Once PLL is locked again,
LOCK goes high and MCKRDY s set.

While PLL is unlocked, the Master Clock selection is automatically changed to Slow Clock. For fur-
ther information, see Section 24.13.2 “Clock Switching Waveforms” on page 350.

Code Example:

write_register(PMC_MCKR,0x00000001)
wait (MCKRDY=1)
write_register(PMC_MCKR,0x00000011)
wait (MCKRDY=1)

The Master Clock is main clock divided by 2.
The Processor Clock is the Master Clock.

5. Selection of Programmable Clocks

Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and
PMC_SCSR.

Programmable clocks can be enabled and/or disabled via the PMC_SCER and PMC_SCDR
registers. 3 Programmable clocks can be enabled or disabled. The PMC_SCSR provides a
clear indication as to which Programmable clock is enabled. By default all Programmable
clocks are disabled.

PMC_PCKXx registers are used to configure Programmable clocks.

The CSS field is used to select the Programmable clock divider source. Three clock options
are available: main clock, slow clock, PLL. By default, the clock source selected is slow
clock.

The PRES field is used to control the Programmable clock prescaler. It is possible to choose
between different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler
input divided by PRES parameter. By default, the PRES parameter is set to 0 which means
that master clock is equal to slow clock.

348 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

11011B-ATARM-21-Feb-12

Once the PMC_PCKXx register has been programmed, The corresponding Programmable
clock must be enabled and the user is constrained to wait for the PCKRDYx bit to be set in
the PMC_SR register. This can be done either by polling the status register or by waiting the
interrupt line to be raised if the associated interrupt to PCKRDYx has been enabled in the
PMC_IER register. All parameters in PMC_PCKx can be programmed in a single write
operation.

If the CSS and PRES parameters are to be modified, the corresponding Programmable
clock must be disabled first. The parameters can then be modified. Once this has been
done, the user must re-enable the Programmable clock and wait for the PCKRDYx bit to be
set.

Enabling Peripheral Clocks

Once all of the previous steps have been completed, the peripheral clocks can be enabled
and/or disabled via registers PMC_PCERO, PMC_PCER1, PMC_PCDRO and
PMC_PCDRA1.

AI“"E',® 349

24.13 Clock Switching Details

24.13.1

Master Clock Switching Timings

ATMEL

Table 24-1 gives the worst case timings required for the Master Clock to switch from one
selected clock to another one. This is in the event that the prescaler is de-activated. When the
prescaler is activated, an additional time of 64 clock cycles of the new selected clock has to be

added.
Table 24-1. Clock Switching Timings (Worst Case)
From Main Clock SLCK PLL Clock
To
Main Clock - 4 x SLCK + >);ZLSLL((;;IECE '
2.5 x Main Clock 1 x Main Clock
0.5 x Main Clock + 3 x PLL Clock +
SLCK 4.5 x SLCK B 5 x SLCK
0.5 :)'i";fc?('ic" * 2.5 x PLL Clock + 2.5 x PLL Clock +
PLL Clock 5 x SLCK + 4 x SLCK +
PLLCOUNT x SLCK + PLLCOUNT x SLCK PLLCOUNT x SLCK

2.5 x PLL Clock

24.13.2 Clock Switching Waveforms

350 SAM3N

Figure 24-4. Switch Master Clock from Slow Clock to PLL Clock

SIowCIock|||||||||||||||||||||||||||||||||I

PLLCIock|||

LOCK

—

MCKRDY

MasterCIock|||||||||||||||||||||||||||| |||||

Write PMC_MCKR |

11011B-ATARM-21-Feb-12

e S AM3N

Figure 24-5. Switch Master Clock from Main Clock to Slow Clock

Slow Clock | | | | | | | | | | |_

MCKRDY '| |

Write PMC_MCKR |

Figure 24-6. Change PLL Programming

sawcoo || [ITUUU UL UTUUUUUULTUULL
PLL Clock ||| |||||||||||||||||| | | | | | | | | | | | | | | | l | |

LOCK

MCKRDY

MasterCIock||||||||||||||||| |||||||||||||||| ||| ||

Slow Clock
Write CKGR_PLLR | |

AI“IE'.@ 351

11011B-ATARM-21-Feb-12

ATMEL

Figure 24-7. Programmable Clock Output Programming

PCKRDY

PCKx Output ||||||||||||||||||||||||

Write PMC_PCKXx |_| PLL Clock is selected

Write PMC_SCER |_| PCKXx is enabled

Write PMC_SCDR PCKXx is disabled |_|

352 SAM 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

24.14 Write Protection Registers

11011B-ATARM-21-Feb-12

To prevent any single software error that may corrupt PMC behavior, certain address spaces
can be write protected by setting the WPEN bit in the “PMC Write Protect Mode Register”
(PMC_WPMR).

If a write access to the protected registers is detected, then the WPVS flag in the PMC Write
Protect Status Register (PMC_WPSR) is set and the field WPVSRC indicates in which register
the write access has been attempted.

The WPVS flag is reset by writing the PMC Write Protect Mode Register (PMC_WPMR) with the
appropriate access key, WPKEY.

The protected registers are:

“PMC System Clock Enable Register’ on page 355
“PMC System Clock Disable Register” on page 355
“PMC Peripheral Clock Enable Register” on page 357
“PMC Peripheral Clock Disable Register’ on page 358
“PMC Clock Generator Main Oscillator Register” on page 360
“PMC Clock Generator PLL Register” on page 363
“PMC Master Clock Register” on page 364

“PMC Programmable Clock Register” on page 365
“PMC Fast Startup Mode Register” on page 371
“PMC Fast Startup Polarity Register” on page 372
“PMC Oscillator Calibration Register” on page 376

AI“"E',® 353

ATMEL

24.15 Power Management Controller (PMC) User Interface

Table 24-2. Register Mapping
Offset Register Name Access Reset
0x0000 System Clock Enable Register PMC_SCER Write-only -
0x0004 System Clock Disable Register PMC_SCDR Write-only -
0x0008 System Clock Status Register PMC_SCSR Read-only 0x0000_0001
0x000C Reserved - - -
0x0010 Peripheral Clock Enable Register PMC_PCER Write-only -
0x0014 Peripheral Clock Disable Register PMC_PCDR Write-only -
0x0018 Peripheral Clock Status Register PMC_PCSR Read-only 0x0000_0000
0x001C Reserved - - -
0x0020 Main Oscillator Register CKGR_MOR Read-write 0x0000_0001
0x0024 Main Clock Frequency Register CKGR_MCFR Read-only 0x0000_0000
0x0028 PLL Register CKGR_PLLR Read-write 0x0000_3F00
0x002C Reserved - - -
0x0030 Master Clock Register PMC_MCKR Read-write 0x0000_0001
0x0034 - 0x003C | Reserved - - -
0x0040 Programmable Clock 0 Register PMC_PCKO Read-write 0x0000_0000
0x0044 Programmable Clock 1 Register PMC_PCK1 Read-write 0x0000_0000
0x0048 Programmable Clock 2 Register PMC_PCK2 Read-write 0x0000_0000
0x004C - 0x005C | Reserved - - -
0x0060 Interrupt Enable Register PMC_IER Write-only -
0x0064 Interrupt Disable Register PMC_IDR Write-only -
0x0068 Status Register PMC_SR Read-only 0x0001_0008
0x006C Interrupt Mask Register PMC_IMR Read-only 0x0000_0000
0x0070 Fast Startup Mode Register PMC_FSMR Read-write 0x0000_0000
0x0074 Fast Startup Polarity Register PMC_FSPR Read-write 0x0000_0000
0x0078 Fault Output Clear Register PMC_FOCR Write-only -
0x007C- OxO0EO | Reserved - - -
O0x00E4 Write Protect Mode Register PMC_WPMR Read-write 0x0
0x00E8 Write Protect Status Register PMC_WPSR Read-only 0x0
0XxO0EC-0x010C | Reserved - - -
0x0110 Oscillator Calibration Register PMC_OCR Read-write 0x0040_4040

Note: if an offset is not listed in the table it must be considered as “reserved”.

354 S /A VS IN 000000

11011B-ATARM-21-Feb-12

e S AM3N

24.15.1 PMC System Clock Enable Register

Name: PMC_SCER

Address: 0x400E0400

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | — | — | — | pPck2 [pPckt | pPcko |

1 0
- | -

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

¢ PCKXx: Programmable Clock x Output Enable

0 = No effect.

1 = Enables the corresponding Programmable Clock output.

24.15.2 PMC System Clock Disable Register

Name: PMC_SCDR

Address: 0x400E0404

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | Pck2 | PCKi [Pcko |

6 5 3 0

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

¢ PCKx: Programmable Clock x Output Disable

0 = No effect.

1 = Disables the corresponding Programmable Clock output.

11011B-ATARM-21-Feb-12

ATMEL

355

24.15.3 PMC System Clock Status Register
Name: PMC_SCSR

Address: 0x400E0408

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | — | — | — | pPck2 [pPckt | pPcko |

7 6 5 4 3 2 1 0
¢ PCKx: Programmable Clock x Output Status
0 = The corresponding Programmable Clock output is disabled.

1 = The corresponding Programmable Clock output is enabled.

356 S /A VI3 IN

11011B-ATARM-21-Feb-12

e S AM3N

24.15.4 PMC Peripheral Clock Enable Register
Name: PMC_PCER

Address: 0x400E0410

Access: Write-only
31 30 29 28 27 26 25 24

[pPD31 | pPpD30 | PD2o | PD28 | PD27z | pPD26 | pPD25s [PD24 |
23 22 21 20 19 18 17 16

[pPp23 | pPpD22 | PD2t | PD20 | pPD19 | pPDi8 | pPDi7 [PD16 |
15 14 13 12 11 10 9 8

[pPpi5 | pPD14 | pPD13 | pPD1i2 | pPD11 | PDI0 | PD9 | PID8 |
7 6 5 4 3 2 1 0

[pPpz | pPps | pPDps | pPp4a | pPD3 | PD2 | - | - |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

¢ PIDx: Peripheral Clock x Enable
0 = No effect.

1 = Enables the corresponding peripheral clock.

Note: PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.
Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

AIMEL 357

11011B-ATARM-21-Feb-12

ATMEL

24.15.5 PMC Peripheral Clock Disable Register
Name: PMC_PCDR

Address: 0x400E0414

Access: Write-only
31 30 29 28 27 26 25 24

[pPD31 | pPpD30 | PD2o | PD28 | PD27z | pPD26 | pPD25s [PD24 |
23 22 21 20 19 18 17 16

[pPp23 | pPpD22 | PD2t | PD20 | pPD19 | pPDi8 | pPDi7 [PD16 |
15 14 13 12 11 10 9 8

[pPpi5 | pPD14 | pPD13 | pPD1i2 | pPD11 | PDI0 | PD9 | PID8 |
7 6 5 4 3 2 1 0

[pPpz | pPps | pPDps | pPp4a | pPD3 | PD2 | - | - |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

¢ PIDx: Peripheral Clock x Disable
0 = No effect.

1 = Disables the corresponding peripheral clock.

Note: PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

358 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

24.15.6 PMC Peripheral Clock Status Register
Name: PMC_PCSR

Address: 0x400E0418

Access: Read-only
31 30 29 28 27 26 25 24

[pPD31 | pPpD30 | PD2o | PD28 | PD27z | pPD26 | pPD25s [PD24 |
23 22 21 20 19 18 17 16

[pPp23 | pPpD22 | PD2t | PD20 | pPD19 | pPDi8 | pPDi7 [PD16 |
15 14 13 12 11 10 9 8

[pPpi5 | pPD14 | pPD13 | pPD1i2 | pPD11 | PDI0 | PD9 | PID8 |
7 6 5 4 3 2 1 0

[pPpz | pPps | pPDps | pPp4a | pPD3 | PD2 | - | - |

¢ PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

Note: PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

AI“"E',® 359

11011B-ATARM-21-Feb-12

24.15.7 PMC Clock Generator Main Oscillator Register
Name: CKGR_MOR

Address: 0x400E0420

Access: Read-write
31 30 29 28 27 26 25 24

| — | — - — — — | CFDEN | MOSCSEL |
23 22 21 20 19 18 17 16

| KEY |
15 14 13 12 11 10 9 8

| MOSCXTST |
7 6 5 4 3 2 1 0

| - | MOSCRCF | MOSCRCEN | WAITMODE | MOSCXTBY | MOSCXTEN |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

¢ KEY: Password
Should be written at value 0x37. Writing any other value in this field aborts the write operation.

¢ MOSCXTEN: Main Crystal Oscillator Enable
A crystal must be connected between XIN and XOUT.

0 = The Main Crystal Oscillator is disabled.
1 = The Main Crystal Oscillator is enabled. MOSCXTBY must be set to 0.
When MOSCXTEN is set, the MOSCXTS flag is set once the Main Crystal Oscillator startup time is achieved.

¢ MOSCXTBY: Main Crystal Oscillator Bypass
0 = No effect.

1 = The Main Crystal Oscillator is bypassed. MOSCXTEN must be set to 0. An external clock must be connected on XIN.
When MOSCXTBY is set, the MOSCXTS flag in PMC_SR is automatically set.
Clearing MOSCXTEN and MOSCXTBY bits allows resetting the MOSCXTS flag.

o WAITMODE: Wait Mode Command
0 = No effect.

1 = Enters the device in Wait mode.

Note: The bit WAITMODE is write-only

¢ MOSCRCEN: Main On-Chip RC Oscillator Enable
0 = The Main On-Chip RC Oscillator is disabled.

1 = The Main On-Chip RC Oscillator is enabled.
When MOSCRCEN is set, the MOSCRCS flag is set once the Main On-Chip RC Oscillator startup time is achieved.

360 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

e MOSCRCF: Main On-Chip RC Oscillator Frequency Selection

Value Name Description
0x0 4MHZ The Fast RC Oscillator Frequency is at 4 MHz (default)
0x1 8MHZ The Fast RC Oscillator Frequency is at 8 MHz
0x2 12MHZ The Fast RC Oscillator Frequency is at 12 MHz

¢ MOSCXTST: Main Crystal Oscillator Start-up Time
Specifies the number of Slow Clock cycles multiplied by 8 for the Main Crystal Oscillator start-up time.

e MOSCSEL: Main Oscillator Selection
0 = The Main On-Chip RC Oscillator is selected.

1 = The Main Crystal Oscillator is selected.

e CFDEN: Clock Failure Detector Enable
0 = The Clock Failure Detector is disabled.

1 = The Clock Failure Detector is enabled.

AI“]EL@ 361

11011B-ATARM-21-Feb-12

ATMEL

24.15.8 PMC Clock Generator Main Clock Frequency Register

Name: CKGR_MCFR

Address: 0x400E0424

Access: Read-only
31 30 29 28 27 26 25 24

I - - T - - — 1T -]
23 22 21 20 19 18 17 16

| - | - - - [- - - [MAINFRDY |
15 14 13 12 11 10 9 8

| MAINF |
7 6 5 4 3 2 1 0

| MAINF |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

¢ MAINF: Main Clock Frequency

Gives the number of Main Clock cycles within 16 Slow Clock periods.

¢ MAINFRDY: Main Clock Ready

0 = MAINF value is not valid or the Main Oscillator is disabled.

1 = The Main Oscillator has been enabled previously and MAINF value is available.

362

11011B-ATARM-21-Feb-12

e S AM3N

24.15.9 PMC Clock Generator PLL Register
Name: CKGR_PLLR

Address: 0x400E0428

Access: Read-write
31 30 29 28 27 26 25 24

| - [- 1 - - MUL |
23 22 21 20 19 18 17 16

| MUL |
15 14 13 12 11 10 9 8

| - - PLLCOUNT |
7 6 5 4 3 2 1 0

| DIV |

Possible limitations on PLL input frequencies and multiplier factors should be checked before using the PMC.
Warning: Bit 29 must always be set to 1 when programming the CKGR_PLLR register.
This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

e DIV: Divider
DIV Divider Selected
0 Divider output is 0
1 Divider is bypassed (DIV = 1)
2-255 Divider output is DIV

e PLLCOUNT: PLL Counter
Specifies the number of Slow Clock cycles x8 before the LOCK bit is set in PMC_SR after CKGR_PLLR is written.

e MUL: PLL Multiplier
0 = The PLL is deactivated.

1 up to 2047 = The PLL Clock frequency is the PLL input frequency multiplied by MUL + 1.

AI“"E',® 363

11011B-ATARM-21-Feb-12

A IIIIEI% O

24.15.10 PMC Master Clock Register
Name: PMC_MCKR

Address: 0x400E0430

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | _PLLDIV2 | - I - I - I - |
7 6 5 4 3 2 1 0

| - | PRES | — | - | CSS |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

¢ CSS: Master Clock Source Selection

Value Name Description
0 SLOW_CLK Slow Clock is selected
1 MAIN_CLK Main Clock is selected
2 PLL_CLK PLL Clock is selected
3 - Reserved

* PRES: Processor Clock Prescaler

Value Name Description

0 CLK Selected clock

1 CLK_2 Selected clock divided by 2
2 CLK_4 Selected clock divided by 4
3 CLK_28 Selected clock divided by 8
4 CLK_16 Selected clock divided by 16
5 CLK_32 Selected clock divided by 32
6 CLK_64 Selected clock divided by 64
7 CLK_3 Selected clock divided by 3

e PLLDIV2: PLL Divisor by 2

PLLDIV2 PLL Clock Division
0 PLL clock frequency is divided by 1
1 PLL clock frequency is divided by 2

364 S /A VS IN 00000000

11011B-ATARM-21-Feb-12

e S AM3N

24.15.11 PMC Programmable Clock Register

Name: PMC_PCKx

Address: 0x400E0440

Access: Read-write
31 30 29 28 27 26 25 24

1 71 S I - —]
23 22 21 20 19 18 17 16

171 S I - - —]
15 14 13 12 11 10 9 8

I S S I - —
7 6 5 4 3 2 1 0

| - | PRES | - | CSS |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

¢ CSS: Master Clock Source Selection

Value Name Description
0 SLOW_CLK Slow Clock is selected
1 MAIN_CLK Main Clock is selected
2 PLLA_CLK PLLA Clock is selected
3 PLLB_CLK PLLB Clock is selected
4 MCK Master Clock is selected

* PRES: Processor Clock Prescaler

Value Name Description

0 CLK Selected clock

1 CLK_2 Selected clock divided by 2
2 CLK_4 Selected clock divided by 4
3 CLK_28 Selected clock divided by 8
4 CLK_16 Selected clock divided by 16
5 CLK_32 Selected clock divided by 32
6 CLK_64 Selected clock divided by 64

11011B-ATARM-21-Feb-12

ATMEL

365

24.15.12 PMC Interrupt Enable Register
Name: PMC_IER

Address: 0x400E0460

Access: Write-only
31 30 29 28 27 26 25 24

- - r - r - r - +r - 1 - [- [- |
23 22 21 20 19 18 17 16

| Z [_ [_ [— [- | CFDEV__ | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| _ [_ [— [— | - | PCKRDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | - | - | = [MCKRDY | - [[OCK | MOSCXTS |

¢ MOSCXTS: Main Crystal Oscillator Status Interrupt Enable

e LOCK: PLL Lock Interrupt Enable

¢ MCKRDY: Master Clock Ready Interrupt Enable

e PCKRDYx: Programmable Clock Ready x Interrupt Enable

¢ MOSCSELS: Main Oscillator Selection Status Interrupt Enable
¢ MOSCRCS: Main On-Chip RC Status Interrupt Enable

e CFDEV: Clock Failure Detector Event Interrupt Enable

366 S /A IV S IN

11011B-ATARM-21-Feb-12

e S AM3N

24.15.13 PMC Interrupt Disable Register
Name: PMC_IDR

Address: 0x400E0464

Access: Write-only
31 30 29 28 27 26 25 24

- - r - r - r - +r - 1 - [- [- |
23 22 21 20 19 18 17 16

| Z [_ [_ [— [- | CFDEV__ | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| _ [_ [— [— | - | PCKRDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | - | - | = [MCKRDY | - [[OCK | MOSCXTS |

¢ MOSCXTS: Main Crystal Oscillator Status Interrupt Disable

e LOCK: PLL Lock Interrupt Disable

¢ MCKRDY: Master Clock Ready Interrupt Disable

e PCKRDYx: Programmable Clock Ready x Interrupt Disable

¢ MOSCSELS: Main Oscillator Selection Status Interrupt Disable
¢ MOSCRCS: Main On-Chip RC Status Interrupt Disable

e CFDEV: Clock Failure Detector Event Interrupt Disable

AI“"E',® 367

11011B-ATARM-21-Feb-12

24.15.14 PMC Status Register
Name: PMC_SR

Address: 0x400E0468

Access: Read-only
31 30 29 28 27 26 25 24

| - | - I - | - | - | - | - I - |
23 22 21 20 19 18 17 16

| - [- [- [FOS [CFDS | CFDEV | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| - | — | - | - | - | pPckrDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

[OSCSELS | - [- [- [MCKRDY | - [[OCK | MOSCXTS |

MOSCXTS: Main XTAL Oscillator Status
0 = Main XTAL oscillator is not stabilized.

1 = Main XTAL oscillator is stabilized.

LOCK: PLL Lock Status
0 = PLL is not locked

1 = PLL is locked.

MCKRDY: Master Clock Status
0 = Master Clock is not ready.

1 = Master Clock is ready.

OSCSELS: Slow Clock Oscillator Selection
0 = Internal slow clock RC oscillator is selected.

1 = External slow clock 32 kHz oscillator is selected.

¢ PCKRDYx: Programmable Clock Ready Status
0 = Programmable Clock x is not ready.

1 = Programmable Clock x is ready.

MOSCSELS: Main Oscillator Selection Status
0 = Selection is in progress

1 = Selection is done

MOSCRCS: Main On-Chip RC Oscillator Status
0 = Main on-chip RC oscillator is not stabilized.

1 = Main on-chip RC oscillator is stabilized.

CFDEV: Clock Failure Detector Event

0 = No clock failure detection of the main on-chip RC oscillator clock has occurred since the last read of PMC_SR.

1 = At least one clock failure detection of the main on-chip RC oscillator clock has occurred since the last read of PMC_SR.

368 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

e CFDS: Clock Failure Detector Status
0 = A clock failure of the main on-chip RC oscillator clock is not detected.

1 = A clock failure of the main on-chip RC oscillator clock is detected.

¢ FOS: Clock Failure Detector Fault Output Status
0 = The fault output of the clock failure detector is inactive.

1 = The fault output of the clock failure detector is active.

AI“]EL@ 369

11011B-ATARM-21-Feb-12

24.15.15 PMC Interrupt Mask Register
Name: PMC_IMR

Address: 0x400E046C

Access: Read-only
31 30 29 28 27 26 25 24

- - r - r - r - +r - 1 - [- [- |
23 22 21 20 19 18 17 16

| Z [_ [_ [— [- | CFDEV__ | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| _ [_ [— [— | - | PCKRDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | - | - | = [MCKRDY | - [[OCK | MOSCXTS |

¢ MOSCXTS: Main Crystal Oscillator Status Interrupt Mask

e LOCK: PLL Lock Interrupt Mask

e MCKRDY: Master Clock Ready Interrupt Mask

e PCKRDYx: Programmable Clock Ready x Interrupt Mask

¢ MOSCSELS: Main Oscillator Selection Status Interrupt Mask
e MOSCRCS: Main On-Chip RC Status Interrupt Mask

e CFDEV: Clock Failure Detector Event Interrupt Mask

370 S /A VS IN 0000000

11011B-ATARM-21-Feb-12

e S AM3N

24.15.16 PMC Fast Startup Mode Register

Name: PMC_FSMR

Address: 0x400E0470

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | LPM | - | - | RTCAL | RTTAL |
15 14 13 12 11 10 9 8

| FSTT15 | FSTT14 | FSTT13 | FSTT12 | FSTT11 | FSTT10 | FSTT9 | FSTT8 |
7 6 5 4 3 2 1 0

| FSTT7 | FSTT6 | FSTT5 | FSTT4 | FSTT3 | FSTT2 | FSTTH | FSTTO |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

e FSTTO - FSTT15: Fast Startup Input Enable 0 to 15
0 = The corresponding wake up input has no effect on the Power Management Controller.

1 = The corresponding wake up input enables a fast restart signal to the Power Management Controller.

e RTTAL: RTT Alarm Enable
0 = The RTT alarm has no effect on the Power Management Controller.

1 =The RTT alarm enables a fast restart signal to the Power Management Controller.

e RTCAL: RTC Alarm Enable
0 = The RTC alarm has no effect on the Power Management Controller.

1 = The RTC alarm enables a fast restart signal to the Power Management Controller.

e LPM: Low Power Mode

0 = The WaitForInterrupt (WFI) or WaitForEvent (WFE) instruction of the processor causes the processor to enter Idle
Mode.

1 = The WaitForEvent (WFE) instruction of the processor causes the system to enter Wait Mode.

AIMEL art

11011B-ATARM-21-Feb-12

A “'“E',O O

24.15.17 PMC Fast Startup Polarity Register
Name: PMC_FSPR

Address: 0x400E0474

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

[FSTP15 | FSTP14 [FSTPI3 [FSTP12 [FSTPiI1 [FSTPI0 [FSTP9 [FSTP8 |
7 6 5 4 3 2 1 0

[FSTP7 [FSTP6 | FSTP5 [FSTP4 [FSTP3 [FSTP2 [FSTPT [FSTPO |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

¢ FSTPx: Fast Startup Input Polarityx
Defines the active polarity of the corresponding wake up input. If the corresponding wake up input is enabled and at the
FSTP level, it enables a fast restart signal.

372 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

24.15.18 PMC Fault Output Clear Register
Name: PMC_FOCR

Address: 0x400E0478

Access: Write-only
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - - |
15 14 13 12 11 10

| - | - | - | - | - | - | - | FOCLR |

¢ FOCLR: Fault Output Clear
Clears the clock failure detector fault output.

AI“"E',® 373

11011B-ATARM-21-Feb-12

24.15.19 PMC Write Protect Mode Register
Name: PMC_WPMR

Address: Ox400E04E4

Access: Read-write

Reset: See Table 24-2
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - WPEN |

e WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).
Protects the registers:

* “PMC System Clock Enable Register” on page 355

* “PMC System Clock Disable Register’ on page 355

* “PMC Peripheral Clock Enable Register’ on page 357
* “PMC Peripheral Clock Disable Register” on page 358
* “PMC Clock Generator Main Oscillator Register” on page 360
* “PMC Clock Generator PLL Register” on page 363

* “PMC Master Clock Register” on page 364

* “PMC Programmable Clock Register” on page 365

* “PMC Fast Startup Mode Register” on page 371

* “PMC Fast Startup Polarity Register” on page 372

* “PMC Oscillator Calibration Register” on page 376

e WPKEY: Write Protect KEY
Should be written at value 0x504D43 (“PMC” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

374 SA M 3 N L __|
11011B-ATARM-21-Feb-12

e S AM3N

24.15.20 PMC Write Protect Status Register

Name: PMC_WPSR

Address: 0x400E04E8

Access: Read-only

Reset: See Table 24-2
31 30 29 28 27 26 25 24

T - T - - - - - —]
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

I - I - I - - I - - - wPvs |

e WPVS: Write Protect Violation Status
0 = No Write Protect Violation has occurred since the last read of the PMC_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the PMC_WPSR register. If this violation is an unauthor-

ized attempt to write a protected register, the associated violation is reported into field WPVSRC.

e WPVSRC: Write Protect Violation Source

When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write

access has been attempted.

Reading PMC_WPSR automatically clears all fields.

11011B-ATARM-21-Feb-12

ATMEL

375

24.15.21 PMC Oscillator Calibration Register
Name: PMC_OCR

Address: 0x400E0510

Access: Read-Write
31 30 29 28 27 26 25 24

- T - T - - - - -]
23 22 21 20 19 18 17 16

| SEL12 | CAL12 |
15 14 13 12 11 10 9 8

| SEL8 | CALS8 |
7 6 5 4 3 2 1 0

| SEL4 | CAL4 |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

e CAL4: RC Oscillator Calibration bits for 4 MHz
Calibration bits applied to the RC Oscillator when SEL4 is set.

¢ SELA4: Selection of RC Oscillator Calibration bits for 4 MHz
0 = Default value stored in Flash memory.

1 = Value written by user in CAL4 field of this register.

e CALS: RC Oscillator Calibration bits for 8 MHz
Callibration bits applied to the RC Oscillator when SEL8 is set.

e SELS8: Selection of RC Oscillator Calibration bits for 8 MHz
0 = Factory determined value stored in Flash memory.

1 = Value written by user in CALS field of this register.

e CAL12: RC Oscillator Calibration bits for 12 MHz
Calibration bits applied to the RC Oscillator when SEL12 is set.

e SEL12: Selection of RC Oscillator Calibration bits for 12 MHz
0 = Factory determined value stored in Flash memory.

1 = Value written by user in CAL12 field of this register.

376 SA M 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

25. Chip Identifier (CHIPID)

25.1 Description

11011B-ATARM-21-Feb-12

Chip Identifier registers permit recognition of the device and its revision. These registers provide

the sizes and types of the on-chip memories, as well as the set of embedded peripherals.

Two chip identifier registers are embedded: CHIPID_CIDR (Chip ID Register) and CHIPID_EXID
(Extension ID). Both registers contain a hard-wired value that is read-only. The first register con-

tains the following fields:

* EXT - shows the use of the extension identifier register

* NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size
* ARCH - identifies the set of embedded peripherals

¢ SRAMSIZ - indicates the size of the embedded SRAM

¢ EPROC - indicates the embedded ARM processor

* VERSION - gives the revision of the silicon

The second register is device-dependent and reads 0 if the bit EXT is 0.

Table 25-1. ATSAMS3N Chip IDs Register

Chip Name CHIPID_CIDR CHIPID_EXID
ATSAM3NA4C (Rev A) 0x29540960 0x0
ATSAM3N2C (Rev A) 0x29590760 0x0
ATSAM3N1C (Rev A) 0x29580560 0x0
ATSAM3N4B (Rev A) 0x29440960 0x0
ATSAM3N2B (Rev A) 0x29490760 0x0
ATSAM3N1B (Rev A) 0x29480560 0x0
ATSAM3N4A (Rev A) 0x29340960 0x0
ATSAM3N2A (Rev A) 0x29390760 0x0
ATSAM3N1A (Rev A) 0x29380560 0x0
ATSAM3N1C (Rev B) 0x29580561 0x0
ATSAM3N1B (Rev B) 0x29480561 0x0
ATSAM3N1A (Rev B) 0x29380561 0x0
ATSAM3NOC (Rev A) 0x295 80361 0x0
ATSAM3NOB (Rev A) 0x294 80361 0x0
ATSAM3NOA (Rev A) 0x293 80361 0x0
ATSAM3NOOB (Rev A) 0x294 50261 0x0
ATSAM3NOOA (Rev A) 0x293 50261 0x0

ATMEL

377

ATMEL

25.2 Chip Identifier (CHIPID) User Interface

Table 25-2. Register Mapping

Offset Register Name Access Reset
0x0 Chip ID Register CHIPID_CIDR Read-only -
0x4 Chip ID Extension Register CHIPID_EXID Read-only -

378 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

25.21 Chip ID Register
Name: CHIPID_CIDR
Address: 0x400E0740
Access: Read-only
31 30 29 28 27 26 25 24
| EXT | NVPTYP | ARCH |
23 22 21 20 19 18 17 16
| ARCH | SRAMSIZ |
15 14 13 12 11 10 9 8
| NVPSIZ2 | NVPSIZ |
7 6 5 4 3 2 1 0
| EPROC VERSION |
¢ VERSION: Version of the Device
Current version of the device.
e EPROC: Embedded Processor
Value Name Description
1 ARM946ES ARM946ES
2 ARM7TDMI ARM7TDMI
3 CM3 Cortex-M3
4 ARMO20T ARM920T
5 ARM926EJS ARM926EJS
6 CA5 Cortex-A5
¢ NVPSIZ: Nonvolatile Program Memory Size
Value Name Description
0 NONE None
1 8K 8K bytes
2 16K 16K bytes
3 32K 32K bytes
4 Reserved
5 64K 64K bytes
6 Reserved
7 128K 128K bytes
8 Reserved
9 256K 256K bytes
10 512K 512K bytes
11 Reserved
12 1024K 1024K bytes
379

11011B-ATARM-21-Feb-12

ATMEL

Value Name Description
13 Reserved
14 2048K 2048K bytes
15 Reserved

¢ NVPSIZ2 Second Nonvolatile Program Memory Size

Value Name Description
0 NONE None
1 8K 8K bytes
2 16K 16K bytes
3 32K 32K bytes
4 Reserved
5 64K 64K bytes
6 Reserved
7 128K 128K bytes
8 Reserved
9 256K 256K bytes
10 512K 512K bytes
11 Reserved
12 1024K 1024K bytes
13 Reserved
14 2048K 2048K bytes
15 Reserved

¢ SRAMSIZ: Internal SRAM Size

Value Name Description
0 48K 48K bytes
1 1K 1K bytes
2 2K 2K bytes
3 6K 6K bytes
4 112K 112K bytes
5 4K 4K bytes
6 80K 80K bytes
7 160K 160K bytes
8 8K 8K bytes
9 16K 16K bytes
10 32K 32K bytes
11 64K 64K bytes
12 128K 128K bytes

380 S/A VIS TN 1000000

11011B-ATARM-21-Feb-12

s S AM3N

Value Name Description
13 256K 256K bytes
14 96K 96K bytes
15 512K 512K bytes

e ARCH: Architecture Identifier

Value Name Description

0x19 AT91SAMI9xx AT91SAMO9xx Series

0x29 AT91SAMIXExx AT91SAM9XExx Series

0x34 AT91x34 AT91x34 Series

0x37 CAP7 CAP7 Series

0x39 CAP9 CAP9 Series

0x3B CAP11 CAP11 Series

0x40 AT91x40 AT91x40 Series

0x42 AT91x42 AT91x42 Series

0x55 AT91x55 AT91x55 Series

0x60 AT91SAM7Axx AT91SAM7Axx Series

0x61 AT91SAM7AQxx AT91SAM7AQxx Series

0x63 AT91x63 AT91x63 Series

0x70 AT91SAM7Sxx AT91SAM7Sxx Series

0x71 AT91SAM7XCxx AT91SAM7XCxx Series

0x72 AT91SAM7SExx AT91SAM7SExx Series

0x73 AT91SAM7Lxx AT91SAM7Lxx Series

0x75 AT91SAM7Xxx AT91SAM7Xxx Series

0x76 AT91SAM7SLxx AT91SAM7SLxx Series

0x80 ATSAM3UxC ATSAMBUXC Series (100-pin version)
0x81 ATSAM3UXE ATSAMBUXE Series (144-pin version)
0x83 ATSAM3AXC ATSAMB3AXC Series (100-pin version)
0x84 ATSAM3XxC ATSAM3XxC Series (100-pin version)
0x85 ATSAMBXxXE ATSAMB3XXE Series (144-pin version)
0x86 ATSAM3XxG ATSAM3XxG Series (208/217-pin version)
0x88 ATSAM3SxA ATSAMB3SXA Series (48-pin version)
0x89 ATSAM3SxB ATSAM3SxB Series (64-pin version)
O0x8A ATSAM3SxC ATSAM3SxC Series (100-pin version)
0x92 AT91x92 AT91x92 Series

0x93 ATSAM3NxA ATSAMB3NXA Series (48-pin version)
0x94 ATSAM3NxB ATSAM3NXxB Series (64-pin version)
0x95 ATSAM3NxC ATSAM3NXxC Series (100-pin version)

11011B-ATARM-21-Feb-12

ATMEL

381

ATMEL

Value Name Description

0x98 ATSAM3SDxA ATSAM3SDXxA Series (48-pin version)
0x99 ATSAM3SDxB ATSAM3SDxB Series (64-pin version)
0x9A ATSAM3SDxC ATSAM3SDxC Series (100-pin version)
0xA5 ATSAM5A ATSAM5A

0xFO AT75Cxx AT75Cxx Series

¢ NVPTYP: Nonvolatile Program Memory Type

Value Name Description
0 ROM ROM
1 ROMLESS ROMiIess or on-chip Flash
4 SRAM SRAM emulating ROM
2 FLASH Embedded Flash Memory
ROM and Embedded Flash Memory

3 ROM_FLASH NVPSIZ is ROM size

NVPSIZ2 is Flash size

e EXT: Extension Flag
0 = Chip ID has a single register definition without extension

1 = An extended Chip ID exists.

382 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

25.2.2 Chip ID Extension Register

Name: CHIPID_EXID

Address: 0x400E0744

Access: Read-only
31 30 29 28 27 26 25 24

| EXID |
23 22 21 20 19 18 17 16

| EXID |
15 14 13 12 11 10 9 8

| EXID |
7 6 5 4 3 2 1 0

| EXID |

e EXID: Chip ID Extension

Reads 0 if the bit EXT in CHIPID_CIDR is 0.

11011B-ATARM-21-Feb-12

ATMEL

383

ATMEL

384 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26. Parallel Input/Output (PIO) Controller

26.1 Description

The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each /O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.

Each 1/0O line of the PIO Controller features:

¢ An input change interrupt enabling level change detection on any I/O line.

¢ Additional Interrupt modes enabling rising edge, falling edge, low level or high level detection
on any /O line.

* A glitch filter providing rejection of glitches lower than one-half of PIO clock cycle.

* A debouncing filter providing rejection of unwanted pulses from key or push button
operations.

¢ Multi-drive capability similar to an open drain I/O line.
e Control of the pull-up and pull-down of the I/O line.
* Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.

26.2 Embedded Characteristics

¢ Up to 32 Programmable 1/O Lines

* Fully Programmable through Set/Clear Registers

* Multiplexing of Four Peripheral Functions per I/O Line

¢ For each I/O Line (Whether Assigned to a Peripheral or Used as General Purpose 1/0)
— Input Change Interrupt
— Programmable Glitch Filter
— Programmable Debouncing Filter
— Multi-drive Option Enables Driving in Open Drain
— Programmable Pull Up on Each I/O Line
— Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time

— Additional Interrupt Modes on a Programmable Event: Rising Edge, Falling Edge,
Low Level or High Level

— Lock of the Configuration by the Connected Peripheral
¢ Synchronous Output, Provides Set and Clear of Several I/O lines in a Single Write
* Write Protect Registers
* Programmable Schmitt Trigger Inputs

AI“"E',® 385

11011B-ATARM-21-Feb-12

ATMEL

26.3 Block Diagram

Figure 26-1. Block Diagram

P10 Controller
PIO Interrupt
Interrupt Controller
PIO Clock
PMC
| Data, Enable
| : > Up to 32
peripheral 10s
Embedded —>
Peripheral
<—>|:| PINO T\
| Data, Enable
<—>| | PIN 1
|l «—> . > Up to 32 pins
Up to 32 °
Embedded «—> peripheral 10s °
Peripheral |:| PG

APB

Figure 26-2. Application Block Diagram

On-Chip Peripheral Drivers

Keyboard Driver Control & Command
Driver

On-Chip Peripherals

PIO Controller

Keyboard Driver General Purpose 1/Os External Devices

386 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.4 Product Dependencies

26.4.1 Pin Multiplexing

Each pin is configurable, according to product definition as either a general-purpose 1/O line
only, or as an /O line multiplexed with one or two peripheral 1/0s. As the multiplexing is hard-
ware defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an I/O line is general-purpose only, i.e. not multiplexed with any peripheral 1/0, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Con-
troller can control how the pin is driven by the product.

26.4.2 Power Management

The Power Management Controller controls the PIO Controller clock in order to save power.
Writing any of the registers of the user interface does not require the PIO Controller clock to be
enabled. This means that the configuration of the 1/O lines does not require the PIO Controller
clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available,
including glitch filtering. Note that the Input Change Interrupt, Interrupt Modes on a programma-
ble event and the read of the pin level require the clock to be validated.

After a hardware reset, the PIO clock is disabled by default.

The user must configure the Power Management Controller before any access to the input line
information.

26.4.3 Interrupt Generation

11011B-ATARM-21-Feb-12

The PIO Controller is connected on one of the sources of the Nested Vectored Interrupt Control-
ler (NVIC). Using the PIO Controller requires the NVIC to be programmed first.

The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled.

AI“"E',® 387

ATMEL

26.5 Functional Description

The PIO Controller features up to 32 fully-programmable 1/O lines. Most of the control logic asso-
ciated to each 1/0 is represented in Figure 26-3. In this description each signal shown
represents but one of up to 32 possible indexes.

Figure 26-3. 1/O Line Control Logic

PIO_OER(0]
PIO_OSRI[0]
PIO_ODRI[0]

Peripheral A Output Enable

o

0

Peripheral B Output Enable

o
=

Peripheral C Output Enable

= =

0
Peripheral D Output Enable 1

PIO_ABCDSR1[0] /H PIO?PEEO]PSR 0
PIO_ABCDSR2[0] -
] _

\

Peripheral A Output ——— o))
Peripheral B Output ————— 01
Peripheral C Output ——— |10
Peripheral D Output —— 11

PIO_SODRI0]
PIO_ODSR[0]
PIO_CODRI0]

—— > Peripheral A Input
$——> Peripheral B Input
$——> Peripheral C Input

—> Peripheral D Input

| PIO_PDSR[0] I
| PIO_ISRI0] I
EVENT (Up to 32 possible inputs)
DETECTOR

System Clock Programmable
Glitch PIO Interrupt
or o
Slow Clock Debouncing Resynghromzauon
Clock Filter tage PIO_IER[0]

I—lPIO_SCDR Divider

PIO_ISR[31]

PIO_IDR[31]

PIO_IFSRI[0]

PIO_IFDR[0]

| PIO_DCIFSR[0] |

PIO_IFSCRI[0]

PIO_SCIFSR[0]

388 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.5.1 Pull-up and Pull-down Resistor Control

Each I/O line is designed with an embedded pull-up resistor and an embedded pull-down resis-
tor. The pull-up resistor can be enabled or disabled by writing respectively PIO_PUER (Pull-up
Enable Register) and PIO_PUDR (Pull-up Disable Resistor). Writing in these registers results in
setting or clearing the corresponding bit in PIO_PUSR (Pull-up Status Register). Reading a 1 in
PIO_PUSR means the pull-up is disabled and reading a 0 means the pull-up is enabled. The
pull-down resistor can be enabled or disabled by writing respectively PIO_PPDER (Pull-down
Enable Register) and PIO_PPDDR (Pull-down Disable Resistor). Writing in these registers
results in setting or clearing the corresponding bit in PIO_PPDSR (Pull-down Status Register).
Reading a 1 in PIO_PPDSR means the pull-up is disabled and reading a 0 means the pull-down
is enabled.

Enabling the pull-down resistor while the pull-up resistor is still enabled is not possible. In this
case, the write of PIO_PPDER for the concerned I/O line is discarded. Likewise, enabling the
pull-up resistor while the pull-down resistor is still enabled is not possible. In this case, the write
of PIO_PUER for the concerned I/O line is discarded.

Control of the pull-up resistor is possible regardless of the configuration of the 1/O line.

After reset, all of the pull-ups are enabled, i.e. PIO_PUSR resets at the value 0x0, and all the
pull-downs are disabled, i.e. PIO_PPDSR resets at the value OxFFFFFFFF.

26.5.2 I/0 Line or Peripheral Function Selection

When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The regis-
ter PIO_PSR (PIO Status Register) is the result of the set and clear registers and indicates
whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value of
0 indicates that the pin is controlled by the corresponding on-chip peripheral selected in the
PIO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers). A value of 1 indicates the pin is
controlled by the PIO controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral),
PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PIO_PSR
resets at 1. However, in some events, it is important that PIO lines are controlled by the periph-
eral (as in the case of memory chip select lines that must be driven inactive after reset or for
address lines that must be driven low for booting out of an external memory). Thus, the reset
value of PIO_PSR is defined at the product level, depending on the multiplexing of the device.

26.5.3 Peripheral A or B or C or D Selection

11011B-ATARM-21-Feb-12

The PIO Controller provides multiplexing of up to four peripheral functions on a single pin. The
selection is performed by writing PIO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers).

For each pin:

* the corresponding bit at level 0 in PIO_ABCDSR1 and the corresponding bit at level 0 in
PIO_ABCDSR2 means peripheral A is selected.

* the corresponding bit at level 1 in PIO_ABCDSR1 and the corresponding bit at level 0 in
PIO_ABCDSR2 means peripheral B is selected.

* the corresponding bit at level 0 in PIO_ABCDSR1 and the corresponding bit at level 1 in
PIO_ABCDSR2 means peripheral C is selected.

AI“"E',® 389

ATMEL

* the corresponding bit at level 1 in PIO_ABCDSR1 and the corresponding bit at level 1 in
PIO_ABCDSR2 means peripheral D is selected.

Note that multiplexing of peripheral lines A, B, C and D only affects the output line. The periph-
eral input lines are always connected to the pin input.

After reset, PIO_ABCDSR1 and PIO_ABCDSR2 are 0, thus indicating that all the PIO lines are
configured on peripheral A. However, peripheral A generally does not drive the pin as the PIO
Controller resets in I/O line mode.

Writing in PIO_ABCDSR1 and PIO_ABCDSR2 manages the multiplexing regardless of the con-
figuration of the pin. However, assignment of a pin to a peripheral function requires a write in the
peripheral selection registers (PIO_ABCDSR1 and PIO_ABCDSR2) in addition to a write in
PIO_PDR.

26.5.4 Output Control
When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at
0, the drive of the I/O line is controlled by the peripheral. Peripheral A or B or C or D depending
on the value in PIO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers) determines
whether the pin is driven or not.

When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register).
The results of these write operations are detected in PIO_OSR (Output Status Register). When
a bit in this register is at 0, the corresponding I/O line is used as an input only. When the bit is at
1, the corresponding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data
Register) and PIO_CODR (Clear Output Data Register). These write operations respectively set
and clear PIO_ODSR (Output Data Status Register), which represents the data driven on the 1/0
lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to
be controlled by the PIO controller or assigned to a peripheral function. This enables configura-
tion of the 1/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it
defines the first level driven on the 1/O line.

26.5.5 Synchronous Data Output

Clearing one (or more) PIO line(s) and setting another one (or more) PIO line(s) synchronously
cannot be done by using PIO_SODR and PIO_CODR registers. It requires two successive write
operations into two different registers. To overcome this, the PIO Controller offers a direct con-
trol of PIO outputs by single write access to PIO_ODSR (Output Data Status Register).Only bits
unmasked by PIO_OWSR (Output Write Status Register) are written. The mask bits in
PIO_OWSR are set by writing to PIO_OWER (Output Write Enable Register) and cleared by
writing to PIO_OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the 1/O lines as PIO_OWSR resets at
0x0.

26.5.6 Multi Drive Control (Open Drain)
Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This
feature permits several drivers to be connected on the I/O line which is driven low only by each
device. An external pull-up resistor (or enabling of the internal one) is generally required to guar-
antee a high level on the line.

390 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.5.7

The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and
PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the 1/O line
is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-driver
Status Register) indicates the pins that are configured to support external drivers.

After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.

Output Line Timings

Figure 26-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by
directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is
set. Figure 26-4 also shows when the feedback in PIO_PDSR is available.

Figure 26-4. Output Line Timings

Write PIO_ODSR at 1

Write PIO_ODSR at 0

26.5.8

26.5.9

McK |

Write PIO_SODR

I | L

APB Access

Write PIO_CODR

APB Access

PIO_ODSR

PIO_PDSR

2 cycles N 2 cycles

Inputs

The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This reg-
ister indicates the level of the 1/O lines regardless of their configuration, whether uniquely as an
input or driven by the PIO controller or driven by a peripheral.

Reading the 1/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

Input Glitch and Debouncing Filters

11011B-ATARM-21-Feb-12

Optional input glitch and debouncing filters are independently programmable on each 1/O line.

The glitch filter can filter a glitch with a duration of less than 1/2 Master Clock (MCK) and the
debouncing filter can filter a pulse of less than 1/2 Period of a Programmable Divided Slow
Clock.

The selection between glitch filtering or debounce filtering is done by writing in the registers
PIO_IFSCDR (PIO Input Filter Slow Clock Disable Register) and PIO_IFSCER (PIO Input Filter
Slow Clock Enable Register). Writing PIO_IFSCDR and PIO_IFSCER respectively, sets and
clears bits in PIO_IFSCSR.

The current selection status can be checked by reading the register PIO_IFSCSR (Input Filter
Slow Clock Status Register).

* If PIO_IFSCSR]i] = 0: The glitch filter can filter a glitch with a duration of less than 1/2 Period

of Master Clock.
Y)

ATMEL

¢ If PIO_IFSCSR]i] = 1: The debouncing filter can filter a pulse with a duration of less than 1/2
Period of the Programmable Divided Slow Clock.

For the debouncing filter, the Period of the Divided Slow Clock is performed by writing in the DIV
field of the PIO_SCDR (Slow Clock Divider Register)

Tdiv_slclk = ((DIV+1)*2).Tslow_clock

When the glitch or debouncing filter is enabled, a glitch or pulse with a duration of less than 1/2
Selected Clock Cycle (Selected Clock represents MCK or Divided Slow Clock depending on
PIO_IFSCDR and PIO_IFSCER programming) is automatically rejected, while a pulse with a
duration of 1 Selected Clock (MCK or Divided Slow Clock) cycle or more is accepted. For pulse
durations between 1/2 Selected Clock cycle and 1 Selected Clock cycle the pulse may or may
not be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to
be visible it must exceed 1 Selected Clock cycle, whereas for a glitch to be reliably filtered out,
its duration must not exceed 1/2 Selected Clock cycle.

The filters also introduce some latencies, this is illustrated in Figure 26-5 and Figure 26-6.

The glitch filters are controlled by the register set: PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.

When the glitch and/or debouncing filter is enabled, it does not modify the behavior of the inputs
on the peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt
detection. The glitch and debouncing filters require that the PIO Controller clock is enabled.

Figure 26-5. Input Glitch Filter Timing

PIO_IFCSR =0
wek [] I L L1 | I L1 |
up tp 1.5 cycles
Pin Level |T|_-|T| ” ”
1 cycle 1 cycle 1 cycle 1 cycle
PIO_PDSR
if PIO_IFSR=0
2 cycles 1 cycle
PIO_PDSR up to 2.5 pycles | N
if PIO_IFSR =1 up to R cycles

392 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

Figure 26-6. Input Debouncing Filter Timing

PIO_IFCSR =1
Divided Slow Clock | | | | | | | L
Pin Level (0 | 1l | |
up to|2 cycles Tmck up to g'cycles Tmck
PIO_PDSR |_ I
if PIO_IFSR =0 |
1 cycle| Tdiv_slclk 1 cycle Tdiv_slclk
PIO_PDSR up|to 1.5 cycles Tdiv_slclk
if PIO_IFSR =1 uplto 1.5 cycles Tdiv_slclk| [
[(>
up to 2 cycles Tmck up to 2 cycles Tmck

26.5.10 Input Edge/Level Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an edge or a
level on an I/O line. The Input Edge/Level Interrupt is controlled by writing PIO_IER (Interrupt
Enable Register) and PIO_IDR (Interrupt Disable Register), which respectively enable and dis-
able the input change interrupt by setting and clearing the corresponding bit in PIO_IMR
(Interrupt Mask Register). As Input change detection is possible only by comparing two succes-
sive samplings of the input of the 1/O line, the PIO Controller clock must be enabled. The Input
Change Interrupt is available, regardless of the configuration of the 1/O line, i.e. configured as an
input only, controlled by the PIO Controller or assigned to a peripheral function.

By default, the interrupt can be generated at any time an edge is detected on the input.

Some additional Interrupt modes can be enabled/disabled by writing in the PIO_AIMER (Addi-
tional Interrupt Modes Enable Register) and PIO_AIMDR (Additional Interrupt Modes Disable
Register). The current state of this selection can be read through the PIO_AIMMR (Additional
Interrupt Modes Mask Register)

These Additional Modes are:

¢ Rising Edge Detection
e Falling Edge Detection
¢ Low Level Detection
* High Level Detection
In order to select an Additional Interrupt Mode:
* The type of event detection (Edge or Level) must be selected by writing in the set of registers;
PIO_ESR (Edge Select Register) and PIO_LSR (Level Select Register) which enable

respectively, the Edge and Level Detection. The current status of this selection is accessible
through the PIO_ELSR (Edge/Level Status Register).

* The Polarity of the event detection (Rising/Falling Edge or High/Low Level) must be selected
by writing in the set of registers; PIO_FELLSR (Falling Edge /Low Level Select Register) and
PIO_REHLSR (Rising Edge/High Level Select Register) which allow to select Falling or
Rising Edge (if Edge is selected in the PIO_ELSR) Edge or High or Low Level Detection (if

AI“"E',® 393

11011B-ATARM-21-Feb-12

ATMEL

Level is selected in the PIO_ELSR). The current status of this selection is accessible through
the PIO_FRLHSR (Fall/Rise - Low/High Status Register).

When an input Edge or Level is detected on an I/O line, the corresponding bit in PIO_ISR (Inter-
rupt Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller
interrupt line is asserted. The interrupt signals of the thirty-two channels are ORed-wired
together to generate a single interrupt signal to the . Nested Vector Interrupt Controller (NVIC).

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that
all the interrupts that are pending when PIO_ISR is read must be handled. When an Interrupt is
enabled on a “Level”, the interrupt is generated as long as the interrupt source is not cleared,
even if some read accesses in PIO_ISR are performed.

Figure 26-7. Event Detector on Input Lines (Figure represents line 0)

Resynchronized input on line 0

Event Detector
Rising Edge X
Detector
Falling Edge 0
Detector

PIO_REHLSRI[0]

1
PIO_FRLHSR[0]|—® Event detection on line 0
PIO_FELLSRI[0] !

=/

26.5.10.1 Example

394

High Level
Detector
:
Detector

PIO_LSRI[0]
PIO_ELSRI0] PIO_AIMER[O]
PIO_ESRI0] PIO_AIMMRI[O]

PIO_AIMDRI[0]

Edge
Detector

If generating an interrupt is required on the following:

* Rising edge on PIO line 0

* Falling edge on PIO line 1

* Rising edge on PIO line 2

* Low Level on PIO line 3

* High Level on PIO line 4

* High Level on PIO line 5

* Falling edge on PIO line 6

* Rising edge on PIO line 7

* Any edge on the other lines

The configuration required is described below.

11011B-ATARM-21-Feb-12

s S AM3N

26.5.10.2 Interrupt Mode Configuration
All the interrupt sources are enabled by writing 32’hFFFF_FFFF in PIO_IER.

Then the Additional Interrupt Mode is enabled for line 0 to 7 by writing 32°’h0000_00FF in
PIO_AIMER.

26.5.10.3 Edge or Level Detection Configuration
Lines 3, 4 and 5 are configured in Level detection by writing 32’h0000_0038 in PIO_LSR.

The other lines are configured in Edge detection by default, if they have not been previously con-
figured. Otherwise, lines 0, 1, 2, 6 and 7 must be configured in Edge detection by writing
32’h0000_00C7 in PIO_ESR.

26.5.10.4 Falling/Rising Edge or Low/High Level Detection Configuration.
Lines 0, 2, 4, 5 and 7 are configured in Rising Edge or High Level detection by writing
32’h0000_00BS5 in PIO_REHLSR.

The other lines are configured in Falling Edge or Low Level detection by default, if they have not
been previously configured. Otherwise, lines 1, 3 and 6 must be configured in Falling Edge/Low
Level detection by writing 32’h0000_004A in PIO_FELLSR.

Figure 26-8. Input Change Interrupt Timings if there are no Additional Interrupt Modes

S I S S S L LI |

Pin Level

PIO_ISR

/ /

Read PIO_ISR APB Access APB Access

26.5.11 1/0 Lines Lock

When an /O line is controlled by a peripheral (particularly the Pulse Width Modulation Controller
PWM), it can become locked by the action of this peripheral via an input of the PIO controller.
When an 1/O line is locked, the write of the corresponding bit in the registers PIO_PER,
PIO_PDR, PIO_MDER, PIO_MDDR, PIO_PUDR, PIO_PUER, PIO_ABCDSR1 and
PIO_ABCDSR?2 is discarded in order to lock its configuration. The user can know at anytime
which 1/O line is locked by reading the PI1O Lock Status register PIO_LOCKSR. Once an I/O line
is locked, the only way to unlock it is to apply a hardware reset to the PIO Controller.

26.5.12 Programmable Schmitt Trigger
It is possible to configure each input for the Schmitt Trigger. By default the Schmitt trigger is
active. Disabling the Schmitt Trigger is requested when using the QTouch™ Library.

AI“"E',® 395

11011B-ATARM-21-Feb-12

ATMEL

26.5.13 Write Protection Registers

To prevent any single software error that may corrupt PIO behavior, certain address spaces can
be write-protected by setting the WPEN bit in the “PIO Write Protect Mode Register”
(PIO_WPMR).

If a write access to the protected registers is detected, then the WPVS flag in the PIO Write Pro-
tect Status Register (PIO_WPSR) is set and the field WPVSRC indicates in which register the
write access has been attempted.

The WPVS flag is reset by writing the PIO Write Protect Mode Register (PIO_WPMR) with the
appropriate access key, WPKEY.

The protected registers are:

* “PIO Enable Register” on page 401

¢ “P1O Disable Register” on page 401

¢ “PIO Output Enable Register” on page 402

¢ “PIO Output Disable Register’” on page 403

¢ “PI1O Input Filter Enable Register” on page 404

¢ “PIO Input Filter Disable Register” on page 404

* “PIO Multi-driver Enable Register” on page 409

¢ “P1O Multi-driver Disable Register” on page 410

¢ “PIO Pull Up Disable Register” on page 411

* “PIO Pull Up Enable Register” on page 411

* “P10O Peripheral ABCD Select Register 1” on page 413
* “PIO Peripheral ABCD Select Register 2” on page 414
¢ “PIO Output Write Enable Register’ on page 419

¢ “P10O Output Write Disable Register’ on page 419

¢ “PIO Pad Pull Down Disable Register” on page 417

¢ “PIO Pad Pull Down Status Register’ on page 418

396 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.6 1/0O Lines Programming Example
The programing example as shown in Table 26-1 below is used to obtain the following
configuration.
* 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation), open-drain,
with pull-up resistor

 Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no
pull-up resistor, no pull-down resistor

* Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up
resistors, glitch filters and input change interrupts

e Four input signals on 1/O line 12 to 15 to read an external device status (polled, thus no input
change interrupt), no pull-up resistor, no glitch filter

* /O lines 16 to 19 assigned to peripheral A functions with pull-up resistor
¢ 1/O lines 20 to 23 assigned to peripheral B functions with pull-down resistor

¢ 1/O line 24 to 27 assigned to peripheral C with Input Change Interrupt, no pull-up resistor and
no pull-down resistor

¢ |/O line 28 to 31 assigned to peripheral D, no pull-up resistor and no pull-down resistor

Table 26-1. Programming Example

Register Value to be Written
PIO_PER 0x0000_FFFF
PIO_PDR OxFFFF_0000
PIO_OER 0x0000_00FF
PIO_ODR OxFFFF_FF0O0
PIO_IFER 0x0000_0F00
PIO_IFDR OxFFFF_FOFF
PIO_SODR 0x0000_0000
PIO_CODR OxOFFF_FFFF
PIO_IER 0x0F00_0F00
PIO_IDR OxFOFF_FOFF
PIO_MDER 0x0000_000F
PIO_MDDR OxFFFF_FFFO
PIO_PUDR OxFFFO_OOFO0
PIO_PUER 0x000F_FFOF
PIO_PPDDR OxFFOF_FFFF
PIO_PPDER 0x00F0_0000
PIO_ABCDSR1 0xFOFO0_0000
PIO_ABCDSR2 0xFF00_0000
PIO_OWER 0x0000_000F
PIO_OWDR OxOFFF_ FFFO

11011B-ATARM-21-Feb-12

ATMEL

397

ATMEL

26.7 Parallel Input/Output Controller (PIO) User Interface

Each 1/O line controlled by the PIO Controller is associated with a bit in each of the PIO Control-
ler User Interface registers. Each register is 32 bits wide. If a parallel I/O line is not defined,
writing to the corresponding bits has no effect. Undefined bits read zero. If the I/O line is not mul-
tiplexed with any peripheral, the I/O line is controlled by the PIO Controller and PIO_PSR returns
1 systematically.

Table 26-2. Register Mapping

Offset Register Name Access Reset
0x0000 PIO Enable Register PIO_PER Write-only -
0x0004 PIO Disable Register PIO_PDR Write-only -
0x0008 PIO Status Register PIO_PSR Read-only M
0x000C Reserved
0x0010 Output Enable Register PIO_OER Write-only -
0x0014 Output Disable Register PIO_ODR Write-only -
0x0018 Output Status Register PIO_OSR Read-only 0x0000 0000
0x001C Reserved
0x0020 Glitch Input Filter Enable Register PIO_IFER Write-only -
0x0024 Glitch Input Filter Disable Register PIO_IFDR Write-only -
0x0028 Glitch Input Filter Status Register PIO_IFSR Read-only 0x0000 0000
0x002C Reserved
0x0030 Set Output Data Register PIO_SODR Write-only -
0x0034 Clear Output Data Register PIO_CODR Write-only
Read-only
0x0038 Output Data Status Register PIO_ODSR or® -
Read-write
0x003C Pin Data Status Register PIO_PDSR Read-only ®
0x0040 Interrupt Enable Register PIO_IER Write-only -
0x0044 Interrupt Disable Register PIO_IDR Write-only -
0x0048 Interrupt Mask Register PIO_IMR Read-only 0x00000000
0x004C Interrupt Status Register® PIO_ISR Read-only 0x00000000
0x0050 Multi-driver Enable Register PIO_MDER Write-only -
0x0054 Multi-driver Disable Register PIO_MDDR Write-only -
0x0058 Multi-driver Status Register PIO_MDSR Read-only 0x00000000
0x005C Reserved - - -
0x0060 Pull-up Disable Register PIO_PUDR Write-only -
0x0064 Pull-up Enable Register PIO_PUER Write-only -
0x0068 Pad Pull-up Status Register PIO_PUSR Read-only 0x00000000
0x006C Reserved - - -
398 S /A V13 N 15—

11011B-ATARM-21-Feb-12

s S AM3N

Table 26-2. Register Mapping (Continued)
Offset Register Name Access Reset
0x0070 Peripheral Select Register 1 PIO_ABCDSR1 Read-write 0x00000000
0x0074 Peripheral Select Register 2 PIO_ABCDSR2 Read-write 0x00000000
0x0078
to Reserved - - -
0x007C
0x0080 Input Filter Slow Clock Disable Register PIO_IFSCDR Write-only -
0x0084 Input Filter Slow Clock Enable Register PIO_IFSCER Write-only -
0x0088 Input Filter Slow Clock Status Register PIO_IFSCSR Read-only 0x00000000
0x008C Slow Clock Divider Debouncing Register PIO_SCDR Read-write 0x00000000
0x0090 Pad Pull-down Disable Register PIO_PPDDR Write-only -
0x0094 Pad Pull-down Enable Register PIO_PPDER Write-only -
0x0098 Pad Pull-down Status Register PIO_PPDSR Read-only OxFFFFFFFF
0x009C Reserved - -
0x00A0 Output Write Enable PIO_OWER Write-only -
0x00A4 Output Write Disable PIO_OWDR Write-only -
0x00A8 Output Write Status Register PIO_OWSR Read-only 0x00000000
0x00AC Reserved - -
0x00B0O Additional Interrupt Modes Enable Register PIO_AIMER Write-only -
0x00B4 Additional Interrupt Modes Disables Register PIO_AIMDR Write-only -
0x00B8 Additional Interrupt Modes Mask Register PIO_AIMMR Read-only 0x00000000
0x00BC Reserved - - -
0x00CO0 Edge Select Register PIO_ESR Write-only -
0x00C4 Level Select Register PIO_LSR Write-only -
0x00C8 Edge/Level Status Register PIO_ELSR Read-only 0x00000000
0x00CC Reserved - - -
0x00D0 Falling Edge/Low Level Select Register PIO_FELLSR Write-only -
0x00D4 Rising Edge/ High Level Select Register PIO_REHLSR Write-only -
0x00D8 Fall/Rise - Low/High Status Register PIO_FRLHSR Read-only 0x00000000
0x00DC Reserved - - -
0x00E0 Lock Status PIO_LOCKSR Read-only 0x00000000
0x00E4 Write Protect Mode Register PIO_WPMR Read-write 0x0
0x00E8 Write Protect Status Register PIO_WPSR Read-only 0x0
0x00EC
to Reserved - - -
0x00F8
0x0100 Schmitt Trigger Register PIO_SCHMITT Read-write 0x00000000

11011B-ATARM-21-Feb-12

ATMEL

399

ATMEL

Table 26-2. Register Mapping (Continued)

Offset Register Name Access Reset
0x0104-

0x010C Reserved - - -
0x0110 Reserved - - -
0x0114-

0x011C Reserved _ _ B

Notes: 1. Reset value of PIO_PSR depends on the product implementation.
2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR 1/O lines.

3. Reset value of PIO_PDSR depends on the level of the I/O lines. Reading the /O line levels requires the clock of the PIO
Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have
occurred.

Note: if an offset is not listed in the table it must be considered as reserved.

400 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.7.1 PIO Enable Register

Name: PIO_PER

Addresses: 0x400EOEQ0 (PIOA), 0x400E 1000 (PIOB), 0x400E1200 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

¢ P0-P31: PIO Enable
0 = No effect.

1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

26.7.2 PIO Disable Register

Name: PIO_PDR

Addresses: 0x400EOE04 (PIOA), 0x400E 1004 (PIOB), 0x400E1204 (P1OC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

¢ P0-P31: PIO Disable
0 = No effect.

1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

AImEl@ 401

11011B-ATARM-21-Feb-12

ATMEL

26.7.3 PIO Status Register

Name: PIO_PSR

Addresses: 0x400EOE08 (PIOA), 0x400E1008 (PIOB), 0x400E1208 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: PIO Status

0 = PIO is inactive on the corresponding /O line (peripheral is active).

1 = PIO is active on the corresponding I/O line (peripheral is inactive).

26.7.4 PIO Output Enable Register

Name: PIO_OER

Addresses: 0x400EO0E10 (PIOA), 0x400E1010 (PIOB), 0x400E1210 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

e P0-P31: Output Enable
0 = No effect.

1 = Enables the output on the I/O line.

402

11011B-ATARM-21-Feb-12

s S AM3N

26.7.5 PIO Output Disable Register

Name: PIO_ODR

Addresses: 0x400EOE14 (PIOA), 0x400E1014 (PIOB), 0x400E1214 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

e P0-P31: Output Disable
0 = No effect.

1 = Disables the output on the I/O line.

26.7.6 P10 Output Status Register

Name: PIO_OSR

Addresses: 0x400EOE18 (PIOA), 0x400E1018 (PIOB), 0x400E1218 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Status
0 = The I/O line is a pure input.

1 =The I/O line is enabled in output.

AImEl@ 403

11011B-ATARM-21-Feb-12

ATMEL

26.7.7 PIO Input Filter Enable Register

Name: PIO_IFER

Addresses: 0x400EOE20 (PIOA), 0x400E 1020 (PIOB), 0x400E1220 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

e P0-P31: Input Filter Enable
0 = No effect.

1 = Enables the input glitch filter on the I/O line.

26.7.8 PIO Input Filter Disable Register

Name: PIO_IFDR

Addresses: 0x400EOE24 (PIOA), 0x400E1024 (PIOB), 0x400E1224 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

¢ P0-P31: Input Filter Disable
0 = No effect.

1 = Disables the input glitch filter on the 1/O line.

404 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.7.9 PIO Input Filter Status Register

Name: PIO_IFSR

Addresses: 0x400EOE28 (PIOA), 0x400E 1028 (PIOB), 0x400E1228 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Filer Status
0 = The input glitch filter is disabled on the 1/O line.

1 = The input glitch filter is enabled on the I/O line.

26.7.10 PIO Set Output Data Register

Name: PIO_SODR

Addresses: 0x400EOE30 (PIOA), 0x400E 1030 (PIOB), 0x400E1230 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Set Output Data
0 = No effect.

1 = Sets the data to be driven on the 1/O line.

AImEl@ 405

11011B-ATARM-21-Feb-12

ATMEL

26.7.11 PIO Clear Output Data Register

Name: PIO_CODR

Addresses: 0x400EOE34 (PIOA), 0x400E1034 (PIOB), 0x400E1234 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 P1 | PO |

e P0-P31: Clear Output Data

0 = No effect.

1 = Clears the data to be driven on the 1/O line.

26.7.12 PIO Output Data Status Register

Name: PIO_ODSR

Addresses: 0x400EO0E38 (PIOA), 0x400E1038 (PIOB), 0x400E1238 (PIOC)

Access: Read-only or Read-write
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 P1 | PO |

e P0-P31: Output Data Status
0 = The data to be driven on the 1/O line is 0.

1 = The data to be driven on the I/O line is 1.

406

11011B-ATARM-21-Feb-12

s S AM3N

26.7.13 PIO Pin Data Status Register

Name: PIO_PDSR

Addresses: 0x400EOE3C (PIOA), 0x400E103C (PIOB), 0x400E123C (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Data Status
0 =The I/O line is at level 0.

1 =The I/O line is at level 1.

26.7.14 PIO Interrupt Enable Register

Name: PIO_IER

Addresses: 0x400EOE40 (PIOA), 0x400E 1040 (PIOB), 0x400E 1240 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-P31: Input Change Interrupt Enable
0 = No effect.

1 = Enables the Input Change Interrupt on the I/O line.

AImEl@ 407

11011B-ATARM-21-Feb-12

ATMEL

26.7.15 PIO Interrupt Disable Register

Name: PIO_IDR

Addresses: Ox400EOE44 (PIOA), 0x400E1044 (PIOB), 0x400E1244 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 P1 | PO |

e P0-P31: Input Change Interrupt Disable

0 = No effect.

1 = Disables the Input Change Interrupt on the I/O line.

26.7.16 PIO Interrupt Mask Register

Name: PIO_IMR

Addresses: 0x400E0E48 (PIOA), 0x400E1048 (PIOB), 0x400E1248 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 P1 | PO |

e P0-P31: Input Change Interrupt Mask
0 = Input Change Interrupt is disabled on the I/O line.

1 = Input Change Interrupt is enabled on the 1/O line.

408

11011B-ATARM-21-Feb-12

s S AM3N

26.7.17 PIO Interrupt Status Register

Name: PIO_ISR

Addresses: 0x400EOE4C (PIOA), 0x400E104C (PIOB), 0x400E124C (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Status
0 = No Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

1 = At least one Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

26.7.18 PIO Multi-driver Enable Register

Name: PIO_MDER

Addresses: 0x400EOE50 (PIOA), 0x400E 1050 (PIOB), 0x400E1250 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

¢ PO0-P31: Multi Drive Enable.
0 = No effect.

1 = Enables Multi Drive on the /O line.

AImEl@ 409

11011B-ATARM-21-Feb-12

ATMEL

26.7.19 PIO Multi-driver Disable Register

Name: PIO_MDDR

Addresses: 0x400EOES54 (PIOA), 0x400E 1054 (PIOB), 0x400E1254 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

¢ P0-P31: Multi Drive Disable.
0 = No effect.

1 = Disables Multi Drive on the I/O line.

26.7.20 PIO Multi-driver Status Register

Name: PIO_MDSR

Addresses: 0x400EOE58 (PIOA), 0x400E 1058 (PIOB), 0x400E 1258 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-P31: Multi Drive Status.
0 = The Multi Drive is disabled on the 1/O line. The pin is driven at high and low level.

1 = The Multi Drive is enabled on the I/O line. The pin is driven at low level only.

410 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.7.21 PIO Pull Up Disable Register

Name: PIO_PUDR

Addresses: 0x400EOE60 (PIOA), 0x400E 1060 (PIOB), 0x400E1260 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

e P0-P31: Pull Up Disable.
0 = No effect.

1 = Disables the pull up resistor on the 1/O line.

26.7.22 PIO Pull Up Enable Register

Name: PIO_PUER

Addresses: 0x400EOE64 (PIOA), 0x400E 1064 (PIOB), 0x400E1264 (P1OC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

e P0-P31: Pull Up Enable.
0 = No effect.

1 = Enables the pull up resistor on the I/O line.

AImEl@ 411

11011B-ATARM-21-Feb-12

ATMEL

26.7.23 PIO Pull Up Status Register

Name: PIO_PUSR

Addresses: 0x400EOE68 (PIOA), 0x400E 1068 (PIOB), 0x400E1268 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Pull Up Status.
0 = Pull Up resistor is enabled on the I/O line.

1 = Pull Up resistor is disabled on the I/O line.

412 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.7.24 PIO Peripheral ABCD Select Register 1

Name: PIO_ABCDSR1

Access: Read-write
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .
e P0-P31: Peripheral Select.
If the same bit is set to 0 in PIO_ABCDSR2:
0 = Assigns the /O line to the Peripheral A function.
1 = Assigns the I/O line to the Peripheral B function.
If the same bit is set to 1 in PIO_ABCDSR2:
0 = Assigns the I/O line to the Peripheral C function.

1 = Assigns the 1/O line to the Peripheral D function.

AImEl@ 413

11011B-ATARM-21-Feb-12

ATMEL

26.7.25 PIO Peripheral ABCD Select Register 2

Name: PIO_ABCDSR2

Access: Read-write
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .
e P0-P31: Peripheral Select.
If the same bit is set to 0 in PIO_ABCDSR1:
0 = Assigns the /O line to the Peripheral A function.
1 = Assigns the I/O line to the Peripheral C function.
If the same bit is set to 1 in PIO_ABCDSR1:
0 = Assigns the I/O line to the Peripheral B function.
1 = Assigns the 1/O line to the Peripheral D function.

a14 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.7.26 PIO Input Filter Slow Clock Disable Register

Name: PIO_IFSCDR

Addresses: 0x400EOE80 (PIOA), 0x400E 1080 (PIOB), 0x400E1280 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: PIO Clock Glitch Filtering Select.
0 = No Effect.

1 = The Glitch Filter is able to filter glitches with a duration < Tmck/2.

26.7.27 PIO Input Filter Slow Clock Enable Register

Name: PIO_IFSCER

Addresses: 0x400EOE84 (PIOA), 0x400E 1084 (PIOB), 0x400E1284 (P1OC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Debouncing Filtering Select.
0 = No Effect.

1 = The Debouncing Filter is able to filter pulses with a duration < Tdiv_slclk/2.

AImEl@ 415

11011B-ATARM-21-Feb-12

ATMEL

26.7.28 PIO Input Filter Slow Clock Status Register

Name: PIO_IFSCSR

Addresses: 0x400EOE88 (PIOA), 0x400E 1088 (PIOB), 0x400E1288 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Glitch or Debouncing Filter Selection Status
0 = The Glitch Filter is able to filter glitches with a duration < Tmck2.

1 = The Debouncing Filter is able to filter pulses with a duration < Tdiv_slclk/2.

26.7.29 PIO Slow Clock Divider Debouncing Register

Name: PIO_SCDR

Addresses: 0x400EOESC (PIOA), 0x400E108C (PIOB), 0x400E128C (PIOC)

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - [bwvis [bivi2 | bivii | Dpivio | pvo | pivs |
7 6 5 4 3 2 1 0

[bwvz | bwve | bivs | biva | biva | bve | Divi [bpivo |

¢ DIVx: Slow Clock Divider Selection for Debouncing
Tdiv_slclk = 2*(DIV+1)*Tslow_clock.

416 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.7.30 PIO Pad Pull Down Disable Register

Name: PIO_PPDDR

Addresses: 0x400EOEQ0 (PIOA), 0x400E 1090 (PIOB), 0x400E1290 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

e P0-P31: Pull Down Disable.
0 = No effect.

1 = Disables the pull down resistor on the 1/O line.

26.7.31 PIO Pad Pull Down Enable Register

Name: PIO_PPDER

Addresses: 0x400EOE94 (PIOA), 0x400E1094 (PIOB), 0x400E1294 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

e P0-P31: Pull Down Enable.
0 = No effect.

1 = Enables the pull down resistor on the 1/O line.

AImEl@ 417

11011B-ATARM-21-Feb-12

ATMEL

26.7.32 PIO Pad Pull Down Status Register

Name: PIO_PPDSR

Addresses: 0x400EOE98 (PIOA), 0x400E 1098 (PIOB), 0x400E1298 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

e P0-P31: Pull Down Status.
0 = Pull Down resistor is enabled on the I/O line.

1 = Pull Down resistor is disabled on the I/O line.

418 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.7.33 PIO Output Write Enable Register

Name: PIO_OWER

Addresses: 0x400EOEAO (PIOA), 0x400E10A0 (PIOB), 0x400E12A0 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

e P0-P31: Output Write Enable.
0 = No effect.

1 = Enables writing PIO_ODSR for the 1/O line.

26.7.34 PIO Output Write Disable Register

Name: PIO_OWDR

Addresses: 0x400EOEA4 (PIOA), 0x400E10A4 (PIOB), 0x400E12A4 (P1OC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

e P0-P31: Output Write Disable.
0 = No effect.

1 = Disables writing PIO_ODSR for the I/O line.

AImEl@ 419

11011B-ATARM-21-Feb-12

ATMEL

26.7.35 PIO Output Write Status Register

Name: PIO_OWSR

Addresses: 0x400EOEA8 (PIOA), 0x400E 10A8 (PIOB), 0x400E12A8 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Write Status.
0 = Writing PIO_ODSR does not affect the 1/O line.

1 = Writing PIO_ODSR affects the I/O line.

26.7.36 PIO Additional Interrupt Modes Enable Register

Name: PIO_AIMER

Addresses: 0x400EOEBO (PIOA), 0x400E10B0 (PIOB), 0x400E12B0 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Additional Interrupt Modes Enable.
0 = No effect.

1 = The interrupt source is the event described in PIO_ELSR and PIO_FRLHSR.

420 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.7.37 PIO Additional Interrupt Modes Disable Register

Name: PIO_AIMDR

Addresses: 0x400EOEB4 (PIOA), 0x400E10B4 (PIOB), 0x400E12B4 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Additional Interrupt Modes Disable.
0 = No effect.

1 = The interrupt mode is set to the default interrupt mode (Both Edge detection).

26.7.38 PIO Additional Interrupt Modes Mask Register

Name: PIO_AIMMR

Addresses: 0x400EOEBS (PIOA), 0x400E10B8 (PIOB), 0x400E12B8 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Peripheral CD Status.
0 = The interrupt source is a Both Edge detection event

1 = The interrupt source is described by the registers PIO_ELSR and PIO_FRLHSR

AImEl@ 421

11011B-ATARM-21-Feb-12

ATMEL

26.7.39 PIO Edge Select Register

Name: PIO_ESR

Addresses: 0x400EOECO (PIOA), 0x400E10CO (PIOB), 0x400E12C0 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Edge Interrupt Selection.
0 = No effect.

1 = The interrupt source is an Edge detection event.

26.7.40 PIO Level Select Register

Name: PIO_LSR

Addresses: 0x400EOEC4 (PIOA), 0x400E10C4 (PIOB), 0x400E12C4 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Level Interrupt Selection.
0 = No effect.

1 = The interrupt source is a Level detection event.

422 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

26.7.41 PIO Edge/Level Status Register

Name: PIO_ELSR

Addresses: 0x400EOECS (PIOA), 0x400E10C8 (PIOB), 0x400E12C8 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 P3 P2 P1 PO |

e P0-P31: Edge/Level Interrupt source selection.

0 = The interrupt source is an Edge detection event.

1 = The interrupt source is a Level detection event.

26.7.42 PIO Falling Edge/Low Level Select Register

Name: PIO_FELLSR

Addresses: 0x400EO0EDO (PIOA), 0x400E10DO0 (PIOB), 0x400E12D0 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 P3 P2 P1 PO |

e P0-P31: Falling Edge/Low Level Interrupt Selection.

0 = No effect.

1 = The interrupt source is set to a Falling Edge detection or Low Level detection event, depending on PIO_ELSR.

11011B-ATARM-21-Feb-12

ATMEL

423

ATMEL

26.7.43 PIO Rising Edge/High Level Select Register

Name: PIO_REHLSR

Addresses: 0x400EOED4 (PIOA), 0x400E10D4 (PIOB), 0x400E12D4 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 P26 P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 P18 P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 P10 P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 P2 P1 | PO |

e P0-P31: Rising Edge /High Level Interrupt Selection.
0 = No effect.

1 = The interrupt source is set to a Rising Edge detection or High Level detection event, depending on PIO_ELSR.

26.7.44 PIO Fall/Rise - Low/High Status Register

Name:

Addresses: 0x400EOEDS8 (PIOA), 0x400E10D8 (PIOB), 0x400E12D8 (P1OC)

PIO_FRLHSR

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 P26 P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 P18 P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 P10 P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 P2 P1 | PO |

e P0-P31: Edge /Level Interrupt Source Selection.
0 = The interrupt source is a Falling Edge detection (if PIO_ELSR = 0) or Low Level detection event (if PIO_ELSR = 1).

1 = The interrupt source is a Rising Edge detection (if PIO_ELSR = 0) or High Level detection event (if PIO_ELSR = 1).

424

11011B-ATARM-21-Feb-12

s S AM3N

26.7.45 PIO Lock Status Register

Name:

PIO_LOCKSR
Addresses: Ox400EOEEOQ (PIOA), 0x400E10EO (PIOB), 0x400E12E0 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24
| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16
| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8
| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0
| P7 | P6 | P5 P4 | P3 P2 P1 PO |
e P0-P31: Lock Status.
0 = The I/O line is not locked.
1 =The I/O line is locked.
ATMEL 425
Y 5

11011B-ATARM-21-Feb-12

26.7.46 PIO Write Protect Mode Register
Name: PIO_WPMR

Addresses: Ox400EOEE4 (PIOA), 0x400E10E4 (PIOB), 0x400E12E4 (PIOC)

ATMEL

Access: Read-write

Reset: See Table 26-2
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

I — I - I - I — I — I - I - | WPEN |

For more information on Write Protection Registers, refer to Section 26.7 "Parallel Input/Output Controller (P1O) User

Interface”.

e WPEN: Write Protect Enable

0 = Disables the Write Protect if WPKEY corresponds to 0x50494F (“PIO” in ASCII).
1 = Enables the Write Protect if WPKEY corresponds to 0x50494F (“P1O” in ASCII).

Protects the registers:

“PIO Enable Register” on page 401

“PIO Disable Register” on page 401

“PIO Output Enable Register” on page 402

“PIO Output Disable Register” on page 403

“PIO Input Filter Enable Register’” on page 404

“PIO Input Filter Disable Register” on page 404

“PIO Multi-driver Enable Register” on page 409

“PIO Multi-driver Disable Register” on page 410

“PIO Pull Up Disable Register” on page 411

“PIO Pull Up Enable Register” on page 411

“PIO Peripheral ABCD Select Register 1” on page 413
“PIO Peripheral ABCD Select Register 2” on page 414
“PIO Output Write Enable Register” on page 419

“PIO Output Write Disable Register” on page 419
“PIO Pad Pull Down Disable Register” on page 417
“PIO Pad Pull Down Status Register” on page 418

426 S /A V13 1N 50000000

11011B-ATARM-21-Feb-12

s S AM3N

e WPKEY: Write Protect KEY

Should be written at value 0x50494F (“P1O” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

26.7.47 PIO Write Protect Status Register

Name: PIO_WPSR

Addresses: 0x400EOEES (PIOA), 0x400E10E8 (PIOB), 0x400E12E8 (PIOC)

Access: Read-only

Reset: See Table 26-2
31 30 29 28 27 26 25 24

= T - T = = = = = —]
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

1 - 1T - 1 = 1 — T — [= T ww]

¢ WPVS: Write Protect Violation Status
0 = No Write Protect Violation has occurred since the last read of the PIO_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the PIO_WPSR register. If this violation is an unauthorized
attempt to write a protected register, the associated violation is reported into field WPVSRC.

e WPVSRC: Write Protect Violation Source
When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write
access has been attempted.

Note: Reading PIO_WPSR automatically clears all fields.

AImEl@ 427

11011B-ATARM-21-Feb-12

26.7.48 PIO Schmitt Trigger Register

ATMEL

Name: PIO_SCHMITT

Addresses: 0x400EOQOFO00 (PIOA), 0x400E1100 (PIOB), 0x400E1300 (PIOC)

Access: Read-write

Reset: See Figure 26-2
31 30 29 28 27 26 25 24

| SCHMITT31 | SCHMITT30 | SCHMITT29 | SCHMITT28 | SCHMITT27 | SCHMITT26 | SCHMITT25 | SCHMITT24 |
23 22 21 20 19 18 17 16

[SCHMITT23 [SCHMITT22 [SCHMITT21 [SCHMITT20 [SCHMITT19 [SCHMITT18 [SCHMITT17 | SCHMITT16 |
15 14 13 12 11 10 9 8

| SCHMITT15 | SCHMITT14 | SCHMITT13 | SCHMITT12 | SCHMITT11 | SCHMITT10 | SCHMITT9 | SCHMITTS |
7 6 5 4 3 2 1 0

| SCHMITT7 | SCHMITT6 | SCHMITT5 | SCHMITT4 | SCHMITT3 | SCHMITT2 | SCHMITTA | SCHMITTO |

e SCHMITTx [x=0..31]:
0 = Schmitt Trigger is enabled.

1= Schmitt Trigger is disabled.

428

11011B-ATARM-21-Feb-12

s S AM3N

27. Serial Peripheral Interface (SPI)

27.1 Description

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master™ which controls the data
flow, while the other devices act as “slaves" which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

¢ Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

e Master In Slave Out (MISO): This data line supplies the output data from a slave to the input
of the master. There may be no more than one slave transmitting data during any particular
transfer.

* Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the
data bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once
for each bit that is transmitted.

» Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

27.2 Embedded Characteristics

11011B-ATARM-21-Feb-12

¢ Compatible with an Embedded 32-bit Microcontroller
* Supports Communication with Serial External Devices

— Four Chip Selects with External Decoder Support Allow Communication with Up to
15 Peripherals

— Serial Memories, such as DataFlash and 3-wire EEPROMs

— Serial Peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors

— External Co-processors

¢ Master or Slave Serial Peripheral Bus Interface
— 8- to 16-bit Programmable Data Length Per Chip Select
— Programmable Phase and Polarity Per Chip Select

— Programmable Transfer Delays Between Consecutive Transfers and Between Clock
and Data Per Chip Select

— Programmable Delay Between Consecutive Transfers
— Selectable Mode Fault Detection

¢ Connection to PDC Channel Capabilities Optimizes Data Transfers
— One Channel for the Receiver, One Channel for the Transmitter
— Next Buffer Support

AImEl@ 429

27.3 Block Diagram

Figure 27-1. Block Diagram

A
— PDC
APB
<—>|:| SPCK
4—)
v] wso
MCK <—>| | MOSI
PMC
SPI Interface PIO <—>|:| NPCSO/NSS
<—>|:| NPCS1
<—>|:| NPCS2
Interrupt Control
<—>|:| NPCS3
SPI Interrupt
27.4 Application Block Diagram
Figure 27-2. Application Block Diagram: Single Master/Multiple Slave Implementation
SPCK KSPCK)
MISO MISO
Slave 0
MOSI MOSI
SPI Master NPCSO0 NSS Y,
4 N\
NPCS1 SPCK
MISO
NPCS2[—X NC Slave 1
NPCS3 MOSI
\NSS)
KSPCK)
MISO
Slave 2
MOSI
\NSS)

430 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

27.5 Signal Description
Table 27-1. Signal Description
Type

Pin Name Pin Description Master Slave
MISO Master In Slave Out Input Output
MOSI Master Out Slave In Output Input
SPCK Serial Clock Output Input
NPCS1-NPCS3 Peripheral Chip Selects Output Unused
NPCSO0/NSS Peripheral Chip Select/Slave Select Output Input

27.6 Product Dependencies

27.6.1

27.6.2

11011B-ATARM-21-Feb-12

I/0 Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PI1O controllers to assign the SPI pins to their peripheral

functions.

Table 27-2. |/O Lines

Instance Signal I/O Line Peripheral
SPI MISO PA12 A
SPI MOSI PA13
SPI NPCSO0 PA11 A
SPI NPCS1 PA9 B
SPI NPCS1 PA31 A
SPI NPCS1 PB14 A
SPI NPCS1 PC4 B
SPI NPCS2 PA10 B
SPI NPCS2 PA30 B
SPI NPCS2 PB2 B
SPI NPCS2 PC7 B
SPI NPCS3 PA3 B
SPI NPCS3 PA5 B
SPI NPCS3 PA22 B
SPI SPCK PA14 A

Power Management

The SPI may be clocked through the Power Management Controller (PMC), thus the program-

mer must first configure the PMC to enable the SPI clock.

ATMEL

431

ATMEL

27.6.3 Interrupt
The SPI interface has an interrupt line connected to the Nested Vector Interrupt Controller

(NVIC).Handling the SPI interrupt requires programming the NVIC before configuring the SPI.
Table 27-3. Peripheral IDs
Instance ID
SPI 21

27.7 Functional Description

27.71 Modes of Operation
The SPI operates in Master Mode or in Slave Mode.

Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCSO0 to NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCSO0 pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCSS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.

27.7.2 Data Transfer

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 27-4 shows the four modes and corresponding parameter settings.

Table 27-4. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA Shift SPCK Edge Capture SPCK Edge SPCK Inactive Level
0 0 1 Falling Rising Low
1 0 0 Rising Falling Low
2 1 1 Rising Falling High
3 1 0 Falling Rising High

Figure 27-3 and Figure 27-4 show examples of data transfers.

432 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

Figure 27-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

SPCK cycle (for reference) 1

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

Figure 27-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

2

3

4

MSB

MSB

* Not defined, but normally MSB of previous character received.

SPCK cycle (for reference) 1

SPCK
(CPOL =0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

11011B-ATARM-21-Feb-12

2

3

4

MSB

LSB

* Not defined but normally LSB of previous character transmitted.

ATMEL

433

27.7.3

434

ATMEL

Master Mode Operations

When configured in Master Mode, the SPI operates on the clock generated by the internal pro-
grammable baud rate generator. It fully controls the data transfers to and from the slave(s)
connected to the SPI bus. The SPI drives the chip select line to the slave and the serial clock
signal (SPCK).

The SPI features two holding registers, the Transmit Data Register and the Receive Data Regis-
ter, and a single Shift Register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the SPI_TDR (Trans-
mit Data Register). The written data is immediately transferred in the Shift Register and transfer
on the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO
line is sampled and shifted in the Shift Register. Receiving data cannot occur without transmit-
ting data. If receiving mode is not needed, for example when communicating with a slave
receiver only (such as an LCD), the receive status flags in the status register can be discarded.

Before writing the TDR, the PCS field in the SPI_MR register must be set in order to select a
slave.

After enabling the SPI, a data transfer begins when the processor writes to the SPI_TDR (Trans-
mit Data Register). The written data is immediately transferred in the Shift Register and transfer
on the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO
line is sampled and shifted in the Shift Register. Transmission cannot occur without reception.

Before writing the TDR, the PCS field must be set in order to select a slave.

If new data is written in SPI_TDR during the transfer, it stays in it until the current transfer is
completed. Then, the received data is transferred from the Shift Register to SPI_RDR, the data
in SPI_TDR is loaded in the Shift Register and a new transfer starts.

The transfer of a data written in SPI_TDR in the Shift Register is indicated by the TDRE bit
(Transmit Data Register Empty) in the Status Register (SPI_SR). When new data is written in
SPI_TDR, this bit is cleared. The TDRE bit is used to trigger the Transmit PDC channel.

The end of transfer is indicated by the TXEMPTY flag in the SPI_SR register. If a transfer delay
(DLYBCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of said
delay. The master clock (MCK) can be switched off at this time.

The transfer of received data from the Shift Register in SPI_RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SPI_SR). When the received data is read,
the RDRF bit is cleared.

If the SPI_RDR (Receive Data Register) has not been read before new data is received, the
Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data is loaded in
SPI_RDR. The user has to read the status register to clear the OVRES bit.

Figure 27-5, shows a block diagram of the SPI when operating in Master Mode. Figure 27-6 on
page 436 shows a flow chart describing how transfers are handled.

11011B-ATARM-21-Feb-12

SAM3N

27.7.3.1 Master Mode Block Diagram

Figure 27-5. Master Mode Block Diagram

SPI_CSRO0..3
| SCBR
|
MCK Baud Rate Generator I |SPCK
SPI
Clock
SPI_CSRO0..3
BITS SPI_RDR —> RDRF
NGPHA | RrD —{ OVRES
CPOL T
|
MISO D LSB Shift Register MSB I | MOSI
SPI_TDR
[—>| TDRE_|
SPI_CSRO0..3
SPI_RDR
| CSAAT I——}l PCS
|
DNPCSS
SPI MR PCSDEC
| PCS Current I |NPCSZ
0 Peripheral
I |NPCS1
SPI_TDR ——
| PCS I |NPCSO
I
|~

MSTR
[wstR }

AImEl@ 435

11011B-ATARM-21-Feb-12

ATMEL

27.7.32 Master Mode Flow Diagram

Figure 27-6. Master Mode Flow Diagram

| SPI Enable | - NPCS defines the current Chip Select
| - CSAAT, DLYBS, DLYBCT refer to the fields of the
Chip Select Register corresponding to the Current Chip Select
- When NPCS is 0xF, CSAAT is 0.

Fixed
peripheral

CSAAT ?

Variable
peripheral

Fixed

peripheral

SPI_TDR(PCS) SPI_MR(PCS)

=NPCS ? =NPCS ?
Variable
1 peripheral
NPCS = SPI_TDR(PCS) | | NPCS = SPI_MR(PCS) | | NPCS = OxF | | NPCS = OxF |
| Delay DLYBCS | | Delay DLYBCS |
[rewmmr] | [P G|
v
Delay DLYBS

Serializer = SPI_TDR(TD)
TDRE =1

!

Data Transfer

!

SPI_RDR(RD) = Serializer
RDRF =1

!

Delay DLYBCT

CSAAT ?

| NPCS = OxF |

!

| Delay DLYBCS |

436 S /A V13 1N 50000000

11011B-ATARM-21-Feb-12

s S AM3N

Figure 27-7 shows Transmit Data Register Empty (TDRE), Receive Data Register (RDRF) and
Transmission Register Empty (TXEMPTY) status flags behavior within the SPI_SR (Status Reg-
ister) during an 8-bit data transfer in fixed mode and no Peripheral Data Controller involved.

Figure 27-7. Status Register Flags Behavior
1 2 3 4 5 6 7 8

SPCK | | | |

NPCS0 .
MOSI msB) 6 5 4 3 2 1 X s8 X

(from master)

TDRE
| | RDR read

I
Write in 14

SPI_TDR |
]

RDRF

MISO MSB 6 5 [} 4 3 2 1 X sB X >C

(from slave)

TXEMPTY

shift register empty

Figure 27-8 shows Transmission Register Empty (TXEMPTY), End of RX buffer (ENDRX), End
of TX buffer (ENDTX), RX Buffer Full (RXBUFF) and TX Buffer Empty (TXBUFE) status flags
behavior within the SPI_SR (Status Register) during an 8-bit data transfer in fixed mode with the
Peripheral Data Controller involved. The PDC is programmed to transfer and receive three data.
The next pointer and counter are not used. The RDRF and TDRE are not shown because these
flags are managed by the PDC when using the PDC.

AI“IE'.@ 437

11011B-ATARM-21-Feb-12

Figure 27-8. PDC Status Register Flags Behavior
I DA B
R LA R RN RN R AR AR NN AR RN R RN RN
NPCSO "\ /

(rom masten 000000000000000000000000

(rom slave ©00000000000000000000000
|

ENDTX

ENDRX

TXBUFE

RXBUFF

I [[B

—

TXEMPTY

27.7.3.3 Clock Generation
The SPI Baud rate clock is generated by dividing the Master Clock (MCK), by a value between 1

and 255.

This allows a maximum operating baud rate at up to Master Clock and a minimum operating
baud rate of MCK divided by 255.

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.

27.7.3.4 Transfer Delays
Figure 27-9 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:

* The delay between chip selects, programmable only once for all the chip selects by writing
the DLYBCS field in the Mode Register. Allows insertion of a delay between release of one
chip select and before assertion of a new one.

* The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.

* The delay between consecutive transfers, independently programmable for each chip select
by writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on
the same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.

438 S /A V13 1N 50000000

11011B-ATARM-21-Feb-12

s S AM3N

Figure 27-9. Programmable Delays

Chip Select 1

Chip Select 2

27.7.3.5

27.7.3.6

11011B-ATARM-21-Feb-12

SPCK

DLYBCS DLYBS S S DLYBCT % % DLYBCT

Peripheral Selection

The serial peripherals are selected through the assertion of the NPCSO0 to NPCSS signals. By
default, all the NPCS signals are high before and after each transfer.

* Fixed Peripheral Select: SPI exchanges data with only one peripheral
Fixed Peripheral Select is activated by writing the PS bit to zero in SPI_MR (Mode Register). In
this case, the current peripheral is defined by the PCS field in SPI_MR and the PCS field in the
SPI_TDR has no effect.

* Variable Peripheral Select: Data can be exchanged with more than one peripheral without
having to reprogram the NPCS field in the SPI_MR register.
Variable Peripheral Select is activated by setting PS bit to one. The PCS field in SPI_TDR is
used to select the current peripheral. This means that the peripheral selection can be defined for
each new data. The value to write in the SPI_TDR register as the following format.

[xoxxxxxx(7-bit) + LASTXFER(1-bit))+ xxxx(4-bit) + PCS (4-bit) + DATA (8 to 16-bit)] with PCS
equals to the chip select to assert as defined in Section 27.8.4 (SPI Transmit Data Register) and
LASTXFER bit at 0 or 1 depending on CSAAT bit.

Note: 1. Optional.

CSAAT, LASTXFER and CSNAAT bits are discussed in Section 27.7.3.9 "Peripheral Deselec-
tion with PDC” .

If LASTXFER is used, the command must be issued before writing the last character. Instead of
LASTXFER, the user can use the SPIDIS command. After the end of the PDC transfer, wait for
the TXEMPTY flag, then write SPIDIS into the SPI_CR register (this will not change the configu-
ration register values); the NPCS will be deactivated after the last character transfer. Then,
another PDC transfer can be started if the SPIEN was previously written in the SPI_CR register.

SPI Peripheral DMA Controller (PDC)

In both fixed and variable mode the Peripheral DMA Controller (PDC) can be used to reduce
processor overhead.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.

AImEl@ 439

ATMEL

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the Mode Register. Data written in SPI_TDR is 32 bits wide and defines the real data
to be transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit
wide buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, how-
ever the SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI
lines with the chip select configuration registers. This is not the optimal means in term of mem-
ory size for the buffers, but it provides a very effective means to exchange data with several
peripherals without any intervention of the processor.

Transfer Size

Depending on the data size to transmit, from 8 to 16 bits, the PDC manages automatically the
type of pointer's size it has to point to. The PDC will perform the following transfer size depend-
ing on the mode and number of bits per data.

Fixed Mode:

e 8-bit Data:
Byte transfer,
PDC Pointer Address = Address + 1 byte,
PDC Counter = Counter - 1
* 8-bit to 16-bit Data:
2 bytes transfer. n-bit data transfer with don’t care data (MSB) filled with O’s,
PDC Pointer Address = Address + 2 bytes,
PDC Counter = Counter - 1

Variable Mode:

In variable Mode, PDC Pointer Address = Address +4 bytes and PDC Counter = Counter - 1 for
8 to 16-bit transfer size. When using the PDC, the TDRE and RDRF flags are handled by the
PDC, thus the user’s application does not have to check those bits. Only End of RX Buffer
(ENDRX), End of TX Buffer (ENDTX), Buffer Full (RXBUFF), TX Buffer Empty (TXBUFE) are
significant. For further details about the Peripheral DMA Controller and user interface, refer to
the PDC section of the product datasheet.

27.7.3.7 Peripheral Chip Select Decoding
The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCS0 to NPCS3 with 1 of up to 16 decoder/demultiplexer. This can be enabled by
writing the PCSDEC bit at 1 in the Mode Register (SPI_MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e., one NPCS line driven low at a time. If two bits are defined low in a PCS field,
only the lowest numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field on
NPCS lines of either the Mode Register or the Transmit Data Register (depending on PS).

As the SPI sets a default value of OxF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0to 3,4 to 7, 8 to 11 and 12 to 14. Figure 27-10 below shows such
an implementation.

440 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

If the CSAAT bit is used, with or without the PDC, the Mode Fault detection for NPCSO line must
be disabled. This is not needed for all other chip select lines since Mode Fault Detection is only

on NPCSO0.

Figure 27-10. Chip Select Decoding Application Block Diagram: Single Master/Multiple Slave Implementation

SPI Master

SPCK
MISO
MOSI

NPCSO0
NPCS1
NPCS2
NPCS3

A

!

!

SPCK MISO MOSI
Slave 0

NSS

SPCK MISO MOSI

Slave 1

NSS

SPCK MISO MOSI
Slave 14

NSS

AN

1-of-n Decoder/Demultiplexer

27.7.3.8 Peripheral Deselection without PDC

11011B-ATARM-21-Feb-12

During a transfer of more than one data on a Chip Select without the PDC, the SPI_TDR is
loaded by the processor, the flag TDRE rises as soon as the content of the SPI_TDR is trans-
ferred into the internal shift register. When this flag is detected high, the SPI_TDR can be
reloaded. If this reload by the processor occurs before the end of the current transfer and if the
next transfer is performed on the same chip select as the current transfer, the Chip Select is not
de-asserted between the two transfers. But depending on the application software handling the
SPI status register flags (by interrupt or polling method) or servicing other interrupts or other
tasks, the processor may not reload the SPI_TDR in time to keep the chip select active (low). A
null Delay Between Consecutive Transfer (DLYBCT) value in the SPI_CSR register, will give
even less time for the processor to reload the SPI_TDR. With some SPI slave peripherals,
requiring the chip select line to remain active (low) during a full set of transfers might lead to
communication errors.

To facilitate interfacing with such devices, the Chip Select Register [CSRO0...CSR3] can be pro-
grammed with the CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select
lines to remain in their current state (low = active) until transfer to another chip select is required.
Even if the SPI_TDR is not reloaded the chip select will remain active. To have the chip select
line to raise at the end of the transfer the Last transfer Bit (LASTXFER) in the SPI_MR register
must be set at 1 before writing the last data to transmit into the SPI_TDR.

AImEl@ 441

27.7.3.9

442

ATMEL

Peripheral Deselection with PDC

When the Peripheral DMA Controller is used, the chip select line will remain low during the
whole transfer since the TDRE flag is managed by the PDC itself. The reloading of the SPI_TDR
by the PDC is done as soon as TDRE flag is set to one. In this case the use of CSAAT bit might
not be needed. However, it may happen that when other PDC channels connected to other
peripherals are in use as well, the SPI PDC might be delayed by another (PDC with a higher pri-
ority on the bus). Having PDC buffers in slower memories like flash memory or SDRAM
compared to fast internal SRAM, may lengthen the reload time of the SPI_TDR by the PDC as
well. This means that the SPI_TDR might not be reloaded in time to keep the chip select line
low. In this case the chip select line may toggle between data transfer and according to some
SPI Slave devices, the communication might get lost. The use of the CSAAT bit might be
needed.

When the CSAAT bit is set at 0, the NPCS does not rise in all cases between two transfers on
the same peripheral. During a transfer on a Chip Select, the flag TDRE rises as soon as the con-
tent of the SPI_TDR is transferred into the internal shifter. When this flag is detected the
SPI_TDR can be reloaded. If this reload occurs before the end of the current transfer and if the
next transfer is performed on the same chip select as the current transfer, the Chip Select is not
de-asserted between the two transfers. This might lead to difficulties for interfacing with some
serial peripherals requiring the chip select to be de-asserted after each transfer. To facilitate
interfacing with such devices, the Chip Select Register can be programmed with the CSNAAT bit
(Chip Select Not Active After Transfer) at 1. This allows to de-assert systematically the chip
select lines during a time DLYBCS. (The value of the CSNAAT bit is taken into account only if
the CSAAT bit is set at 0 for the same Chip Select).

Figure 27-11 shows different peripheral deselection cases and the effect of the CSAAT and
CSNAAT bits.

11011B-ATARM-21-Feb-12

Figure 27-11. Peripheral Deselection

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

NPCSJ0..3]

Write SPI_TDR

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

NPCSJ0..3]

Write SPI_TDR

CSAAT =0 and CSNAAT =0

L

DLYBCT
A | A
DLYBCS
PCS = A
DLYBCT |
A | A
DLYBCS
PCS=A
DLYBCT |
A B
DLYBCS

PCS=B

I

CSAAT =0 and CSNAAT =0

DLYBCT

CSAAT =1 and CSNAAT=0/1

SAM3N

PCS=A

11011B-ATARM-21-Feb-12

ATMEL

DLYBCT |—
A A A
DLYBCS
PCS=A
DLYBCT |
>
A A A
DLYBCS
PCS=A
DLYBCT
A B
DLYBCS
PCS =B
CSAAT =0 and CSNAAT =1
_l DLYBCT
A A
DLYBCS
PCS=A

443

27.7.3.10

27.74

444

ATMEL

Mode Fault Detection

A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCS0/NSS signal. In this case, multi-master configuration,
NPCS0, MOSI, MISO and SPCK pins must be configured in open drain (through the PIO control-
ler). When a mode fault is detected, the MODF bit in the SPI_SR is set until the SPI_SR is read
and the SPI is automatically disabled until re-enabled by writing the SPIEN bit in the SPI_CR
(Control Register) at 1.

By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (SPI_MR).

SPI Slave Mode

When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
defined by the BITS field of the Chip Select Register 0 (SPI_CSRO0). These bits are processed
following a phase and a polarity defined respectively by the NCPHA and CPOL bits of the
SPI_CSRO. Note that BITS, CPOL and NCPHA of the other Chip Select Registers have no
effect when the SPI is programmed in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

Note:

(For more information on BITS field, see also, the N°®) below the register table; Section 27.8.9

“SPI Chip Select Register” on page 458.)

When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDRF bit rises. If the SPI_RDR (Receive Data Register) has not been read before new
data is received, the Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data
is loaded in SPI_RDR. The user has to read the status register to clear the OVRES bit.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (SPI_TDR), the last data received is transferred.
If no data has been received since the last reset, all bits are transmitted low, as the Shift Regis-
ter resets at 0.

When a first data is written in SPI_TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in SPI_TDR until a transfer occurs, i.e. NSS falls
and there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in
SPI_TDR is transferred in the Shift Register and the TDRE bit rises. This enables frequent
updates of critical variables with single transfers.

Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in SPI_TDR since the last
load from SPI_TDR to the Shift Register, the Shift Register is not modified and the last received
character is retransmitted. In this case the Underrun Error Status Flag (UNDES) is set in the
SPI_SR.

Figure 27-12 shows a block diagram of the SPI when operating in Slave Mode.

11011B-ATARM-21-Feb-12

SAM3N

Figure 27-12. Slave Mode Functional Bloc Diagram

NSS | I {>¢ SPI
Clock
[sPiEN]
[SPIENS
[(spiDis_]
SPI_CSRO
BITS SPI_RDR > RDRF
NCPHA [RD | OVRES
CPOL T
|
MOSI | I LSB Shift Register MSB I |MISO
A
SPI_TDR

[™ |}~ mRE]

AImEl@ 445

11011B-ATARM-21-Feb-12

ATMEL

27.7.5 Write Protected Registers

To prevent any single software error that may corrupt SPI behavior, the registers listed below
can be write-protected by setting the SPIWPEN bit in the SPI Write Protection Mode Register
(SPI_WPMR).

If a write access in a write-protected register is detected, then the SPIWPVS flag in the SPI
Write Protection Status Register (SPI_WPSR) is set and the field SPIWPVSRC indicates in
which register the write access has been attempted.

The SPIWPVS flag is automatically reset after reading the SPI Write Protection Status Register
(SPI_WPSR).

List of the write-protected registers:
Section 27.8.2 "SPI Mode Register”
Section 27.8.9 "SPI Chip Select Register”

446 SAM 3 N L __|
11011B-ATARM-21-Feb-12

s S AM3N

27.8 Serial Peripheral Interface (SPI) User Interface

Table 27-5. Register Mapping

Offset Register Name Access Reset
0x00 Control Register SPI_CR Write-only
0x04 Mode Registe