
AT91SAM
ARM-based
Flash MCU

ATSAM3N Series

 11011B–ATARM–21-Feb-12
Features
• Core

– ARM® Cortex®-M3 revision 2.0 running at up to 48 MHz
– Thumb®-2 instruction
– 24-bit SysTick Counter
– Nested Vector Interrupt Controller

• Pin-to-pin compatible with SAM7S legacy products (48- and 64-pin versions) and
SAM3S (48-, 64- and 100-pin versions)

• Memories
– From 16 to 256 Kbytes embedded Flash, 128-bit wide access, memory accelerator,

single plane
– From 4 to 24 Kbytes embedded SRAM
– 16 Kbytes ROM with embedded bootloader routines (UART) and IAP routines

• System
– Embedded voltage regulator for single supply operation
– Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe

operation
– Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure

Detection and optional low power 32.768 kHz for RTC or device clock
– High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz default

frequency for device startup. In-application trimming access for frequency
adjustment

– Slow Clock Internal RC oscillator as permanent low-power mode device clock
– One PLL up to 130 MHz for device clock
– Up to 10 peripheral DMA (PDC) channels

• Low Power Modes
– Sleep and Backup modes, down to 3 µA in Backup mode
– Ultra low power RTC

• Peripherals
– Up to 2 USARTs with RS-485 and SPI mode support. One USART (USART0) has

ISO7816, IrDA® and PDC support in addition
– Two 2-wire UARTs
– 2 Two Wire Interface (I2C compatible), 1 SPI
– Up to 6 Three-Channel 16-bit Timer/Counter with capture, waveform, compare and

PWM mode. Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for
Stepper Motor

– 4-channel 16-bit PWM
– 32-bit Real-time Timer and RTC with calendar and alarm features
– Up to 16 channels, 384 KSPS 10-bit ADC
– One 500 KSPS 10-bit DAC

• I/O
– Up to 79 I/O lines with external interrupt capability (edge or level sensitivity),

debouncing, glitch filtering and on-die Series Resistor Termination
– Three 32-bit Parallel Input/Output Controllers

• Packages
– 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm/100-ball TFBGA, 9 x 9 mm, pitch 0.8 mm
– 64-lead LQFP, 10 x 10 mm, pitch 0.5 mm/64-pad QFN 9x9 mm, pitch 0.5 mm
– 48-lead LQFP, 7 x 7 mm, pitch 0.5 mm/48-pad QFN 7x7 mm, pitch 0.5 mm

1. SAM3N Description
Atmel's SAM3N series is a member of a family of Flash microcontrollers based on the high per-
formance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 48 MHz
and features up to 256 Kbytes of Flash and up to 24 Kbytes of SRAM. The peripheral set
includes 2x USARTs, 2x UARTs, 2x TWIs, 3x SPI, as well as 1 PWM timer, 6x general purpose
16-bit timers, an RTC, a 10-bit ADC and a 10-bit DAC.

The SAM3N series is ready for capacitive touch thanks to the QTouch library, offering an easy
way to implement buttons, wheels and sliders.

The SAM3N device is an entry-level general purpose microcontroller. That makes the SAM3N
the ideal starting point to move from 8- /16-bit to 32-bit microcontrollers.

It operates from 1.62V to 3.6V and is available in 48-pin, 64-pin and 100-pin QFP, 48-pin and
64-pin QFN, and 100-pin BGA packages.

The SAM3N series is the ideal migration path from the SAM3S for applications that require a
reduced BOM cost. The SAM3N series is pin-to-pin compatible with the SAM3S series. Its
aggressive price point and high level of integration pushes its scope of use far into cost-sensi-
tive, high-volume applications.
2
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
1.1 Configuration Summary
The SAM3N4/2/1/0/00 differ in memory size, package and features list. Table 1-1 summarizes
the configurations of the 9 devices.

Notes: 1. Only two TC channels are accessible through the PIO.

2. Only three TC channels are accessible through the PIO.

Table 1-1. Configuration Summary

Device Flash SRAM Package
Number
of PIOs ADC Timer

PDC
Channels USART DAC

SAM3N4A 256 Kbytes 24 Kbytes
LQFP48
QFN48

34 8 channels 6(1) 8 1 _

SAM3N4B 256 Kbytes 24 Kbytes
LQFP64
QFN64

47 10 channels 6(2) 10 2 1

SAM3N4C 256 Kbytes 24 Kbytes
LQFP100
BGA100

79 16 channels 6 10 2 1

SAM3N2A 128 Kbytes 16 Kbytes
LQFP48
QFN48

34 8 channels 6(1) 8 1 _

SAM3N2B 128 Kbytes 16 Kbytes
LQFP64
QFN64

47 10 channels 6((2) 10 2 1

SAM3N2C 128 Kbytes 16 Kbytes
LQFP100
BGA100

79 16 channels 6 10 2 1

SAM3N1A 64 Kbytes 8 Kbytes
LQFP48
QFN48

34 8 channels 6(1) 8 1 _

SAM3N1B 64 Kbytes 8 Kbytes
LQFP64
QFN64

47 10 channels 6(2) 10 2 1

SAM3N1C 64 Kbytes 8 Kbytes
LQFP100
BGA100

79 16 channels 6 10 2 1

SAM3N0A 32 Kbytes 8 Kbytes
LQFP48
QFN48

34 8 channels 6(1) 8 1 _

SAM3N0B 32 Kbytes 8 Kbytes
LQFP64
QFN64

47 10 channels 6(2) 10 2 1

SAM3N0C 32 Kbytes 8 Kbytes
LQFP100
BGA100

79 16 channels 6 10 2 1

SAM3N00A 16 Kbytes 4 KBytes
LQFP48
QFN48

34 8 channels 6(1) 8 1 _

SAM3N00B 16 Kbytes 4 KBytes
LQFP64
QFN64

47 10 channels 6(2) 10 2 1
3
11011B–ATARM–21-Feb-12

2. SAM3N Block Diagram

Figure 2-1. SAM3N 100-pin version Block Diagram

TST

PCK0-PCK2

System Controller

XIN

NRST

PMC

XOUT

OSC 32k
XIN32

XOUT32

SUPC

RSTC

OSC
3-20 MHz

PIOA PIOB

POR

RTC

RTT

RC 32k

RC OSC
12/8/4 MHz

ERASE

TD
I

TD
O/T

RACESW
O

TM
S/S

W
DIO

TC
K/S

W
CLK

JT
AGSEL

I/D S

VDDIN

VDDOUT

TC[0..2]

TCLK[0:2]

TWCK0
TWD0

TWCK1
TWD1

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOS
SPCK

TCLK[3:5]

TIOA[0:2]
TIOB[0:2]

TIOA[3:5]
TIOB[3:5]

PDC

PDC

PDC

PDC

PDC

PWM

In-Circuit Emulator

PDC

JTAG & Serial Wire

PWM[0:3]

ADTRG

ADVREF

DAC0

DATRG

10-bit ADC

10-bit DAC

PIOC

SM

VDDIO

PLL

RXD0
TXD0
SCK0
RTS0
CTS0
RXD1
TXD1
SCK1
RTS1
CTS1

USART0

UART1

UART0

USART1

Cortex-M3 Processor
Fmax 48 MHz

24-bit
SysTick Counter

ROM
16 KBytes

SRAM

24 KBytes
16 KBytes
8 KBytes
4 KBytes

FLASH
256 KBytes
128 KBytes
64 KBytes
32 KBytes
16 KBytes

VDDCORE

WDT

Peripheral
Bridge

URXD0
UTXD0

URXD1
UTXD1

Timer Counter A

Timer Counter B

SPI

TWI0

TWI1

N
V
I
C

Voltage
Regulator

TC[3..5]

AD[0..15]

3- layer AHB Bus Matrix Fmax 48 MHz
4
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 2-2. SAM3N 64-pin version Block Diagram

TC[3..5]

AD[0..9]

3- layer AHB Bus Matrix Fmax 48 MHz

TST

PCK0-PCK2

System Controller

XIN

NRST

PMC

XOUT

OSC 32k
XIN32

XOUT32

SUPC

RSTC

OSC
3-20 MHz

PIOA PIOB

POR

RTC

RTT

RC 32k

RC OSC
12/8/4 MHz

ERASE

TD
I

TD
O/T

RACESW
O

TM
S/S

W
DIO

TC
K/S

W
CLK

JT
AGSEL

I/D S

VDDIN

VDDOUT
TC[0..2]

TCLK[0:2]

TWCK0
TWD0

TWCK1
TWD1

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOS
SPCK

TIOA[0:2]
TIOB[0:2]

PDC

PDC

PDC

PDC

PDC

PWM

In-Circuit Emulator

PDC

JTAG & Serial Wire

PWM[0:3]

ADTRG

ADVREF

DAC0

DATRG

10-bit ADC

10-bit DAC

SM

VDDIO

PLL

RXD0
TXD0
SCK0
RTS0
CTS0
RXD1
TXD1
SCK1
RTS1
CTS1

USART0

UART1

UART0

USART1

Cortex-M3 Processor
Fmax 48 MHz

24-bit
SysTick Counter

ROM
16 KBytes

SRAM

24 KBytes
16 KBytes
8 KBytes
4 KBytes

FLASH
256 KBytes
128 KBytes
64 KBytes
32 KBytes
16 KBytes

VDDCORE

WDT

Peripheral
Bridge

URXD0
UTXD0

URXD1
UTXD1

Timer Counter A

Timer Counter B

SPI

TWI0

TWI1

N
V
I
C

Voltage
Regulator

3-layer AHB Bus Matrix Fmax 48 MHz
5
11011B–ATARM–21-Feb-12

Figure 2-3. SAM3N 48-pin version Block Diagram

TC[3..5]

AD[0..7]

3- layer AHB Bus Matrix Fmax 48 MHz

TST

PCK0-PCK2

System Controller

XIN

NRST

PMC

XOUT

OSC 32k
XIN32

XOUT32

SUPC

RSTC

OSC
3-20 MHz

PIOA PIOB

POR

RTC

RTT

RC 32k

RC OSC
12/8/4 MHz

ERASE

TD
I

TD
O/T

RACESW
O

TM
S/S

W
DIO

TC
K/S

W
CLK

JT
AGSEL

I/D S

VDDIN

VDDOUT
TC[0..1]

TCLK[0..1]

TWCK0
TWD0

TWCK1
TWD1

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOS
SPCK

TIOA[0..1]
TIOB[0..1]

PDC

PDC

PDC

PDC

PWM

In-Circuit Emulator

PDC

JTAG & Serial Wire

PWM[0:3]

ADTRG

ADVREF

10-bit ADC

SM

VDDIO

PLL

RXD0
TXD0
SCK0
RTS0
CTS0

USART0

UART1

UART0

Cortex-M3 Processor
Fmax 48 MHz

3-layer AHB Bus Matrix Fmax 48 MHz

24-bit
SysTick Counter

ROM
16 KBytes

SRAM

24 KBytes
16 KBytes
8 KBytes
4 KBytes

FLASH
256 KBytes
128 KBytes
64 KBytes
32 KBytes
16 KBytes

VDDCORE

WDT

Peripheral
Bridge

URXD0
UTXD0

URXD1
UTXD1

Timer Counter A

Timer Counter B

SPI

TWI0

TWI1

N
V
I
C

Voltage
Regulator
6
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
3. Signal Description
Table 3-1 gives details on the signal name classified by peripheral.

Table 3-1. Signal Description List

Signal Name Function Type
Active
Level

Voltage
Reference Comments

Power Supplies

VDDIO Peripherals I/O Lines Power Supply Power 1.62V to 3.6V

VDDIN
Voltage Regulator, ADC and DAC Power
Supply

Power 1.8V to 3.6V(3)

VDDOUT Voltage Regulator Output Power 1.8V Output

VDDPLL Oscillator and PLL Power Supply Power 1.65 V to 1.95V

VDDCORE
Power the core, the embedded memories
and the peripherals

Power
1.65V to 1.95V

Connected externally
to VDDOUT

GND Ground Ground

Clocks, Oscillators and PLLs

XIN Main Oscillator Input Input

VDDIO

Reset State:

- PIO Input
- Internal Pull-up
disabled(4)

- Schmitt Trigger
enabled(1)

XOUT Main Oscillator Output Output

XIN32 Slow Clock Oscillator Input Input

XOUT32 Slow Clock Oscillator Output Output

PCK0 - PCK2 Programmable Clock Output Output

Reset State:

- PIO Input
- Internal Pull-up
enabled
- Schmitt Trigger
enabled(1)

ICE and JTAG

TCK/SWCLK Test Clock/Serial Wire Clock Input

VDDIO

Reset State:

- SWJ-DP Mode
- Internal pull-up
disabled(1)

- Schmitt Trigger
enabled(1)

TDI Test Data In Input

TDO/TRACESWO
Test Data Out/Trace Asynchronous Data
Out

Output

TMS/SWDIO
Test Mode Select /Serial Wire
Input/Output

Input / I/O

JTAGSEL JTAG Selection Input High
Permanent Internal
pull-down
7
11011B–ATARM–21-Feb-12

Flash Memory

ERASE
Flash and NVM Configuration Bits Erase
Command

Input High VDDIO

Reset State:

- Erase Input
- Internal pull-down
enabled
- Schmitt Trigger
enabled(1)

Reset/Test

NRST Microcontroller Reset I/O Low VDDIO
Permanent Internal

pull-up

TST Test Mode Select Input VDDIO
Permanent Internal

pull-down

Universal Asynchronous Receiver Transceiver - UARTx

URXDx UART Receive Data Input

UTXDx UART Transmit Data Output

PIO Controller - PIOA - PIOB - PIOC

PA0 - PA31 Parallel IO Controller A I/O

VDDIO

Reset State:
- PIO or System
IOs(2)

- Internal pull-up
enabled
- Schmitt Trigger
enabled(1)

PB0 - PB14 Parallel IO Controller B I/O

PC0 - PC31 Parallel IO Controller C I/O

Universal Synchronous Asynchronous Receiver Transmitter USARTx

SCKx USARTx Serial Clock I/O

TXDx USARTx Transmit Data I/O

RXDx USARTx Receive Data Input

RTSx USARTx Request To Send Output

CTSx USARTx Clear To Send Input

Timer/Counter - TC

TCLKx TC Channel x External Clock Input Input

TIOAx TC Channel x I/O Line A I/O

TIOBx TC Channel x I/O Line B I/O

Pulse Width Modulation Controller- PWMC

PWMx PWM Waveform Output for channel x Output

Table 3-1. Signal Description List (Continued)

Signal Name Function Type
Active
Level

Voltage
Reference Comments
8
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Notes: 1. Schmitt Triggers can be disabled through PIO registers.

2. Some PIO lines are shared with System IOs.

3. See Section 5.3 “Typical Powering Schematics” for restriction on voltage range of Analog Cells.

4. TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up corresponding to this
PIO line must be enabled to avoid current consumption due to floating input.

Serial Peripheral Interface - SPI

MISO Master In Slave Out I/O

MOSI Master Out Slave In I/O

SPCK SPI Serial Clock I/O

SPI_NPCS0 SPI Peripheral Chip Select 0 I/O Low

SPI_NPCS1 -
SPI_NPCS3

SPI Peripheral Chip Select Output Low

Two-Wire Interface- TWIx

TWDx TWIx Two-wire Serial Data I/O

TWCKx TWIx Two-wire Serial Clock I/O

Analog

ADVREF ADC and DAC Reference Analog

10-bit Analog-to-Digital Converter - ADC

AD0 - AD15 Analog Inputs Analog

ADTRG ADC Trigger Input VDDIO

Digital-to-Analog Converter Controller- DACC

DAC0 DACC channel analog output Analog

DATRG DACC Trigger Input VDDIO

Fast Flash Programming Interface

PGMEN0-PGMEN2 Programming Enabling Input

VDDIO

PGMM0-PGMM3 Programming Mode Input

PGMD0-PGMD15 Programming Data I/O

PGMRDY Programming Ready Output High

PGMNVALID Data Direction Output Low

PGMNOE Programming Read Input Low

PGMCK Programming Clock Input

PGMNCMD Programming Command Input Low

Table 3-1. Signal Description List (Continued)

Signal Name Function Type
Active
Level

Voltage
Reference Comments
9
11011B–ATARM–21-Feb-12

4. Package and Pinout
SAM3N4/2/1/0/00 series is pin-to-pin compatible with SAM3S products. Furthermore
SAM3N4/2/1/0/00 devices have new functionalities referenced in italic inTable 4-1, Table 4-3
and Table 4-4.

4.1 SAM3N4/2/1/0/00C Package and Pinout

4.1.1 100-lead LQFP Package Outline

Figure 4-1. Orientation of the 100-lead LQFP Package

4.1.2 100-ball TFBGA Package Outline
The 100-Ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its
dimensions are 9 x 9 x 1.1 mm.

Figure 4-2. Orientation of the 100-ball TFBGA Package

1 25

26

50

5175

76

100

1

3
4
5
6
7
8
9

10

2

A B C D E F G H J K

TOP VIEW

BALL A1
10
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
4.1.3 100-Lead LQFP Pinout

Table 4-1. 100-lead LQFP SAM3N4/2/1/0/00C Pinout

1 ADVREF 26 GND 51 TDI/PB4 76 TDO/TRACESWO/PB5

2 GND 27 VDDIO 52 PA6/PGMNOE 77 JTAGSEL

3 PB0/AD4 28 PA16/PGMD4 53 PA5/PGMRDY 78 PC18

4 PC29/AD13 29 PC7 54 PC28 79 TMS/SWDIO/PB6

5 PB1/AD5 30 PA15/PGMD3 55 PA4/PGMNCMD 80 PC19

6 PC30/AD14 31 PA14/PGMD2 56 VDDCORE 81 PA31

7 PB2/AD6 32 PC6 57 PA27 82 PC20

8 PC31/AD15 33 PA13/PGMD1 58 PC8 83 TCK/SWCLK/PB7

9 PB3/AD7 34 PA24 59 PA28 84 PC21

10 VDDIN 35 PC5 60 NRST 85 VDDCORE

11 VDDOUT 36 VDDCORE 61 TST 86 PC22

12 PA17/PGMD5/AD0 37 PC4 62 PC9 87 ERASE/PB12

13 PC26 38 PA25 63 PA29 88 PB10

14 PA18/PGMD6/AD1 39 PA26 64 PA30 89 PB11

15 PA21/AD8 40 PC3 65 PC10 90 PC23

16 VDDCORE 41 PA12/PGMD0 66 PA3 91 VDDIO

17 PC27 42 PA11/PGMM3 67 PA2/PGMEN2 92 PC24

18 PA19/PGMD7/AD2 43 PC2 68 PC11 93 PB13/DAC0

19 PC15/AD11 44 PA10/PGMM2 69 VDDIO 94 PC25

20 PA22/AD9 45 GND 70 GND 95 GND

21 PC13/AD10 46 PA9/PGMM1 71 PC14 96 PB8/XOUT

22 PA23 47 PC1 72 PA1/PGMEN1 97 PB9/PGMCK/XIN

23 PC12/AD12 48
PA8/XOUT32/

PGMM0
73 PC16 98 VDDIO

24 PA20/AD3 49
PA7/XIN32/

PGMNVALID
74 PA0/PGMEN0 99 PB14

25 PC0 50 VDDIO 75 PC17 100 VDDPLL
11
11011B–ATARM–21-Feb-12

4.1.4 100-ball TFBGA Pinout

Table 4-2. 100-ball TFBGA SAM3N4/2/1/0/00C Pinout

A1 PB1 C6 PB7 F1 PA18 H6 PC4

A2 PC29 C7 PC16 F2 PC26 H7 PA11

A3 VDDIO C8 PA1 F3 VDDOUT H8 PC1

A4 PB9 C9 PC17 F4 GND H9 PA6

A5 PB8 C10 PA0 F5 VDDIO H10 PB4

A6 PB13 D1 PB3 F6 PA27 J1 PC15

A7 PB11 D2 PB0 F7 PC8 J2 PC0

A8 PB10 D3 PC24 F8 PA28 J3 PA16

A9 PB6 D4 PC22 F9 TST J4 PC6

A10 JTAGSEL D5 GND F10 PC9 J5 PA24

B1 PC30 D6 GND G1 PA21 J6 PA25

B2 ADVREF D7 VDDCORE G2 PC27 J7 PA10

B3 GNDANA D8 PA2 G3 PA15 J8 GND

B4 PB14 D9 PC11 G4 VDDCORE J9 VDDCORE

B5 PC21 D10 PC14 G5 VDDCORE J10 VDDIO

B6 PC20 E1 PA17 G6 PA26 K1 PA22

B7 PA31 E2 PC31 G7 PA12 K2 PC13

B8 PC19 E3 VDDIN G8 PC28 K3 PC12

B9 PC18 E4 GND G9 PA4 K4 PA20

B10 PB5 E5 GND G10 PA5 K5 PC5

C1 PB2 E6 NRST H1 PA19 K6 PC3

C2 VDDPLL E7 PA29 H2 PA23 K7 PC2

C3 PC25 E8 PA30 H3 PC7 K8 PA9

C4 PC23 E9 PC10 H4 PA14 K9 PA8

C5 PB12 E10 PA3 H5 PA13 K10 PA7
12
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
4.2 SAM3N4/2/1/0/00B Package and Pinout

Figure 4-3. Orientation of the 64-pad QFN Package

Figure 4-4. Orientation of the 64-lead LQFP Package

1

16

17 32

33

48

4964

TOP VIEW

33

49

48

32

17

161

64
13
11011B–ATARM–21-Feb-12

4.2.1 64-Lead LQFP and QFN Pinout
64-pin version SAM3N devices are pin-to-pin compatible with SAM3S products. Furthermore,
SAM3N products have new functionalities shown in italic in Table 4-3.

Note: The bottom pad of the QFN package must be connected to ground.

Table 4-3. 64-pin SAM3N4/2/1/0/00B Pinout

1 ADVREF 17 GND 33 TDI/PB4 49 TDO/TRACESWO/PB5

2 GND 18 VDDIO 34 PA6/PGMNOE 50 JTAGSEL

3 PB0/AD4 19 PA16/PGMD4 35 PA5/PGMRDY 51 TMS/SWDIO/PB6

4 PB1AD5 20 PA15/PGMD3 36 PA4/PGMNCMD 52 PA31

5 PB2/AD6 21 PA14/PGMD2 37 PA27/PGMD15 53 TCK/SWCLK/PB7

6 PB3/AD7 22 PA13/PGMD1 38 PA28 54 VDDCORE

7 VDDIN 23 PA24/PGMD12 39 NRST 55 ERASE/PB12

8 VDDOUT 24 VDDCORE 40 TST 56 PB10

9 PA17/PGMD5/AD0 25 PA25/PGMD13 41 PA29 57 PB11

10 PA18/PGMD6/AD1 26 PA26/PGMD14 42 PA30 58 VDDIO

11 PA21/PGMD9/AD8 27 PA12/PGMD0 43 PA3 59 PB13/DAC0

12 VDDCORE 28 PA11/PGMM3 44 PA2/PGMEN2 60 GND

13 PA19/PGMD7/AD2 29 PA10/PGMM2 45 VDDIO 61 XOUT/PB8

14 PA22/PGMD10/AD9 30 PA9/PGMM1 46 GND 62 XIN/PGMCK/PB9

15 PA23/PGMD11 31
PA8/XOUT32/PGMM

0
47 PA1/PGMEN1 63 PB14

16 PA20/PGMD8/AD3 32
PA7/XIN32/XOUT32/

PGMNVALID
48 PA0/PGMEN0 64 VDDPLL
14
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
4.3 SAM3N4/2/1/0/00A Package and Pinout

Figure 4-5. Orientation of the 48-pad QFN Package

Figure 4-6. Orientation of the 48-lead LQFP Package

1

12

13 24

25

36

3748

TOP VIEW

25

37

36

24

13

121

48
15
11011B–ATARM–21-Feb-12

4.3.1 48-Lead LQFP and QFN Pinout

Note: The bottom pad of the QFN package must be connected to ground.

Table 4-4. 48-pin SAM3N4/2/1/0/00A Pinout

1 ADVREF 13 VDDIO 25 TDI/PB4 37
TDO/TRACESWO/

PB5

2 GND 14 PA16/PGMD4 26 PA6/PGMNOE 38 JTAGSEL

3 PB0/AD4 15 PA15/PGMD3 27 PA5/PGMRDY 39 TMS/SWDIO/PB6

4 PB1/AD5 16 PA14/PGMD2 28 PA4/PGMNCMD 40 TCK/SWCLK/PB7

5 PB2/AD6 17 PA13/PGMD1 29 NRST 41 VDDCORE

6 PB3/AD7 18 VDDCORE 30 TST 42 ERASE/PB12

7 VDDIN 19 PA12/PGMD0 31 PA3 43 PB10

8 VDDOUT 20 PA11/PGMM3 32 PA2/PGMEN2 44 PB11

9 PA17/PGMD5/AD0 21 PA10/PGMM2 33 VDDIO 45 XOUT/PB8

10 PA18/PGMD6/AD1 22 PA9/PGMM1 34 GND 46 XIN/P/PB9/GMCK

11 PA19/PGMD7/AD2 23
PA8/XOUT32/PG

MM0
35 PA1/PGMEN1 47 VDDIO

12 PA20/AD3 24
PA7/XIN32/PGMN

VALID
36 PA0/PGMEN0 48 VDDPLL
16
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
5. Power Considerations

5.1 Power Supplies
The SAM3N product has several types of power supply pins:

• VDDCORE pins: Power the core, including the processor, the embedded memories and the
peripherals. Voltage ranges from 1.62V to 1.95V.

• VDDIO pins: Power the Peripherals I/O lines, Backup part, 32 kHz crystal oscillator and
oscillator pads. Voltage ranges from 1.62V to 3.6V

• VDDIN pin: Voltage Regulator, ADC and DAC Power Supply. Voltage ranges from 1.8V to
3.6V for the Voltage Regulator

• VDDPLL pin: Powers the PLL, the Fast RC and the 3 to 20 MHz oscillators. Voltage ranges
from 1.62V to 1.95V.

5.2 Voltage Regulator
The SAM3N embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is intended to supply the internal core of SAM3N. It features two different
operating modes:

• In Normal mode, the voltage regulator consumes less than 700 µA static current and draws
60 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current
depending on the required load current. In Wait Mode quiescent current is only 7 µA.

• In Backup mode, the voltage regulator consumes less than 1 µA while its output (VDDOUT)
is driven internally to GND. The default output voltage is 1.80V and the start-up time to reach
Normal mode is less than100 µs.

For adequate input and output power supply decoupling/bypassing, refer to ”Voltage Regulator”
in the “Electrical Characteristics” section of the datasheet.

5.3 Typical Powering Schematics
The SAM3N supports a 1.62V-3.6V single supply mode. The internal regulator input connected
to the source and its output feeds VDDCORE. Figure 5-1 shows the power schematics.

As VDDIN powers the voltage regulator and the ADC/DAC, when the user does not want to use
the embedded voltage regulator, it can be disabled by software via the SUPC (note that it is dif-
ferent from Backup mode).
17
11011B–ATARM–21-Feb-12

Figure 5-1. Single Supply

Figure 5-2. Core Externally Supplied

Note: Restrictions
With Main Supply < 3V, ADC and DAC are not usable.
With Main Supply >= 3V, all peripherals are usable.

Figure 5-3 below provides an example of the powering scheme when using a backup battery.
Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch
off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after
backup reset). External wake-up of the system can be from a push button or any signal. See
Section 5.6 “Wake-up Sources” for further details.

Main Supply
(1.8V-3.6V)

ADC, DAC

I/Os.

VDDIN

Voltage
Regulator

VDDOUT

VDDCORE

VDDIO

VDDPLL

Main Supply
(1.62V-3.6V)

Can be the
same supply

VDDCORE Supply
(1.62V-1.95V)

ADC, DAC Supply
(3V-3.6V)

ADC, DAC

VDDIN

Voltage
Regulator

VDDOUT

VDDCORE

VDDIO

VDDPLL

I/Os.
18
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 5-3. Core Externally Supplied (backup battery)

5.4 Active Mode
Active mode is the normal running mode with the core clock running from the fast RC oscillator,
the main crystal oscillator or the PLL. The power management controller can be used to adapt
the frequency and to disable the peripheral clocks.

5.5 Low Power Modes
The various low-power modes of the SAM3N are described below:

5.5.1 Backup Mode
The purpose of backup mode is to achieve the lowest power consumption possible in a system
that is performing periodic wakeups to carry out tasks but not requiring fast startup time
(<0.1ms). Total current consumption is 3 µA typical.

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz
oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The
regulator and the core supply are off.

Backup mode is based on the Cortex-M3 deep sleep mode with the voltage regulator disabled.

The SAM3N can be awakened from this mode through WUP0-15 pins, the supply monitor (SM),
the RTT or RTC wake-up event.

Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Con-
trol Register of the Cortex-M3 set to 1. (See the “Power Management” description in The ARM
Cortex M3 Processor section of the product datasheet).

Exit from Backup mode happens if one of the following enable wake-up events occurs:

• WKUPEN0-15 pins (level transition, configurable debouncing)

ADC, DAC

I/Os.

VDDIN

Voltage
Regulator

3.3V
LDO

Backup
Battery +

-

ON/OFF

IN OUT
VDDOUTMain Supply

VDDCORE

ADC, DAC Supply
(3V-3.6V)

VDDIO

VDDPLL

PIOx (Output)

WAKEUPx

External wakeup signal

Note: The two diodes provide a “switchover circuit” (for illustration purpose)
between the backup battery and the main supply when the system is put in
backup mode.
19
11011B–ATARM–21-Feb-12

• Supply Monitor alarm

• RTC alarm

• RTT alarm

5.5.2 Wait Mode
The purpose of the wait mode is to achieve very low power consumption while maintaining the
whole device in a powered state for a startup time of less than 10 µs. Current Consumption in
Wait mode is typically 15 µA (total current consumption) if the internal voltage regulator is used
or 8 µA if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core,
peripherals and memories power supplies are still powered. From this mode, a fast start up is
available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in
PMC_FSMR). The Cortex-M3 is able to handle external or internal events in order to wake up
the core (WFE). By configuring the WUP0-15 external lines as fast startup wake-up pins (refer to
Section 5.7 “Fast Start-Up”). RTC or RTT Alarm wake-up events can be used to wake up the
CPU (exit from WFE).

Entering Wait Mode:

• Select the 4/8/12 MHz fast RC oscillator as Main Clock

• Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)

• Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN
bit and the effective entry in Wait mode. Depending on the user application, Waiting for
MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired
instructions.

5.5.3 Sleep Mode
The purpose of sleep mode is to optimize power consumption of the device versus response
time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The
current consumption in this mode is application dependent.

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with
LPM = 0 in PMC_FSMR.

The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or
from an event if the WFE instruction is used to enter this mode.
20
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
5.5.4 Low Power Mode Summary Table
The modes detailed above are the main low power modes. Each part can be set to on or off sep-
arately and wake up sources can be individually configured. Table 5-1 below shows a summary
of the configurations of the low power modes.

Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works
with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up
time is defined as the time taken for wake up until the first instruction is fetched.

2. The external loads on PIOs are not taken into account in the calculation.

3. Supply Monitor current consumption is not included.

4. Total Current consumption.

5. 5 µA on VDDCORE, 15 µA for total current consumption (using internal voltage regulator), 8 µA for total current consumption
(without using internal voltage regulator).

6. Depends on MCK frequency.

7. In this mode the core is supplied and not clocked but some peripherals can be clocked.

Table 5-1. Low Power Mode Configuration Summary

Mode

SUPC,
32 kHz

Oscillator
RTC RTT
Backup

Registers,
POR

(Backup
Region) Regulator

Core

Memory

Peripherals Mode Entry
Potential Wake Up

Sources
Core at

Wake Up

PIO State
while in Low
Power Mode

PIO State
at Wake Up

Consumption
(2) (3)

Wake Up
Time(1)

Backup
Mode

ON OFF
OFF

(Not powered)

WFE

+SLEEPDEEP
bit = 1

WUP0-15 pins
BOD alarm
RTC alarm
RTT alarm

Reset
Previous
state saved

PIOA &
PIOB &
PIOC
Inputs with
pull ups

3 µA typ(4) < 0.1 ms

Wait
Mode

ON ON
Powered

(Not clocked)

WFE

+SLEEPDEEP
bit = 0

+LPM bit = 1

Any Event from: Fast
startup through
WUP0-15 pins
RTC alarm
RTT alarm
USB wake-up

Clocked
back

Previous
state saved

Unchanged 5 µA/15 µA (5) < 10 µs

Sleep
Mode

ON ON
Powered(7)

(Not clocked)

WFE or WFI

+SLEEPDEEP
bit = 0

+LPM bit = 0

Entry mode = WFI
Interrupt Only; Entry
mode = WFE Any
Enabled Interrupt
and/or Any Event
from: Fast start-up
through WUP0-15
pins
RTC alarm
RTT alarm

Clocked
back

Previous
state saved

Unchanged (6) (6)
21
11011B–ATARM–21-Feb-12

5.6 Wake-up Sources
The wake-up events allow the device to exit backup mode. When a wake-up event is detected,
the Supply Controller performs a sequence which automatically reenables the core power sup-
ply and the SRAM power supply, if they are not already enabled.

Figure 5-4. Wake-up Source

WKUP15

WKUPEN15WKUPT15

WKUPEN1

WKUPEN0

Debouncer

SLCK

WKUPDBC

WKUPS

RTCEN
rtc_alarm

BODEN
brown_out

Core
Supply
Restart

WKUPIS0

WKUPIS1

WKUPIS15

Falling/Rising
Edge

Detector

WKUPT0

Falling/Rising
Edge

Detector

WKUPT1

Falling/Rising
Edge

Detector

WKUP0

WKUP1

RTTEN
rtt_alarm
22
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
5.7 Fast Start-Up
The SAM3N allows the processor to restart in a few microseconds while the processor is in wait
mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs
(WKUP0 to 15 + SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-
up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,
the PMC automatically restarts the embedded 4 MHz fast RC oscillator, switches the master
clock on this 4 MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Sources

RTCEN
rtc_alarm

RTTEN
rtt_alarm

fast_restart

WKUP15

FSTT15

WKUP0

FSTT0

 High/Low
Level

Detector

 High/Low
Level

Detector
23
11011B–ATARM–21-Feb-12

6. Input/Output Lines
The SAM3N has several kinds of input/output (I/O) lines such as general purpose I/Os (GPIO)
and system I/Os. GPIOs can have alternate functionality due to multiplexing capabilities of the
PIO controllers. The same PIO line can be used whether in IO mode or by the multiplexed
peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines
GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such
as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing
or input change interrupt. Programming of these modes is performed independently for each I/O
line through the PIO controller user interface. For more details, refer to the product PIO control-
ler section.

The input output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM3N embeds high speed pads able to handle up to 45 MHz for SPI clock lines and 35
MHz on other lines. See “AC Characteristics” in the “Electrical Characteristics” section of the
datasheet for more details. Typical pull-up and pull-down value is 100 kΩ for all I/Os.

Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1). It consists of an
internal series resistor termination scheme for impedance matching between the driver output
(SAM3N) and the PCB trace impedance preventing signal reflection. The series resistor helps to
reduce I/O switching current (di/dt) thereby reducing in turn, EMI. It also decreases overshoot
and undershoot (ringing) due to inductance of interconnect between devices or between boards.
In conclusion ODT helps diminish signal integrity issues.

Figure 6-1. On-Die Termination

6.2 System I/O Lines
System I/O lines are pins used by oscillators, test mode, reset and JTAG to name but a few.
Described below are the SAM3N system I/O lines shared with PIO lines:

These pins are software configurable as general purpose I/O or system pins. At startup the
default function of these pins is always used.

PCB Trace
Z0 ~ 50 Ohms

Receiver
SAM3 Driver with

Rodt

Zout ~ 10 Ohms

Z0 ~ Zout + Rodt

ODT
36 Ohms Typ.
24
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the
user application sets PB12 into PIO mode.

2. In the product Datasheet Refer to: Slow Clock Generator of the Supply Controller section.

3. In the product Datasheet Refer to: 3 to 20 MHZ Crystal Oscillator information in the PMC section.

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins
The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on
a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference
and reset state, refer to Table 3-1 on page 7.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging
probe. Please refer to the “Debug and Test” section of the product datasheet.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins
when the debug port is not needed in the end application. Mode selection between SWJ-DP
mode (System IO mode) and general IO mode is performed through the AHB Matrix Special
Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing
and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It
integrates a permanent pull-down resistor of about 15 kΩ to GND, so that it can be left uncon-
nected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire
Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous
trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and
JTAG-DP switching, please refer to the” Debug and Test” section.

Table 6-1. System I/O Configuration Pin List.

SYSTEM_IO
bit number

Default function
after reset Other function

Constraints for
normal start Configuration

12 ERASE PB12
Low Level at

startup(1)

In Matrix User Interface Registers
(Refer to the System I/O

Configuration Register in the Bus
Matrix section of the product

datasheet.)

7 TCK/SWCLK PB7 -

6 TMS/SWDIO PB6 -

5 TDO/TRACESWO PB5 -

4 TDI PB4 -

- PA7 XIN32 -
See footnote (2) below

- PA8 XOUT32 -

- PB9 XIN -
See footnote (3) below

- PB8 XOUT -
25
11011B–ATARM–21-Feb-12

6.3 Test Pin
The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming
mode of the SAM3N series. The TST pin integrates a permanent pull-down resistor of about 15
kΩ to GND, so that it can be left unconnected for normal operations. To enter fast programming
mode, see the “Fast Flash Programming Interface” section of the product datasheet. For more
on the manufacturing and test mode, refer to the “Debug and Test” section of the product
datasheet.

6.4 NRST Pin
The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low
to provide a reset signal to the external components or asserted low externally to reset the
microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT
and Supply Controller). There is no constraint on the length of the reset pulse and the reset con-
troller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up
resistor to VDDIO of about 100 kΩ. By default, the NRST pin is configured as an input.

6.5 ERASE Pin
The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased
state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 kΩ to GND, so
that it can be left unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high
during less than 100 ms, it is not taken into account. The pin must be tied high during more than
220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE
pin is not configured as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of
this pin must be low to prevent unwanted erasing. Please refer to Section 9.3 “Peripheral Signal
Multiplexing on I/O Lines” on page 35. Also, if the ERASE pin is used as a standard I/O output,
asserting the pin to low does not erase the Flash.
26
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
7. Product Mapping

7.1 Product Mapping

Figure 7-1. SAM3N4/2/1/0/00 Product Mapping
Address Memory Space

Code

0x00000000

SRAM

0x20000000

Peripherals

0x40000000

0x60000000

0xA0000000

System

0xE0000000

0xFFFFFFFF

offset

ID
peripheral

block

Code

Boot Memory

0x00000000

Internal Flash

Internal ROM

0x00400000

0x00800000

0x00C00000

0x1FFFFFFF

Peripherals
0x40000000

0x40004000

SPI
21

0x40008000

0x4000C000

TC0
TC0

0x40010000

23
TC0

TC1

+0x40

24
TC0

TC2

+0x80

25
TC1

TC3

0x40014000

26
TC1

TC4

+0x40

27
TC1

TC5

+0x80

28

TWI0
19

0x40018000

TWI1
20

0x4001C000

PWM
31

0x40020000

14

0x40024000

0x40028000

0x4002C000

ADC
29

0x40038000

DACC
30

0x4003C000

0x40040000

0x40044000

0x40048000

System Controller

0x400E0000

0x400E2600

0x40100000

System Controller
0x400E0000

MATRIX

0x400E0200

PMC
5

0x400E0400

UART0

UART1

8

0x400E0600

CHIPID

0x400E0740

9

0x400E0800

EEFC
6

0x400E0A00

0x400E0C00

11

0x400E0E00

PIOB

PIOA

12

0x400E1000

PIOC
13

0x400E1200

SYSC
RSTC

0x400E1400

1
SYSC

SUPC

+0x10

SYSC
RTT

+0x30

3
SYSC

WDT

+0x50

4
SYSC

RTC

+0x60

2
SYSC

GPBR

+0x90

0x400E1600

0x4007FFFF

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

USART0

Reserved

0x40200000

Reserved

Reserved

32 MBytes
bit band alias

32 MBytes
bit band alias

0x60000000
Reserved

Reserved

USART1
15

Reserved

Reserved

0x40400000

0x20100000

0x22000000

0x24000000

Undefined

1 MByte
bit band
region

1 MByte
bit band
region
27
11011B–ATARM–21-Feb-12

7.2 Embedded Memories

7.2.1 Internal SRAM
The SAM3N4 product embeds a total of 24-Kbytes high-speed SRAM.

The SAM3N2 product embeds a total of 16-Kbytes high-speed SRAM.

The SAM3N1 product embeds a total of 8-Kbytes high-speed SRAM.

The SAM3N0 product embeds a total of 8-Kbytes high-speed SRAM.

The SAM3N00 product embeds a total of 4-Kbytes high-speed SRAM.

The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.

The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 and 0x23FF
FFFF.

RAM size must be configurable by calibration fuses.

7.2.2 Internal ROM
The SAM3N product embeds an Internal ROM, which contains the SAM Boot Assistant
(SAM-BA), In Application Programming routines (IAP) and Fast Flash Programming Interface
(FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

7.2.3 Embedded Flash

7.2.3.1 Flash Overview
The Flash of the SAM3N4 (256 Kbytes) is organized in one bank of 1024 pages of 256 bytes
(Single plane).

The Flash of the SAM3N2 (128 Kbytes) is organized in one bank of 512 pages of 256 bytes
(Single Plane).

The Flash of the SAM3N1 (64 Kbytes) is organized in one bank of 256 pages of 256 bytes
(Single plane).

The Flash of the SAM3N0 (32 Kbytes) is organized in one bank of 128 pages of 256 bytes
(Single plane).

The Flash of the SAM3N00 (16 Kbytes) is organized in one bank of 64 pages of 256 bytes
(Single plane).

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

7.2.3.2 Flash Power Supply
The Flash is supplied by VDDCORE.

7.2.3.3 Enhanced Embedded Flash Controller
The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the mas-
ters of the system. It enables reading the Flash and writing the write buffer. It also contains a
User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-
bit internal bus. Its 128-bit wide memory interface increases performance.
28
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
The user can choose between high performance or lower current consumption by selecting
either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking
sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system
about the Flash organization, thus making the software generic.

7.2.3.4 Flash Speed
The user needs to set the number of wait states depending on the frequency used.

For more details, refer to the AC Characteristics sub section in the “Electrical Characteristics”
section.

7.2.3.5 Lock Regions
Several lock bits used to protect write and erase operations on lock regions. A lock region is
composed of several consecutive pages, and each lock region has its associated lock bit.

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC
triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set
Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

7.2.3.6 Security Bit Feature
The SAM3N features a security bit, based on a specific General Purpose NVM bit (GPNVM bit
0). When the security is enabled, any access to the Flash, either through the ICE interface or
through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of
the code programmed in the Flash.

This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0” of
the EEFC User Interface. Disabling the security bit can only be achieved by asserting the
ERASE pin at 1, after a full Flash erase is performed. When the security bit is deactivated, all
accesses to the Flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal
operation. However, it is safer to connect it directly to GND for the final application.

Table 7-1. Lock bit number

Product Number of lock bits Lock region size

SAM3N4 16 16 kbytes (64 pages)

SAM3N2 8 16 kbytes (64 pages)

SAM3N1 4 16 kbytes (64 pages)

SAM3N0 2 16 kbytes (64 pages)

SAM3N00 1 16 kbytes (64 pages)
29
11011B–ATARM–21-Feb-12

7.2.3.7 Calibration Bits
NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are
factory configured and cannot be changed by the user. The ERASE pin has no effect on the cal-
ibration bits.

7.2.3.8 Unique Identifier
Each device integrates its own 128-bit unique identifier. These bits are factory configured and
cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

7.2.3.9 Fast Flash Programming Interface
The Fast Flash Programming Interface allows programming the device through either a serial
JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang program-
ming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect
commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered
when TST and PA0 and PA1are tied low.

7.2.3.10 SAM-BA Boot
The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the
on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UART0.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

7.2.3.11 GPNVM Bits
The SAM3N features three GPNVM bits that can be cleared or set respectively through the com-
mands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

7.2.4 Boot Strategies
The system always boots at address 0x0. To ensure a maximum boot possibilities the memory
layout can be changed via GPNVM.

A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the
Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear General-pur-
pose NVM Bit” and “Set General-purpose NVM Bit” of the EEFC User Interface.

Setting the GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the
ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by
default.

Table 7-2. General-purpose Non volatile Memory Bits

GPNVMBit[#] Function

0 Security bit

1 Boot mode selection
30
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
8. System Controller
The System Controller is a set of peripherals, which allow handling of key elements of the sys-
tem, such as power, resets, clocks, time, interrupts, watchdog, etc...

See the System Controller block diagram in Figure 8-1 on page 32.
31
11011B–ATARM–21-Feb-12

Figure 8-1. System Controller Block Diagram

Software Controlled
Voltage Regulator

ADC

PIOA/B/C

Matrix

SRAM

Cortex-M3

Flash

Peripherals

Peripheral
Bridge

Zero-Power
Power-on Reset

Supply
Monitor

(Backup)

RTC

Embedded
32 kHz RC

Oscillator

Xtal 32 kHz
Oscillator

Supply
Controller

Brownout
Detector
(Core)

 General Purpose
Backup Registers

Reset
Controller

Backup Power Supply

Core Power Supply

vr_on
vr_mode

bod_on

brown_out

rtc_alarm
SLCK

rtc_nreset

proc_nreset
periph_nreset
ice_nreset

Master Clock
MCK

SLCK

core_nreset

Main Clock
MAINCK

SLCK

NRST

FSTT0 - FSTT15

XIN32

XOUT32

osc32k_xtal_en

osc32k_sel

Slow Clock
SLCK

osc32k_rc_en

core_nreset

VDDIO

VDDCORE

VDDOUT

ADVREF

ADx

WKUP0 - WKUP15

bod_core_on

lcore_brown_out

RTT
rtt_alarm

SLCK
rtt_nreset

XIN

XOUT

VDDIO

VDDIN

PIOx

DAC DAC0

PLL

FSTT0 - FSTT15 are possible Fast Startup Sources, generated by WKUP0-WKUP15 Pins, but are not physical pins.

Embedded
12/8/4 MHz

RC
Oscillator

Xtal
Oscillator

Watchdog
Timer

Power
Management

Controller
32
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
8.1 System Controller and Peripheral Mapping
Please refer to Figure 7-1, "SAM3N4/2/1/0/00 Product Mapping" on page 27.

All the peripherals are in the bit band region and are mapped in the bit band alias region.

8.2 Power-on-Reset, Brownout and Supply Monitor
The SAM3N embeds three features to monitor, warn and/or reset the chip:

• Power-on-Reset on VDDIO

• Brownout Detector on VDDCORE

• Supply Monitor on VDDIO

8.2.1 Power-on-Reset
The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but
also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For
more information, refer to the “Electrical Characteristics” section of the datasheet.

8.2.2 Brownout Detector on VDDCORE
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by soft-
ware through the Supply Controller (SUPC_MR). It is especially recommended to disable it
during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more infor-
mation, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the
datasheet.

8.2.3 Supply Monitor on VDDIO
The Supply Monitor monitors VDDIO. It is inactive by default. It can be activated by software and
is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled by
the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply monitor
power consumption by a factor of up to 2048. For more information, refer to the Supply COntrol-
ler and Electrical Characteristics sections of the datasheet.
33
11011B–ATARM–21-Feb-12

9. Peripherals

9.1 Peripheral Identifiers
Table 9-1 defines the Peripheral Identifiers of the SAM3N4/2/1/0/00. A peripheral identifier is
required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller
and for the control of the peripheral clock with the Power Management Controller.

Table 9-1. Peripheral Identifiers

Instance ID Instance Name NVIC Interrupt PMC Clock Control Instance Description

0 SUPC X Supply Controller

1 RSTC X Reset Controller

2 RTC X Real Time Clock

3 RTT X Real Time Timer

4 WDT X Watchdog Timer

5 PMC X Power Management Controller

6 EEFC X Enhanced Flash Controller

7 - - Reserved

8 UART0 X X UART 0

9 UART1 X X UART 1

10 - - - Reserved

11 PIOA X X Parallel I/O Controller A

12 PIOB X X Parallel I/O Controller B

13 PIOC X X Parallel I/O Controller C

14 USART0 X X USART 0

15 USART1 X X USART 1

16 - - - Reserved

17 - - - Reserved

18 - - - Reserved

19 TWI0 X X Two Wire Interface 0

20 TWI1 X X Two Wire Interface 1

21 SPI X X Serial Peripheral Interface

22 - - - Reserved

23 TC0 X X Timer/Counter 0

24 TC1 X X Timer/Counter 1

25 TC2 X X Timer/Counter 2

26 TC3 X X Timer/Counter 3

27 TC4 X X Timer/Counter 4

28 TC5 X X Timer/Counter 5

29 ADC X X Analog-to-Digital Converter

30 DACC X X Digital-to-Analog Converter

31 PWM X X Pulse Width Modulation
34
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
9.2 APB/AHB Bridge
The SAM3N4/2/1/0/00 product embeds one peripheral bridge:

The peripherals of the bridge are clocked by MCK.

9.3 Peripheral Signal Multiplexing on I/O Lines
The SAM3N product features 2 PIO controllers (48-pin and 64-pin version) or 3 PIO controllers
(100-pin version), PIOA, PIOB and PIOC, that multiplex the I/O lines of the peripheral set.

The SAM3N 64-pin and 100-pin PIO Controller controls up to 32 lines (see Table 9-2, “Multiplex-
ing on PIO Controller A (PIOA),” on page 36). Each line can be assigned to one of three
peripheral functions: A, B or C. The multiplexing tables in the following paragraphs define how
the I/O lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column
“Comments” has been inserted in this table for the user’s own comments; it may be used to track
how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.
35
11011B–ATARM–21-Feb-12

9.3.1 PIO Controller A Multiplexing

Table 9-2. Multiplexing on PIO Controller A (PIOA)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments

PA0 PWM0 TIOA0 WKUP0 High drive

PA1 PWM1 TIOB0 WKUP1 High drive

PA2 PWM2 SCK0 DATRG WKUP2 High drive

PA3 TWD0 NPCS3 High drive

PA4 TWCK0 TCLK0 WKUP3

PA5 RXD0 NPCS3 WKUP4

PA6 TXD0 PCK0

PA7 RTS0 PWM3 XIN32

PA8 CTS0 ADTRG WKUP5 XOUT32

PA9 URXD0 NPCS1 WKUP6

PA10 UTXD0 NPCS2

PA11 NPCS0 PWM0 WKUP7

PA12 MISO PWM1

PA13 MOSI PWM2

PA14 SPCK PWM3 WKUP8

PA15 TIOA1 WKUP14

PA16 TIOB1 WKUP15

PA17 PCK1 AD0

PA18 PCK2 AD1

PA19 AD2/WKUP9

PA20 AD3/WKUP10

PA21 RXD1 PCK1 AD8 64/100-pin versions

PA22 TXD1 NPCS3 AD9 64/100-pin versions

PA23 SCK1 PWM0 64/100-pin versions

PA24 RTS1 PWM1 64/100-pin versions

PA25 CTS1 PWM2 64/100-pin versions

PA26 TIOA2 64/100-pin versions

PA27 TIOB2 64/100-pin versions

PA28 TCLK1 64/100-pin versions

PA29 TCLK2 64/100-pin versions

PA30 NPCS2 WKUP11 64/100-pin versions

PA31 NPCS1 PCK2 64/100-pin versions
36
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
9.3.2 PIO Controller B Multiplexing

Table 9-3. Multiplexing on PIO Controller B (PIOB)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments

PB0 PWM0 AD4

PB1 PWM1 AD5

PB2 URXD1 NPCS2 AD6/WKUP12

PB3 UTXD1 PCK2 AD7

PB4 TWD1 PWM2 TDI

PB5 TWCK1 WKUP13
TDO/

TRACESWO

PB6 TMS/SWDIO

PB7 TCK/SWCLK

PB8 XOUT

PB9 XIN

PB10

PB11

PB12 ERASE

PB13 PCK0 DAC0 64/100-pin versions

PB14 NPCS1 PWM3 64/100-pin versions
37
11011B–ATARM–21-Feb-12

9.3.3 PIO Controller C Multiplexing

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments

PC0 100-pin version

PC1 100-pin version

PC2 100-pin version

PC3 100-pin version

PC4 NPCS1 100-pin version

PC5 100-pin version

PC6 100-pin version

PC7 NPCS2 100-pin version

PC8 PWM0 100-pin version

PC9 PWM1 100-pin version

PC10 PWM2 100-pin version

PC11 PWM3 100-pin version

PC12 AD12 100-pin version

PC13 AD10 100-pin version

PC14 PCK2 100-pin version

PC15 AD11 100-pin version

PC16 PCK0 100-pin version

PC17 PCK1 100-pin version

PC18 PWM0 100-pin version

PC19 PWM1 100-pin version

PC20 PWM2 100-pin version

PC21 PWM3 100-pin version

PC22 PWM0 100-pin version

PC23 TIOA3 100-pin version

PC24 TIOB3 100-pin version

PC25 TCLK3 100-pin version

PC26 TIOA4 100-pin version

PC27 TIOB4 100-pin version

PC28 TCLK4 100-pin version

PC29 TIOA5 AD13 100-pin version

PC30 TIOB5 AD14 100-pin version

PC31 TCLK5 AD15 100-pin version
38
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10. ARM Cortex® M3 Processor

10.1 About this section
This section provides the information required for application and system-level software devel-
opment. It does not provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who have
no experience of ARM products.

Note: The information in this section is reproduced from source material provided to Atmel by
ARM Ltd. in terms of Atmel’s license for the ARM Cortex®-M3 processor core. This information is
copyright ARM Ltd., 2008 - 2009.

10.2 Embedded Characteristics
• Version 2.0

• Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.

• Harvard processor architecture enabling simultaneous instruction fetch with data load/store.

• Three-stage pipeline.

• Single cycle 32-bit multiply.

• Hardware divide.

• Thumb and Debug states.

• Handler and Thread modes.

• Low latency ISR entry and exit.

• SysTick Timer

– 24-bit down counter

– Self-reload capability

– Flexible System timer

• Nested Vectored Interrupt Controller

– Thirty Two maskable external interrupts

– Sixteen priority levels

– Processor state automatically saved on interrupt entry, and restored on

– Dynamic reprioritization of interrupts

– Priority grouping

 selection of pre-empting interrupt levels and non pre-empting interrupt levels

– Support for tail-chaining and late arrival of interrupts

 back-to-back interrupt processing without the overhead of state saving and restoration
 between interrupts.

Processor state automatically saved on interrupt entry and restored on interrupt exit, with no
instruction overhead

10.3 About the Cortex-M3 processor and core peripherals
• The Cortex-M3 processor is a high performance 32-bit processor designed for the

microcontroller market. It offers significant benefits to developers, including:

• outstanding processing performance combined with fast interrupt handling
39
11011B–ATARM–21-Feb-12

• enhanced system debug with extensive breakpoint and trace capabilities

• efficient processor core, system and memories

• ultra-low power consumption with integrated sleep modes

Figure 10-1. Typical Cortex-M3 Implementation

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline
Harvard architecture, making it ideal for demanding embedded applications. The processor
delivers exceptional power efficiency through an efficient instruction set and extensively opti-
mized design, providing high-end processing hardware including single-cycle 32x32
multiplication and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly-
coupled system components that reduce processor area while significantly improving interrupt
handling and system debug capabilities. The Cortex-M3 processor implements a version of the
Thumb® instruction set, ensuring high code density and reduced program memory requirements.
The Cortex-M3 instruction set provides the exceptional performance expected of a modern 32-
bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M3 processor closely integrates a configurable nested interrupt controller (NVIC), to
deliver industry-leading interrupt performance. The NVIC provides up to 16 interrupt priority lev-
els. The tight integration of the processor core and NVIC provides fast execution of interrupt
service routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the
hardware stacking of registers, and the ability to suspend load-multiple and store-multiple opera-
tions. Interrupt handlers do not require any assembler stubs, removing any code overhead from
the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from
one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep
sleep function that enables the entire device to be rapidly powered down.

Processor
CoreNVIC

Debug
Access

Port

Serial
Wire

Viewer

Bus Matrix
Code

Interface
SRAM and

Peripheral Interface

Data
Watchpoints

Flash
Patch

Cortex-M3
Processor
40
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.3.1 System level interface
The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high
speed, low latency memory accesses. It supports unaligned data accesses and implements
atomic bit manipulation that enables faster peripheral controls, system spinlocks and thread-safe
Boolean data handling.

10.3.2 Integrated configurable debug
The Cortex-M3 processor implements a complete hardware debug solution. This provides high
system visibility of the processor and memory through either a traditional JTAG port or a 2-pin
Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside
data watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system
events these generate, a Serial Wire Viewer (SWV) can export a stream of software-generated
messages, data trace, and profiling information through a single pin.

10.3.3 Cortex-M3 processor features and benefits summary

• tight integration of system peripherals reduces area and development costs

• Thumb instruction set combines high code density with 32-bit performance

• code-patch ability for ROM system updates

• power control optimization of system components

• integrated sleep modes for low power consumption

• fast code execution permits slower processor clock or increases sleep mode time

• hardware division and fast multiplier

• deterministic, high-performance interrupt handling for time-critical applications

• extensive debug and trace capabilities:

– Serial Wire Debug and Serial Wire Trace reduce the number of pins required for
debugging and tracing.

10.3.4 Cortex-M3 core peripherals
These are:

10.3.4.1 Nested Vectored Interrupt Controller
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that sup-
ports low latency interrupt processing.

10.3.4.2 System control block
The System control block (SCB) is the programmers model interface to the processor. It pro-
vides system implementation information and system control, including configuration, control,
and reporting of system exceptions.

10.3.4.3 System timer
The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating Sys-
tem (RTOS) tick timer or as a simple counter.
41
11011B–ATARM–21-Feb-12

10.4 Programmers model
This section describes the Cortex-M3 programmers model. In addition to the individual core reg-
ister descriptions, it contains information about the processor modes and privilege levels for
software execution and stacks.

10.4.1 Processor mode and privilege levels for software execution
The processor modes are:

10.4.1.1 Thread mode
Used to execute application software. The processor enters Thread mode when it comes out of
reset.

10.4.1.2 Handler mode
Used to handle exceptions. The processor returns to Thread mode when it has finished excep-
tion processing.

The privilege levels for software execution are:

10.4.1.3 Unprivileged
The software:

• has limited access to the MSR and MRS instructions, and cannot use the CPS instruction

• cannot access the system timer, NVIC, or system control block

• might have restricted access to memory or peripherals.

Unprivileged software executes at the unprivileged level.

10.4.1.4 Privileged
The software can use all the instructions and has access to all resources.

Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see “CONTROL register” on page 52. In Handler mode, software execution is
always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to make
a supervisor call to transfer control to privileged software.

10.4.2 Stacks
The processor uses a full descending stack. This means the stack pointer indicates the last
stacked item on the stack memory. When the processor pushes a new item onto the stack, it
decrements the stack pointer and then writes the item to the new memory location. The proces-
sor implements two stacks, the main stack and the process stack, with independent copies of
the stack pointer, see “Stack Pointer” on page 44.
42
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
In Thread mode, the CONTROL register controls whether the processor uses the main stack or
the process stack, see “CONTROL register” on page 52. In Handler mode, the processor always
uses the main stack. The options for processor operations are:

10.4.3 Core registers
The processor core registers are:

Table 10-1. Summary of processor mode, execution privilege level, and stack use options

Processor
mode

Used to
execute

Privilege level for
software execution Stack used

Thread Applications
Privileged or
unprivileged (1)

1. See “CONTROL register” on page 52.

Main stack or process
stack(1)

Handler
Exception
handlers

Always privileged Main stack

SP (R13)

LR (R14)

PC (R15)

R5

R6

R7

R0

R1

R3

R4

R2

R10

R11

R12

R8

R9

Low registers

High registers

MSP‡PSP‡

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

General-purpose registers

Stack Pointer

Link Register

Program Counter

Program status register

Exception mask registers

CONTROL register

Special registers

‡Banked version of SP
43
11011B–ATARM–21-Feb-12

10.4.3.1 General-purpose registers
R0-R12 are 32-bit general-purpose registers for data operations.

10.4.3.2 Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indi-
cates the stack pointer to use:

• 0 = Main Stack Pointer (MSP). This is the reset value.

• 1 = Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

10.4.3.3 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function
calls, and exceptions. On reset, the processor loads the LR value 0xFFFFFFFF.

Table 10-2. Core register set summary

Name
Type
 (1)

1. Describes access type during program execution in thread mode and Handler mode. Debug
access can differ.

Required
privilege
 (2)

2. An entry of Either means privileged and unprivileged software can access the register.

Reset
value Description

R0-R12 RW Either Unknown “General-purpose registers” on page 44

MSP RW Privileged
See
description

“Stack Pointer” on page 44

PSP RW Either Unknown “Stack Pointer” on page 44

LR RW Either 0xFFFFFFFF “Link Register” on page 44

PC RW Either
See
description

“Program Counter” on page 45

PSR RW Privileged 0x01000000 “Program Status Register” on page 46

ASPR RW Either 0x00000000
“Application Program Status Register” on
page 47

IPSR RO Privileged 0x00000000
“Interrupt Program Status Register” on page
48

EPSR RO Privileged 0x01000000
“Execution Program Status Register” on page
49

PRIMASK RW Privileged 0x00000000 “Priority Mask Register” on page 50

FAULTMASK RW Privileged 0x00000000 “Fault Mask Register” on page 50

BASEPRI RW Privileged 0x00000000 “Base Priority Mask Register” on page 51

CONTROL RW Privileged 0x00000000 “CONTROL register” on page 52
44
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.4.3.4 Program Counter
The Program Counter (PC) is register R15. It contains the current program address. Bit[0] is
always 0 because instruction fetches must be halfword aligned. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004.
45
11011B–ATARM–21-Feb-12

10.4.3.5 Program Status Register
The Program Status Register (PSR) combines:

• Application Program Status Register (APSR)

• Interrupt Program Status Register (IPSR)

• Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are:

• APSR:

• IPSR:

• EPSR:

31 30 29 28 27 26 25 24

N Z C V Q Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved ISR_NUMBER

7 6 5 4 3 2 1 0

ISR_NUMBER

31 30 29 28 27 26 25 24

Reserved ICI/IT T

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

ICI/IT Reserved

7 6 5 4 3 2 1 0

Reserved
46
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
The PSR bit assignments are:

Access these registers individually or as a combination of any two or all three registers, using
the register name as an argument to the MSR or MRS instructions. For example:

• read all of the registers using PSR with the MRS instruction

• write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

See the instruction descriptions “MRS” on page 143 and “MSR” on page 144 for more informa-
tion about how to access the program status registers.

10.4.3.6 Application Program Status Register
The APSR contains the current state of the condition flags from previous instruction executions.
See the register summary in Table 10-2 on page 44 for its attributes. The bit assignments are:

• N
Negative or less than flag:

0 = operation result was positive, zero, greater than, or equal

1 = operation result was negative or less than.

• Z
Zero flag:

0 = operation result was not zero

1 = operation result was zero.

31 30 29 28 27 26 25 24

N Z C V Q ICI/IT T

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

ICI/IT Reserved ISR_NUMBER

7 6 5 4 3 2 1 0

ISR_NUMBER

Table 10-3. PSR register combinations

Register Type Combination

PSR RW (1), (2)

1. The processor ignores writes to the IPSR bits.

2. Reads of the EPSR bits return zero, and the proces-
sor ignores writes to the these bits.

APSR, EPSR, and IPSR

IEPSR RO EPSR and IPSR

IAPSR RW(1) APSR and IPSR

EAPSR RW(2) APSR and EPSR
47
11011B–ATARM–21-Feb-12

• C
Carry or borrow flag:

0 = add operation did not result in a carry bit or subtract operation resulted in a borrow bit

1 = add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

• V
Overflow flag:

0 = operation did not result in an overflow

1 = operation resulted in an overflow.

• Q
Sticky saturation flag:

0 = indicates that saturation has not occurred since reset or since the bit was last cleared to zero

1 = indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

10.4.3.7 Interrupt Program Status Register
The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).
See the register summary in Table 10-2 on page 44 for its attributes. The bit assignments are:

• ISR_NUMBER
This is the number of the current exception:

0 = Thread mode

1 = Reserved

2 = NMI

3 = Hard fault

4 = Memory management fault

5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQ0

26 = IRQ32

see “Exception types” on page 63 for more information.
48
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.4.3.8 Execution Program Status Register
The EPSR contains the Thumb state bit, and the execution state bits for either the:

• If-Then (IT) instruction

• Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store
multiple instruction.

See the register summary in Table 10-2 on page 44 for the EPSR attributes. The bit assign-
ments are:

• ICI
Interruptible-continuable instruction bits, see “Interruptible-continuable instructions” on page 49.

• IT
Indicates the execution state bits of the IT instruction, see “IT” on page 133.

• T
Always set to 1.

Attempts to read the EPSR directly through application software using the MSR instruction
always return zero. Attempts to write the EPSR using the MSR instruction in application software
are ignored. Fault handlers can examine EPSR value in the stacked PSR to indicate the opera-
tion that is at fault. See “Exception entry and return” on page 68

10.4.3.9 Interruptible-continuable instructions
When an interrupt occurs during the execution of an LDM or STM instruction, the processor:

• stops the load multiple or store multiple instruction operation temporarily

• stores the next register operand in the multiple operation to EPSR bits[15:12].

After servicing the interrupt, the processor:

• returns to the register pointed to by bits[15:12]

• resumes execution of the multiple load or store instruction.

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

10.4.3.10 If-Then block
The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruc-
tion in the block is conditional. The conditions for the instructions are either all the same, or
some can be the inverse of others. See “IT” on page 133 for more information.

10.4.3.11 Exception mask registers
The exception mask registers disable the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruc-
tion to change the value of PRIMASK or FAULTMASK. See “MRS” on page 143, “MSR” on page
144, and “CPS” on page 139 for more information.
49
11011B–ATARM–21-Feb-12

10.4.3.12 Priority Mask Register
The PRIMASK register prevents activation of all exceptions with configurable priority. See the
register summary in Table 10-2 on page 44 for its attributes. The bit assignments are:

• PRIMASK
0 = no effect

1 = prevents the activation of all exceptions with configurable priority.

10.4.3.13 Fault Mask Register
The FAULTMASK register prevents activation of all exceptions. See the register summary in
Table 10-2 on page 44 for its attributes. The bit assignments are:

• FAULTMASK
0 = no effect

1 = prevents the activation of all exceptions.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved PRIMASK

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved FAULTMASK
50
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.4.3.14 Base Priority Mask Register
The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is
set to a nonzero value, it prevents the activation of all exceptions with same or lower priority
level as the BASEPRI value. See the register summary in Table 10-2 on page 44 for its attri-
butes. The bit assignments are:

• BASEPRI
Priority mask bits:

0x0000 = no effect

Nonzero = defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” on page 158 for more information. Remember
that higher priority field values correspond to lower exception priorities.

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

BASEPRI
51
11011B–ATARM–21-Feb-12

10.4.3.15 CONTROL register
The CONTROL register controls the stack used and the privilege level for software execution
when the processor is in Thread mode. See the register summary in Table 10-2 on page 44 for
its attributes. The bit assignments are:

• Active stack pointer
Defines the current stack:

0 = MSP is the current stack pointer

1 = PSP is the current stack pointer.

In Handler mode this bit reads as zero and ignores writes.

• Thread mode privilege level
Defines the Thread mode privilege level:

0 = privileged

1 = unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CON-
TROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack and the kernel and
exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, use the MSR instruc-
tion to set the Active stack pointer bit to 1, see “MSR” on page 144.

When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction. This
ensures that instructions after the ISB execute using the new stack pointer. See “ISB” on page 142

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved Active Stack
Pointer

Thread Mode
Privilege

Level
52
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.4.4 Exceptions and interrupts
The Cortex-M3 processor supports interrupts and system exceptions. The processor and the
Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception
changes the normal flow of software control. The processor uses handler mode to handle all
exceptions except for reset. See “Exception entry” on page 69 and “Exception return” on page
70 for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller” on
page 151 for more information.

10.4.5 Data types
The processor:

• supports the following data types:

– 32-bit words

– 16-bit halfwords

– 8-bit bytes

• supports 64-bit data transfer instructions.

• manages all data memory accesses as little-endian. Instruction memory and Private
Peripheral Bus (PPB) accesses are always little-endian. See “Memory regions, types and
attributes” on page 55 for more information.

•

10.4.6 The Cortex Microcontroller Software Interface Standard
For a Cortex-M3 microcontroller system, the Cortex Microcontroller Software Interface Standard
(CMSIS) defines:

• a common way to:

– access peripheral registers

– define exception vectors

• the names of:

– the registers of the core peripherals

– the core exception vectors

• a device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cor-
tex-M3 processor. It also includes optional interfaces for middleware components comprising a
TCP/IP stack and a Flash file system.

CMSIS simplifies software development by enabling the reuse of template code and the combi-
nation of CMSIS-compliant software components from various middleware vendors. Software
vendors can expand the CMSIS to include their peripheral definitions and access functions for
those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions
of the CMSIS functions that address the processor core and the core peripherals.

 This document uses the register short names defined by the CMSIS. In a few cases these differ
from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:
53
11011B–ATARM–21-Feb-12

• “Power management programming hints” on page 74

• “Intrinsic functions” on page 78

• “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 151

• “NVIC programming hints” on page 163.
54
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.5 Memory model
This section describes the processor memory map, the behavior of memory accesses, and the
bit-banding features. The processor has a fixed memory map that provides up to 4GB of
addressable memory. The memory map is:

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic
operations to bit data, see “Bit-banding” on page 59.

The processor reserves regions of the Private peripheral bus (PPB) address range for core
peripheral registers, see “About the Cortex-M3 peripherals” on page 150.

This memory mapping is generic to ARM Cortex-M3 products. To get the specific memory map-
ping of this product, refer to the Memories section of the datasheet.

10.5.1 Memory regions, types and attributes
The memory map split the memory map into regions. Each region has a defined memory type,
and some regions have additional memory attributes. The memory type and attributes determine
the behavior of accesses to the region.

The memory types are:

Vendor-specific
memory

External device

External RAM

Peripheral

SRAM

Code

0xFFFFFFFF

Private peripheral
bus

0xE0100000
0xE00FFFFF

0x9FFFFFFF
0xA0000000

0x5FFFFFFF
0x60000000

0x3FFFFFFF
0x40000000

0x1FFFFFFF
0x20000000

0x00000000

0x40000000 Bit band region

Bit band alias32MB

1MB
0x400FFFFF

0x42000000

0x43FFFFFF

Bit band region

Bit band alias32MB

1MB0x20000000
0x200FFFFF

0x22000000

0x23FFFFFF

1.0GB

1.0GB

0.5GB

0.5GB

0.5GB

0xDFFFFFFF
0xE0000000

1.0MB

511MB
55
11011B–ATARM–21-Feb-12

10.5.1.1 Normal
The processor can re-order transactions for efficiency, or perform speculative reads.

10.5.1.2 Device
The processor preserves transaction order relative to other transactions to Device or Strongly-
ordered memory.

10.5.1.3 Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the
memory system can buffer a write to Device memory, but must not buffer a write to Strongly-
ordered memory.

The additional memory attributes include.

10.5.1.4 Shareable
For a shareable memory region, the memory system provides data synchronization between
bus masters in a system with multiple bus masters, for example, a processor with a DMA
controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, software must ensure data
coherency between the bus masters.

10.5.1.5 Execute Never (XN)
Means the processor prevents instruction accesses. Any attempt to fetch an instruction from an
XN region causes a memory management fault exception.

10.5.2 Memory system ordering of memory accesses
For most memory accesses caused by explicit memory access instructions, the memory system
does not guarantee that the order in which the accesses complete matches the program order of
the instructions, providing this does not affect the behavior of the instruction sequence. Nor-
mally, if correct program execution depends on two memory accesses completing in program
order, software must insert a memory barrier instruction between the memory access instruc-
tions, see “Software ordering of memory accesses” on page 58.

However, the memory system does guarantee some ordering of accesses to Device and
Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs before
A2 in program order, the ordering of the memory accesses caused by two instructions is:

Where:

- Means that the memory system does not guarantee the ordering of the accesses.

Normal access

Device access, non-shareable

Device access, shareable

Strongly-ordered access

Normal
access Non-shareable Shareable

Strongly-
ordered
access

Device access

A1
A2

-

-

-

-

-

<

-

<

-

-

<

<

-

<

<

<

56
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
< Means that accesses are observed in program order, that is, A1 is always observed before A2.

10.5.3 Behavior of memory accesses
The behavior of accesses to each region in the memory map is:

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends
that programs always use the Code region. This is because the processor has separate buses
that enable instruction fetches and data accesses to occur simultaneously.

10.5.3.1 Additional memory access constraints for shared memory
When a system includes shared memory, some memory regions have additional access con-
straints, and some regions are subdivided, as Table 10-5 shows:

Table 10-4. Memory access behavior

Address
range

Memory
region

Memory
type XN Description

0x00000000-
0x1FFFFFFF

Code Normal (1)

1. See “Memory regions, types and attributes” on page 55 for more information.

-
Executable region for program code. You can also put
data here.

0x20000000-
0x3FFFFFFF

SRAM Normal(1) -

Executable region for data. You can also put code
here.

This region includes bit band and bit band alias areas,
see Table 10-6 on page 59.

0x40000000-
0x5FFFFFFF

Peripheral Device(1) XN
This region includes bit band and bit band alias areas,
see Table 10-6 on page 59.

0x60000000-
0x9FFFFFFF

External
RAM

Normal(1) - Executable region for data.

0xA0000000-
0xDFFFFFFF

External
device

Device(1) XN External Device memory

0xE0000000-
0xE00FFFFF

Private
Peripheral
Bus

Strongly-
ordered(1) XN

This region includes the NVIC, System timer, and
system control block.

0xE0100000-
0xFFFFFFFF

Reserved Device(1) XN Reserved

Table 10-5. Memory region share ability policies

Address range Memory region Memory type Shareability

0x00000000-
0x1FFFFFFF

Code Normal (1) -

0x20000000-
0x3FFFFFFF

SRAM Normal(1) -

0x40000000-
0x5FFFFFFF

Peripheral (2) Device(1) -

0x60000000-
0x7FFFFFFF

External RAM Normal(1) -

WBWA(2)

0x80000000-
0x9FFFFFFF

WT(2)
57
11011B–ATARM–21-Feb-12

10.5.4 Software ordering of memory accesses
The order of instructions in the program flow does not always guarantee the order of the corre-
sponding memory transactions. This is because:

• the processor can reorder some memory accesses to improve efficiency, providing this does
not affect the behavior of the instruction sequence.

• the processor has multiple bus interfaces

• memory or devices in the memory map have different wait states

• some memory accesses are buffered or speculative.

“Memory system ordering of memory accesses” on page 56 describes the cases where the
memory system guarantees the order of memory accesses. Otherwise, if the order of memory
accesses is critical, software must include memory barrier instructions to force that ordering. The
processor provides the following memory barrier instructions:

10.5.4.1 DMB
The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions com-
plete before subsequent memory transactions. See “DMB” on page 140.

10.5.4.2 DSB
The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transac-
tions complete before subsequent instructions execute. See “DSB” on page 141.

10.5.4.3 ISB
The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory
transactions is recognizable by subsequent instructions. See “ISB” on page 142.

Use memory barrier instructions in, for example:

• Vector table. If the program changes an entry in the vector table, and then enables the
corresponding exception, use a DMB instruction between the operations. This ensures that if
the exception is taken immediately after being enabled the processor uses the new exception
vector.

• Self-modifying code. If a program contains self-modifying code, use an ISB instruction
immediately after the code modification in the program. This ensures subsequent instruction
execution uses the updated program.

0xA0000000-
0xBFFFFFFF

External device Device(1)

Shareable(1)

-
0xC0000000-
0xDFFFFFFF

Non-
shareable(1)

0xE0000000-
0xE00FFFFF

Private Peripheral
Bus

Strongly-
ordered(1) Shareable(1) -

0xE0100000-
0xFFFFFFFF

Vendor-specific
device(2) Device(1) - -

1. See “Memory regions, types and attributes” on page 55 for more information.

2. The Peripheral and Vendor-specific device regions have no additional access constraints.

Table 10-5. Memory region share ability policies (Continued)

Address range Memory region Memory type Shareability
58
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
• Memory map switching. If the system contains a memory map switching mechanism, use a
DSB instruction after switching the memory map in the program. This ensures subsequent
instruction execution uses the updated memory map.

• Dynamic exception priority change. When an exception priority has to change when the
exception is pending or active, use DSB instructions after the change. This ensures the
change takes effect on completion of the DSB instruction.

• Using a semaphore in multi-master system. If the system contains more than one bus
master, for example, if another processor is present in the system, each processor must use
a DMB instruction after any semaphore instructions, to ensure other bus masters see the
memory transactions in the order in which they were executed.

Memory accesses to Strongly-ordered memory, such as the system control block, do not require
the use of DMB instructions.

10.5.5 Bit-banding
A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region.
The bit-band regions occupy the lowest 1MB of the SRAM and peripheral memory regions.

The memory map has two 32MB alias regions that map to two 1MB bit-band regions:

• accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region, as shown
in Table 10-6

• accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band region, as
shown in Table 10-7.

 A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM
or peripheral bit-band region.

The following formula shows how the alias region maps onto the bit-band region:

bit_word_offset = (byte_offset x 32) + (bit_number x 4)

Table 10-6. SRAM memory bit-banding regions

Address
range

Memory
region Instruction and data accesses

0x20000000-
0x200FFFFF

SRAM bit-band
region

Direct accesses to this memory range behave as SRAM
memory accesses, but this region is also bit addressable
through bit-band alias.

0x22000000-
0x23FFFFFF

SRAM bit-band alias
Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not remapped.

Table 10-7. Peripheral memory bit-banding regions

Address
range

Memory
region Instruction and data accesses

0x40000000-
0x400FFFFF

Peripheral bit-band
alias

Direct accesses to this memory range behave as peripheral
memory accesses, but this region is also bit addressable
through bit-band alias.

0x42000000-
0x43FFFFFF

Peripheral bit-band
region

Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not permitted.
59
11011B–ATARM–21-Feb-12

bit_word_addr = bit_band_base + bit_word_offset

where:

• Bit_word_offset is the position of the target bit in the bit-band memory region.

• Bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit.

• Bit_band_base is the starting address of the alias region.

• Byte_offset is the number of the byte in the bit-band region that contains the targeted bit.

• Bit_number is the bit position, 0-7, of the targeted bit.

Figure 10-2 shows examples of bit-band mapping between the SRAM bit-band alias region and
the SRAM bit-band region:

• The alias word at 0x23FFFFE0 maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFE0 =
0x22000000 + (0xFFFFF*32) + (0*4).

• The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC =
0x22000000 + (0xFFFFF*32) + (7*4).

• The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 =
0x22000000 + (0*32) + (0 *4).

• The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C =
0x22000000+ (0*32) + (7*4).

Figure 10-2. Bit-band mapping

10.5.5.1 Directly accessing an alias region
Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the tar-
geted bit in the bit-band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit,
and writing a value with bit[0] set to 0 writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as
writing 0xFF. Writing 0x00 has the same effect as writing 0x0E.

0x23FFFFE4

0x22000004

0x23FFFFE00x23FFFFE80x23FFFFEC0x23FFFFF00x23FFFFF40x23FFFFF80x23FFFFFC

0x220000000x220000140x220000180x2200001C 0x220000080x22000010 0x2200000C

32MB alias region

0

7 0

07

0x200000000x200000010x200000020x20000003

6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 07 6 5 4 3 2 1

07 6 5 4 3 2 1 6 5 4 3 2 107 6 5 4 3 2 1 07 6 5 4 3 2 1

0x200FFFFC0x200FFFFD0x200FFFFE0x200FFFFF

1MB SRAM bit-band region
60
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Reading a word in the alias region:

• 0x00000000 indicates that the targeted bit in the bit-band region is set to zero

• 0x00000001 indicates that the targeted bit in the bit-band region is set to 1

10.5.5.2 Directly accessing a bit-band region
“Behavior of memory accesses” on page 57 describes the behavior of direct byte, halfword, or
word accesses to the bit-band regions.

10.5.6 Memory endianness
The processor views memory as a linear collection of bytes numbered in ascending order from
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored
word. or “Little-endian format” describes how words of data are stored in memory.

10.5.6.1 Little-endian format
In little-endian format, the processor stores the least significant byte of a word at the lowest-
numbered byte, and the most significant byte at the highest-numbered byte. For example:

10.5.7 Synchronization primitives
The Cortex-M3 instruction set includes pairs of synchronization primitives. These provide a non-
blocking mechanism that a thread or process can use to obtain exclusive access to a memory
location. Software can use them to perform a guaranteed read-modify-write memory update
sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

10.5.7.1 A Load-Exclusive instruction
Used to read the value of a memory location, requesting exclusive access to that location.

10.5.7.2 A Store-Exclusive instruction
Used to attempt to write to the same memory location, returning a status bit to a register. If this
bit is:

0: it indicates that the thread or process gained exclusive access to the memory, and the write
succeeds,

1: it indicates that the thread or process did not gain exclusive access to the memory, and no
write is performed,

The pairs of Load-Exclusive and Store-Exclusive instructions are:

• the word instructions LDREX and STREX

Memory Register

Address A

A+1

lsbyte

msbyte

A+2

A+3

07

B0B1B3 B2
31 2423 1615 8 7 0

B0

B1

B2

B3
61
11011B–ATARM–21-Feb-12

• the halfword instructions LDREXH and STREXH

• the byte instructions LDREXB and STREXB.

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive
instruction.

To perform a guaranteed read-modify-write of a memory location, software must:

• Use a Load-Exclusive instruction to read the value of the location.

• Update the value, as required.

• Use a Store-Exclusive instruction to attempt to write the new value back to the memory
location, and tests the returned status bit. If this bit is:

0: The read-modify-write completed successfully,

1: No write was performed. This indicates that the value returned the first step might be out
of date. The software must retry the read-modify-write sequence,

Software can use the synchronization primitives to implement a semaphores as follows:

• Use a Load-Exclusive instruction to read from the semaphore address to check whether the
semaphore is free.

• If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore
address.

• If the returned status bit from the second step indicates that the Store-Exclusive succeeded
then the software has claimed the semaphore. However, if the Store-Exclusive failed, another
process might have claimed the semaphore after the software performed the first step.

The Cortex-M3 includes an exclusive access monitor, that tags the fact that the processor has
executed a Load-Exclusive instruction. If the processor is part of a multiprocessor system, the
system also globally tags the memory locations addressed by exclusive accesses by each
processor.

The processor removes its exclusive access tag if:

• It executes a CLREX instruction

• It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

• An exception occurs. This means the processor can resolve semaphore conflicts between
different threads.

In a multiprocessor implementation:

• executing a CLREX instruction removes only the local exclusive access tag for the processor

• executing a Store-Exclusive instruction, or an exception. removes the local exclusive access
tags, and all global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX”
on page 100 and “CLREX” on page 102.
62
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.5.8 Programming hints for the synchronization primitives
ANSI C cannot directly generate the exclusive access instructions. Some C compilers provide
intrinsic functions for generation of these instructions:

The actual exclusive access instruction generated depends on the data type of the pointer
passed to the intrinsic function. For example, the following C code generates the require
LDREXB operation:

__ldrex((volatile char *) 0xFF);

10.6 Exception model
This section describes the exception model.

10.6.1 Exception states
Each exception is in one of the following states:

10.6.1.1 Inactive
The exception is not active and not pending.

10.6.1.2 Pending
The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the correspond-
ing interrupt to pending.

10.6.1.3 Active
An exception that is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case both
exceptions are in the active state.

10.6.1.4 Active and pending
The exception is being serviced by the processor and there is a pending exception from the
same source.

10.6.2 Exception types
The exception types are:

10.6.2.1 Reset
Reset is invoked on power up or a warm reset. The exception model treats reset as a special
form of exception. When reset is asserted, the operation of the processor stops, potentially at
any point in an instruction. When reset is deasserted, execution restarts from the address pro-

Table 10-8. C compiler intrinsic functions for exclusive access instructions

Instruction Intrinsic function

LDREX, LDREXH, or
LDREXB

unsigned int __ldrex(volatile void *ptr)

STREX, STREXH, or
STREXB

int __strex(unsigned int val, volatile void *ptr)

CLREX void __clrex(void)
63
11011B–ATARM–21-Feb-12

vided by the reset entry in the vector table. Execution restarts as privileged execution in Thread
mode.

10.6.2.2 Non Maskable Interrupt (NMI)
A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is
the highest priority exception other than reset. It is permanently enabled and has a fixed priority
of -2.

NMIs cannot be:

• Masked or prevented from activation by any other exception.

• Preempted by any exception other than Reset.

10.6.2.3 Hard fault
A hard fault is an exception that occurs because of an error during exception processing, or
because an exception cannot be managed by any other exception mechanism. Hard faults have
a fixed priority of -1, meaning they have higher priority than any exception with configurable
priority.

10.6.2.4 Bus fault
A bus fault is an exception that occurs because of a memory related fault for an instruction or
data memory transaction. This might be from an error detected on a bus in the memory system.

10.6.2.5 Usage fault
A usage fault is an exception that occurs because of a fault related to instruction execution. This
includes:

• an undefined instruction

• an illegal unaligned access

• invalid state on instruction execution

• an error on exception return.

The following can cause a usage fault when the core is configured to report them:

• an unaligned address on word and halfword memory access

• division by zero.

10.6.2.6 SVCall
A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS envi-
ronment, applications can use SVC instructions to access OS kernel functions and device
drivers.

10.6.2.7 PendSV
PendSV is an interrupt-driven request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

10.6.2.8 SysTick
A SysTick exception is an exception the system timer generates when it reaches zero. Software
can also generate a SysTick exception. In an OS environment, the processor can use this
exception as system tick.
64
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.6.2.9 Interrupt (IRQ)
A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use
interrupts to communicate with the processor.

For an asynchronous exception, other than reset, the processor can execute another instruction
between when the exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 10-9 on page 65 shows as having con-
figurable priority, see:

• “System Handler Control and State Register” on page 179

Table 10-9. Properties of the different exception types

Exception
number (1)

1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative
values for exceptions other than interrupts. The IPSR returns the Exception number, see
“Interrupt Program Status Register” on page 48.

IRQ
number (

1)
Exception
type Priority

Vector address
or offset (2)

2. See “Vector table” on page 67 for more information.

Activation

1 - Reset
-3, the
highest

0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 Hard fault -1 0x0000000C -

4 -12
Memory
management
fault

Configurable
 (3)

3. See “System Handler Priority Registers” on page 176.

0x00000010 Synchronous

5 -11 Bus fault
Configurable
(3) 0x00000014

Synchronous when
precise,
asynchronous when
imprecise

6 -10 Usage fault
Configurable
(3) 0x00000018 Synchronous

7-10 - - - Reserved -

11 -5 SVCall
Configurable
(3) 0x0000002C Synchronous

12-13 - - - Reserved -

14 -2 PendSV
Configurable
(3) 0x00000038 Asynchronous

15 -1 SysTick
Configurable
(3) 0x0000003C Asynchronous

16 and
above

0 and
above (4)

4. See the “Peripheral Identifiers” section of the datasheet.

Interrupt (IRQ)
Configurable
 (5)

5. See “Interrupt Priority Registers” on page 158.

0x00000040 and
above (6)

6. Increasing in steps of 4.

Asynchronous
65
11011B–ATARM–21-Feb-12

• “Interrupt Clear-enable Registers” on page 154.

For more information about hard faults, memory management faults, bus faults, and usage
faults, see “Fault handling” on page 70.

10.6.3 Exception handlers
The processor handles exceptions using:

10.6.3.1 Interrupt Service Routines (ISRs)
Interrupts IRQ0 to IRQ32 are the exceptions handled by ISRs.

10.6.3.2 Fault handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the
fault handlers.

10.6.3.3 System handlers
NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are han-
dled by system handlers.

10.6.4 Vector table
The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 10-3 on page 67 shows the order of
the exception vectors in the vector table. The least-significant bit of each vector must be 1, indi-
cating that the exception handler is Thumb code.
66
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 10-3. Vector table

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to
the VTOR to relocate the vector table start address to a different memory location, in the range
0x00000080 to 0x3FFFFF80, see “Vector Table Offset Register” on page 170.

10.6.5 Exception priorities
As Table 10-9 on page 65 shows, all exceptions have an associated priority, with:

• a lower priority value indicating a higher priority

• configurable priorities for all exceptions except Reset, Hard fault.

If software does not configure any priorities, then all exceptions with a configurable priority have
a priority of 0. For information about configuring exception priorities see

• “System Handler Priority Registers” on page 176

• “Interrupt Priority Registers” on page 158.

Initial SP value

Reset

Hard fault

Reserved

Memory management fault

Usage fault

Bus fault

0x0000

0x0004

0x0008

0x000C

0x0010

0x0014

0x0018

Reserved

SVCall

PendSV

Reserved for Debug

Systick

IRQ0

Reserved

0x002C

0x0038

0x003C

0x0040

OffsetException number

2

3

4

5

6

11

12

14

15

16

18

13

7

10

1

Vector

.

.

.

8

9

IRQ1

IRQ2

0x0044

IRQ29

17
0x0048

0x004C

45

.

.

.

.

.

.

0x00B4

IRQ number

-14

-13

-12

-11

-10

-5

-2

-1

0

2

1

29
67
11011B–ATARM–21-Feb-12

 Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and
NMI exceptions, with fixed negative priority values, always have higher priority than any other
exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1]
means that IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1]
is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and
have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a
higher priority exception occurs. If an exception occurs with the same priority as the exception
being handled, the handler is not preempted, irrespective of the exception number. However,
the status of the new interrupt changes to pending.

10.6.6 Interrupt priority grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This
divides each interrupt priority register entry into two fields:

• an upper field that defines the group priority

• a lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is
executing an interrupt exception handler, another interrupt with the same group priority as the
interrupt being handled does not preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines the
order in which they are processed. If multiple pending interrupts have the same group priority
and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see
“Application Interrupt and Reset Control Register” on page 171.

10.6.7 Exception entry and return
Descriptions of exception handling use the following terms:

10.6.7.1 Preemption
When the processor is executing an exception handler, an exception can preempt the exception
handler if its priority is higher than the priority of the exception being handled. See “Interrupt pri-
ority grouping” on page 68 for more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See
“Exception entry” on page 69 more information.

10.6.7.2 Return
This occurs when the exception handler is completed, and:

• there is no pending exception with sufficient priority to be serviced

• the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the
interrupt occurred. See “Exception return” on page 70 for more information.
68
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.6.7.3 Tail-chaining
This mechanism speeds up exception servicing. On completion of an exception handler, if there
is a pending exception that meets the requirements for exception entry, the stack pop is skipped
and control transfers to the new exception handler.

10.6.7.4 Late-arriving
This mechanism speeds up preemption. If a higher priority exception occurs during state saving
for a previous exception, the processor switches to handle the higher priority exception and initi-
ates the vector fetch for that exception. State saving is not affected by late arrival because the
state saved is the same for both exceptions. Therefore the state saving continues uninterrupted.
The processor can accept a late arriving exception until the first instruction of the exception han-
dler of the original exception enters the execute stage of the processor. On return from the
exception handler of the late-arriving exception, the normal tail-chaining rules apply.

10.6.7.5 Exception entry
Exception entry occurs when there is a pending exception with sufficient priority and either:

• the processor is in Thread mode

• the new exception is of higher priority than the exception being handled, in which case the
new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask regis-
ters, see “Exception mask registers” on page 49. An exception with less priority than this is
pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving
exception, the processor pushes information onto the current stack. This operation is referred as
stacking and the structure of eight data words is referred as stack frame. The stack frame con-
tains the following information:

• R0-R3, R12

• Return address

• PSR

• LR.

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.
Unless stack alignment is disabled, the stack frame is aligned to a double-word address. If the
STKALIGN bit of the Configuration Control Register (CCR) is set to 1, stack align adjustment is
performed during stacking.

The stack frame includes the return address. This is the address of the next instruction in the
interrupted program. This value is restored to the PC at exception return so that the interrupted
program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the excep-
tion handler start address from the vector table. When stacking is complete, the processor starts
executing the exception handler. At the same time, the processor writes an EXC_RETURN
value to the LR. This indicates which stack pointer corresponds to the stack frame and what
operation mode the was processor was in before the entry occurred.
69
11011B–ATARM–21-Feb-12

If no higher priority exception occurs during exception entry, the processor starts executing the
exception handler and automatically changes the status of the corresponding pending interrupt
to active.

If another higher priority exception occurs during exception entry, the processor starts executing
the exception handler for this exception and does not change the pending status of the earlier
exception. This is the late arrival case.

10.6.7.6 Exception return
Exception return occurs when the processor is in Handler mode and executes one of the follow-
ing instructions to load the EXC_RETURN value into the PC:

• a POP instruction that includes the PC

• a BX instruction with any register.

• an LDR or LDM instruction with the PC as the destination.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism
relies on this value to detect when the processor has completed an exception handler. The low-
est four bits of this value provide information on the return stack and processor mode. Table 10-
10 shows the EXC_RETURN[3:0] values with a description of the exception return behavior.

The processor sets EXC_RETURN bits[31:4] to 0xFFFFFFF. When this value is loaded into the PC
it indicates to the processor that the exception is complete, and the processor initiates the
exception return sequence.

10.7 Fault handling
Faults are a subset of the exceptions, see “Exception model” on page 63. The following gener-
ate a fault:

– a bus error on:

– an instruction fetch or vector table load

– a data access

Table 10-10. Exception return behavior

EXC_RETURN[3:0] Description

bXXX0 Reserved.

b0001

Return to Handler mode.

Exception return gets state from MSP.
Execution uses MSP after return.

b0011 Reserved.

b01X1 Reserved.

b1001

Return to Thread mode.

Exception return gets state from MSP.

Execution uses MSP after return.

b1101

Return to Thread mode.

Exception return gets state from PSP.
Execution uses PSP after return.

b1X11 Reserved.
70
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
• an internally-detected error such as an undefined instruction or an attempt to change state
with a BX instruction

• attempting to execute an instruction from a memory region marked as Non-Executable (XN).

10.7.1 Fault types
Table 10-11 shows the types of fault, the handler used for the fault, the corresponding fault sta-
tus register, and the register bit that indicates that the fault has occurred. See “Configurable
Fault Status Register” on page 181 for more information about the fault status registers.

10.7.2 Fault escalation and hard faults
All faults exceptions except for hard fault have configurable exception priority, see “System Han-
dler Priority Registers” on page 176. Software can disable execution of the handlers for these
faults, see “System Handler Control and State Register” on page 179.

Usually, the exception priority, together with the values of the exception mask registers, deter-
mines whether the processor enters the fault handler, and whether a fault handler can preempt
another fault handler. as described in “Exception model” on page 63.

In some situations, a fault with configurable priority is treated as a hard fault. This is called prior-
ity escalation, and the fault is described as escalated to hard fault. Escalation to hard fault
occurs when:

• A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard
fault occurs because a fault handler cannot preempt itself because it must have the same
priority as the current priority level.

Table 10-11. Faults

Fault Handler Bit name Fault status register

Bus error on a vector read
Hard fault

VECTTBL “Hard Fault Status
Register” on page 187Fault escalated to a hard fault FORCED

Bus error:

Bus fault

- -

during exception stacking STKERR

“Bus Fault Status Register”
on page 183

during exception unstacking UNSTKERR

during instruction prefetch IBUSERR

Precise data bus error PRECISERR

Imprecise data bus error
IMPRECISER
R

Attempt to access a coprocessor

Usage
fault

NOCP

“Usage Fault Status
Register” on page 185

Undefined instruction UNDEFINSTR

Attempt to enter an invalid instruction
set state (1)

1. Attempting to use an instruction set other than the Thumb instruction set.

INVSTATE

Invalid EXC_RETURN value INVPC

Illegal unaligned load or store UNALIGNED

Divide By 0 DIVBYZERO
71
11011B–ATARM–21-Feb-12

• A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is
because the handler for the new fault cannot preempt the currently executing fault handler.

• An exception handler causes a fault for which the priority is the same as or lower than the
currently executing exception.

• A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not
escalate to a hard fault. This means that if a corrupted stack causes a fault, the fault handler
executes even though the stack push for the handler failed. The fault handler operates but the
stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any
exception other than Reset, NMI, or another hard fault.

10.7.3 Fault status registers and fault address registers
The fault status registers indicate the cause of a fault. For bus faults and memory management
faults, the fault address register indicates the address accessed by the operation that caused
the fault, as shown in Table 10-12.

10.7.4 Lockup
The processor enters a lockup state if a hard fault occurs when executing the hard fault han-
dlers. When the processor is in lockup state it does not execute any instructions. The processor
remains in lockup state until:

• it is reset

10.8 Power management
The Cortex-M3 processor sleep modes reduce power consumption:

• Backup Mode

• Wait Mode

• Sleep Mode

Table 10-12. Fault status and fault address registers

Handler
Status register
name

Address register
name Register description

Hard fault HFSR -
“Hard Fault Status Register” on page
187

Memory
management fault

MMFSR MMFAR

“Memory Management Fault Status
Register” on page 182

“Memory Management Fault Address
Register” on page 188

Bus fault BFSR BFAR
“Bus Fault Status Register” on page 183

“Bus Fault Address Register” on page
189

Usage fault UFSR -
“Usage Fault Status Register” on page
185
72
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
The SLEEPDEEP bit of the SCR selects which sleep mode is used, see “System Control Regis-
ter” on page 173. For more information about the behavior of the sleep modes see “Low Power
Modes” in the PMC section of the datasheet.

This section describes the mechanisms for entering sleep mode, and the conditions for waking
up from sleep mode.

10.8.1 Entering sleep mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the
processor. Therefore software must be able to put the processor back into sleep mode after
such an event. A program might have an idle loop to put the processor back to sleep mode.

10.8.1.1 Wait for interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the proces-
sor executes a WFI instruction it stops executing instructions and enters sleep mode. See “WFI”
on page 149 for more information.

10.8.1.2 Wait for event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an
one-bit event register. When the processor executes a WFE instruction, it checks this register:

• if the register is 0 the processor stops executing instructions and enters sleep mode

• if the register is 1 the processor clears the register to 0 and continues executing instructions
without entering sleep mode.

See “WFE” on page 148 for more information.

10.8.1.3 Sleep-on-exit
If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of
an exception handler it returns to Thread mode and immediately enters sleep mode. Use this
mechanism in applications that only require the processor to run when an exception occurs.

10.8.2 Wakeup from sleep mode
The conditions for the processor to wakeup depend on the mechanism that cause it to enter
sleep mode.

10.8.2.1 Wakeup from WFI or sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit to 1
and the FAULTMASK bit to 0. If an interrupt arrives that is enabled and has a higher priority than
current exception priority, the processor wakes up but does not execute the interrupt handler
until the processor sets PRIMASK to zero. For more information about PRIMASK and FAULT-
MASK see “Exception mask registers” on page 49.

10.8.2.2 Wakeup from WFE
The processor wakes up if:

• it detects an exception with sufficient priority to cause exception entry
73
11011B–ATARM–21-Feb-12

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an
event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to
cause exception entry. For more information about the SCR see “System Control Register” on
page 173.

10.8.3 Power management programming hints
ANSI C cannot directly generate the WFI and WFE instructions. The CMSIS provides the follow-
ing intrinsic functions for these instructions:

void __WFE(void) // Wait for Event

void __WFE(void) // Wait for Interrupt
74
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.9 Instruction set summary
The processor implements a version of the Thumb instruction set. Table 10-13 lists the sup-
ported instructions.

 In Table 10-13:

• angle brackets, <>, enclose alternative forms of the operand

• braces, {}, enclose optional operands

• the Operands column is not exhaustive

• Op2 is a flexible second operand that can be either a register or a constant

• most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 10-13. Cortex-M3 instructions

Mnemonic Operands Brief description Flags Page

ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V page 105

ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V page 105

ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C,V page 105

ADR Rd, label Load PC-relative address - page 88

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C page 108

ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C page 110

B label Branch - page 130

BFC Rd, #lsb, #width Bit Field Clear - page 126

BFI Rd, Rn, #lsb, #width Bit Field Insert - page 126

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C page 108

BKPT #imm Breakpoint - page 138

BL label Branch with Link - page 130

BLX Rm Branch indirect with Link - page 130

BX Rm Branch indirect - page 130

CBNZ Rn, label Compare and Branch if Non Zero - page 132

CBZ Rn, label Compare and Branch if Zero - page 132

CLREX - Clear Exclusive - page 102

CLZ Rd, Rm Count leading zeros - page 112

CMN, CMNS Rn, Op2 Compare Negative N,Z,C,V page 113

CMP, CMPS Rn, Op2 Compare N,Z,C,V page 113

CPSID iflags
Change Processor State, Disable
Interrupts

- page 139

CPSIE iflags
Change Processor State, Enable
Interrupts

- page 139

DMB - Data Memory Barrier - page 140

DSB - Data Synchronization Barrier - page 141

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C page 108
75
11011B–ATARM–21-Feb-12

ISB - Instruction Synchronization Barrier - page 142

IT - If-Then condition block - page 133

LDM Rn{!}, reglist Load Multiple registers, increment after - page 97

LDMDB,
LDMEA

Rn{!}, reglist
Load Multiple registers, decrement
before

- page 97

LDMFD,
LDMIA

Rn{!}, reglist Load Multiple registers, increment after - page 97

LDR Rt, [Rn, #offset] Load Register with word - page 92

LDRB,
LDRBT

Rt, [Rn, #offset] Load Register with byte - page 92

LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes - page 92

LDREX Rt, [Rn, #offset] Load Register Exclusive - page 92

LDREXB Rt, [Rn] Load Register Exclusive with byte - page 92

LDREXH Rt, [Rn] Load Register Exclusive with halfword - page 92

LDRH,
LDRHT

Rt, [Rn, #offset] Load Register with halfword - page 92

LDRSB,
LDRSBT

Rt, [Rn, #offset] Load Register with signed byte - page 92

LDRSH,
LDRSHT

Rt, [Rn, #offset] Load Register with signed halfword - page 92

LDRT Rt, [Rn, #offset] Load Register with word - page 92

LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C page 110

LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C page 110

MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result - page 120

MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result - page 120

MOV, MOVS Rd, Op2 Move N,Z,C page 114

MOVT Rd, #imm16 Move Top - page 116

MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C page 114

MRS Rd, spec_reg
Move from special register to general
register

- page 143

MSR spec_reg, Rm
Move from general register to special
register

N,Z,C,V page 144

MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z page 120

MVN, MVNS Rd, Op2 Move NOT N,Z,C page 114

NOP - No Operation - page 145

ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C page 108

ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C page 108

POP reglist Pop registers from stack - page 99

PUSH reglist Push registers onto stack - page 99

Table 10-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
76
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
RBIT Rd, Rn Reverse Bits - page 117

REV Rd, Rn Reverse byte order in a word - page 117

REV16 Rd, Rn Reverse byte order in each halfword - page 117

REVSH Rd, Rn
Reverse byte order in bottom halfword
and sign extend

- page 117

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C page 110

RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C page 110

RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C,V page 105

SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V page 105

SBFX Rd, Rn, #lsb, #width Signed Bit Field Extract - page 127

SDIV {Rd,} Rn, Rm Signed Divide - page 122

SEV - Send Event - page 146

SMLAL RdLo, RdHi, Rn, Rm
Signed Multiply with Accumulate (32 x
32 + 64), 64-bit result

- page 121

SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result - page 121

SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q page 123

STM Rn{!}, reglist Store Multiple registers, increment after - page 97

STMDB,
STMEA

Rn{!}, reglist
Store Multiple registers, decrement
before

- page 97

STMFD,
STMIA

Rn{!}, reglist Store Multiple registers, increment after - page 97

STR Rt, [Rn, #offset] Store Register word - page 92

STRB,
STRBT

Rt, [Rn, #offset] Store Register byte - page 92

STRD Rt, Rt2, [Rn, #offset] Store Register two words - page 92

STREX Rd, Rt, [Rn, #offset] Store Register Exclusive - page 100

STREXB Rd, Rt, [Rn] Store Register Exclusive byte - page 100

STREXH Rd, Rt, [Rn] Store Register Exclusive halfword - page 100

STRH,
STRHT

Rt, [Rn, #offset] Store Register halfword - page 92

STRT Rt, [Rn, #offset] Store Register word - page 92

SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V page 105

SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V page 105

SVC #imm Supervisor Call - page 147

SXTB {Rd,} Rm {,ROR #n} Sign extend a byte - page 128

SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword - page 128

TBB [Rn, Rm] Table Branch Byte - page 135

TBH [Rn, Rm, LSL #1] Table Branch Halfword - page 135

Table 10-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
77
11011B–ATARM–21-Feb-12

10.10 Intrinsic functions
ANSI cannot directly access some Cortex-M3 instructions. This section describes intrinsic func-
tions that can generate these instructions, provided by the CMIS and that might be provided by a
C compiler. If a C compiler does not support an appropriate intrinsic function, you might have to
use inline assembler to access some instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ANSI cannot
directly access:

TEQ Rn, Op2 Test Equivalence N,Z,C page 118

TST Rn, Op2 Test N,Z,C page 118

UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract - page 127

UDIV {Rd,} Rn, Rm Unsigned Divide - page 122

UMLAL RdLo, RdHi, Rn, Rm
Unsigned Multiply with Accumulate
(32 x 32 + 64), 64-bit result

- page 121

UMULL RdLo, RdHi, Rn, Rm
Unsigned Multiply (32 x 32), 64-bit
result

- page 121

USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q page 123

UXTB {Rd,} Rm {,ROR #n} Zero extend a byte - page 128

UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword - page 128

WFE - Wait For Event - page 148

WFI - Wait For Interrupt - page 149

Table 10-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page

Table 10-14. CMSIS intrinsic functions to generate some Cortex-M3 instructions

Instruction CMSIS intrinsic function

CPSIE I void __enable_irq(void)

CPSID I void __disable_irq(void)

CPSIE F void __enable_fault_irq(void)

CPSID F void __disable_fault_irq(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __REV(uint32_t int value)

REV16 uint32_t __REV16(uint32_t int value)

REVSH uint32_t __REVSH(uint32_t int value)

RBIT uint32_t __RBIT(uint32_t int value)

SEV void __SEV(void)

WFE void __WFE(void)

WFI void __WFI(void)
78
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
The CMSIS also provides a number of functions for accessing the special registers using MRS
and MSR instructions:

10.11 About the instruction descriptions
The following sections give more information about using the instructions:

• “Operands” on page 79

• “Restrictions when using PC or SP” on page 79

• “Flexible second operand” on page 80

• “Shift Operations” on page 81

• “Address alignment” on page 83

• “PC-relative expressions” on page 84

• “Conditional execution” on page 84

• “Instruction width selection” on page 86.

10.11.1 Operands
An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination register.
When there is a destination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. See
“Flexible second operand” .

10.11.2 Restrictions when using PC or SP
Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack
Pointer (SP) for the operands or destination register. See instruction descriptions for more
information.

Table 10-15. CMSIS intrinsic functions to access the special registers

Special register Access CMSIS function

PRIMASK
Read uint32_t __get_PRIMASK (void)

Write void __set_PRIMASK (uint32_t value)

FAULTMASK
Read uint32_t __get_FAULTMASK (void)

Write void __set_FAULTMASK (uint32_t value)

BASEPRI
Read uint32_t __get_BASEPRI (void)

Write void __set_BASEPRI (uint32_t value)

CONTROL
Read uint32_t __get_CONTROL (void)

Write void __set_CONTROL (uint32_t value)

MSP
Read uint32_t __get_MSP (void)

Write void __set_MSP (uint32_t TopOfMainStack)

PSP
Read uint32_t __get_PSP (void)

Write void __set_PSP (uint32_t TopOfProcStack)
79
11011B–ATARM–21-Feb-12

Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be
1 for correct execution, because this bit indicates the required instruction set, and the Cortex-M3
processor only supports Thumb instructions.

10.11.3 Flexible second operand
Many general data processing instructions have a flexible second operand. This is shown as
Operand2 in the descriptions of the syntax of each instruction.

Operand2 can be a:

• “Constant”

• “Register with optional shift” on page 80

10.11.3.1 Constant
You specify an Operand2 constant in the form:

#constant

where constant can be:

• any constant that can be produced by shifting an 8-bit value left by any number of bits within
a 32-bit word

• any constant of the form 0x00XY00XY

• any constant of the form 0xXY00XY00

• any constant of the form 0xXYXYXYXY.

 In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values.
These are described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS,
EORS, BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is
greater than 255 and can be produced by shifting an 8-bit value. These instructions do not affect
the carry flag if Operand2 is any other constant.

10.11.3.2 Instruction substitution
Your assembler might be able to produce an equivalent instruction in cases where you specify a
constant that is not permitted. For example, an assembler might assemble the instruction CMP
Rd, #0xFFFFFFFE as the equivalent instruction CMN Rd, #0x2.

10.11.3.3 Register with optional shift
You specify an Operand2 register in the form:

Rm {, shift}

where:

Rm is the register holding the data for the second operand.

shift is an optional shift to be applied to Rm. It can be one of:

ASR #n arithmetic shift right n bits, 1 ≤ n ≤ 32.

LSL #n logical shift left n bits, 1 ≤ n ≤ 31.
80
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
LSR #n logical shift right n bits, 1 ≤ n ≤ 32.

ROR #n rotate right n bits, 1 ≤ n ≤ 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register Rm remains unchanged. Specifying a
register with shift also updates the carry flag when used with certain instructions. For information
on the shift operations and how they affect the carry flag, see “Shift Operations”

10.11.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the
shift length. Register shift can be performed:

• directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a
destination register

• during the calculation of Operand2 by the instructions that specify the second operand as a
register with shift, see “Flexible second operand” on page 80. The result is used by the
instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or “Flexible second operand” on page 80. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length is 0.
The following sub-sections describe the various shift operations and how they affect the carry
flag. In these descriptions, Rm is the register containing the value to be shifted, and n is the shift
length.

10.11.4.1 ASR
Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 10-4 on page 81.

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result
being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.

 • If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.

• If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 10-4. ASR #3

31 1 0

Carry
Flag

...

2345
81
11011B–ATARM–21-Feb-12

10.11.4.2 LSR
Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0.
See Figure 10-5.

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is
regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.

 • If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 10-5. LSR #3

10.11.4.3 LSL
Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0.
See Figure 10-6 on page 82.

You can use he LSL #n operation to multiply the value in the register Rm by 2n, if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is
updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect
the carry flag when used with LSL #0.

 • If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 10-6. LSL #3

31 1 0

Carry
Flag

...

000

2345

31 1 0

Carry
Flag ...

000

2345
82
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.11.4.4 ROR
Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. And it moves the right-hand n bits of the register into
the left-hand n bits of the result. See Figure 10-7.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
rotation, bit[n-1], of the register Rm.

 • If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

• ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 10-7. ROR #3

10.11.4.5 RRX
Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies
the carry flag into bit[31] of the result. See Figure 10-8 on page 83.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of
the register Rm.

Figure 10-8. RRX

10.11.5 Address alignment
An aligned access is an operation where a word-aligned address is used for a word, dual word,
or multiple word access, or where a halfword-aligned address is used for a halfword access.
Byte accesses are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:

• LDR, LDRT

• LDRH, LDRHT

• LDRSH, LDRSHT

• STR, STRT

• STRH, STRHT

31 1 0

Carry
Flag

...

2345

31 30 1 0

Carry
Flag

... ...
83
11011B–ATARM–21-Feb-12

All other load and store instructions generate a usage fault exception if they perform an
unaligned access, and therefore their accesses must be address aligned. For more information
about usage faults see “Fault handling” on page 70.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory
regions might not support unaligned accesses. Therefore, ARM recommends that programmers
ensure that accesses are aligned. To avoid accidental generation of unaligned accesses, use
the UNALIGN_TRP bit in the Configuration and Control Register to trap all unaligned accesses,
see “Configuration and Control Register” on page 174.

10.11.6 PC-relative expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or lit-
eral data. It is represented in the instruction as the PC value plus or minus a numeric offset. The
assembler calculates the required offset from the label and the address of the current instruc-
tion. If the offset is too big, the assembler produces an error.

 • For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current
instruction plus 4 bytes.

• For all other instructions that use labels, the value of the PC is the address of the current
instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

• Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus
or minus a number, or an expression of the form [PC, #number].

10.11.7 Conditional execution
Most data processing instructions can optionally update the condition flags in the Application
Program Status Register (APSR) according to the result of the operation, see “Application Pro-
gram Status Register” on page 47. Some instructions update all flags, and some only update a
subset. If a flag is not updated, the original value is preserved. See the instruction descriptions
for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another instruc-
tion, either:

• immediately after the instruction that updated the flags

• after any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code
suffixes to instructions. See Table 10-16 on page 85 for a list of the suffixes to add to instructions
to make them conditional instructions. The condition code suffix enables the processor to test a
condition based on the flags. If the condition test of a conditional instruction fails, the instruction:

• does not execute

• does not write any value to its destination register

• does not affect any of the flags

• does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction
block. See “IT” on page 133 for more information and restrictions when using the IT instruction.
Depending on the vendor, the assembler might automatically insert an IT instruction if you have
conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch
on the result.
84
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
This section describes:

• “The condition flags”

• “Condition code suffixes” .

10.11.7.1 The condition flags
The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.

Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

V Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR see “Program Status Register” on page 46.

A carry occurs:

• if the result of an addition is greater than or equal to 232

• if the result of a subtraction is positive or zero

• as the result of an inline barrel shifter operation in a move or logical instruction.

Overflow occurs if the result of an add, subtract, or compare is greater than or equal to 231, or
less than –231.

Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

10.11.7.2 Condition code suffixes
The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An instruction
with a condition code is only executed if the condition code flags in the APSR meet the specified
condition. Table 10-16 shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch instruc-
tions in code.

Table 10-16 also shows the relationship between condition code suffixes and the N, Z, C, and V
flags.

Table 10-16. Condition code suffixes

Suffix Flags Meaning

EQ Z = 1 Equal

NE Z = 0 Not equal

CS or
HS

C = 1 Higher or same, unsigned ≥

CC or
LO

C = 0 Lower, unsigned <

MI N = 1 Negative

PL N = 0 Positive or zero

VS V = 1 Overflow
85
11011B–ATARM–21-Feb-12

10.11.7.3 Absolute value
The example below shows the use of a conditional instruction to find the absolute value of a number. R0 = ABS(R1).

MOVS R0, R1 ; R0 = R1, setting flags
IT MI ; IT instruction for the negative condition
RSBMI R0, R1, #0 ; If negative, R0 = -R1

10.11.7.4 Compare and update value
The example below shows the use of conditional instructions to update the value of R4 if the signed values R0 is greater
than R1 and R2 is greater than R3.

CMP R0, R1 ; Compare R0 and R1, setting flags
ITT GT ; IT instruction for the two GT conditions
CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting flags
MOVGT R4, R5 ; If still 'greater than', do R4 = R5

10.11.8 Instruction width selection
There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding
depending on the operands and destination register specified. For some of these instructions,
you can force a specific instruction size by using an instruction width suffix. The .W suffix forces
a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction
encoding of the requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the operand is the
label of an instruction or literal data, as in the case of branch instructions. This is because the
assembler might not automatically generate the right size encoding.

10.11.8.1 Instruction width selection
To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The exam-
ple below shows instructions with the instruction width suffix.

BCS.W label ; creates a 32-bit instruction even for a short branch

ADDS.W R0, R0, R1 ; creates a 32-bit instruction even though the same
; operation can be done by a 16-bit instruction

VC V = 0 No overflow

HI C = 1 and Z = 0 Higher, unsigned >

LS C = 0 or Z = 1 Lower or same, unsigned ≤

GE N = V Greater than or equal, signed ≥

LT N ! = V Less than, signed <

GT Z = 0 and N = V Greater than, signed >

LE Z = 1 and N ! = V Less than or equal, signed ≤

AL
Can have any
value

Always. This is the default when no suffix is
specified.

Table 10-16. Condition code suffixes (Continued)

Suffix Flags Meaning
86
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.12 Memory access instructions
Table 10-17 shows the memory access instructions:

Table 10-17. Memory access instructions

Mnemonic Brief description See

ADR Load PC-relative address “ADR” on page 88

CLREX Clear Exclusive “CLREX” on page 102

LDM{mode} Load Multiple registers “LDM and STM” on page 97

LDR{type}
Load Register using immediate
offset

“LDR and STR, immediate offset” on
page 89

LDR{type} Load Register using register offset
“LDR and STR, register offset” on page
92

LDR{type}T
Load Register with unprivileged
access

“LDR and STR, unprivileged” on page 94

LDR
Load Register using PC-relative
address

“LDR, PC-relative” on page 95

LDREX{type} Load Register Exclusive “LDREX and STREX” on page 100

POP Pop registers from stack “PUSH and POP” on page 99

PUSH Push registers onto stack “PUSH and POP” on page 99

STM{mode} Store Multiple registers “LDM and STM” on page 97

STR{type}
Store Register using immediate
offset

“LDR and STR, immediate offset” on
page 89

STR{type} Store Register using register offset
“LDR and STR, register offset” on page
92

STR{type}T
Store Register with unprivileged
access

“LDR and STR, unprivileged” on page 94

STREX{type} Store Register Exclusive “LDREX and STREX” on page 100
87
11011B–ATARM–21-Feb-12

10.12.1 ADR
Load PC-relative address.

10.12.1.1 Syntax
ADR{cond} Rd, label

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

label is a PC-relative expression. See “PC-relative expressions” on page 84.

10.12.1.2 Operation
ADR determines the address by adding an immediate value to the PC, and writes the result to
the destination register.

ADR produces position-independent code, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that
bit[0] of the address you generate is set to1 for correct execution.

Values of label must be within the range of −4095 to +4095 from the address in the PC.

You might have to use the .W suffix to get the maximum offset range or to generate addresses
that are not word-aligned. See “Instruction width selection” on page 86.

10.12.1.3 Restrictions
Rd must not be SP and must not be PC.

10.12.1.4 Condition flags
This instruction does not change the flags.

10.12.1.5 Examples
ADR R1, TextMessage ; Write address value of a location labelled as

; TextMessage to R1
88
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.12.2 LDR and STR, immediate offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate
offset.

10.12.2.1 Syntax
op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

op{type}{cond} Rt, [Rn], #offset ; post-indexed

opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words

opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words

opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 84.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.

Rt2 is the additional register to load or store for two-word operations.

10.12.2.2 Operation
LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

10.12.2.3 Offset addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access. The register Rn is unaltered. The assem-
bly language syntax for this mode is:

[Rn, #offset]

10.12.2.4 Pre-indexed addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access and written back into the register Rn. The
assembly language syntax for this mode is:
89
11011B–ATARM–21-Feb-12

[Rn, #offset]!

10.12.2.5 Post-indexed addressing
The address obtained from the register Rn is used as the address for the memory access. The
offset value is added to or subtracted from the address, and written back into the register Rn.
The assembly language syntax for this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can
either be signed or unsigned. See “Address alignment” on page 83.

Table 10-18 shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

10.12.2.6 Restrictions
For load instructions:

• Rt can be SP or PC for word loads only

• Rt must be different from Rt2 for two-word loads

• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:

• bit[0] of the loaded value must be 1 for correct execution

• a branch occurs to the address created by changing bit[0] of the loaded value to 0

• if the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

• Rt can be SP for word stores only

• Rt must not be PC

• Rn must not be PC

• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

10.12.2.7 Condition flags
These instructions do not change the flags.

Table 10-18. Offset ranges

Instruction type Immediate offset Pre-indexed Post-indexed

Word, halfword, signed
halfword, byte, or signed
byte

−255 to 4095 −255 to 255 −255 to 255

Two words
multiple of 4 in the
range −1020 to
1020

multiple of 4 in the
range −1020 to
1020

multiple of 4 in the
range −1020 to
1020
90
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.12.2.8 Examples
LDR R8, [R10] ; Loads R8 from the address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word

; 960 bytes above the address in R5, and
; increments R5 by 960.

STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the
; address in R3, and load R9 from a word 36
; bytes above the address in R3

STRD R0, R1, [R8], #-16 ; Store R0 to address in R8, and store R1 to
; a word 4 bytes above the address in R8,
; and then decrement R8 by 16.
91
11011B–ATARM–21-Feb-12

10.12.3 LDR and STR, register offset
Load and Store with register offset.

10.12.3.1 Syntax
op{type}{cond} Rt, [Rn, Rm {, LSL #n}]

where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 84.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.

LSL #n is an optional shift, with n in the range 0 to 3.

10.12.3.2 Operation
LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is
specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or unsigned. See “Address alignment” on page 83.

10.12.3.3 Restrictions
In these instructions:

• Rn must not be PC

• Rm must not be SP and must not be PC

• Rt can be SP only for word loads and word stores

• Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

• bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address

• if the instruction is conditional, it must be the last instruction in the IT block.
92
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.12.3.4 Condition flags
These instructions do not change the flags.

10.12.3.5 Examples
STR R0, [R5, R1] ; Store value of R0 into an address equal to

; sum of R5 and R1
LDRSB R0, [R5, R1, LSL #1] ; Read byte value from an address equal to

; sum of R5 and two times R1, sign extended it
; to a word value and put it in R0

STR R0, [R1, R2, LSL #2] ; Stores R0 to an address equal to sum of R1
; and four times R2
93
11011B–ATARM–21-Feb-12

10.12.4 LDR and STR, unprivileged
Load and Store with unprivileged access.

10.12.4.1 Syntax
op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset

where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 84.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.

10.12.4.2 Operation
These load and store instructions perform the same function as the memory access instructions
with immediate offset, see “LDR and STR, immediate offset” on page 89. The difference is that
these instructions have only unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as nor-
mal memory access instructions with immediate offset.

10.12.4.3 Restrictions
In these instructions:

• Rn must not be PC

• Rt must not be SP and must not be PC.

10.12.4.4 Condition flags
These instructions do not change the flags.

10.12.4.5 Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivileged access
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to

; sum of R2 and 8 into R2, with unprivileged access
94
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.12.5 LDR, PC-relative
Load register from memory.

10.12.5.1 Syntax
LDR{type}{cond} Rt, label

LDRD{cond} Rt, Rt2, label ; Load two words

where:

type is one of:

B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.

H unsigned halfword, zero extend to 32 bits.

SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 84.

Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative expressions” on page 84.

10.12.5.2 Operation
LDR loads a register with a value from a PC-relative memory address. The memory address is
specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or unsigned. See “Address alignment” on page 83.

label must be within a limited range of the current instruction. Table 10-19 shows the possible
offsets between label and the PC.

 You might have to use the .W suffix to get the maximum offset range. See “Instruction width
selection” on page 86.

10.12.5.3 Restrictions
In these instructions:

• Rt can be SP or PC only for word loads

• Rt2 must not be SP and must not be PC

• Rt must be different from Rt2.

When Rt is PC in a word load instruction:

Table 10-19. Offset ranges

Instruction type Offset range

Word, halfword, signed halfword, byte, signed
byte

−4095 to 4095

Two words −1020 to 1020
95
11011B–ATARM–21-Feb-12

• bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address

• if the instruction is conditional, it must be the last instruction in the IT block.

10.12.5.4 Condition flags
These instructions do not change the flags.

10.12.5.5 Examples
LDR R0, LookUpTable ; Load R0 with a word of data from an address

; labelled as LookUpTable
LDRSB R7, localdata ; Load a byte value from an address labelled

; as localdata, sign extend it to a word
; value, and put it in R7
96
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.12.6 LDM and STM
Load and Store Multiple registers.

10.12.6.1 Syntax
op{addr_mode}{cond} Rn{!}, reglist

where:

op is one of:

LDM Load Multiple registers.

STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.

DB Decrement address Before each access.

cond is an optional condition code, see “Conditional execution” on page 84.

Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.

If ! is present the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can
contain register ranges. It must be comma separated if it contains more than one register or reg-
ister range, see “Examples” on page 98.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full
Descending stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending
stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto
Empty Ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending
stacks

10.12.6.2 Operation
LDM instructions load the registers in reglist with word values from memory addresses based on
Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on
Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the
accesses are at 4-byte intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of reg-
isters in reglist. The accesses happens in order of increasing register numbers, with the lowest
numbered register using the lowest memory address and the highest number register using the
highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n-1) is written
back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at
4-byte intervals ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist.
97
11011B–ATARM–21-Feb-12

The accesses happen in order of decreasing register numbers, with the highest numbered regis-
ter using the highest memory address and the lowest number register using the lowest memory
address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” on page
99 for details.

10.12.6.3 Restrictions
In these instructions:

• Rn must not be PC

• reglist must not contain SP

• in any STM instruction, reglist must not contain PC

• in any LDM instruction, reglist must not contain PC if it contains LR

• reglist must not contain Rn if you specify the writeback suffix.

When PC is in reglist in an LDM instruction:

• bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to
this halfword-aligned address

• if the instruction is conditional, it must be the last instruction in the IT block.

10.12.6.4 Condition flags
These instructions do not change the flags.

10.12.6.5 Examples
LDM R8,{R0,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!,{R3-R6,R11,R12}

10.12.6.6 Incorrect examples
STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list
98
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.12.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

10.12.7.1 Syntax
PUSH{cond} reglist

POP{cond} reglist

where:

cond is an optional condition code, see “Conditional execution” on page 84.

reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges.
It must be comma separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for
the access based on SP, and with the final address for the access written back to the SP. PUSH
and POP are the preferred mnemonics in these cases.

10.12.7.2 Operation
PUSH stores registers on the stack in order of decreasing the register numbers, with the highest
numbered register using the highest memory address and the lowest numbered register using
the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest num-
bered register using the lowest memory address and the highest numbered register using the
highest memory address.

See “LDM and STM” on page 97 for more information.

10.12.7.3 Restrictions
In these instructions:

• reglist must not contain SP

• for the PUSH instruction, reglist must not contain PC

• for the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

• bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to
this halfword-aligned address

• if the instruction is conditional, it must be the last instruction in the IT block.

10.12.7.4 Condition flags
These instructions do not change the flags.

10.12.7.5 Examples
PUSH {R0,R4-R7}
PUSH {R2,LR}
POP {R0,R10,PC}
99
11011B–ATARM–21-Feb-12

10.12.8 LDREX and STREX
Load and Store Register Exclusive.

10.12.8.1 Syntax
LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

10.12.8.2 Operation
LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory
address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a
memory address. The address used in any Store-Exclusive instruction must be the same as the
address in the most recently executed Load-exclusive instruction. The value stored by the Store-
Exclusive instruction must also have the same data size as the value loaded by the preceding
Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see “Syn-
chronization primitives” on page 61

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does
not perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction
writes 0 to the destination register, it is guaranteed that no other process in the system has
accessed the memory location between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-
Exclusive and Store-Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that
used in the preceding Load-Exclusive instruction is unpredictable.

10.12.8.3 Restrictions
In these instructions:

• do not use PC

• do not use SP for Rd and Rt

• for STREX, Rd must be different from both Rt and Rn

• the value of offset must be a multiple of four in the range 0-1020.
100
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.12.8.4 Condition flags
These instructions do not change the flags.

10.12.8.5 Examples
MOV R1, #0x1 ; Initialize the ‘lock taken’ value

try
LDREX R0, [LockAddr] ; Load the lock value
CMP R0, #0 ; Is the lock free?
ITT EQ ; IT instruction for STREXEQ and CMPEQ
STREXEQ R0, R1, [LockAddr] ; Try and claim the lock
CMPEQ R0, #0 ; Did this succeed?
BNE try ; No – try again
.... ; Yes – we have the lock
101
11011B–ATARM–21-Feb-12

10.12.9 CLREX
Clear Exclusive.

10.12.9.1 Syntax
CLREX{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 84.

10.12.9.2 Operation
Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination
register and fail to perform the store. It is useful in exception handler code to force the failure of
the store exclusive if the exception occurs between a load exclusive instruction and the match-
ing store exclusive instruction in a synchronization operation.

See “Synchronization primitives” on page 61 for more information.

10.12.9.3 Condition flags
These instructions do not change the flags.

10.12.9.4 Examples
CLREX
102
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.13 General data processing instructions
Table 10-20 shows the data processing instructions:

Table 10-20. Data processing instructions

Mnemonic Brief description See

ADC Add with Carry
“ADD, ADC, SUB, SBC, and RSB” on
page 105

ADD Add
“ADD, ADC, SUB, SBC, and RSB” on
page 105

ADDW Add
“ADD, ADC, SUB, SBC, and RSB” on
page 105

AND Logical AND
“AND, ORR, EOR, BIC, and ORN” on
page 108

ASR Arithmetic Shift Right
“ASR, LSL, LSR, ROR, and RRX” on page
110

BIC Bit Clear
“AND, ORR, EOR, BIC, and ORN” on
page 108

CLZ Count leading zeros “CLZ” on page 112

CMN Compare Negative “CMP and CMN” on page 113

CMP Compare “CMP and CMN” on page 113

EOR Exclusive OR
“AND, ORR, EOR, BIC, and ORN” on
page 108

LSL Logical Shift Left
“ASR, LSL, LSR, ROR, and RRX” on page
110

LSR Logical Shift Right
“ASR, LSL, LSR, ROR, and RRX” on page
110

MOV Move “MOV and MVN” on page 114

MOVT Move Top “MOVT” on page 116

MOVW Move 16-bit constant “MOV and MVN” on page 114

MVN Move NOT “MOV and MVN” on page 114

ORN Logical OR NOT
“AND, ORR, EOR, BIC, and ORN” on
page 108

ORR Logical OR
“AND, ORR, EOR, BIC, and ORN” on
page 108

RBIT Reverse Bits
“REV, REV16, REVSH, and RBIT” on
page 117

REV Reverse byte order in a word
“REV, REV16, REVSH, and RBIT” on
page 117

REV16 Reverse byte order in each halfword
“REV, REV16, REVSH, and RBIT” on
page 117

REVSH
Reverse byte order in bottom halfword and
sign extend

“REV, REV16, REVSH, and RBIT” on
page 117

ROR Rotate Right
“ASR, LSL, LSR, ROR, and RRX” on page
110
103
11011B–ATARM–21-Feb-12

RRX Rotate Right with Extend
“ASR, LSL, LSR, ROR, and RRX” on page
110

RSB Reverse Subtract
“ADD, ADC, SUB, SBC, and RSB” on
page 105

SBC Subtract with Carry
“ADD, ADC, SUB, SBC, and RSB” on
page 105

SUB Subtract
“ADD, ADC, SUB, SBC, and RSB” on
page 105

SUBW Subtract
“ADD, ADC, SUB, SBC, and RSB” on
page 105

TEQ Test Equivalence “TST and TEQ” on page 118

TST Test “TST and TEQ” on page 118

Table 10-20. Data processing instructions (Continued)

Mnemonic Brief description See
104
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.13.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

10.13.1.1 Syntax
op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #imm12 ; ADD and SUB only

where:

op is one of:

ADD Add.

ADC Add with Carry.

SUB Subtract.

SBC Subtract with Carry.

RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 84.

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

See “Flexible second operand” on page 80 for details of the options.

imm12 is any value in the range 0-4095.

10.13.1.2 Operation
The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is
clear, the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful
because of the wide range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see “Multiword arithmetic examples” on
page 107.

See also “ADR” on page 88.

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the
SUB syntax that uses the imm12 operand.

10.13.1.3 Restrictions
In these instructions:

• Operand2 must not be SP and must not be PC
105
11011B–ATARM–21-Feb-12

• Rd can be SP only in ADD and SUB, and only with the additional restrictions:

– Rn must also be SP

– any shift in Operand2 must be limited to a maximum of 3 bits using LSL

• Rn can be SP only in ADD and SUB

• Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:

– you must not specify the S suffix

– Rm must not be PC and must not be SP

– if the instruction is conditional, it must be the last instruction in the IT block

• with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and
SUB, and only with the additional restrictions:

– you must not specify the S suffix

– the second operand must be a constant in the range 0 to 4095.

–

– When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded
to b00 before performing the calculation, making the base address for the calculation
word-aligned.

– If you want to generate the address of an instruction, you have to adjust the constant
based on the value of the PC. ARM recommends that you use the ADR instruction
instead of ADD or SUB with Rn equal to the PC, because your assembler
automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

• bit[0] of the value written to the PC is ignored

• a branch occurs to the address created by forcing bit[0] of that value to 0.

10.13.1.4 Condition flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.

10.13.1.5 Examples
ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, R0, R3 ; Only executed if C flag set and Z

; flag clear
106
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.13.1.6 Multiword arithmetic examples

10.13.1.7 64-bit addition
The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer con-
tained in R0 and R1, and place the result in R4 and R5.

ADDS R4, R0, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

10.13.1.8 96-bit subtraction
Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit
integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,
and R2.

SUBS R6, R6, R9 ; subtract the least significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry
107
11011B–ATARM–21-Feb-12

10.13.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

10.13.2.1 Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:

op is one of:

AND logical AND.

ORR logical OR, or bit set.

EOR logical Exclusive OR.

BIC logical AND NOT, or bit clear.

ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 84.

cond is an optional condition code, see See “Conditional execution” on page 84..

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 80 for
details of the options.

10.13.2.2 Operation
The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations
on the values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

10.13.2.3 Restrictions
Do not use SP and do not use PC.

10.13.2.4 Condition flags
If S is specified, these instructions:

• update the N and Z flags according to the result

• can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 80

• do not affect the V flag.
108
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.13.2.5 Examples
AND R9, R2, #0xFF00
ORREQ R2, R0, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC R0, R1, #0xab
ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32
109
11011B–ATARM–21-Feb-12

10.13.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with
Extend.

10.13.3.1 Syntax
op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #n

RRX{S}{cond} Rd, Rm

where:

op is one of:

ASR Arithmetic Shift Right.

LSL Logical Shift Left.

LSR Logical Shift Right.

ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 84.

Rd is the destination register.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm. Only the least
significant byte is used and can be in the range 0 to 255.

n is the shift length. The range of shift length depends on the instruction:

ASR shift length from 1 to 32

LSL shift length from 0 to 31

LSR shift length from 1 to 32

ROR shift length from 1 to 31.

MOV{S}{cond} Rd, Rm is the preferred syntax for LSL{S}{cond} Rd, Rm, #0.

10.13.3.2 Operation
ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of
places specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains
unchanged. For details on what result is generated by the different instructions, see “Shift Oper-
ations” on page 81.

10.13.3.3 Restrictions
Do not use SP and do not use PC.

10.13.3.4 Condition flags
If S is specified:

• these instructions update the N and Z flags according to the result
110
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
• the C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift
Operations” on page 81.

10.13.3.5 Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, R5 ; Rotate right with extend
111
11011B–ATARM–21-Feb-12

10.13.4 CLZ
Count Leading Zeros.

10.13.4.1 Syntax
CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

Rm is the operand register.

10.13.4.2 Operation
The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result
in Rd. The result value is 32 if no bits are set in the source register, and zero if bit[31] is set.

10.13.4.3 Restrictions
Do not use SP and do not use PC.

10.13.4.4 Condition flags
This instruction does not change the flags.

10.13.4.5 Examples
CLZ R4,R9
CLZNE R2,R3
112
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.13.5 CMP and CMN
Compare and Compare Negative.

10.13.5.1 Syntax
CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 80 for
details of the options.

10.13.5.2 Operation
These instructions compare the value in a register with Operand2. They update the condition
flags on the result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as
a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an
ADDS instruction, except that the result is discarded.

10.13.5.3 Restrictions
In these instructions:

• do not use PC

• Operand2 must not be SP.

10.13.5.4 Condition flags
These instructions update the N, Z, C and V flags according to the result.

10.13.5.5 Examples
CMP R2, R9
CMN R0, #6400
CMPGT SP, R7, LSL #2
113
11011B–ATARM–21-Feb-12

10.13.6 MOV and MVN
Move and Move NOT.

10.13.6.1 Syntax
MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #imm16

MVN{S}{cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 84.

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible second operand” on page 80 for
details of the options.

imm16 is any value in the range 0-65535.

10.13.6.2 Operation
The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred
syntax is the corresponding shift instruction:

• ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n

• LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #n if n != 0

• LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n

• ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n

• RRX{S}{cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift
instructions:

• MOV{S}{cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs

• MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs

• MOV{S}{cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs

• MOV{S}{cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs

See “ASR, LSL, LSR, ROR, and RRX” on page 110.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on
the value, and places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16
operand.

10.13.6.3 Restrictions
You can use SP and PC only in the MOV instruction, with the following restrictions:

• the second operand must be a register without shift

• you must not specify the S suffix.

When Rd is PC in a MOV instruction:
114
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
• bit[0] of the value written to the PC is ignored

• a branch occurs to the address created by forcing bit[0] of that value to 0.

 Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of
a BX or BLX instruction to branch for software portability to the ARM instruction set.

10.13.6.4 Condition flags
If S is specified, these instructions:

• update the N and Z flags according to the result

• can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 80

• do not affect the V flag.

10.13.6.5 Example
MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get updated
MOV R1, #0xFA05 ; Write value of 0xFA05 to R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10, flags get updated
MOV R3, #23 ; Write value of 23 to R3
MOV R8, SP ; Write value of stack pointer to R8
MVNS R2, #0xF ; Write value of 0xFFFFFFF0 (bitwise inverse of 0xF)

; to the R2 and update flags
115
11011B–ATARM–21-Feb-12

10.13.7 MOVT
Move Top.

10.13.7.1 Syntax
MOVT{cond} Rd, #imm16

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

imm16 is a 16-bit immediate constant.

10.13.7.2 Operation
MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination
register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

10.13.7.3 Restrictions
Rd must not be SP and must not be PC.

10.13.7.4 Condition flags
This instruction does not change the flags.

10.13.7.5 Examples
MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower halfword

; and APSR are unchanged
116
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.13.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

10.13.8.1 Syntax
op{cond} Rd, Rn

where:

op is any of:

REV Reverse byte order in a word.

REV16 Reverse byte order in each halfword independently.

REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.

RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

Rn is the register holding the operand.

10.13.8.2 Operation
Use these instructions to change endianness of data:

REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data
into big-endian data.

REV16 converts 16-bit big-endian data into little-endian data or 16-bit little-endian data
into big-endian data.

REVSH converts either:

16-bit signed big-endian data into 32-bit signed little-endian data

16-bit signed little-endian data into 32-bit signed big-endian data.

10.13.8.3 Restrictions
Do not use SP and do not use PC.

10.13.8.4 Condition flags
These instructions do not change the flags.

10.13.8.5 Examples
REV R3, R7 ; Reverse byte order of value in R7 and write it to R3
REV16 R0, R0 ; Reverse byte order of each 16-bit halfword in R0
REVSH R0, R5 ; Reverse Signed Halfword
REVHS R3, R7 ; Reverse with Higher or Same condition
RBIT R7, R8 ; Reverse bit order of value in R8 and write the result to R7
117
11011B–ATARM–21-Feb-12

10.13.9 TST and TEQ
Test bits and Test Equivalence.

10.13.9.1 Syntax
TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 80 for
details of the options.

10.13.9.2 Operation
These instructions test the value in a register against Operand2. They update the condition flags
based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand2. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has
that bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value
of Operand2. This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

10.13.9.3 Restrictions
Do not use SP and do not use PC.

10.13.9.4 Condition flags
These instructions:

• update the N and Z flags according to the result

• can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 80

• do not affect the V flag.

10.13.9.5 Examples
TST R0, #0x3F8 ; Perform bitwise AND of R0 value to 0x3F8,

; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to

; value in R9, APSR is updated but result is discarded
118
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.14 Multiply and divide instructions
Table 10-21 shows the multiply and divide instructions:

Table 10-21. Multiply and divide instructions

Mnemonic Brief description See

MLA Multiply with Accumulate, 32-bit result “MUL, MLA, and MLS” on page 120

MLS Multiply and Subtract, 32-bit result “MUL, MLA, and MLS” on page 120

MUL Multiply, 32-bit result “MUL, MLA, and MLS” on page 120

SDIV Signed Divide “SDIV and UDIV” on page 122

SMLAL
Signed Multiply with Accumulate
(32x32+64), 64-bit result

“UMULL, UMLAL, SMULL, and SMLAL” on
page 121

SMULL Signed Multiply (32x32), 64-bit result
“UMULL, UMLAL, SMULL, and SMLAL” on
page 121

UDIV Unsigned Divide “SDIV and UDIV” on page 122

UMLAL
Unsigned Multiply with Accumulate
(32x32+64), 64-bit result

“UMULL, UMLAL, SMULL, and SMLAL” on
page 121

UMULL
Unsigned Multiply (32x32), 64-bit
result

“UMULL, UMLAL, SMULL, and SMLAL” on
page 121
119
11011B–ATARM–21-Feb-12

10.14.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and pro-
ducing a 32-bit result.

10.14.1.1 Syntax
MUL{S}{cond} {Rd,} Rn, Rm ; Multiply

MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate

MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where:

cond is an optional condition code, see “Conditional execution” on page 84.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 84.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

10.14.1.2 Operation
The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32
bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places
the least significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value
from Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or
unsigned.

10.14.1.3 Restrictions
In these instructions, do not use SP and do not use PC.

If you use the S suffix with the MUL instruction:

• Rd, Rn, and Rm must all be in the range R0 to R7

• Rd must be the same as Rm

• you must not use the cond suffix.

10.14.1.4 Condition flags
If S is specified, the MUL instruction:

• updates the N and Z flags according to the result

• does not affect the C and V flags.

10.14.1.5 Examples
MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5
MULS R0, R2, R2 ; Multiply with flag update, R0 = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)
120
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.14.2 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and pro-
ducing a 64-bit result.

10.14.2.1 Syntax
op{cond} RdLo, RdHi, Rn, Rm

where:

op is one of:

UMULL Unsigned Long Multiply.

UMLAL Unsigned Long Multiply, with Accumulate.

SMULL Signed Long Multiply.

SMLAL Signed Long Multiply, with Accumulate.

cond is an optional condition code, see “Conditional execution” on page 84.

RdHi, RdLo are the destination registers.

For UMLAL and SMLAL they also hold the accumulating value.

Rn, Rm are registers holding the operands.

10.14.2.2 Operation
The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most signifi-
cant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers, adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo,
and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed inte-
gers. It multiplies these integers and places the least significant 32 bits of the result in RdLo, and
the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed inte-
gers. It multiplies these integers, adds the 64-bit result to the 64-bit signed integer contained in
RdHi and RdLo, and writes the result back to RdHi and RdLo.

10.14.2.3 Restrictions
In these instructions:

• do not use SP and do not use PC

• RdHi and RdLo must be different registers.

10.14.2.4 Condition flags
These instructions do not affect the condition code flags.

10.14.2.5 Examples
UMULL R0, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8
121
11011B–ATARM–21-Feb-12

10.14.3 SDIV and UDIV
Signed Divide and Unsigned Divide.

10.14.3.1 Syntax
SDIV{cond} {Rd,} Rn, Rm

UDIV{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

10.14.3.2 Operation
SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded
towards zero.

10.14.3.3 Restrictions
Do not use SP and do not use PC.

10.14.3.4 Condition flags
These instructions do not change the flags.

10.14.3.5 Examples
SDIV R0, R2, R4 ; Signed divide, R0 = R2/R4
UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1
122
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.15 Saturating instructions
This section describes the saturating instructions, SSAT and USAT.

10.15.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

10.15.1.1 Syntax
op{cond} Rd, #n, Rm {, shift #s}

where:

op is one of:

SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 to 32 for SSAT

n ranges from 0 to 31 for USAT.

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the following:

ASR #s where s is in the range 1 to 31

LSL #s where s is in the range 0 to 31.

10.15.1.2 Operation
These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range −
2n–1 ≤x ≤2n–1−1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 ≤x ≤2n−1.

For signed n-bit saturation using SSAT, this means that:

• if the value to be saturated is less than −2n−1, the result returned is −2n-1

• if the value to be saturated is greater than 2n−1−1, the result returned is 2n-1−1
• otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:

• if the value to be saturated is less than 0, the result returned is 0

• if the value to be saturated is greater than 2n−1, the result returned is 2n−1
• otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If satura-
tion occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag
unchanged. To clear the Q flag to 0, you must use the MSR instruction, see “MSR” on page 144.

To read the state of the Q flag, use the MRS instruction, see “MRS” on page 143.
123
11011B–ATARM–21-Feb-12

10.15.1.3 Restrictions
Do not use SP and do not use PC.

10.15.1.4 Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

10.15.1.5 Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then

; saturate it as a signed 16-bit value and
; write it back to R7

USATNE R0, #7, R5 ; Conditionally saturate value in R5 as an
; unsigned 7 bit value and write it to R0
124
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.16 Bitfield instructions
Table 10-22 shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 10-22. Packing and unpacking instructions

Mnemonic Brief description See

BFC Bit Field Clear “BFC and BFI” on page 126

BFI Bit Field Insert “BFC and BFI” on page 126

SBFX Signed Bit Field Extract “SBFX and UBFX” on page 127

SXTB Sign extend a byte “SXT and UXT” on page 128

SXTH Sign extend a halfword “SXT and UXT” on page 128

UBFX Unsigned Bit Field Extract “SBFX and UBFX” on page 127

UXTB Zero extend a byte “SXT and UXT” on page 128

UXTH Zero extend a halfword “SXT and UXT” on page 128
125
11011B–ATARM–21-Feb-12

10.16.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

10.16.1.1 Syntax
BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield.

lsb must be in the range 0 to 31.

width is the width of the bitfield and must be in the range 1 to 32−lsb.

10.16.1.2 Operation
BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position lsb.
Other bits in Rd are unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at
the low bit position lsb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

10.16.1.3 Restrictions
Do not use SP and do not use PC.

10.16.1.4 Condition flags
These instructions do not affect the flags.

10.16.1.5 Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with

; bit 0 to bit 11 from R2
126
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.16.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

10.16.2.1 Syntax
SBFX{cond} Rd, Rn, #lsb, #width

UBFX{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield.

lsb must be in the range 0 to 31.

width is the width of the bitfield and must be in the range 1 to 32−lsb.

10.16.2.2 Operation
SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the
destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the
destination register.

10.16.2.3 Restrictions
Do not use SP and do not use PC.

10.16.2.4 Condition flags
These instructions do not affect the flags.

10.16.2.5 Examples
SBFX R0, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign

; extend to 32 bits and then write the result to R0.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and zero

; extend to 32 bits and then write the result to R8
127
11011B–ATARM–21-Feb-12

10.16.3 SXT and UXT
Sign extend and Zero extend.

10.16.3.1 Syntax
SXTextend{cond} {Rd,} Rm {, ROR #n}

UXTextend{cond} {Rd}, Rm {, ROR #n}

where:

extend is one of:

B Extends an 8-bit value to a 32-bit value.

H Extends a 16-bit value to a 32-bit value.

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

Rm is the register holding the value to extend.

ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

10.16.3.2 Operation
These instructions do the following:

• Rotate the value from Rm right by 0, 8, 16 or 24 bits.

• Extract bits from the resulting value:

SXTB extracts bits[7:0] and sign extends to 32 bits.

UXTB extracts bits[7:0] and zero extends to 32 bits.

SXTH extracts bits[15:0] and sign extends to 32 bits.

UXTH extracts bits[15:0] and zero extends to 32 bits.

10.16.3.3 Restrictions
Do not use SP and do not use PC.

10.16.3.4 Condition flags
These instructions do not affect the flags.

10.16.3.5 Examples
SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower

; halfword of the result and then sign extend to
; 32 bits and write the result to R4.

UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
; extend it, and write the result to R3
128
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.17 Branch and control instructions
Table 10-23 shows the branch and control instructions:

Table 10-23. Branch and control instructions

Mnemonic Brief description See

B Branch “B, BL, BX, and BLX” on page 130

BL Branch with Link “B, BL, BX, and BLX” on page 130

BLX Branch indirect with Link “B, BL, BX, and BLX” on page 130

BX Branch indirect “B, BL, BX, and BLX” on page 130

CBNZ Compare and Branch if Non Zero “CBZ and CBNZ” on page 132

CBZ Compare and Branch if Non Zero “CBZ and CBNZ” on page 132

IT If-Then “IT” on page 133

TBB Table Branch Byte “TBB and TBH” on page 135

TBH Table Branch Halfword “TBB and TBH” on page 135
129
11011B–ATARM–21-Feb-12

10.17.1 B, BL, BX, and BLX
Branch instructions.

10.17.1.1 Syntax
B{cond} label

BL{cond} label

BX{cond} Rm

BLX{cond} Rm

where:

B is branch (immediate).

BL is branch with link (immediate).

BX is branch indirect (register).

BLX is branch indirect with link (register).

cond is an optional condition code, see “Conditional execution” on page 84.

label is a PC-relative expression. See “PC-relative expressions” on page 84.

Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must
be 1, but the address to branch to is created by changing bit[0] to 0.

10.17.1.2 Operation
All these instructions cause a branch to label, or to the address indicated in Rm. In addition:

• The BL and BLX instructions write the address of the next instruction to LR (the link register,
R14).

• The BX and BLX instructions cause a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All
other branch instructions must be conditional inside an IT block, and must be unconditional out-
side the IT block, see “IT” on page 133.

Table 10-24 shows the ranges for the various branch instructions.

You might have to use the .W suffix to get the maximum branch range. See “Instruction width
selection” on page 86.

10.17.1.3 Restrictions
The restrictions are:

Table 10-24. Branch ranges

Instruction Branch range

B label −16 MB to +16 MB

Bcond label (outside IT block) −1 MB to +1 MB

Bcond label (inside IT block) −16 MB to +16 MB

BL{cond} label −16 MB to +16 MB

BX{cond} Rm Any value in register

BLX{cond} Rm Any value in register
130
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
• do not use PC in the BLX instruction

• for BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target
address created by changing bit[0] to 0

• when any of these instructions is inside an IT block, it must be the last instruction of the IT
block.

 Bcond is the only conditional instruction that is not required to be inside an IT block. However, it
has a longer branch range when it is inside an IT block.

10.17.1.4 Condition flags
These instructions do not change the flags.

10.17.1.5 Examples
B loopA ; Branch to loopA
BLE ng ; Conditionally branch to label ng
B.W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target
BEQ.W target ; Conditionally branch to target within 1MB
BL funC ; Branch with link (Call) to function funC, return address

; stored in LR
BX LR ; Return from function call
BXNE R0 ; Conditionally branch to address stored in R0
BLX R0 ; Branch with link and exchange (Call) to a address stored

; in R0
131
11011B–ATARM–21-Feb-12

10.17.2 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

10.17.2.1 Syntax
CBZ Rn, label

CBNZ Rn, label

where:

Rn is the register holding the operand.

label is the branch destination.

10.17.2.2 Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the
number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BNE label

10.17.2.3 Restrictions
The restrictions are:

• Rn must be in the range of R0 to R7

• the branch destination must be within 4 to 130 bytes after the instruction

• these instructions must not be used inside an IT block.

10.17.2.4 Condition flags
These instructions do not change the flags.

10.17.2.5 Examples
CBZ R5, target ; Forward branch if R5 is zero
CBNZ R0, target ; Forward branch if R0 is not zero
132
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.17.3 IT
If-Then condition instruction.

10.17.3.1 Syntax
IT{x{y{z}}} cond

where:

x specifies the condition switch for the second instruction in the IT block.

y specifies the condition switch for the third instruction in the IT block.

z specifies the condition switch for the fourth instruction in the IT block.

cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:

T Then. Applies the condition cond to the instruction.

E Else. Applies the inverse condition of cond to the instruction.

 It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of
the instructions in the IT block must be unconditional, and each of x, y, and z must be T or omit-
ted but not E.

10.17.3.2 Operation
The IT instruction makes up to four following instructions conditional. The conditions can be all
the same, or some of them can be the logical inverse of the others. The conditional instructions
following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond}
part of their syntax.

Your assembler might be able to generate the required IT instructions for conditional instructions
automatically, so that you do not need to write them yourself. See your assembler documenta-
tion for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an
IT block. Such an exception results in entry to the appropriate exception handler, with suitable
return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a PC-modi-
fying instruction is permitted to branch to an instruction in an IT block.

10.17.3.3 Restrictions
The following instructions are not permitted in an IT block:

• IT

• CBZ and CBNZ

• CPSID and CPSIE.

Other restrictions when using an IT block are:
133
11011B–ATARM–21-Feb-12

• a branch or any instruction that modifies the PC must either be outside an IT block or must be
the last instruction inside the IT block. These are:

– ADD PC, PC, Rm

– MOV PC, Rm

– B, BL, BX, BLX

– any LDM, LDR, or POP instruction that writes to the PC

– TBB and TBH

• do not branch to any instruction inside an IT block, except when returning from an exception
handler

• all conditional instructions except Bcond must be inside an IT block. Bcond can be either
outside or inside an IT block but has a larger branch range if it is inside one

• each instruction inside the IT block must specify a condition code suffix that is either the
same or logical inverse as for the other instructions in the block.

 Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the
use of assembler directives within them.

10.17.3.4 Condition flags
This instruction does not change the flags.

10.17.3.5 Example
ITTE NE ; Next 3 instructions are conditional
ANDNE R0, R0, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional move

CMP R0, #9 ; Convert R0 hex value (0 to 15) into ASCII
; ('0'-'9', 'A'-'F')

ITE GT ; Next 2 instructions are conditional
ADDGT R1, R0, #55 ; Convert 0xA -> 'A'
ADDLE R1, R0, #48 ; Convert 0x0 -> '0'

IT GT ; IT block with only one conditional instruction

ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional
MOVEQ R0, R1 ; Conditional move
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE.W dloop ; Branch instruction can only be used in the last

; instruction of an IT block

IT NE ; Next instruction is conditional
ADD R0, R0, R1 ; Syntax error: no condition code used in IT block
134
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.17.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

10.17.4.1 Syntax
TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn is the register containing the address of the table of branch lengths. If Rn is PC,
then the address of the table is the address of the byte immediately following the TBB or TBH
instruction.

Rm is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.

10.17.4.2 Operation
These instructions cause a PC-relative forward branch using a table of single byte offsets for
TBB, or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index
into the table. For TBB the branch offset is twice the unsigned value of the byte returned from
the table. and for TBH the branch offset is twice the unsigned value of the halfword returned
from the table. The branch occurs to the address at that offset from the address of the byte
immediately after the TBB or TBH instruction.

10.17.4.3 Restrictions
The restrictions are:

• Rn must not be SP

• Rm must not be SP and must not be PC

• when any of these instructions is used inside an IT block, it must be the last instruction of the
IT block.

10.17.4.4 Condition flags
These instructions do not change the flags.
135
11011B–ATARM–21-Feb-12

10.17.4.5 Examples
ADR.W R0, BranchTable_Byte
TBB [R0, R1] ; R1 is the index, R0 is the base address of the

; branch table
Case1
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3
; an instruction sequence follows
BranchTable_Byte

DCB 0 ; Case1 offset calculation
DCB ((Case2-Case1)/2) ; Case2 offset calculation
DCB ((Case3-Case1)/2) ; Case3 offset calculation
TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the

; branch table
BranchTable_H

DCI ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCI ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
DCI ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows
136
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.18 Miscellaneous instructions
Table 10-25 shows the remaining Cortex-M3 instructions:

Table 10-25. Miscellaneous instructions

Mnemonic Brief description See

BKPT Breakpoint “BKPT” on page 138

CPSID
Change Processor State, Disable
Interrupts

“CPS” on page 139

CPSIE
Change Processor State, Enable
Interrupts

“CPS” on page 139

DMB Data Memory Barrier “DMB” on page 140

DSB Data Synchronization Barrier “DSB” on page 141

ISB Instruction Synchronization Barrier “ISB” on page 142

MRS Move from special register to register “MRS” on page 143

MSR Move from register to special register “MSR” on page 144

NOP No Operation “NOP” on page 145

SEV Send Event “SEV” on page 146

SVC Supervisor Call “SVC” on page 147

WFE Wait For Event “WFE” on page 148

WFI Wait For Interrupt “WFI” on page 149
137
11011B–ATARM–21-Feb-12

10.18.1 BKPT
Breakpoint.

10.18.1.1 Syntax
BKPT #imm

where:

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

10.18.1.2 Operation
The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional informa-
tion about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaf-
fected by the condition specified by the IT instruction.

10.18.1.3 Condition flags
This instruction does not change the flags.

10.18.1.4 Examples
BKPT 0xAB ; Breakpoint with immediate value set to 0xAB (debugger can

; extract the immediate value by locating it using the PC)
138
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.18.2 CPS
Change Processor State.

10.18.2.1 Syntax
CPSeffect iflags

where:

effect is one of:

IE Clears the special purpose register.

ID Sets the special purpose register.

iflags is a sequence of one or more flags:

i Set or clear PRIMASK.

f Set or clear FAULTMASK.

10.18.2.2 Operation
CPS changes the PRIMASK and FAULTMASK special register values. See “Exception mask
registers” on page 49 for more information about these registers.

10.18.2.3 Restrictions
The restrictions are:

• use CPS only from privileged software, it has no effect if used in unprivileged software

• CPS cannot be conditional and so must not be used inside an IT block.

10.18.2.4 Condition flags
This instruction does not change the condition flags.

10.18.2.5 Examples
CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)
139
11011B–ATARM–21-Feb-12

10.18.3 DMB
Data Memory Barrier.

10.18.3.1 Syntax
DMB{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 84.

10.18.3.2 Operation
DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in
program order, before the DMB instruction are completed before any explicit memory accesses
that appear, in program order, after the DMB instruction. DMB does not affect the ordering or
execution of instructions that do not access memory.

10.18.3.3 Condition flags
This instruction does not change the flags.

10.18.3.4 Examples
DMB ; Data Memory Barrier
140
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.18.4 DSB
Data Synchronization Barrier.

10.18.4.1 Syntax
DSB{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 84.

10.18.4.2 Operation
DSB acts as a special data synchronization memory barrier. Instructions that come after the
DSB, in program order, do not execute until the DSB instruction completes. The DSB instruction
completes when all explicit memory accesses before it complete.

10.18.4.3 Condition flags
This instruction does not change the flags.

10.18.4.4 Examples
DSB ; Data Synchronisation Barrier
141
11011B–ATARM–21-Feb-12

10.18.5 ISB
Instruction Synchronization Barrier.

10.18.5.1 Syntax
ISB{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 84.

10.18.5.2 Operation
ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that
all instructions following the ISB are fetched from memory again, after the ISB instruction has
been completed.

10.18.5.3 Condition flags
This instruction does not change the flags.

10.18.5.4 Examples
ISB ; Instruction Synchronisation Barrier
142
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.18.6 MRS
Move the contents of a special register to a general-purpose register.

10.18.6.1 Syntax
MRS{cond} Rd, spec_reg

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

10.18.6.2 Operation
Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR,
for example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in
must also be restored. These operations use MRS in the state-saving instruction sequence and
MSR in the state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.

See “MSR” on page 144.

10.18.6.3 Restrictions
Rd must not be SP and must not be PC.

10.18.6.4 Condition flags
This instruction does not change the flags.

10.18.6.5 Examples
MRS R0, PRIMASK ; Read PRIMASK value and write it to R0
143
11011B–ATARM–21-Feb-12

10.18.7 MSR
Move the contents of a general-purpose register into the specified special register.

10.18.7.1 Syntax
MSR{cond} spec_reg, Rn

where:

cond is an optional condition code, see “Conditional execution” on page 84.

Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

10.18.7.2 Operation
The register access operation in MSR depends on the privilege level. Unprivileged software can
only access the APSR, see “Application Program Status Register” on page 47. Privileged soft-
ware can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:

• Rn is non-zero and the current BASEPRI value is 0

• Rn is non-zero and less than the current BASEPRI value.

See “MRS” on page 143.

10.18.7.3 Restrictions
Rn must not be SP and must not be PC.

10.18.7.4 Condition flags
This instruction updates the flags explicitly based on the value in Rn.

10.18.7.5 Examples
MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register
144
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.18.8 NOP
No Operation.

10.18.8.1 Syntax
NOP{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 84.

10.18.8.2 Operation
NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might
remove it from the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.

10.18.8.3 Condition flags
This instruction does not change the flags.

10.18.8.4 Examples
NOP ; No operation
145
11011B–ATARM–21-Feb-12

10.18.9 SEV
Send Event.

10.18.9.1 Syntax
SEV{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 84.

10.18.9.2 Operation
SEV is a hint instruction that causes an event to be signaled to all processors within a multipro-
cessor system. It also sets the local event register to 1, see “Power management” on page 72.

10.18.9.3 Condition flags
This instruction does not change the flags.

10.18.9.4 Examples
SEV ; Send Event
146
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.18.10 SVC
Supervisor Call.

10.18.10.1 Syntax
SVC{cond} #imm

where:

cond is an optional condition code, see “Conditional execution” on page 84.

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

10.18.10.2 Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

10.18.10.3 Condition flags
This instruction does not change the flags.

10.18.10.4 Examples
SVC 0x32 ; Supervisor Call (SVC handler can extract the immediate value

; by locating it via the stacked PC)
147
11011B–ATARM–21-Feb-12

10.18.11 WFE
Wait For Event.

10.18.11.1 Syntax
WFE{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 84.

10.18.11.2 Operation
WFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

• an exception, unless masked by the exception mask registers or the current priority level

• an exception enters the Pending state, if SEVONPEND in the System Control Register is set

• a Debug Entry request, if Debug is enabled

• an event signaled by a peripheral or another processor in a multiprocessor system using the
SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see “Power management” on page 72.

10.18.11.3 Condition flags
This instruction does not change the flags.

10.18.11.4 Examples
WFE ; Wait for event
148
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.18.12 WFI
Wait for Interrupt.

10.18.12.1 Syntax
WFI{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 84.

10.18.12.2 Operation
WFI is a hint instruction that suspends execution until one of the following events occurs:

• an exception

• a Debug Entry request, regardless of whether Debug is enabled.

10.18.12.3 Condition flags
This instruction does not change the flags.

10.18.12.4 Examples
WFI ; Wait for interrupt
149
11011B–ATARM–21-Feb-12

10.19 About the Cortex-M3 peripherals
The address map of the Private peripheral bus (PPB) is:

In register descriptions:

• the register type is described as follows:

RW Read and write.

RO Read-only.

WO Write-only.

• the required privilege gives the privilege level required to access the register, as follows:

Privileged Only privileged software can access the register.

Unprivileged Both unprivileged and privileged software can access the register.

Table 10-26. Core peripheral register regions

Address Core peripheral Description

0xE000E008-
0xE000E00F System control block Table 10-30 on page 164

0xE000E010-
0xE000E01F System timer Table 10-33 on page 191

0xE000E100-
0xE000E4EF

Nested Vectored Interrupt
Controller

Table 10-27 on page 151

0xE000ED00-
0xE000ED3F System control block Table 10-30 on page 164

0xE000ED90-
0xE000ED93 MPU Type Register

Reads as zero, indicating no MPU is
implemented (1)

1. Software can read the MPU Type Register at 0xE000ED90 to test for the presence of a memory
protection unit (MPU).

0xE000EF00-
0xE000EF03

Nested Vectored Interrupt
Controller

Table 10-27 on page 151
150
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.20 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses.
The NVIC supports:

• 1 to 33 interrupts.

• A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower
priority, so level 0 is the highest interrupt priority.

• Level and pulse detection of interrupt signals.

• Dynamic reprioritization of interrupts.

• Grouping of priority values into group priority and subpriority fields.

• Interrupt tail-chaining.

The processor automatically stacks its state on exception entry and unstacks this state on
exception exit, with no instruction overhead. This provides low latency exception handling. The
hardware implementation of the NVIC registers is:

10.20.1 The CMSIS mapping of the Cortex-M3 NVIC registers
To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the
CMSIS:

• the Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to
arrays of 32-bit integers, so that:

– the array ISER[0] corresponds to the registers ISER0

– the array ICER[0] corresponds to the registers ICER0

– the array ISPR[0] corresponds to the registers ISPR0

– the array ICPR[0] corresponds to the registers ICPR0

– the array IABR[0] corresponds to the registers IABR0

Table 10-27. NVIC register summary

Address Name Type
Required
privilege

Reset
value Description

0xE000E100
ISER0 RW Privileged 0x00000000 “Interrupt Set-enable Registers” on page 153

0xE000E180 ICER0
RW Privileged 0x00000000 “Interrupt Clear-enable Registers” on page 154

0xE000E200
ISPR0 RW Privileged 0x00000000 “Interrupt Set-pending Registers” on page 155

0xE000E280 ICPR0
RW Privileged 0x00000000 “Interrupt Clear-pending Registers” on page 156

0xE000E300 IABR0
RO Privileged 0x00000000 “Interrupt Active Bit Registers” on page 157

0xE000E400-

0xE000E41C

IPR0-

IPR8
RW Privileged 0x00000000 “Interrupt Priority Registers” on page 158

0xE000EF00 STIR WO
Configurable
 (1) 0x00000000

“Software Trigger Interrupt Register” on page
161

1. See the register description for more information.
151
11011B–ATARM–21-Feb-12

• the 4-bit fields of the Interrupt Priority Registers map to an array of 4-bit integers, so that the
array IP[0] to IP[32] corresponds to the registers IPR0-IPR8, and the array entry IP[n] holds
the interrupt priority for interrupt n.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Regis-
ters. For more information see the description of the NVIC_SetPriority function in “NVIC
programming hints” on page 163. Table 10-28 shows how the interrupts, or IRQ numbers, map
onto the interrupt registers and corresponding CMSIS variables that have one bit per interrupt.

Table 10-28. Mapping of interrupts to the interrupt variables

Interrupts

CMSIS array elements (1)

1. Each array element corresponds to a single NVIC register, for example the element
ICER[0] corresponds to the ICER0 register.

Set-enable Clear-enable Set-pending Clear-pending Active Bit

0-32 ISER[0] ICER[0] ISPR[0] ICPR[0] IABR[0]
152
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.20.2 Interrupt Set-enable Registers
The ISER0 register enables interrupts, and show which interrupts are enabled. See:

• the register summary in Table 10-27 on page 151 for the register attributes

• Table 10-28 on page 152 for which interrupts are controlled by each register.

The bit assignments are:

• SETENA
Interrupt set-enable bits.

Write:

0 = no effect

1 = enable interrupt.

Read:

0 = interrupt disabled

1 = interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, assert-
ing its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its
priority.

31 30 29 28 27 26 25 24

SETENA bits

23 22 21 20 19 18 17 16

SETENA bits

15 14 13 12 11 10 9 8

SETENA bits

7 6 5 4 3 2 1 0

SETENA bits
153
11011B–ATARM–21-Feb-12

10.20.3 Interrupt Clear-enable Registers
The ICER0 register disables interrupts, and shows which interrupts are enabled. See:

• the register summary in Table 10-27 on page 151 for the register attributes

• Table 10-28 on page 152 for which interrupts are controlled by each register

The bit assignments are:

• CLRENA
Interrupt clear-enable bits.

Write:

0 = no effect

1 = disable interrupt.

Read:

0 = interrupt disabled

1 = interrupt enabled.

31 30 29 28 27 26 25 24

CLRENA

23 22 21 20 19 18 17 16

CLRENA

15 14 13 12 11 10 9 8

CLRENA

7 6 5 4 3 2 1 0

CLRENA
154
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.20.4 Interrupt Set-pending Registers
The ISPR0 register forces interrupts into the pending state, and shows which interrupts are
pending. See:

• the register summary in Table 10-27 on page 151 for the register attributes

• Table 10-28 on page 152 for which interrupts are controlled by each register.

The bit assignments are:

• SETPEND
Interrupt set-pending bits.

Write:

0 = no effect.

1 = changes interrupt state to pending.

Read:

0 = interrupt is not pending.

1 = interrupt is pending.

 Writing 1 to the ISPR bit corresponding to:

• an interrupt that is pending has no effect

• a disabled interrupt sets the state of that interrupt to pending

31 30 29 28 27 26 25 24

SETPEND

23 22 21 20 19 18 17 16

SETPEND

15 14 13 12 11 10 9 8

SETPEND

7 6 5 4 3 2 1 0

SETPEND
155
11011B–ATARM–21-Feb-12

10.20.5 Interrupt Clear-pending Registers
The ICPR0 register removes the pending state from interrupts, and show which interrupts are
pending. See:

• the register summary in Table 10-27 on page 151 for the register attributes

• Table 10-28 on page 152 for which interrupts are controlled by each register.

The bit assignments are:

• CLRPEND
Interrupt clear-pending bits.

Write:

0 = no effect.

1 = removes pending state an interrupt.

Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

31 30 29 28 27 26 25 24

CLRPEND

23 22 21 20 19 18 17 16

CLRPEND

15 14 13 12 11 10 9 8

CLRPEND

7 6 5 4 3 2 1 0

CLRPEND
156
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.20.6 Interrupt Active Bit Registers
The IABR0 register indicates which interrupts are active. See:

• the register summary in Table 10-27 on page 151 for the register attributes

• Table 10-28 on page 152 for which interrupts are controlled by each register.

The bit assignments are:

• ACTIVE
Interrupt active flags:

0 = interrupt not active

1 = interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

31 30 29 28 27 26 25 24

ACTIVE

23 22 21 20 19 18 17 16

ACTIVE

15 14 13 12 11 10 9 8

ACTIVE

7 6 5 4 3 2 1 0

ACTIVE
157
11011B–ATARM–21-Feb-12

10.20.7 Interrupt Priority Registers
The IPR0-IPR8 registers provide a 4-bit priority field for each interrupt (See the “Peripheral Iden-
tifiers” section of the datasheet for more details). These registers are byte-accessible. See the
register summary in Table 10-27 on page 151 for their attributes. Each register holds four priority
fields, that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[32], as shown:

10.20.7.1 IPRm

10.20.7.2 IPR4

10.20.7.3 IPR3

31 30 29 28 27 26 25 24

IP[4m+3]

23 22 21 20 19 18 17 16

IP[4m+2]

15 14 13 12 11 10 9 8

IP[4m+1]

7 6 5 4 3 2 1 0

IP[4m]

31 30 29 28 27 26 25 24

IP[19]

23 22 21 20 19 18 17 16

IP[18]

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24

IP[15]

23 22 21 20 19 18 17 16

IP[14]

15 14 13 12 11 10 9 8

IP[13]

7 6 5 4 3 2 1 0

IP[12]
158
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.20.7.4 IPR2

10.20.7.5 IPR1

10.20.7.6 IPR0

• Priority, byte offset 3

• Priority, byte offset 2

• Priority, byte offset 1

• Priority, byte offset 0
Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt.
The processor implements only bits[7:4] of each field, bits[3:0] read as zero and ignore writes.

See “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 151 for more information about the IP[0] to IP[32]
interrupt priority array, that provides the software view of the interrupt priorities.

31 30 29 28 27 26 25 24

IP[11]

23 22 21 20 19 18 17 16

IP[10]

15 14 13 12 11 10 9 8

IP[9]

7 6 5 4 3 2 1 0

IP[8]

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

IP[6]

15 14 13 12 11 10 9 8

IP[5]

7 6 5 4 3 2 1 0

IP[4]

31 30 29 28 27 26 25 24

IP[3]

23 22 21 20 19 18 17 16

IP[2]

15 14 13 12 11 10 9 8

IP[1]

7 6 5 4 3 2 1 0

IP[0]
159
11011B–ATARM–21-Feb-12

Find the IPR number and byte offset for interrupt N as follows:

• the corresponding IPR number, M, is given by M = N DIV 4

• the byte offset of the required Priority field in this register is N MOD 4, where:

– byte offset 0 refers to register bits[7:0]

– byte offset 1 refers to register bits[15:8]

– byte offset 2 refers to register bits[23:16]

– byte offset 3 refers to register bits[31:24].
160
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.20.8 Software Trigger Interrupt Register
Write to the STIR to generate a Software Generated Interrupt (SGI). See the register summary
in Table 10-27 on page 151 for the STIR attributes.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the
STIR, see “System Control Register” on page 173.

Only privileged software can enable unprivileged access to the STIR.

The bit assignments are:

• INTID
Interrupt ID of the required SGI, in the range 0-239. For example, a value of b000000011 specifies interrupt IRQ3.

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved INTID

7 6 5 4 3 2 1 0

INTID
161
11011B–ATARM–21-Feb-12

10.20.9 Level-sensitive interrupts
The processor supports level-sensitive interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typ-
ically this happens because the ISR accesses the peripheral, causing it to clear the interrupt
request.

When the processor enters the ISR, it automatically removes the pending state from the inter-
rupt, see “Hardware and software control of interrupts” . For a level-sensitive interrupt, if the
signal is not deasserted before the processor returns from the ISR, the interrupt becomes pend-
ing again, and the processor must execute its ISR again. This means that the peripheral can
hold the interrupt signal asserted until it no longer needs servicing.

10.20.9.1 Hardware and software control of interrupts
The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the fol-
lowing reasons:

• the NVIC detects that the interrupt signal is HIGH and the interrupt is not active

• the NVIC detects a rising edge on the interrupt signal

• software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-
pending Registers” on page 155, or to the STIR to make an SGI pending, see “Software
Trigger Interrupt Register” on page 161.

A pending interrupt remains pending until one of the following:

The processor enters the ISR for the interrupt. This changes the state of the interrupt from pend-
ing to active. Then:

– For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC
samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately re-enter the
ISR. Otherwise, the state of the interrupt changes to inactive.

– If the interrupt signal is not pulsed while the processor is in the ISR, when the
processor returns from the ISR the state of the interrupt changes to inactive.

• Software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt
does not change. Otherwise, the state of the interrupt changes to inactive.
162
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.20.10 NVIC design hints and tips
Ensure software uses correctly aligned register accesses. The processor does not support
unaligned accesses to NVIC registers. See the individual register descriptions for the supported
access sizes.

A interrupt can enter pending state even it is disabled.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the
new vector table are setup for fault handlers and all enabled exception like interrupts. For more
information see “Vector Table Offset Register” on page 170.

10.20.10.1 NVIC programming hints
Software uses the CPSIE I and CPSID I instructions to enable and disable interrupts. The
CMSIS provides the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts

void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

For more information about these functions see the CMSIS documentation.

Table 10-29. CMSIS functions for NVIC control

CMSIS interrupt control function Description

void NVIC_SetPriorityGrouping(uint32_t
priority_grouping)

Set the priority grouping

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQn

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn) Return true if IRQn is pending

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn)
Return the IRQ number of the active
interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system
163
11011B–ATARM–21-Feb-12

10.21 System control block
The System control block (SCB) provides system implementation information, and system con-
trol. This includes configuration, control, and reporting of the system exceptions. The system
control block registers are:

Notes: 1. See the register description for more information.

2. A subregister of the CFSR.

10.21.1 The CMSIS mapping of the Cortex-M3 SCB registers
To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the
CMSIS, the byte array SHP[0] to SHP[12] corresponds to the registers SHPR1-SHPR3.

Table 10-30. Summary of the system control block registers

Address Name Type
Required
privilege

Reset
value Description

0xE000E008 ACTLR RW Privileged 0x00000000 “Auxiliary Control Register” on page 165

0xE000ED00 CPUID RO Privileged 0x412FC230 “CPUID Base Register” on page 166

0xE000ED04 ICSR RW(1) Privileged 0x00000000 “Interrupt Control and State Register” on page 167

0xE000ED08 VTOR RW Privileged 0x00000000 “Vector Table Offset Register” on page 170

0xE000ED0C AIRCR RW(1) Privileged 0xFA050000
“Application Interrupt and Reset Control Register” on page
171

0xE000ED10 SCR RW Privileged 0x00000000 “System Control Register” on page 173

0xE000ED14 CCR RW Privileged 0x00000200 “Configuration and Control Register” on page 174

0xE000ED18 SHPR1 RW Privileged 0x00000000 “System Handler Priority Register 1” on page 177

0xE000ED1C SHPR2 RW Privileged 0x00000000 “System Handler Priority Register 2” on page 178

0xE000ED20 SHPR3 RW Privileged 0x00000000 “System Handler Priority Register 3” on page 178

0xE000ED24 SHCRS RW Privileged 0x00000000 “System Handler Control and State Register” on page 179

0xE000ED28 CFSR RW Privileged 0x00000000 “Configurable Fault Status Register” on page 181

0xE000ED28 MMSR(2) RW Privileged 0x00
“Memory Management Fault Address Register” on page
188

0xE000ED29 BFSR(2) RW Privileged 0x00 “Bus Fault Status Register” on page 183

0xE000ED2A UFSR(2) RW Privileged 0x0000 “Usage Fault Status Register” on page 185

0xE000ED2C HFSR RW Privileged 0x00000000 “Hard Fault Status Register” on page 187

0xE000ED34 MMAR RW Privileged Unknown
“Memory Management Fault Address Register” on page
188

0xE000ED38 BFAR RW Privileged Unknown “Bus Fault Address Register” on page 189
164
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.2 Auxiliary Control Register
The ACTLR provides disable bits for the following processor functions:

• IT folding

• write buffer use for accesses to the default memory map

• interruption of multi-cycle instructions.

See the register summary in Table 10-30 on page 164 for the ACTLR attributes. The bit assign-
ments are:

• DISFOLD
When set to 1, disables IT folding. see “About IT folding” on page 165 for more information.

• DISDEFWBUF
When set to 1, disables write buffer use during default memory map accesses. This causes all bus faults to be precise bus
faults but decreases performance because any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M3 processor.

• DISMCYCINT
When set to 1, disables interruption of load multiple and store multiple instructions. This increases the interrupt latency of
the processor because any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

10.21.2.1 About IT folding
In some situations, the processor can start executing the first instruction in an IT block while it is
still executing the IT instruction. This behavior is called IT folding, and improves performance,
However, IT folding can cause jitter in looping. If a task must avoid jitter, set the DISFOLD bit to
1 before executing the task, to disable IT folding.

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0
Reserved DISFOLD DISDEFWBUF DISMCYCINT
165
11011B–ATARM–21-Feb-12

10.21.3 CPUID Base Register
The CPUID register contains the processor part number, version, and implementation informa-
tion. See the register summary in Table 10-30 on page 164 for its attributes. The bit assignments
are:

• Implementer
Implementer code:

0x41 = ARM

• Variant
Variant number, the r value in the rnpn product revision identifier:

0x2 = r2p0

• Constant
Reads as 0xF

• PartNo
Part number of the processor:

0xC23 = Cortex-M3

• Revision
Revision number, the p value in the rnpn product revision identifier:

0x0 = r2p0

31 30 29 28 27 26 25 24

Implementer

23 22 21 20 19 18 17 16

Variant Constant

15 14 13 12 11 10 9 8

PartNo

7 6 5 4 3 2 1 0

PartNo Revision
166
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.4 Interrupt Control and State Register
The ICSR:

• provides:

– set-pending and clear-pending bits for the PendSV and SysTick exceptions

• indicates:

– the exception number of the exception being processed

– whether there are preempted active exceptions

– the exception number of the highest priority pending exception

– whether any interrupts are pending.

See the register summary in Table 10-30 on page 164, and the Type descriptions in Table 10-33
on page 191, for the ICSR attributes. The bit assignments are:

• PENDSVSET
RW

PendSV set-pending bit.

Write:

0 = no effect

1 = changes PendSV exception state to pending.

Read:

0 = PendSV exception is not pending

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

• PENDSVCLR
WO

PendSV clear-pending bit.

Write:

0 = no effect

1 = removes the pending state from the PendSV exception.

31 30 29 28 27 26 25 24

Reserved Reserved PENDSVSET PENDSVCLR PENDSTSET PENDSTCLR Reserved

23 22 21 20 19 18 17 16

Reserved for
Debug

ISRPENDING VECTPENDING

15 14 13 12 11 10 9 8

VECTPENDING RETTOBASE Reserved VECTACTIVE

7 6 5 4 3 2 1 0

VECTACTIVE
167
11011B–ATARM–21-Feb-12

• PENDSTSET
RW

SysTick exception set-pending bit.

Write:

0 = no effect

1 = changes SysTick exception state to pending.

Read:

0 = SysTick exception is not pending

1 = SysTick exception is pending.

• PENDSTCLR
WO

SysTick exception clear-pending bit.

Write:

0 = no effect

1 = removes the pending state from the SysTick exception.

This bit is WO. On a register read its value is Unknown.

• Reserved for Debug use
RO

This bit is reserved for Debug use and reads-as-zero when the processor is not in Debug.

• ISRPENDING
RO

Interrupt pending flag, excluding Faults:

0 = interrupt not pending

1 = interrupt pending.

• VECTPENDING
RO

Indicates the exception number of the highest priority pending enabled exception:

0 = no pending exceptions

Nonzero = the exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.
168
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
• RETTOBASE
RO

Indicates whether there are preempted active exceptions:

0 = there are preempted active exceptions to execute

1 = there are no active exceptions, or the currently-executing exception is the only active exception.

• VECTACTIVE
RO

Contains the active exception number:

0 = Thread mode

Nonzero = The exception number (1) of the currently active exception.

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” on page 48.

When you write to the ICSR, the effect is Unpredictable if you:

• write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit

• write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

Note: 1. This is the same value as IPSR bits [8:0] see “Interrupt Program Status Register” on page 48.
169
11011B–ATARM–21-Feb-12

10.21.5 Vector Table Offset Register
The VTOR indicates the offset of the vector table base address from memory address
0x00000000. See the register summary in Table 10-30 on page 164 for its attributes.

The bit assignments are:

• TBLOFF
Vector table base offset field. It contains bits[29:7] of the offset of the table base from the bottom of the memory map.

Bit[29] determines whether the vector table is in the code or SRAM memory region:

0 = code

1 = SRAM.

Bit[29] is sometimes called the TBLBASE bit.

When setting TBLOFF, you must align the offset to the number of exception entries in the vector table. The minimum align-
ment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the alignment by rounding up to the next power
of two. For example, if you require 21 interrupts, the alignment must be on a 64-word boundary because the required table
size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

31 30 29 28 27 26 25 24

Reserved TBLOFF

23 22 21 20 19 18 17 16

TBLOFF

15 14 13 12 11 10 9 8

TBLOFF

7 6 5 4 3 2 1 0

TBLOFF Reserved
170
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.6 Application Interrupt and Reset Control Register
The AIRCR provides priority grouping control for the exception model, endian status for data
accesses, and reset control of the system. See the register summary in Table 10-30 on page
164 and Table 10-33 on page 191 for its attributes.

To write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor
ignores the write.

The bit assignments are:

• VECTKEYSTAT
Register Key:

Reads as 0xFA05

• VECTKEY
Register key:

On writes, write 0x5FA to VECTKEY, otherwise the write is ignored.

• ENDIANESS
RO

Data endianness bit:

0 = Little-endian

ENDIANESS is set from the BIGEND configuration signal during reset.

• PRIGROUP
R/W

Interrupt priority grouping field. This field determines the split of group priority from subpriority, see “Binary point” on page
172.

• SYSRESETREQ
WO

System reset request:

0 = no effect

1 = asserts a proc_reset_signal.

This is intended to force a large system reset of all major components except for debug.

This bit reads as 0.

31 30 29 28 27 26 25 24

On Read: VECTKEYSTAT, On Write: VECTKEY

23 22 21 20 19 18 17 16

On Read: VECTKEYSTAT, On Write: VECTKEY

15 14 13 12 11 10 9 8

ENDIANESS Reserved PRIGROUP

7 6 5 4 3 2 1 0

Reserved SYSRESETREQ VECTCLR-
ACTIVE VECTRESET
171
11011B–ATARM–21-Feb-12

• VECTCLRACTIVE
WO

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is
Unpredictable.

• VECTRESET
WO

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is
Unpredictable.

10.21.6.1 Binary point
The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the
Interrupt Priority Registers into separate group priority and subpriority fields. Table 10-31 shows
how the PRIGROUP value controls this split.

 Determining preemption of an exception uses only the group priority field, see “Interrupt priority
grouping” on page 68.

Table 10-31. Priority grouping

Interrupt priority level value, PRI_N[7:0] Number of

PRIGROUP
Binary
point (1)

1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a sub-
priority field bit.

Group priority
bits

Subpriority
bits

Group
priorities Subpriorities

b011 bxxxx.0000 [7:4] None 16 1

b100 bxxx.y0000 [7:5] [4] 8 2

b101 bxx.yy0000 [7:6] [5:4] 4 4

b110 bx.yyy0000 [7] [6:4] 2 8

b111 b.yyyy0000 None [7:4] 1 16
172
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.7 System Control Register
The SCR controls features of entry to and exit from low power state. See the register summary
in Table 10-30 on page 164 for its attributes. The bit assignments are:

• SEVONPEND
Send Event on Pending bit:

0 = only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded

1 = enabled events and all interrupts, including disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not
waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

• SLEEPDEEP
Controls whether the processor uses sleep or deep sleep as its low power mode:

0 = sleep

1 = deep sleep.

• SLEEPONEXIT
Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0 = do not sleep when returning to Thread mode.

1 = enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved SEVONPEND Reserved SLEEPDEEP SLEEONEXIT Reserved
173
11011B–ATARM–21-Feb-12

10.21.8 Configuration and Control Register
The CCR controls entry to Thread mode and enables:

• the handlers for hard fault and faults escalated by FAULTMASK to ignore bus faults

• trapping of divide by zero and unaligned accesses

• access to the STIR by unprivileged software, see “Software Trigger Interrupt Register” on
page 161.

See the register summary in Table 10-30 on page 164 for the CCR attributes.

The bit assignments are:

• STKALIGN
Indicates stack alignment on exception entry:

0 = 4-byte aligned

1 = 8-byte aligned.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack alignment. On return from the excep-
tion it uses this stacked bit to restore the correct stack alignment.

• BFHFNMIGN
Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0 = data bus faults caused by load and store instructions cause a lock-up

1 = handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

• DIV_0_TRP
Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0:

0 = do not trap divide by 0

1 = trap divide by 0.

When this bit is set to 0,a divide by zero returns a quotient of 0.

• UNALIGN_TRP
Enables unaligned access traps:

0 = do not trap unaligned halfword and word accesses

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved STKALIGN BFHFNMIGN

7 6 5 4 3 2 1 0

Reserved DIV_0_TRP UNALIGN_T
RP Reserved USERSETM

PEND
NONBASET

HRDENA
174
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
1 = trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

• USERSETMPEND
Enables unprivileged software access to the STIR, see “Software Trigger Interrupt Register” on page 161:

0 = disable

1 = enable.

• NONEBASETHRDENA
Indicates how the processor enters Thread mode:

0 = processor can enter Thread mode only when no exception is active.

1 = processor can enter Thread mode from any level under the control of an EXC_RETURN value, see “Exception return”
on page 70.
175
11011B–ATARM–21-Feb-12

10.21.9 System Handler Priority Registers
The SHPR1-SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have
configurable priority.

SHPR1-SHPR3 are byte accessible. See the register summary in Table 10-30 on page 164 for
their attributes.

The system fault handlers and the priority field and register for each handler are:

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:4] of each field, and
bits[3:0] read as zero and ignore writes.

Table 10-32. System fault handler priority fields

Handler Field Register description

Memory management
fault

PRI_4

“System Handler Priority Register 1” on page 177
Bus fault PRI_5

Usage fault PRI_6

SVCall PRI_11 “System Handler Priority Register 2” on page 178

PendSV PRI_14
“System Handler Priority Register 3” on page 178

SysTick PRI_15
176
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.9.1 System Handler Priority Register 1
The bit assignments are:

• PRI_7
Reserved

• PRI_6
Priority of system handler 6, usage fault

• PRI_5
Priority of system handler 5, bus fault

• PRI_4
Priority of system handler 4, memory management fault

31 30 29 28 27 26 25 24

PRI_7: Reserved

23 22 21 20 19 18 17 16

PRI_6

15 14 13 12 11 10 9 8

PRI_5

7 6 5 4 3 2 1 0

PRI_4
177
11011B–ATARM–21-Feb-12

10.21.9.2 System Handler Priority Register 2
The bit assignments are:

• PRI_11
Priority of system handler 11, SVCall

10.21.9.3 System Handler Priority Register 3
The bit assignments are:

• PRI_15
Priority of system handler 15, SysTick exception

• PRI_14
Priority of system handler 14, PendSV

31 30 29 28 27 26 25 24

PRI_11

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved

31 30 29 28 27 26 25 24

PRI_15

23 22 21 20 19 18 17 16

PRI_14

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved
178
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.10 System Handler Control and State Register
The SHCSR enables the system handlers, and indicates:

• the pending status of the bus fault, memory management fault, and SVC exceptions

• the active status of the system handlers.

See the register summary in Table 10-30 on page 164 for the SHCSR attributes. The bit assign-
ments are:

• USGFAULTENA
Usage fault enable bit, set to 1 to enable (1)

• BUSFAULTENA
Bus fault enable bit, set to 1 to enable(3)

• MEMFAULTENA
Memory management fault enable bit, set to 1 to enable(3)

• SVCALLPENDED
SVC call pending bit, reads as 1 if exception is pending (2)

• BUSFAULTPENDED
Bus fault exception pending bit, reads as 1 if exception is pending(2)

• MEMFAULTPENDED
Memory management fault exception pending bit, reads as 1 if exception is pending(2)

• USGFAULTPENDED
Usage fault exception pending bit, reads as 1 if exception is pending(2)

• SYSTICKACT
SysTick exception active bit, reads as 1 if exception is active (3)

• PENDSVACT
PendSV exception active bit, reads as 1 if exception is active

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved USGFAULTENA BUSFAULTENA MEMFAULTENA

15 14 13 12 11 10 9 8
SVCALLPENDE

D
BUSFAULTPEND

ED
MEMFAULTPEN

DED
USGFAULTPEND

ED SYSTICKACT PENDSVACT Reserved MONITORACT

7 6 5 4 3 2 1 0

SVCALLAVCT Reserved USGFAULTACT Reserved BUSFAULTACT MEMFAULTACT

1. Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.

2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to change the pending
status of the exceptions.

3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change the active status of
the exceptions, but see the Caution in this section.
179
11011B–ATARM–21-Feb-12

• MONITORACT
Debug monitor active bit, reads as 1 if Debug monitor is active

• SVCALLACT
SVC call active bit, reads as 1 if SVC call is active

• USGFAULTACT
Usage fault exception active bit, reads as 1 if exception is active

• BUSFAULTACT
Bus fault exception active bit, reads as 1 if exception is active

• MEMFAULTACT
Memory management fault exception active bit, reads as 1 if exception is active

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

You can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the
active bits to perform a context switch that changes the current exception type.

 • Software that changes the value of an active bit in this register without correct adjustment to the stacked content can
cause the processor to generate a fault exception. Ensure software that writes to this register retains and subsequently
restores the current active status.

• After you have enabled the system handlers, if you have to change the value of a bit in this register you must use a read-
modify-write procedure to ensure that you change only the required bit.
180
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.11 Configurable Fault Status Register
The CFSR indicates the cause of a memory management fault, bus fault, or usage fault. See the
register summary in Table 10-30 on page 164 for its attributes. The bit assignments are:

The following subsections describe the subregisters that make up the CFSR:

• “Memory Management Fault Status Register” on page 182

• “Bus Fault Status Register” on page 183

• “Usage Fault Status Register” on page 185.

The CFSR is byte accessible. You can access the CFSR or its subregisters as follows:

• access the complete CFSR with a word access to 0xE000ED28

• access the MMFSR with a byte access to 0xE000ED28

• access the MMFSR and BFSR with a halfword access to 0xE000ED28

• access the BFSR with a byte access to 0xE000ED29

• access the UFSR with a halfword access to 0xE000ED2A.

31 30 29 28 27 26 25 24

Usage Fault Status Register: UFSR

23 22 21 20 19 18 17 16

Usage Fault Status Register: UFSR

15 14 13 12 11 10 9 8

Bus Fault Status Register: BFSR

7 6 5 4 3 2 1 0

Memory Management Fault Status Register: MMFSR
181
11011B–ATARM–21-Feb-12

10.21.11.1 Memory Management Fault Status Register
The flags in the MMFSR indicate the cause of memory access faults. The bit assignments are:

• MMARVALID
Memory Management Fault Address Register (MMAR) valid flag:

0 = value in MMAR is not a valid fault address

1 = MMAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose MMAR value
has been overwritten.

• MSTKERR
Memory manager fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to the MMAR.

• MUNSTKERR
Memory manager fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the MMAR.

• DACCVIOL
Data access violation flag:

0 = no data access violation fault

1 = the processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the MMAR with the address of the attempted access.

• IACCVIOL
Instruction access violation flag:

0 = no instruction access violation fault

1 = the processor attempted an instruction fetch from a location that does not permit execution.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the MMAR.

7 6 5 4 3 2 1 0

MMARVALID Reserved MSTKERR MUNSTKERR Reserved DACCVIOL IACCVIOL
182
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.11.2 Bus Fault Status Register
The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

• BFARVALID
Bus Fault Address Register (BFAR) valid flag:

0 = value in BFAR is not a valid fault address

1 = BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This pre-
vents problems if returning to a stacked active bus fault handler whose BFAR value has been overwritten.

• STKERR
Bus fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the BFAR.

• UNSTKERR
Bus fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

• IMPRECISERR
Imprecise data bus error:

0 = no imprecise data bus error

1 = a data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
both IMPRECISERR set to 1 and one of the precise fault status bits set to 1.

7 6 5 4 3 2 1 0

BFRVALID Reserved STKERR UNSTKERR IMPRECISERR PRECISERR IBUSERR
183
11011B–ATARM–21-Feb-12

• PRECISERR
Precise data bus error:

0 = no precise data bus error

1 = a data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

When the processor sets this bit is 1, it writes the faulting address to the BFAR.

• IBUSERR
Instruction bus error:

0 = no instruction bus error

1 = instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit is 1, it does not write a fault address to the BFAR.
184
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.11.3 Usage Fault Status Register
The UFSR indicates the cause of a usage fault. The bit assignments are:

• DIVBYZERO
Divide by zero usage fault:

0 = no divide by zero fault, or divide by zero trapping not enabled

1 = the processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero.

Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR to 1, see “Configuration and Control Register”
on page 174.

• UNALIGNED
Unaligned access usage fault:

0 = no unaligned access fault, or unaligned access trapping not enabled

1 = the processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the CCR to 1, see “Configuration and Control
Register” on page 174.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN_TRP.

• NOCP
No coprocessor usage fault. The processor does not support coprocessor instructions:

0 = no usage fault caused by attempting to access a coprocessor

1 = the processor has attempted to access a coprocessor.

• INVPC
Invalid PC load usage fault, caused by an invalid PC load by EXC_RETURN:

0 = no invalid PC load usage fault

1 = the processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

• INVSTATE
Invalid state usage fault:

0 = no invalid state usage fault

1 = the processor has attempted to execute an instruction that makes illegal use of the EPSR.

15 14 13 12 11 10 9 8

Reserved DIVBYZERO UNALIGNED

7 6 5 4 3 2 1 0

Reserved NOCP INVPC INVSTATE UNDEFINSTR
185
11011B–ATARM–21-Feb-12

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal use
of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

• UNDEFINSTR
Undefined instruction usage fault:

0 = no undefined instruction usage fault

1 = the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is set to 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.
186
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.12 Hard Fault Status Register
The HFSR gives information about events that activate the hard fault handler. See the register
summary in Table 10-30 on page 164 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing
1 to any bit clears that bit to 0. The bit assignments are:

• DEBUGEVT
Reserved for Debug use. When writing to the register you must write 0 to this bit, otherwise behavior is Unpredictable.

• FORCED
Indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0 = no forced hard fault

1 = forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

• VECTTBL
Indicates a bus fault on a vector table read during exception processing:

0 = no bus fault on vector table read

1 = bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

 The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is set to 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

31 30 29 28 27 26 25 24

DEBUGEVT FORCED Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved VECTTBL Reserved
187
11011B–ATARM–21-Feb-12

10.21.13 Memory Management Fault Address Register
The MMFAR contains the address of the location that generated a memory management fault.
See the register summary in Table 10-30 on page 164 for its attributes. The bit assignments are:

• ADDRESS
When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the location that generated the memory
management fault

When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction
can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid. See “Memory Manage-
ment Fault Status Register” on page 182.

31 30 29 28 27 26 25 24

ADDRESS

23 22 21 20 19 18 17 16

ADDRESS

15 14 13 12 11 10 9 8

ADDRESS

7 6 5 4 3 2 1 0

ADDRESS
188
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.21.14 Bus Fault Address Register
The BFAR contains the address of the location that generated a bus fault. See the register sum-
mary in Table 10-30 on page 164 for its attributes. The bit assignments are:

• ADDRESS
When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the location that generated the bus fault

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even if it is not the
address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid. See “Bus Fault Status Regis-
ter” on page 183.

31 30 29 28 27 26 25 24

ADDRESS

23 22 21 20 19 18 17 16

ADDRESS

15 14 13 12 11 10 9 8

ADDRESS

7 6 5 4 3 2 1 0

ADDRESS
189
11011B–ATARM–21-Feb-12

10.21.15 System control block design hints and tips
Ensure software uses aligned accesses of the correct size to access the system control block
registers:

• except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses

• for the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler. to determine the true faulting address:

• Read and save the MMFAR or BFAR value.

• Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or
BFAR address is valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change the
MMFAR or BFAR value. For example, if a higher priority handler preempts the current fault han-
dler, the other fault might change the MMFAR or BFAR value.
190
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.22 System timer, SysTick
The processor has a 24-bit system timer, SysTick, that counts down from the reload value to
zero, reloads (wraps to) the value in the LOAD register on the next clock edge, then counts
down on subsequent clocks.

When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

Table 10-33. System timer registers summary

Address Name Type
Required
privilege

Reset
value Description

0xE000E010 CTRL RW Privileged 0x00000004 “SysTick Control and Status Register” on page 192

0xE000E014 LOAD RW Privileged 0x00000000 “SysTick Reload Value Register” on page 193

0xE000E018 VAL RW Privileged 0x00000000 “SysTick Current Value Register” on page 194

0xE000E01C CALIB RO Privileged 0x0002904 (1) “SysTick Calibration Value Register” on page 195

1. SysTick calibration value.
191
11011B–ATARM–21-Feb-12

10.22.1 SysTick Control and Status Register
The SysTick CTRL register enables the SysTick features. See the register summary in Table 10-
33 on page 191 for its attributes. The bit assignments are:

• COUNTFLAG
Returns 1 if timer counted to 0 since last time this was read.

• CLKSOURCE
Indicates the clock source:

0 = MCK/8

1 = MCK

• TICKINT
Enables SysTick exception request:

0 = counting down to zero does not assert the SysTick exception request

1 = counting down to zero to asserts the SysTick exception request.

Software can use COUNTFLAG to determine if SysTick has ever counted to zero.

• ENABLE
Enables the counter:

0 = counter disabled

1 = counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the LOAD register and then counts down. On reach-
ing 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved COUNTFLAG

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved CLKSOURCE TICKINT ENABLE
192
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.22.2 SysTick Reload Value Register
The LOAD register specifies the start value to load into the VAL register. See the register sum-
mary in Table 10-33 on page 191 for its attributes. The bit assignments are:

• RELOAD
Value to load into the VAL register when the counter is enabled and when it reaches 0, see “Calculating the RELOAD
value” .

10.22.2.1 Calculating the RELOAD value
The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of 0
is possible, but has no effect because the SysTick exception request and COUNTFLAG are acti-
vated when counting from 1 to 0.

The RELOAD value is calculated according to its use:

• To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD
value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set
RELOAD to 99.

• To deliver a single SysTick interrupt after a delay of N processor clock cycles, use a RELOAD
of value N. For example, if a SysTick interrupt is required after 400 clock pulses, set RELOAD
to 400.

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

RELOAD

15 14 13 12 11 10 9 8

RELOAD

7 6 5 4 3 2 1 0

-RELOAD
193
11011B–ATARM–21-Feb-12

10.22.3 SysTick Current Value Register
The VAL register contains the current value of the SysTick counter. See the register summary in
Table 10-33 on page 191 for its attributes. The bit assignments are:

• CURRENT
Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SysTick CTRL.COUNTFLAG bit to 0.

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

CURRENT

15 14 13 12 11 10 9 8

CURRENT

7 6 5 4 3 2 1 0

CURRENT
194
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
10.22.4 SysTick Calibration Value Register
The CALIB register indicates the SysTick calibration properties. See the register summary in
Table 10-33 on page 191 for its attributes. The bit assignments are:

• NOREF
Reads as zero.

• SKEW
Reads as zero

• TENMS
Read as 0x0002904. The SysTick calibration value is fixed at 0x0002904 (10500), which allows the generation of a time
base of 1 ms with SysTick clock at 6 MHz (48/8 = 6 MHz)

10.22.5 SysTick design hints and tips
The SysTick counter runs on the processor clock. If this clock signal is stopped for low power
mode, the SysTick counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

31 30 29 28 27 26 25 24

NOREF SKEW Reserved

23 22 21 20 19 18 17 16

TENMS

15 14 13 12 11 10 9 8

TENMS

7 6 5 4 3 2 1 0

TENMS
195
11011B–ATARM–21-Feb-12

10.23 Glossary
This glossary describes some of the terms used in technical documents from ARM.

Abort

A mechanism that indicates to a processor that the value associated with a memory access is
invalid. An abort can be caused by the external or internal memory system as a result of
attempting to access invalid instruction or data memory.

Aligned

A data item stored at an address that is divisible by the number of bytes that defines the data
size is said to be aligned. Aligned words and halfwords have addresses that are divisible by four
and two respectively. The terms word-aligned and halfword-aligned therefore stipulate
addresses that are divisible by four and two respectively.

Banked register

A register that has multiple physical copies, where the state of the processor determines which
copy is used. The Stack Pointer, SP (R13) is a banked register.

Base register

In instruction descriptions, a register specified by a load or store instruction that is used to hold
the base value for the instruction’s address calculation. Depending on the instruction and its
addressing mode, an offset can be added to or subtracted from the base register value to form
the address that is sent to memory.

See also “Index register”

“Little-endian (LE)” See also “Little-endian memory” .Breakpoint

A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of
register contents, memory locations, variable values at fixed points in the program execution to
test that the program is operating correctly. Breakpoints are removed after the program is suc-
cessfully tested.

.

Condition field

A four-bit field in an instruction that specifies a condition under which the instruction can
execute.

Conditional execution

If the condition code flags indicate that the corresponding condition is true when the instruction
starts executing, it executes normally. Otherwise, the instruction does nothing.

Context

The environment that each process operates in for a multitasking operating system. In ARM pro-
cessors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

Coprocessor

A processor that supplements the main processor. Cortex-M3 does not support any
coprocessors.
196
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Debugger

A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

Direct Memory Access (DMA)

An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

Doubleword

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise
stated.

Doubleword-aligned

A data item having a memory address that is divisible by eight.

Endianness

Byte ordering. The scheme that determines the order that successive bytes of a data word are
stored in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)”

Exception

An event that interrupts program execution. When an exception occurs, the processor suspends
the normal program flow and starts execution at the address indicated by the corresponding
exception vector. The indicated address contains the first instruction of the handler for the
exception.

An exception can be an interrupt request, a fault, or a software-generated system exception.
Faults include attempting an invalid memory access, attempting to execute an instruction in an
invalid processor state, and attempting to execute an undefined instruction.

Exception service routine

See “Interrupt handler” .

Exception vector

See “Interrupt vector” .

Flat address mapping

A system of organizing memory in which each physical address in the memory space is the
same as the corresponding virtual address.

Halfword

A 16-bit data item.

Illegal instruction

An instruction that is architecturally Undefined.

Implementation-defined

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Implementation-specific
197
11011B–ATARM–21-Feb-12

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the
option chosen does not affect software compatibility.

Index register

In some load and store instruction descriptions, the value of this register is used as an offset to
be added to or subtracted from the base register value to form the address that is sent to mem-
ory. Some addressing modes optionally enable the index register value to be shifted prior to the
addition or subtraction.

See also “Base register”

Instruction cycle count

The number of cycles that an instruction occupies the Execute stage of the pipeline.

Interrupt handler

A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector

One of a number of fixed addresses in low memory, or in high memory if high vectors are config-
ured, that contains the first instruction of the corresponding interrupt handler.

Little-endian (LE)

Byte ordering scheme in which bytes of increasing significance in a data word are stored at
increasing addresses in memory.

See also ““Little-endian (LE)” See also “Little-endian memory” .Breakpoint” , “.” , “Endianness” .

Little-endian memory

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the
word at that address

a byte at a halfword-aligned address is the least significant byte within the halfword at that
address.

.

Load/store architecture

A processor architecture where data-processing operations only operate on register contents,
not directly on memory contents.

Prefetching

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline
before the preceding instructions have finished executing. Prefetching an instruction does not
mean that the instruction has to be executed.

Read

Reads are defined as memory operations that have the semantics of a load. Reads include the
Thumb instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.
198
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Region

A partition of memory space.

Reserved

A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These
fields are reserved for use in future extensions of the architecture or are implementation-specific.
All reserved bits not used by the implementation must be written as 0 and read as 0.

Should Be One (SBO)

Write as 1, or all 1s for bit fields, by software. Writing as 0 produces Unpredictable results.

Should Be Zero (SBZ)

Write as 0, or all 0s for bit fields, by software. Writing as 1 produces Unpredictable results.

Should Be Zero or Preserved (SBZP)

Write as 0, or all 0s for bit fields, by software, or preserved by writing the same value back that
has been previously read from the same field on the same processor.

Thread-safe

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when access-
ing shared resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction

One or two halfwords that specify an operation for a processor to perform. Thumb instructions
must be halfword-aligned.

Unaligned

A data item stored at an address that is not divisible by the number of bytes that defines the data
size is said to be unaligned. For example, a word stored at an address that is not divisible by
four.

Undefined

Indicates an instruction that generates an Undefined instruction exception.

Unpredictable (UNP)

You cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset

Also known as a core reset. Initializes the majority of the processor excluding the debug control-
ler and debug logic. This type of reset is useful if you are using the debugging features of a
processor.

Word

A 32-bit data item.

Write

Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.
199
11011B–ATARM–21-Feb-12

200
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
11. Debug and Test Features

11.1 Description
The SAM3 Series Microcontrollers feature a number of complementary debug and test
capabilities. The Serial Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port
(SW-DP) and JTAG Debug(JTAG-DP) port is used for standard debugging functions, such as
downloading code and single-stepping through programs. It also embeds a serial wire trace.

11.2 Embedded Characteristics
• Debug access to all memory and registers in the system, including Cortex-M3 register bank

when the core is running, halted, or held in reset.

• Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access

• Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches

• Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and
system profiling

• Instrumentation Trace Macrocell (ITM) for support of printf style debugging

• IEEE1149.1 JTAG Boundary-can on All Digital Pins

Figure 11-1. Debug and Test Block Diagram

TST

TMS

TCK/SWCLK

TDI

JTAGSEL

TDO/TRACESWO

Boundary
TAP

SWJ-DP

Reset
and
Test

POR
201
11011B–ATARM–21-Feb-12

11.3 Application Examples

11.3.1 Debug Environment
Figure 11-2 shows a complete debug environment example. The SWJ-DP interface is used for
standard debugging functions, such as downloading code and single-stepping through the pro-
gram and viewing core and peripheral registers.

Figure 11-2. Application Debug Environment Example

11.3.2 Test Environment
Figure 11-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent
and interpreted by the tester. In this example, the “board in test” is designed using a number of
JTAG-compliant devices. These devices can be connected to form a single scan chain.

SAM3

Host Debugger
PC

SAM3-based Application Board

SWJ-DP
Connector

SWJ-DP
Emulator/Probe
202
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 11-3. Application Test Environment Example

11.4 Debug and Test Pin Description

Chip 2Chip n

Chip 1SAM3

SAM3-based Application Board In Test

JTAG
Connector

Tester
Test Adaptor

JTAG
Probe

Table 11-1. Debug and Test Signal List

Signal Name Function Type Active Level

Reset/Test

NRST Microcontroller Reset Input/Output Low

TST Test Select Input

SWD/JTAG

TCK/SWCLK Test Clock/Serial Wire Clock Input

TDI Test Data In Input

TDO/TRACESWO
Test Data Out/Trace Asynchronous
Data Out

Output (1)

1.TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal
pull-up corresponding to this PIO line must be enabled to avoid current consumption due to float-
ing input.

TMS/SWDIO
Test Mode Select/Serial Wire
Input/Output

Input

JTAGSEL JTAG Selection Input High
203
11011B–ATARM–21-Feb-12

11.5 Functional Description

11.5.1 Test Pin
One dedicated pin, TST, is used to define the device operating mode. When this pin is at low
level during power-up, the device is in normal operating mode. When at high level, the device is
in test mode or FFPI mode. The TST pin integrates a permanent pull-down resistor of about 15
kΩ, so that it can be left unconnected for normal operation. Note that when setting the TST pin to
low or high level at power up, it must remain in the same state during the duration of the whole
operation.

11.5.2 Debug Architecture
Figure 11-4 shows the Debug Architecture used in the SAM3. The Cortex-M3 embeds four func-
tional units for debug:

• SWJ-DP (Serial Wire/JTAG Debug Port)

• FPB (Flash Patch Breakpoint)

• DWT (Data Watchpoint and Trace)

• ITM (Instrumentation Trace Macrocell)

• TPIU (Trace Port Interface Unit)

The debug architecture information that follows is mainly dedicated to developers of SWJ-DP
Emulators/Probes and debugging tool vendors for Cortex M3-based microcontrollers. For further
details on SWJ-DP see the Cortex M3 technical reference manual.

Figure 11-4. Debug Architecture

11.5.3 Serial Wire/JTAG Debug Port (SWJ-DP)
The Cortex-M3 embeds a SWJ-DP Debug port which is the standard CoreSight™ debug port. It
combines Serial Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port(JTAG-DP), 5
pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables JTAG-DP and enables SW-DP.

4 watchpoints

PC sampler

data address sampler

data sampler

interrupt trace

CPU statistics

DWT

6 breakpoints

FPB

software trace
32 channels

time stamping

ITM

SWD/JTAG

SWJ-DP

SWO trace

TPIU
204
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asyn-
chronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace
can only be used with SW-DP, not JTAG-DP.

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly
between SWJ-DP and JTAG boundary scan operations. A chip reset must be performed after
JTAGSEL is changed.

11.5.3.1 SW-DP and JTAG-DP Selection Mechanism
Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-
DP is selected by default after reset.

• Switch from JTAG-DP to SW-DP. The sequence is:

– Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

– Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (0x79E7 MSB first)

– Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

• Switch from SWD to JTAG. The sequence is:

– Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

– Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (0x3CE7 MSB first)

– Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

11.5.4 FPB (Flash Patch Breakpoint)
The FPB:

• Implements hardware breakpoints

• Patches code and data from code space to system space.

The FPB unit contains:

• Two literal comparators for matching against literal loads from Code space, and remapping to
a corresponding area in System space.

• Six instruction comparators for matching against instruction fetches from Code space and
remapping to a corresponding area in System space.

• Alternatively, comparators can also be configured to generate a Breakpoint instruction to the
processor core on a match.

11.5.5 DWT (Data Watchpoint and Trace)
The DWT contains four comparators which can be configured to generate the following:

• PC sampling packets at set intervals

• PC or Data watchpoint packets

Table 11-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port

TMS/SWDIO TMS SWDIO

TCK/SWCLK TCK SWCLK

TDI TDI -

TDO/TRACESWO TDO TRACESWO (optional: trace)
205
11011B–ATARM–21-Feb-12

• Watchpoint event to halt core

The DWT contains counters for the items that follow:

• Clock cycle (CYCCNT)

• Folded instructions

• Load Store Unit (LSU) operations

• Sleep Cycles

• CPI (all instruction cycles except for the first cycle)

• Interrupt overhead

11.5.6 ITM (Instrumentation Trace Macrocell)
The ITM is an application driven trace source that supports printf style debugging to trace Oper-
ating System (OS) and application events, and emits diagnostic system information. The ITM
emits trace information as packets which can be generated by three different sources with sev-
eral priority levels:

• Software trace: Software can write directly to ITM stimulus registers. This can be done
thanks to the “printf” function. For more information, refer to Section 11.5.6.1 “How to
Configure the ITM”.

• Hardware trace: The ITM emits packets generated by the DWT.

• Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp.

11.5.6.1 How to Configure the ITM
The following example describes how to output trace data in asynchronous trace mode.

• Configure the TPIU for asynchronous trace mode (refer to Section 11.5.6.3 “5.4.3. How to
Configure the TPIU”)

• Enable the write accesses into the ITM registers by writing “0xC5ACCE55” into the
Lock Access Register (Address: 0xE0000FB0)

• Write 0x00010015 into the Trace Control Register:

– Enable ITM

– Enable Synchronization packets

– Enable SWO behavior

– Fix the ATB ID to 1

• Write 0x1 into the Trace Enable Register:

– Enable the Stimulus port 0

• Write 0x1 into the Trace Privilege Register:

– Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will
result in the corresponding stimulus port being accessible in user mode.)

• Write into the Stimulus port 0 register: TPIU (Trace Port Interface Unit)

The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macro-
cell (ITM).

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.
206
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
11.5.6.2 Asynchronous Mode
The TPIU is configured in asynchronous mode, trace data are output using the single TRAC-
ESWO pin. The TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port.
As a consequence, asynchronous trace mode is only available when the Serial Wire Debug
mode is selected since TDO signal is used in JTAG debug mode.

Two encoding formats are available for the single pin output:

• Manchester encoded stream. This is the reset value.

• NRZ_based UART byte structure

11.5.6.3 5.4.3. How to Configure the TPIU
This example only concerns the asynchronous trace mode.

• Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (0xE000EDFC) to
enable the use of trace and debug blocks.

• Write 0x2 into the Selected Pin Protocol Register

– Select the Serial Wire Output – NRZ

• Write 0x100 into the Formatter and Flush Control Register

• Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the
baud rate of the asynchronous output (this can be done automatically by the debugging tool).

11.5.7 IEEE® 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST, is tied to low while JTAG SEL is high
during power-up and must be kept in this state during the whole boundary scan operation. The
SAMPLE,EXTEST and BYPASS functions are implemented. In SWD/JTAG debug mode, the
ARM processor responds with a non-JTAG chip ID that identifies the processor. This is not IEEE
1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port opera-
tions. A chip reset must be performed after JTAGSEL is changed. A Boundary-scan Descriptor
Language (BSDL) file is provided on Atmel’s web site site to set up the test.

11.5.7.1 JTAG Boundary-scan Register
The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins
and associated control signals.

Each SAM3 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit con-
tains data that can be forced on the pad. The INPUT bit facilitates the observability of data
applied to the pad. The CONTROL bit selects the direction of the pad.

For more information, please refer to BDSL files available for the SAM3 Series.
207
11011B–ATARM–21-Feb-12

11.5.8 ID Code Register
Access: Read-only

• VERSION[31:28]: Product Version Number
Set to 0x0.

• PART NUMBER[27:12]: Product Part Number

• MANUFACTURER IDENTITY[11:1]
Set to 0x01F.

• Bit[0] Required by IEEE Std. 1149.1.
Set to 0x1.

31 30 29 28 27 26 25 24

VERSION PART NUMBER

23 22 21 20 19 18 17 16

PART NUMBER

15 14 13 12 11 10 9 8

PART NUMBER MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0

MANUFACTURER IDENTITY 1

Chip Name Chip ID

SAM3N 0x05B2E

Chip Name JTAG ID Code

SAM3N 0x05B2E03F
208
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
12. Reset Controller (RSTC)

12.1 Description
The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the sys-
tem without any external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the
peripheral and processor resets.

12.2 Embedded Characteristics
The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.

The Reset Controller is capable to return to the software the source of the last reset, either a
general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin input/output. It
is capable to shape a reset signal for the external devices, simplifying to a minimum connection
of a push-button on the NRST pin to implement a manual reset.

The configuration of the Reset Controller is saved as supplied on VDDIO.

12.3 Block Diagram

Figure 12-1. Reset Controller Block Diagram

NRST

proc_nreset

wd_fault

periph_nreset

SLCK

Reset
State

Manager

Reset Controller

rstc_irq

NRST
Manager

exter_nreset
nrst_out

core_backup_reset

WDRPROC

user_reset

vddcore_nreset
209
11011B–ATARM–21-Feb-12

12.4 Functional Description

12.4.1 Reset Controller Overview
The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at
Slow Clock and generates the following reset signals:

• proc_nreset: Processor reset line. It also resets the Watchdog Timer.

• periph_nreset: Affects the whole set of embedded peripherals.

• nrst_out: Drives the NRST pin.

These reset signals are asserted by the Reset Controller, either on external events or on soft-
ware action. The Reset State Manager controls the generation of reset signals and provides a
signal to the NRST Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling
external device resets.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Con-
troller, is powered with VDDIO, so that its configuration is saved as long as VDDIO is on.

12.4.2 NRST Manager
After power-up, NRST is an output during the ERSTL time period defined in the RSTC_MR.
When ERSTL has elapsed, the pin behaves as an input and all the system is held in reset if
NRST is tied to GND by an external signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the
Reset State Manager. Figure 12-2 shows the block diagram of the NRST Manager.

Figure 12-2. NRST Manager

12.4.2.1 NRST Signal or Interrupt
The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low,
a User Reset is reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of
NRST occurs. Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR.
As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only
when RSTC_SR is read.

External Reset Timer

URSTS

URSTEN

ERSTL

exter_nreset

URSTIEN

RSTC_MR

RSTC_MR

RSTC_MR

RSTC_SR

NRSTL

nrst_out

NRST

rstc_irq
Other

interrupt
sources

user_reset
210
11011B–ATARM–21-Feb-12

SAM3N

The Reset Controller can also be programmed to generate an interrupt instead of generating a
reset. To do so, the bit URSTIEN in RSTC_MR must be written at 1.

12.4.2.2 NRST External Reset Control
The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this
occurs, the “nrst_out” signal is driven low by the NRST Manager for a time programmed by the
field ERSTL in RSTC_MR. This assertion duration, named EXTERNAL_RESET_LENGTH, lasts
2(ERSTL+1) Slow Clock cycles. This gives the approximate duration of an assertion between 60 µs
and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that
the NRST line is driven low for a time compliant with potential external devices connected on the
system reset.

As the ERSTL field is within RSTC_MR register, which is backed-up, it can be used to shape the
system power-up reset for devices requiring a longer startup time than the Slow Clock Oscillator.

12.4.3 Brownout Manager
The Brownout manager is embedded within the Supply Controller, please refer to the product
Supply Controller section for a detailed description.

12.4.4 Reset States
The Reset State Manager handles the different reset sources and generates the internal reset
signals. It reports the reset status in the field RSTTYP of the Status Register (RSTC_SR). The
update of the field RSTTYP is performed when the processor reset is released.

12.4.4.1 General Reset
A general reset occurs when a Power-on-reset is detected, a Brownout or a Voltage regulation
loss is detected by the Supply controller. The vddcore_nreset signal is asserted by the Supply
Controller when a general reset occurs.

All the reset signals are released and the field RSTTYP in RSTC_SR reports a General Reset.
As the RSTC_MR is reset, the NRST line rises 2 cycles after the vddcore_nreset, as ERSTL
defaults at value 0x0.

Figure 12-3 shows how the General Reset affects the reset signals.
211
11011B–ATARM–21-Feb-12

SAM3N

Figure 12-3. General Reset State

12.4.4.2 Backup Reset
A Backup reset occurs when the chip returns from Backup mode. The core_backup_reset signal
is asserted by the Supply Controller when a Backup reset occurs.

The field RSTTYP in RSTC_SR is updated to report a Backup Reset.

12.4.4.3 User Reset
The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in
RSTC_MR is at 1. The NRST input signal is resynchronized with SLCK to insure proper behav-
ior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset
and the Peripheral Reset are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle
processor startup. The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, the RSTTYP field of the Status Register
(RSTC_SR) is loaded with the value 0x4, indicating a User Reset.

The NRST Manager guaran tees tha t the NRST l i ne i s asse r ted fo r
EXTERNAL_RESET_LENGTH Slow Clock cycles, as programmed in the field ERSTL. How-
ever, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is driven low
externally, the internal reset lines remain asserted until NRST actually rises.

SLCK

periph_nreset

proc_nreset

NRST
(nrst_out)

EXTERNAL RESET LENGTH
= 2 cycles

MCK

Processor Startup
= 2 cycles

backup_nreset

Any
Freq.

RSTTYP XXX 0x0 = General Reset XXX
212
11011B–ATARM–21-Feb-12

SAM3N

Figure 12-4. User Reset State

12.4.4.4 Software Reset
The Reset Controller offers several commands used to assert the different reset signals. These
commands are performed by writing the Control Register (RSTC_CR) with the following bits at 1:

• PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer.

• PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory
system, and, in particular, the Remap Command. The Peripheral Reset is generally used for
debug purposes.
Except for debug purposes , PERRST must always be used in conjunction with PROCRST
(PERRST and PROCRST set both at 1 simultaneously).

• EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field
ERSTL in the Mode Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these com-
mands can be performed independently or simultaneously. The software reset lasts 3 Slow
Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is
detected on the Master Clock (MCK). They are released when the software reset is left, i.e.; syn-
chronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field
ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field
RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in
RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Prog-
ress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is left.

SLCK

periph_nreset

proc_nreset

NRST

NRST
(nrst_out)

>= EXTERNAL RESET LENGTH

MCK

Processor Startup
= 2 cycles

Any
Freq.

Resynch.
2 cycles

RSTTYP Any XXX

Resynch.
2 cycles

0x4 = User Reset
213
11011B–ATARM–21-Feb-12

SAM3N

No other software reset can be performed while the SRCMP bit is set, and writing any value in
RSTC_CR has no effect.

Figure 12-5. Software Reset

12.4.4.5 Watchdog Reset
The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock
cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in
WDT_MR:

• If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST
line is also asserted, depending on the programming of the field ERSTL. However, the
resulting low level on NRST does not result in a User Reset state.

• If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a
processor reset if WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog
Reset, and the Watchdog is enabled by default and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset
controller.

SLCK

periph_nreset
if PERRST=1

proc_nreset
if PROCRST=1

Write RSTC_CR

NRST
(nrst_out)

if EXTRST=1
EXTERNAL RESET LENGTH

8 cycles (ERSTL=2)

MCK

Processor Startup
= 2 cycles

Any
Freq.

RSTTYP Any XXX 0x3 = Software Reset

Resynch.
1 cycle

SRCMP in RSTC_SR
214
11011B–ATARM–21-Feb-12

SAM3N

Figure 12-6. Watchdog Reset

12.4.5 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources,
given in descending order:

• General Reset

• Backup Reset

• Watchdog Reset

• Software Reset

• User Reset

Particular cases are listed below:

• When in User Reset:

– A watchdog event is impossible because the Watchdog Timer is being reset by the
proc_nreset signal.

– A software reset is impossible, since the processor reset is being activated.

• When in Software Reset:

– A watchdog event has priority over the current state.

– The NRST has no effect.

• When in Watchdog Reset:

– The processor reset is active and so a Software Reset cannot be programmed.

– A User Reset cannot be entered.

Only if
WDRPROC = 0

SLCK

periph_nreset

proc_nreset

wd_fault

NRST
(nrst_out)

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

MCK

Processor Startup
= 2 cycles

Any
Freq.

RSTTYP Any XXX 0x2 = Watchdog Reset
215
11011B–ATARM–21-Feb-12

SAM3N

12.4.6 Reset Controller Status Register
The Reset Controller status register (RSTC_SR) provides several status fields:

• RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

• SRCMP bit: This field indicates that a Software Reset Command is in progress and that no
further software reset should be performed until the end of the current one. This bit is
automatically cleared at the end of the current software reset.

• NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on
each MCK rising edge.

• URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR
register. This transition is also detected on the Master Clock (MCK) rising edge (see Figure
12-7). If the User Reset is disabled (URSTEN = 0) and if the interruption is enabled by the
URSTIEN bit in the RSTC_MR register, the URSTS bit triggers an interrupt. Reading the
RSTC_SR status register resets the URSTS bit and clears the interrupt.

Figure 12-7. Reset Controller Status and Interrupt

MCK

NRST

NRSTL

2 cycle
resynchronization

2 cycle
resynchronization

URSTS

read
RSTC_SRPeripheral Access

rstc_irq
if (URSTEN = 0) and

(URSTIEN = 1)
216
11011B–ATARM–21-Feb-12

SAM3N

12.5 Reset Controller (RSTC) User Interface

Table 12-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register RSTC_CR Write-only -

0x04 Status Register RSTC_SR Read-only 0x0000_0000

0x08 Mode Register RSTC_MR Read-write 0x0000 0001
217
11011B–ATARM–21-Feb-12

SAM3N

12.5.1 Reset Controller Control Register
Name: RSTC_CR

Address: 0x400E1400

Access: Write-only

• PROCRST: Processor Reset
0 = No effect.

1 = If KEY is correct, resets the processor.

• PERRST: Peripheral Reset
0 = No effect.

1 = If KEY is correct, resets the peripherals.

• EXTRST: External Reset
0 = No effect.

1 = If KEY is correct, asserts the NRST pin.

• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – –

7 6 5 4 3 2 1 0
– – – – EXTRST PERRST – PROCRST
218
11011B–ATARM–21-Feb-12

SAM3N

12.5.2 Reset Controller Status Register
Name: RSTC_SR

Address: 0x400E1404

Access: Read-only

• URSTS: User Reset Status
0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.

1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

• RSTTYP: Reset Type
Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

• NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

• SRCMP: Software Reset Command in Progress
0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – SRCMP NRSTL

15 14 13 12 11 10 9 8
– – – – – RSTTYP

7 6 5 4 3 2 1 0
– – – – – – – URSTS

RSTTYP Reset Type Comments

0 0 0 General Reset First power-up Reset

0 0 1 Backup Reset Return from Backup mode

0 1 0 Watchdog Reset Watchdog fault occurred

0 1 1 Software Reset Processor reset required by the software

1 0 0 User Reset NRST pin detected low
219
11011B–ATARM–21-Feb-12

SAM3N

12.5.3 Reset Controller Mode Register
Name: RSTC_MR

Address: 0x400E1408

Access: Read-write

• URSTEN: User Reset Enable
0 = The detection of a low level on the pin NRST does not generate a User Reset.

1 = The detection of a low level on the pin NRST triggers a User Reset.

• URSTIEN: User Reset Interrupt Enable
0 = USRTS bit in RSTC_SR at 1 has no effect on rstc_irq.

1 = USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

• ERSTL: External Reset Length
This field defines the external reset length. The external reset is asserted during a time of 2(ERSTL+1) Slow Clock cycles. This
allows assertion duration to be programmed between 60 µs and 2 seconds.

• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – ERSTL

7 6 5 4 3 2 1 0
– – URSTIEN – – – URSTEN
220
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

13. Real-time Timer (RTT)

13.1 Description
The Real-time Timer is built around a 32-bit counter used to count roll-over events of the
programmable16-bit prescaler which enables counting elapsed seconds from a 32 kHz slow
clock source. It generates a periodic interrupt and/or triggers an alarm on a programmed value.

13.2 Embedded Characteristics
• 32-bit Free-running Counter on prescaled slow clock

• 16-bit Configurable Prescaler

• Interrupt on Alarm

13.3 Block Diagram

Figure 13-1. Real-time Timer

SLCK

RTPRES

RTTINC

ALMS

16-bit
Divider

32-bit
Counter

ALMV

=

CRTV

RTT_MR

RTT_VR

RTT_AR

RTT_SR

RTTINCIEN

RTT_MR

0

1 0

ALMIEN

rtt_int

RTT_MR

set

set

RTT_SR

read
RTT_SR

reset

reset

RTT_MR

reload

rtt_alarm

RTTRST

RTT_MR

RTTRST
221
11011B–ATARM–21-Feb-12

221
11011B–ATARM–21-Feb-12

13.4 Functional Description
The Real-time Timer can be used to count elapsed seconds. It is built around a 32-bit counter
fed by Slow Clock divided by a programmable 16-bit value. The value can be programmed in the
field RTPRES of the Real-time Mode Register (RTT_MR).

Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz
signal (if the Slow Clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corre-
sponding to more than 136 years, then roll over to 0.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best
accuracy is achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but
may result in losing status events because the status register is cleared two Slow Clock cycles
after read. Thus if the RTT is configured to trigger an interrupt, the interrupt occurs during 2 Slow
Clock cycles after reading RTT_SR. To prevent several executions of the interrupt handler, the
interrupt must be disabled in the interrupt handler and re-enabled when the status register is
clear.

The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time
Value Register). As this value can be updated asynchronously from the Master Clock, it is advis-
able to read this register twice at the same value to improve accuracy of the returned value.

The current value of the counter is compared with the value written in the alarm register
RTT_AR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in
RTT_SR is set. The alarm register is set to its maximum value, corresponding to 0xFFFF_FFFF,
after a reset.

The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit
can be used to start a periodic interrupt, the period being one second when the RTPRES is pro-
grammed with 0x8000 and Slow Clock equal to 32.768 Hz.

Reading the RTT_SR status register resets the RTTINC and ALMS fields.

Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the
new programmed value. This also resets the 32-bit counter.

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK):
1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2
slow clock cycles after the write of the RTTRST bit in the RTT_MR register.
2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the
RTT_SR (Status Register).
222
11011B–ATARM–21-Feb-12

SAM3N222
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 13-2. RTT Counting

Prescaler

ALMVALMV-10 ALMV+1

0

RTPRES - 1

RTT

APB cycle

read RTT_SR

ALMS (RTT_SR)

APB Interface

SCLK

RTTINC (RTT_SR)

ALMV+2 ALMV+3...

APB cycle
223
11011B–ATARM–21-Feb-12

223
11011B–ATARM–21-Feb-12

13.5 Real-time Timer (RTT) User Interface

Table 13-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register RTT_MR Read-write 0x0000_8000

0x04 Alarm Register RTT_AR Read-write 0xFFFF_FFFF

0x08 Value Register RTT_VR Read-only 0x0000_0000

0x0C Status Register RTT_SR Read-only 0x0000_0000
224
11011B–ATARM–21-Feb-12

SAM3N224
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

13.5.1 Real-time Timer Mode Register
Register Name: RTT_MR

Address: 0x400E1430

Access Type: Read-write

• RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:

RTPRES = 0: The prescaler period is equal to 216 * SCLK period.

RTPRES ≠ 0: The prescaler period is equal to RTPRES * SCLK period.

• ALMIEN: Alarm Interrupt Enable
0 = The bit ALMS in RTT_SR has no effect on interrupt.

1 = The bit ALMS in RTT_SR asserts interrupt.

• RTTINCIEN: Real-time Timer Increment Interrupt Enable
0 = The bit RTTINC in RTT_SR has no effect on interrupt.

1 = The bit RTTINC in RTT_SR asserts interrupt.

• RTTRST: Real-time Timer Restart
0 = No effect.

1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – RTTRST RTTINCIEN ALMIEN

15 14 13 12 11 10 9 8
RTPRES

7 6 5 4 3 2 1 0
RTPRES
225
11011B–ATARM–21-Feb-12

225
11011B–ATARM–21-Feb-12

13.5.2 Real-time Timer Alarm Register
Register Name: RTT_AR

Address: 0x400E1434

Access Type: Read/Write

• ALMV: Alarm Value
Defines the alarm value (ALMV+1) compared with the Real-time Timer.

31 30 29 28 27 26 25 24

ALMV

23 22 21 20 19 18 17 16
ALMV

15 14 13 12 11 10 9 8
ALMV

7 6 5 4 3 2 1 0
ALMV
226
11011B–ATARM–21-Feb-12

SAM3N226
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

13.5.3 Real-time Timer Value Register
Register Name: RTT_VR

Address: 0x400E1438

Access Type: Read-only

• CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.

31 30 29 28 27 26 25 24

CRTV

23 22 21 20 19 18 17 16
CRTV

15 14 13 12 11 10 9 8
CRTV

7 6 5 4 3 2 1 0
CRTV
227
11011B–ATARM–21-Feb-12

227
11011B–ATARM–21-Feb-12

SAM3NSAM3N

13.5.4 Real-time Timer Status Register
Register Name: RTT_SR

Address: 0x400E143C

Access Type: Read-only

• ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occurred since the last read of RTT_SR.

1 = The Real-time Alarm occurred since the last read of RTT_SR.

• RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.

1 = The Real-time Timer has been incremented since the last read of the RTT_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – RTTINC ALMS
228
11011B–ATARM–21-Feb-12

228
11011B–ATARM–21-Feb-12

SAM3N
14. Real Time Clock (RTC)

14.1 Description
The Real-time Clock (RTC) peripheral is designed for very low power consumption.

It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian calen-
dar, complemented by a programmable periodic interrupt. The alarm and calendar registers are
accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format
can be 24-hour mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel
capture on the 32-bit data bus. An entry control is performed to avoid loading registers with
incompatible BCD format data or with an incompatible date according to the current
month/year/century.

14.2 Embedded Characteristics
• Low Power Consumption

• Full asynchronous design

• Two hundred year calendar

• Programmable Periodic Interrupt

• Alarm and update parallel load

• Control of alarm and update Time/Calendar Data In

14.3 Block Diagram

Figure 14-1. RTC Block Diagram

Bus Interface

32768 Divider TimeSlow Clock: SLCK

Bus Interface

Date

RTC InterruptEntry
Control

Interrupt
Control
229
11011B–ATARM–21-Feb-12

14.4 Product Dependencies

14.4.1 Power Management
The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller
has no effect on RTC behavior.

14.4.2 Interrupt
RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC
interrupt requires the interrupt controller to be programmed first.

14.5 Functional Description
The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year
(with leap years), month, date, day, hours, minutes and seconds.

The valid year range is 1900 to 2099 in Gregorian mode, a two-hundred-year calendar.

The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years). This is correct
up to the year 2099.

14.5.1 Reference Clock
The reference clock is Slow Clock (SLCK). It can be driven internally or by an external 32.768
kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical.
The crystal selection has to take into account the current consumption for power saving and the
frequency drift due to temperature effect on the circuit for time accuracy.

14.5.2 Timing
The RTC is updated in real time at one-second intervals in normal mode for the counters of sec-
onds, at one-minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain
that the value read in the RTC registers (century, year, month, date, day, hours, minutes, sec-
onds) are valid and stable, it is necessary to read these registers twice. If the data is the same
both times, then it is valid. Therefore, a minimum of two and a maximum of three accesses are
required.

14.5.3 Alarm
The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:

• If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted
and an interrupt generated if enabled) at a given month, date, hour/minute/second.

• If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to
the user ranging from minutes to 365/366 days.
230
11011B–ATARM–21-Feb-12

SAM3N

14.5.4 Error Checking
Verification on user interface data is performed when accessing the century, year, month, date,
day, hours, minutes, seconds and alarms. A check is performed on illegal BCD entries such as
illegal date of the month with regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is
set in the validity register. The user can not reset this flag. It is reset as soon as an acceptable
value is programmed. This avoids any further side effects in the hardware. The same procedure
is done for the alarm.

The following checks are performed:

1. Century (check if it is in range 19 - 20)

2. Year (BCD entry check)

3. Date (check range 01 - 31)

4. Month (check if it is in BCD range 01 - 12, check validity regarding “date”)

5. Day (check range 1 - 7)

6. Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is
not set if RTC is set in 24-hour mode; in 12-hour mode check range 01 - 12)

7. Minute (check BCD and range 00 - 59)

8. Second (check BCD and range 00 - 59)
Note: If the 12-hour mode is selected by means of the RTC_MODE register, a 12-hour value can be pro-

grammed and the returned value on RTC_TIME will be the corresponding 24-hour value. The
entry control checks the value of the AM/PM indicator (bit 22 of RTC_TIME register) to determine
the range to be checked.

14.5.5 Updating Time/Calendar
To update any of the time/calendar fields, the user must first stop the RTC by setting the corre-
sponding field in the Control Register. Bit UPDTIM must be set to update time fields (hour,
minute, second) and bit UPDCAL must be set to update calendar fields (century, year, month,
date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Regis-
ter. Once the bit reads 1, it is mandatory to clear this flag by writing the corresponding bit in
RTC_SCCR. The user can now write to the appropriate Time and Calendar register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control

When entering programming mode of the calendar fields, the time fields remain enabled. When
entering the programming mode of the time fields, both time and calendar fields are stopped.
This is due to the location of the calendar logic circuity (downstream for low-power consider-
ations). It is highly recommended to prepare all the fields to be updated before entering
programming mode. In successive update operations, the user must wait at least one second
after resetting the UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these
bits again. This is done by waiting for the SEC flag in the Status Register before setting
UPDTIM/UPDCAL bit. After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.
231
11011B–ATARM–21-Feb-12

SAM3N

Figure 14-2. Update Sequence

Prepare TIme or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

Read RTC_SR

ACKUPD
= 1 ?

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit in
RTC_CR

No

Yes

Begin

End

Polling or
IRQ (if enabled)
232
11011B–ATARM–21-Feb-12

SAM3N

14.6 Real Time Clock (RTC) User Interface

Note: if an offset is not listed in the table it must be considered as reserved.

Table 14-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register RTC_CR Read-write 0x0

0x04 Mode Register RTC_MR Read-write 0x0

0x08 Time Register RTC_TIMR Read-write 0x0

0x0C Calendar Register RTC_CALR Read-write 0x01210720

0x10 Time Alarm Register RTC_TIMALR Read-write 0x0

0x14 Calendar Alarm Register RTC_CALALR Read-write 0x01010000

0x18 Status Register RTC_SR Read-only 0x0

0x1C Status Clear Command Register RTC_SCCR Write-only –

0x20 Interrupt Enable Register RTC_IER Write-only –

0x24 Interrupt Disable Register RTC_IDR Write-only –

0x28 Interrupt Mask Register RTC_IMR Read-only 0x0

0x2C Valid Entry Register RTC_VER Read-only 0x0

0x30–0xE0 Reserved Register – – –

0xE4 Write Protect Mode Register RTC_WPMR Read-write 0x00000000

0xE8–0xF8 Reserved Register – – –

0xFC Reserved Register – – –
233
11011B–ATARM–21-Feb-12

SAM3N

14.6.1 RTC Control Register
Name: RTC_CR

Address: 0x400E1460

Access: Read-write

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 246.

• UPDTIM: Update Request Time Register
0 = No effect.

1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.

• UPDCAL: Update Request Calendar Register
0 = No effect.

1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set.

• TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

• CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – CALEVSEL

15 14 13 12 11 10 9 8

– – – – – – TIMEVSEL

7 6 5 4 3 2 1 0

– – – – – – UPDCAL UPDTIM

Value Name Description

0 MINUTE Minute change

1 HOUR Hour change

2 MIDNIGHT Every day at midnight

3 NOON Every day at noon

Value Name Description

0 WEEK Week change (every Monday at time 00:00:00)

1 MONTH Month change (every 01 of each month at time 00:00:00)

2 YEAR Year change (every January 1 at time 00:00:00)

3 –
234
11011B–ATARM–21-Feb-12

SAM3N

14.6.2 RTC Mode Register
Name: RTC_MR

Address: 0x400E1464

Access: Read-write

• HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.

1 = 12-hour mode is selected.

All non-significant bits read zero.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – HRMOD
235
11011B–ATARM–21-Feb-12

SAM3N

14.6.3 RTC Time Register
Name: RTC_TIMR

Address: 0x400E1468

Access: Read-write

• SEC: Current Second
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MIN: Current Minute
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• HOUR: Current Hour
The range that can be set is 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

• AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.

0 = AM.

1 = PM.

All non-significant bits read zero.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– AMPM HOUR

15 14 13 12 11 10 9 8

– MIN

7 6 5 4 3 2 1 0

– SEC
236
11011B–ATARM–21-Feb-12

SAM3N

14.6.4 RTC Calendar Register
Name: RTC_CALR

Address: 0x400E146C

Access: Read-write

• CENT: Current Century
The range that can be set is 19 - 20 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• YEAR: Current Year
The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MONTH: Current Month
The range that can be set is 01 - 12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• DAY: Current Day in Current Week
The range that can be set is 1 - 7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

• DATE: Current Day in Current Month
The range that can be set is 01 - 31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

31 30 29 28 27 26 25 24

– – DATE

23 22 21 20 19 18 17 16

DAY MONTH

15 14 13 12 11 10 9 8

YEAR

7 6 5 4 3 2 1 0

– CENT
237
11011B–ATARM–21-Feb-12

SAM3N

14.6.5 RTC Time Alarm Register
Name: RTC_TIMALR

Address: 0x400E1470

Access: Read-write

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 246.

• SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.

• SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.

1 = The second-matching alarm is enabled.

• MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

• MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.

1 = The minute-matching alarm is enabled.

• HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

• AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

• HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.

1 = The hour-matching alarm is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

HOUREN AMPM HOUR

15 14 13 12 11 10 9 8

MINEN MIN

7 6 5 4 3 2 1 0

SECEN SEC
238
11011B–ATARM–21-Feb-12

SAM3N

14.6.6 RTC Calendar Alarm Register
Name: RTC_CALALR

Address: 0x400E1474

Access: Read-write

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 246.

• MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

• MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.

1 = The month-matching alarm is enabled.

• DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

• DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.

1 = The date-matching alarm is enabled.

31 30 29 28 27 26 25 24

DATEEN – DATE

23 22 21 20 19 18 17 16

MTHEN – – MONTH

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –
239
11011B–ATARM–21-Feb-12

SAM3N

14.6.7 RTC Status Register
Name: RTC_SR

Address: 0x400E1478

Access: Read-only

• ACKUPD: Acknowledge for Update
0 = Time and calendar registers cannot be updated.

1 = Time and calendar registers can be updated.

• ALARM: Alarm Flag
0 = No alarm matching condition occurred.

1 = An alarm matching condition has occurred.

• SEC: Second Event
0 = No second event has occurred since the last clear.

1 = At least one second event has occurred since the last clear.

• TIMEV: Time Event
0 = No time event has occurred since the last clear.

1 = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).

• CALEV: Calendar Event
0 = No calendar event has occurred since the last clear.

1 = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALEV TIMEV SEC ALARM ACKUPD
240
11011B–ATARM–21-Feb-12

SAM3N

14.6.8 RTC Status Clear Command Register
Name: RTC_SCCR

Address: 0x400E147C

Access: Write-only

• ACKCLR: Acknowledge Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

• ALRCLR: Alarm Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

• SECCLR: Second Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

• TIMCLR: Time Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

• CALCLR: Calendar Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALCLR TIMCLR SECCLR ALRCLR ACKCLR
241
11011B–ATARM–21-Feb-12

SAM3N

14.6.9 RTC Interrupt Enable Register
Name: RTC_IER

Address: 0x400E1480

Access: Write-only

• ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.

1 = The acknowledge for update interrupt is enabled.

• ALREN: Alarm Interrupt Enable
0 = No effect.

1 = The alarm interrupt is enabled.

• SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

• TIMEN: Time Event Interrupt Enable
0 = No effect.

1 = The selected time event interrupt is enabled.

• CALEN: Calendar Event Interrupt Enable
0 = No effect.

• 1 = The selected calendar event interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALEN TIMEN SECEN ALREN ACKEN
242
11011B–ATARM–21-Feb-12

SAM3N

14.6.10 RTC Interrupt Disable Register
Name: RTC_IDR

Address: 0x400E1484

Access: Write-only

• ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.

1 = The acknowledge for update interrupt is disabled.

• ALRDIS: Alarm Interrupt Disable
0 = No effect.

1 = The alarm interrupt is disabled.

• SECDIS: Second Event Interrupt Disable
0 = No effect.

1 = The second periodic interrupt is disabled.

• TIMDIS: Time Event Interrupt Disable
0 = No effect.

1 = The selected time event interrupt is disabled.

• CALDIS: Calendar Event Interrupt Disable
0 = No effect.

1 = The selected calendar event interrupt is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALDIS TIMDIS SECDIS ALRDIS ACKDIS
243
11011B–ATARM–21-Feb-12

SAM3N

14.6.11 RTC Interrupt Mask Register
Name: RTC_IMR

Address: 0x400E1488

Access: Read-only

• ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.

• ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

• SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.

• TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

• CAL: Calendar Event Interrupt Mask
0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CAL TIM SEC ALR ACK
244
11011B–ATARM–21-Feb-12

SAM3N

14.6.12 RTC Valid Entry Register
Name: RTC_VER

Address: 0x400E148C

Access: Read-only

• NVTIM: Non-valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).

1 = RTC_TIMR has contained invalid data since it was last programmed.

• NVCAL: Non-valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).

1 = RTC_CALR has contained invalid data since it was last programmed.

• NVTIMALR: Non-valid Time Alarm
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1 = RTC_TIMALR has contained invalid data since it was last programmed.

• NVCALALR: Non-valid Calendar Alarm
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1 = RTC_CALALR has contained invalid data since it was last programmed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – NVCALALR NVTIMALR NVCAL NVTIM
245
11011B–ATARM–21-Feb-12

SAM3N

14.6.13 RTC Write Protect Mode Register
Name: RTC_WPMR

Address: 0x400E1544

Access: Read-write

• WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

Protects the registers:

“RTC Mode Register”

“RTC Mode Register”

“RTC Time Alarm Register”

“RTC Calendar Alarm Register”

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

— — — — — — — WPEN
246
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
15. Watchdog Timer (WDT)

15.1 Description
The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds
(slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition,
it can be stopped while the processor is in debug mode or idle mode.

15.2 Embedded Characteristics
• 16-bit key-protected only-once-Programmable Counter

• Windowed, prevents the processor to be in a dead-lock on the watchdog access.

15.3 Block Diagram

Figure 15-1. Watchdog Timer Block Diagram

= 0

1 0

set

resetread WDT_SR
or
reset

wdt_fault
(to Reset Controller)

set

reset

WDFIEN

wdt_int

WDT_MR

SLCK1/128

12-bit Down
Counter

Current
Value

WDD

WDT_MR

<= WDD

WDV

WDRSTT

WDT_MR

WDT_CR

reload

WDUNF

WDERR

reload

write WDT_MR

WDT_MR

WDRSTEN
247
11011B–ATARM–21-Feb-12

15.4 Functional Description
The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in
the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock
divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow
Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is 0xFFF, corresponding to the maximum value of
the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup
Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must
either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must
reprogram it to meet the maximum Watchdog period the application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset
resets it. Writing the WDT_MR register reloads the timer with the newly programmed mode
parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer under-
flow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The
Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow
Clock 128 divider is reset and restarted. The WDT_CR register is write-protected. As a result,
writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur,
the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode
Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register
(WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the
Watchdog must occur while the Watchdog counter is within a window between 0 and WDD,
WDD is defined in the WatchDog Mode Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD
results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the
WDT_SR and the “wdt_fault” signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the
WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole
range [0; WDV] and does not generate an error. This is the default configuration on reset (the
WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an inter-
rupt, provided the bit WDFIEN is set in the mode register. The signal “wdt_fault” to the reset
controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset
controller programmer Datasheet. In that case, the processor and the Watchdog Timer are
reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared,
and the “wdt_fault” signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on
the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.
248
11011B–ATARM–21-Feb-12

SAM3N

Figure 15-2. Watchdog Behavior

0

WDV

WDD

WDT_CR = WDRSTT
Watchdog

Fault

Normal behavior

Watchdog Error Watchdog Underflow

FFF
if WDRSTEN is 1

if WDRSTEN is 0

Forbidden
Window

Permitted
Window
249
11011B–ATARM–21-Feb-12

SAM3N

15.5 Watchdog Timer (WDT) User Interface

Table 15-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read-write Once 0x3FFF_2FFF

0x08 Status Register WDT_SR Read-only 0x0000_0000
250
11011B–ATARM–21-Feb-12

SAM3N

15.5.1 Watchdog Timer Control Register
Name: WDT_CR

Address: 0x400E1450

Access: Write-only

• WDRSTT: Watchdog Restart
0: No effect.

1: Restarts the Watchdog.

• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – WDRSTT
251
11011B–ATARM–21-Feb-12

SAM3N

15.5.2 Watchdog Timer Mode Register
Name: WDT_MR

Address: 0x400E1454

Access: Read-write Once

• WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.

• WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

• WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

• WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

• WDD: Watchdog Delta Value
Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.

If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.

• WDDBGHLT: Watchdog Debug Halt
0: The Watchdog runs when the processor is in debug state.

1: The Watchdog stops when the processor is in debug state.

• WDIDLEHLT: Watchdog Idle Halt
0: The Watchdog runs when the system is in idle mode.

1: The Watchdog stops when the system is in idle state.

• WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.

1: Disables the Watchdog Timer.

31 30 29 28 27 26 25 24

WDIDLEHLT WDDBGHLT WDD

23 22 21 20 19 18 17 16
WDD

15 14 13 12 11 10 9 8
WDDIS WDRPROC WDRSTEN WDFIEN WDV

7 6 5 4 3 2 1 0
WDV
252
11011B–ATARM–21-Feb-12

SAM3N

15.5.3 Watchdog Timer Status Register
Name: WDT_SR

Address: 0x400E1458

Access: Read-only

• WDUNF: Watchdog Underflow
0: No Watchdog underflow occurred since the last read of WDT_SR.

1: At least one Watchdog underflow occurred since the last read of WDT_SR.

• WDERR: Watchdog Error
0: No Watchdog error occurred since the last read of WDT_SR.

1: At least one Watchdog error occurred since the last read of WDT_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – WDERR WDUNF
253
11011B–ATARM–21-Feb-12

SAM3N

254
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

16. Supply Controller (SUPC)

16.1 Description
The Supply Controller (SUPC) controls the supply voltage of the Core of the system and man-
ages the Backup Low Power Mode. In this mode, the current consumption is reduced to a few
microamps for Backup power retention. Exit from this mode is possible on multiple wake-up
sources including events on WKUP pins, or a Clock alarm. The SUPC also generates the Slow
Clock by selecting either the Low Power RC oscillator or the Low Power Crystal oscillator.

16.2 Embedded Characteristics
• Manages the Core Power Supply VDDCORE and the Backup Low Power Mode by

Controlling the Embedded Voltage Regulator

• Generates the Slow Clock SLCK, by Selecting Either the 22-42 kHz Low Power RC Oscillator
or the 32 kHz Low Power Crystal Oscillator

• Supports Multiple Wake Up Sources, for Exit from Backup Low Power Mode

– Force Wake Up Pin, with Programmable Debouncing

– 16 Wake Up Inputs, with Programmable Debouncing

– Real Time Clock Alarm

– Real Time Timer Alarm

– Supply Monitor Detection on VDDIO, with Programmable Scan Period and Voltage
Threshold

• A Supply Monitor Detection on VDDIO or a Brownout Detection on VDDCORE can Trigger a
Core Reset

• Embeds:

– One 22 to 42 kHz Low Power RC Oscillator

– One 32 kHz Low Power Crystal Oscillator

– One Zero-Power Power-On Reset Cell

– One Software Programmable Supply Monitor, on VDDIO Located in Backup Section

– One Brownout Detector on VDDCORE Located in the Core
255
11011B–ATARM–21-Feb-12

255
11011B–ATARM–21-Feb-12

16.3 Block Diagram

Figure 16-1. Supply Controller Block Diagram

Software Controlled
Voltage Regulator

ADC

PIOA/B/C

Matrix

SRAM

Cortex-M3

Flash

Peripherals

Peripheral
Bridge

Zero-Power
Power-on Reset

Supply
Monitor

(Backup)

RTC

Embedded
32 kHz RC

Oscillator

Xtal 32 kHz
Oscillator

Supply
Controller

Brownout
Detector
(Core)

General Purpose
Backup Registers

Reset
Controller

Backup Power Supply

Core Power Supply

vr_on
vr_mode

bod_on

brown_out

rtc_alarm
SLCK

rtc_nreset

proc_nreset
periph_nreset
ice_nreset

Master Clock
MCK

SLCK

core_nreset

Main Clock
MAINCK

SLCK

NRST

FSTT0 - FSTT15

XIN32

XOUT32

osc32k_xtal_en

osc32k_sel

Slow Clock
SLCK

osc32k_rc_en

core_nreset

VDDIO

VDDCORE

VDDOUT

ADVREF

ADx

WKUP0 - WKUP15

bod_core_on

lcore_brown_out

RTT
rtt_alarm

SLCK
rtt_nreset

XIN

XOUT

VDDIO

VDDIN

PIOx

DAC DAC0x

PLL

FSTT0 - FSTT15 are possible Fast Startup Sources, generated by WKUP0-WKUP15 Pins, but are not physical pins.

Embedded
12/8/4 MHz

RC
Oscillator

Xtal
Oscillator

Watchdog
Timer

Power
Management

Controller
256
11011B–ATARM–21-Feb-12

SAM3N256
11011B–ATARM–21-Feb-12

SAM3N

16.4 Supply Controller Functional Description

16.4.1 Supply Controller Overview
The device can be divided into two power supply areas:

• The VDDIO Power Supply: including the Supply Controller, a part of the Reset Controller, the
Slow Clock switch, the General Purpose Backup Registers, the Supply Monitor and the Clock
which includes the Real Time Timer and the Real Time Clock

• The Core Power Supply: including the other part of the Reset Controller, the Brownout
Detector, the Processor, the SRAM memory, the FLASH memory and the Peripherals

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC
intervenes when the VDDIO power supply rises (when the system is starting) or when the
Backup Low Power Mode is entered.

The SUPC also integrates the Slow Clock generator which is based on a 32 kHz crystal oscilla-
tor and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the
software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller and the VDDIO power supply have a reset circuitry based on a zero-
power power-on reset cell. The zero-power power-on reset allows the SUPC to start properly as
soon as the VDDIO voltage becomes valid.

At startup of the system, once the voltage VDDIO is valid and the embedded 32 kHz RC oscilla-
tor is stabilized, the SUPC starts up the core by sequentially enabling the internal Voltage
Regulator, waiting that the core voltage VDDCORE is valid, then releasing the reset signal of the
core “vddcore_nreset” signal.

Once the system has started, the user can program a supply monitor and/or a brownout detec-
tor. If the supply monitor detects a voltage on VDDIO that is too low, the SUPC can assert the
reset signal of the core “vddcore_nreset” signal until VDDIO is valid. Likewise, if the brownout
detector detects a core voltage VDDCORE that is too low, the SUPC can assert the reset signal
“vddcore_nreset” until VDDCORE is valid.

When the Backup Low Power Mode is entered, the SUPC sequentially asserts the reset signal
of the core power supply “vddcore_nreset” and disables the voltage regulator, in order to supply
only the VDDIO power supply. In this mode the current consumption is reduced to a few micro-
amps for Backup part retention. Exit from this mode is possible on multiple wake-up sources
including an event on WKUP pins, or a Clock alarm. To exit this mode, the SUPC operates in the
same way as system startup.
257
11011B–ATARM–21-Feb-12

SAM3N257
11011B–ATARM–21-Feb-12

SAM3N

16.4.2 Slow Clock Generator
The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power
supply. As soon as the VDDIO is supplied, both the crystal oscillator and the embedded RC
oscillator are powered up, but only the embedded RC oscillator is enabled. This allows the slow
clock to be valid in a short time (about 100 µs).

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more
accurate frequency. The command is made by writing the Supply Controller Control Register
(SUPC_CR) with the XTALSEL bit at 1.This results in a sequence which first configures the PIO
lines multiplexed with XIN32 and XOUT32 to be driven by the oscillator, then enables the crystal
oscillator. then waits for 32,768 slow clock cycles, then switches the slow clock on the output of
the crystal oscillator and then disables the RC oscillator to save power. The switch of the slow
clock source is glitch free. The OSCSEL bit of the Supply Controller Status Register (SUPC_SR)
allows knowing when the switch sequence is done.

Coming back on the RC oscillator is only possible by shutting down the VDDIO power supply.

If the user does not need the crystal oscillator, the XIN32 and XOUT32 pins should be left
unconnected.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In
this case, the user has to provide the external clock signal on XIN32. The input characteristics of
the XIN32 pin are given in the product electrical characteristics section. In order to set the
bypass mode, the OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs
to be set at 1.

16.4.3 Voltage Regulator Control/Backup Low Power Mode
The Supply Controller can be used to control the embedded 1.8V voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load
current. Please refer to the electrical characteristics section.

The programmer can switch off the voltage regulator, and thus put the device in Backup mode,
by writing the Supply Controller Control Register (SUPC_CR) with the VROFF bit at 1.

This can be done also by using WFE (Wait for Event) Cortex-M3 instruction with the deep mode
bit set to 1.

The Backup mode can also be entered by executing the WFI (Wait for Interrupt) or WFE (Wait for
Event) Cortex-M3 instructions. To select the Backup mode entry mechanism, two options are
available, depending on the SLEEPONEXIT bit in the Cortex-M3 System Control register:

• Sleep-now: if the SLEEPONEXIT bit is cleared, the device enters Backup mode as soon as
the WFI or WFE instruction is executed.

• Sleep-on-exit: if the SLEEPONEXIT bit is set when the WFI instruction is executed, the
device enters Backup mode as soon as it exits the lowest priority ISR.

This asserts the vddcore_nreset signal after the write resynchronization time which lasts, in the
worse case, two slow clock cycles. Once the vddcore_nreset signal is asserted, the processor
and the peripherals are stopped one slow clock cycle before the core power supply shuts off.

When the user does not use the internal voltage regulator and wants to supply VDDCORE by an
external supply, it is possible to disable the voltage regulator. Note that it is different from the
Backup mode. Depending on the application, disabling the voltage regulator can reduce power
consumption as the voltage regulator input (VDDIN) is shared with the ADC and DAC. This is
done through ONREG bit in SUPC_MR.
258
11011B–ATARM–21-Feb-12

SAM3N258
11011B–ATARM–21-Feb-12

SAM3N

16.4.4 Supply Monitor
The Supply Controller embeds a supply monitor which is located in the VDDIO Power Supply
and which monitors VDDIO power supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state
if the Main power supply drops below a certain level.

The threshold of the supply monitor is programmable. It can be selected from 1.9V to 3.4V by
steps of 100 mV. This threshold is programmed in the SMTH field of the Supply Controller Sup-
ply Monitor Mode Register (SUPC_SMMR).

The supply monitor can also be enabled during one slow clock period on every one of either 32,
256 or 2048 slow clock periods, according to the choice of the user. This can be configured by
programming the SMSMPL field in SUPC_SMMR.

Enabling the supply monitor for such reduced times allows to divide the typical supply monitor
power consumption respectively by factors of 32, 256 or 2048, if the user does not need a con-
tinuous monitoring of the VDDIO power supply.

A supply monitor detection can either generate a reset of the core power supply or a wake up of
the core power supply. Generating a core reset when a supply monitor detection occurs is
enabled by writing the SMRSTEN bit to 1 in SUPC_SMMR.

Waking up the core power supply when a supply monitor detection occurs can be enabled by
programming the SMEN bit to 1 in the Supply Controller Wake Up Mode Register
(SUPC_WUMR).

The Supply Controller provides two status bits in the Supply Controller Status Register for the
supply monitor which allows to determine whether the last wake up was due to the supply
monitor:

• The SMOS bit provides real time information, which is updated at each measurement cycle
or updated at each Slow Clock cycle, if the measurement is continuous.

• The SMS bit provides saved information and shows a supply monitor detection has occurred
since the last read of SUPC_SR.

The SMS bit can generate an interrupt if the SMIEN bit is set to 1 in the Supply Controller Supply
Monitor Mode Register (SUPC_SMMR).
259
11011B–ATARM–21-Feb-12

SAM3N259
11011B–ATARM–21-Feb-12

SAM3N

Figure 16-2. Supply Monitor Status Bit and Associated Interrupt

Supply Monitor ON

3.3 V

0 V

Threshold

SMS and SUPC interrupt

Read SUPC_SR

Periodic Sampling

Continuous Sampling (SMSMPL = 1)
260
11011B–ATARM–21-Feb-12

SAM3N260
11011B–ATARM–21-Feb-12

SAM3N

16.4.5 Power Supply Reset

16.4.5.1 Raising the Power Supply
As soon as the voltage VDDIO rises, the RC oscillator is powered up and the zero-power
power-on reset cell maintains its output low as long as VDDIO has not reached its target voltage.
During this time, the Supply Controller is entirely reset. When the VDDIO voltage becomes valid
and zero-power power-on reset signal is released, a counter is started for 5 slow clock cycles.
This is the time it takes for the 32 kHz RC oscillator to stabilize.

After this time, the voltage regulator is enabled. The core power supply rises and the brownout
detector provides the bodcore_in signal as soon as the core voltage VDDCORE is valid. This
results in releasing the vddcore_nreset signal to the Reset Controller after the bodcore_in signal
has been confirmed as being valid for at least one slow clock cycle.

Figure 16-3. Raising the VDDIO Power Supply

Zero-Power Power-On
Reset Cell output

22 - 42 kHz RC
Oscillator output

Fast RC
Oscillator output

Backup Power Supply

vr_on

bodcore_in

vddcore_nreset

NRST

proc_nreset

Note: After “proc_nreset” rising, the core starts fecthing instructions from Flash at 4 MHz.

periph_nreset

7 x Slow Clock Cycles 3 x Slow Clock
Cycles

3 x Slow Clock
Cycles

6.5 x Slow Clock
Cycles

TON Voltage
Regulator

Zero-Power POR

Core Power Supply
261
11011B–ATARM–21-Feb-12

SAM3N261
11011B–ATARM–21-Feb-12

SAM3N

16.4.6 Core Reset
The Supply Controller manages the vddcore_nreset signal to the Reset Controller, as described
previously in Section 16.4.5 ”Power Supply Reset”. The vddcore_nreset signal is normally
asserted before shutting down the core power supply and released as soon as the core power
supply is correctly regulated.

There are two additional sources which can be programmed to activate vddcore_nreset:

• a supply monitor detection

• a brownout detection

16.4.6.1 Supply Monitor Reset
The supply monitor is capable of generating a reset of the system. This can be enabled by set-
ting the SMRSTEN bit in the Supply Controller Supply Monitor Mode Register (SUPC_SMMR).

If SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is imme-
diately activated for a minimum of 1 slow clock cycle.

16.4.6.2 Brownout Detector Reset
The brownout detector provides the bodcore_in signal to the SUPC which indicates that the volt-
age regulation is operating as programmed. If this signal is lost for longer than 1 slow clock
period while the voltage regulator is enabled, the Supply Controller can assert vddcore_nreset.
This feature is enabled by writing the bit, BODRSTEN (Brownout Detector Reset Enable) to 1 in
the Supply Controller Mode Register (SUPC_MR).

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low),
the vddcore_nreset signal is asserted for a minimum of 1 slow clock cycle and then released if
bodcore_in has been reactivated. The BODRSTS bit is set in the Supply Controller Status Reg-
ister (SUPC_SR) so that the user can know the source of the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.

16.4.7 Wake Up Sources
The wake up events allow the device to exit backup mode. When a wake up event is detected,
the Supply Controller performs a sequence which automatically reenables the core power
supply.
262
11011B–ATARM–21-Feb-12

SAM3N262
11011B–ATARM–21-Feb-12

SAM3N

Figure 16-4. Wake Up Sources

16.4.7.1 Wake Up Inputs
The wake up inputs, WKUP0 to WKUP15, can be programmed to perform a wake up of the core
power supply. Each input can be enabled by writing to 1 the corresponding bit, WKUPEN0 to
WKUPEN 15, in the Wake Up Inputs Register (SUPC_WUIR). The wake up level can be
selected with the corresponding polarity bit, WKUPPL0 to WKUPPL15, also located in
SUPC_WUIR.

All the resulting signals are wired-ORed to trigger a debounce counter, which can be pro-
grammed with the WKUPDBC field in the Supply Controller Wake Up Mode Register
(SUPC_WUMR). The WKUPDBC field can select a debouncing period of 3, 32, 512, 4,096 or
32,768 slow clock cycles. This corresponds respectively to about 100 µs, about 1 ms, about
16 ms, about 128 ms and about 1 second (for a typical slow clock frequency of 32 kHz). Pro-
gramming WKUPDBC to 0x0 selects an immediate wake up, i.e., an enabled WKUP pin must be
active according to its polarity during a minimum of one slow clock period to wake up the core
power supply.

If an enabled WKUP pin is asserted for a time longer than the debouncing period, a wake up of
the core power supply is started and the signals, WKUP0 to WKUP15 as shown in Figure 16-4,
are latched in the Supply Controller Status Register (SUPC_SR). This allows the user to identify
the source of the wake up, however, if a new wake up condition occurs, the primary information
is lost. No new wake up can be detected since the primary wake up condition has disappeared.

WKUP15

WKUPEN15WKUPT15

WKUPEN1

WKUPEN0

Debouncer

SLCK

WKUPDBC

WKUPS

RTCEN
rtc_alarm

SMEN
sm_out

Core
Supply
Restart

WKUPIS0

WKUPIS1

WKUPIS15

Falling/Rising
Edge

Detector

WKUPT0

Falling/Rising
Edge

Detector

WKUPT1

Falling/Rising
Edge

Detector

WKUP0

WKUP1

RTTEN
rtt_alarm
263
11011B–ATARM–21-Feb-12

SAM3N263
11011B–ATARM–21-Feb-12

SAM3N

16.4.7.2 Clock Alarms
The RTC and the RTT alarms can generate a wake up of the core power supply. This can be
enabled by writing respectively, the bits RTCEN and RTTEN to 1 in the Supply Controller Wake
Up Mode Register (SUPC_WUMR).

The Supply Controller does not provide any status as the information is available in the User
Interface of either the Real Time Timer or the Real Time Clock.

16.4.7.3 Supply Monitor Detection
The supply monitor can generate a wakeup of the core power supply. See Section 16.4.4 ”Sup-
ply Monitor”.
264
11011B–ATARM–21-Feb-12

SAM3N264
11011B–ATARM–21-Feb-12

SAM3N

16.5 Supply Controller (SUPC) User Interface
The User Interface of the Supply Controller is part of the System Controller User Interface.

16.5.1 System Controller (SYSC) User Interface

16.5.2 Supply Controller (SUPC) User Interface

Table 16-1. System Controller Registers

Offset System Controller Peripheral Name

0x00-0x0c Reset Controller RSTC

0x10-0x2C Supply Controller SUPC

0x30-0x3C Real Time Timer RTT

0x50-0x5C Watchdog WDT

0x60-0x7C Real Time Clock RTC

0x90-0xDC General Purpose Backup Register GPBR

Table 16-2. Register Mapping

Offset Register Name Access Reset

0x00 Supply Controller Control Register SUPC_CR Write-only N/A

0x04 Supply Controller Supply Monitor Mode Register SUPC_SMMR Read-write 0x0000_0000

0x08 Supply Controller Mode Register SUPC_MR Read-write 0x0000_5A00

0x0C Supply Controller Wake Up Mode Register SUPC_WUMR Read-write 0x0000_0000

0x10 Supply Controller Wake Up Inputs Register SUPC_WUIR Read-write 0x0000_0000

0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0800

0x18 Reserved
265
11011B–ATARM–21-Feb-12

SAM3N265
11011B–ATARM–21-Feb-12

SAM3N

16.5.3 Supply Controller Control Register
Name: SUPC_CR

Address: 0x400E1410

Access: Write-only

• VROFF: Voltage Regulator Off
0 (NO_EFFECT) = no effect.

1 (STOP_VREG) = if KEY is correct, asserts vddcore_nreset and stops the voltage regulator.

• XTALSEL: Crystal Oscillator Select
0 (NO_EFFECT) = no effect.

1 (CRYSTAL_SEL) = if KEY is correct, switches the slow clock on the crystal oscillator output.

• KEY: Password
Should be written to value 0xA5. Writing any other value in this field aborts the write operation.

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – –

7 6 5 4 3 2 1 0
– – – – XTALSEL VROFF – –
266
11011B–ATARM–21-Feb-12

SAM3N266
11011B–ATARM–21-Feb-12

SAM3N

16.5.4 Supply Controller Supply Monitor Mode Register
Name: SUPC_SMMR

Address: 0x400E1414

Access: Read-write

• SMTH: Supply Monitor Threshold

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – SMIEN SMRSTEN – SMSMPL

7 6 5 4 3 2 1 0
– – – – SMTH

Value Name Description

0x0 1_9V 1.9 V

0x1 2_0V 2.0 V

0x2 2_1V 2.1 V

0x3 2_2V 2.2 V

0x4 2_3V 2.3 V

0x5 2_4V 2.4 V

0x6 2_5V 2.5 V

0x7 2_6V 2.6 V

0x8 2_7V 2.7 V

0x9 2_8V 2.8 V

0xA 2_9V 2.9 V

0xB 3_0V 3.0 V

0xC 3_1V 3.1 V

0xD 3_2V 3.2 V

0xE 3_3V 3.3 V

0xF 3_4V 3.4 V
267
11011B–ATARM–21-Feb-12

SAM3N267
11011B–ATARM–21-Feb-12

SAM3N

• SMSMPL: Supply Monitor Sampling Period

• SMRSTEN: Supply Monitor Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a supply monitor detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a supply monitor detection occurs.

• SMIEN: Supply Monitor Interrupt Enable
0 (NOT_ENABLE) = the SUPC interrupt signal is not affected when a supply monitor detection occurs.

1 (ENABLE) = the SUPC interrupt signal is asserted when a supply monitor detection occurs.

Value Name Description

0x0 SMD Supply Monitor disabled

0x1 CSM Continuous Supply Monitor

0x2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods

0x3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods

0x4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods

0x5-0x7 Reserved Reserved
268
11011B–ATARM–21-Feb-12

SAM3N268
11011B–ATARM–21-Feb-12

SAM3N

16.5.5 Supply Controller Mode Register
Name: SUPC_MR

Address: 0x400E1418

Access: Read-write

• BODRSTEN: Brownout Detector Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a brownout detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a brownout detection occurs.

• BODDIS: Brownout Detector Disable
0 (ENABLE) = the core brownout detector is enabled.

1 (DISABLE) = the core brownout detector is disabled.

• ONREG: Voltage Regulator enable
0 (ONREG_UNUSED) = Voltage Regulator is not used

1 (ONREG_USED) = Voltage Regulator is used

• OSCBYPASS: Oscillator Bypass
0 (NO_EFFECT) = no effect. Clock selection depends on XTALSEL value.

1 (BYPASS) = the 32-KHz XTAL oscillator is selected and is put in bypass mode.

• KEY: Password Key
Should be written to value 0xA5. Writing any other value in this field aborts the write operation.

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16
– – – OSCBYPASS – – – –

15 14 13 12 11 10 9 8
– ONREG BODDIS BODRSTEN – – – –

7 6 5 4 3 2 1 0
– – – – – – – –
269
11011B–ATARM–21-Feb-12

SAM3N269
11011B–ATARM–21-Feb-12

SAM3N

16.5.6 Supply Controller Wake Up Mode Register
Name: SUPC_WUMR

Address: 0x400E141C

Access: Read-write

• SMEN: Supply Monitor Wake Up Enable
0 (NOT_ENABLE) = the supply monitor detection has no wake up effect.

1 (ENABLE) = the supply monitor detection forces the wake up of the core power supply.

• RTTEN: Real Time Timer Wake Up Enable
0 (NOT_ENABLE) = the RTT alarm signal has no wake up effect.

1 (ENABLE) = the RTT alarm signal forces the wake up of the core power supply.

• RTCEN: Real Time Clock Wake Up Enable
0 (NOT_ENABLE) = the RTC alarm signal has no wake up effect.

1 (ENABLE) = the RTC alarm signal forces the wake up of the core power supply.

• WKUPDBC: Wake Up Inputs Debouncer Period

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– WKUPDBC – – – –

7 6 5 4 3 2 1 0
– – – – RTCEN RTTEN SMEN –

Value Name Description

0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.

1 3_SCLK WKUPx shall be in its active state for at least 3 SLCK periods

2 32_SCLK WKUPx shall be in its active state for at least 32 SLCK periods

3 512_SCLK WKUPx shall be in its active state for at least 512 SLCK periods

4 4096_SCLK WKUPx shall be in its active state for at least 4,096 SLCK periods

5 32768_SCLK WKUPx shall be in its active state for at least 32,768 SLCK periods

6 Reserved Reserved

7 Reserved Reserved
270
11011B–ATARM–21-Feb-12

SAM3N270
11011B–ATARM–21-Feb-12

SAM3N

16.5.7 System Controller Wake Up Inputs Register
Name: SUPC_WUIR

Address: 0x400E1420

Access: Read-write

• WKUPEN0 - WKUPEN15: Wake Up Input Enable 0 to 15
0 (NOT_ENABLE) = the corresponding wake-up input has no wake up effect.

1 (ENABLE) = the corresponding wake-up input forces the wake up of the core power supply.

• WKUPT0 - WKUPT15: Wake Up Input Transition 0 to 15
0 (HIGH_TO_LOW) = a high to low level transition on the corresponding wake-up input forces the wake up of the core
power supply.

1 (LOW_TO_HIGH) = a low to high level transition on the corresponding wake-up input forces the wake up of the core
power supply.

31 30 29 28 27 26 25 24

WKUPT15 WKUPT14 WKUPT13 WKUPT12 WKUPT11 WKUPT10 WKUPT9 WKUPT8

23 22 21 20 19 18 17 16
WKUPT7 WKUPT6 WKUPT5 WKUPT4 WKUPT3 WKUPT2 WKUPT1 WKUPT0

15 14 13 12 11 10 9 8
WKUPEN15 WKUPEN14 WKUPEN13 WKUPEN12 WKUPEN11 WKUPEN10 WKUPEN9 WKUPEN8

7 6 5 4 3 2 1 0
WKUPEN7 WKUPEN6 WKUPEN5 WKUPEN4 WKUPEN3 WKUPEN2 WKUPEN1 WKUPEN0
271
11011B–ATARM–21-Feb-12

SAM3N271
11011B–ATARM–21-Feb-12

SAM3N

16.5.8 Supply Controller Status Register
Name: SUPC_SR

Address: 0x400E1424

Access: Read-write

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK), the status register flag reset is
taken into account only 2 slow clock cycles after the read of the SUPC_SR.

• WKUPS: WKUP Wake Up Status
0 (NO) = no wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

• SMWS: Supply Monitor Detection Wake Up Status
0 (NO) = no wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

• BODRSTS: Brownout Detector Reset Status
0 (NO) = no core brownout rising edge event has been detected since the last read of the SUPC_SR.

1 (PRESENT) = at least one brownout output rising edge event has been detected since the last read of the SUPC_SR.

When the voltage remains below the defined threshold, there is no rising edge event at the output of the brownout detec-
tion cell. The rising edge event occurs only when there is a voltage transition below the threshold.

• SMRSTS: Supply Monitor Reset Status
0 (NO) = no supply monitor detection has generated a core reset since the last read of the SUPC_SR.

1 (PRESENT) = at least one supply monitor detection has generated a core reset since the last read of the SUPC_SR.

• SMS: Supply Monitor Status
0 (NO) = no supply monitor detection since the last read of SUPC_SR.

1 (PRESENT) = at least one supply monitor detection since the last read of SUPC_SR.

• SMOS: Supply Monitor Output Status
0 (HIGH) = the supply monitor detected VDDIO higher than its threshold at its last measurement.

1 (LOW) = the supply monitor detected VDDIO lower than its threshold at its last measurement.

31 30 29 28 27 26 25 24

WKUPIS15 WKUPIS14 WKUPIS13 WKUPIS12 WKUPIS11 WKUPIS10 WKUPIS9 WKUPIS8

23 22 21 20 19 18 17 16
WKUPIS7 WKUPIS6 WKUPIS5 WKUPIS4 WKUPIS3 WKUPIS2 WKUPIS1 WKUPIS0

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
OSCSEL SMOS SMS SMRSTS BODRSTS SMWS WKUPS –
272
11011B–ATARM–21-Feb-12

SAM3N272
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

17. General Purpose Backup Registers (GPBR)

17.1 Description
The System Controller embeds Eight general-purpose backup registers.

17.2 Embedded Characteristics
Eight 32-bit General Purpose Backup Registers

17.3 General Purpose Backup Registers (GPBR) User Interface

Table 17-1. Register Mapping

Offset Register Name Access Reset

0x0 General Purpose Backup Register 0 SYS_GPBR0 Read-write –

...

0x1C General Purpose Backup Register 7 SYS_GPBR7 Read-write –
273
11011B–ATARM–21-Feb-12

273
11011B–ATARM–21-Feb-12

SAM3NSAM3N

17.3.0.1 General Purpose Backup Register x
Name: SYS_GPBRx

Addresses: 0x400E1490 [0] .. 0x400E149C [3]

Access: Read-write

• GPBR_VALUEx: Value of GPBR x

31 30 29 28 27 26 25 24

GPBR_VALUEx

23 22 21 20 19 18 17 16

GPBR_VALUEx

15 14 13 12 11 10 9 8

GPBR_VALUEx

7 6 5 4 3 2 1 0

GPBR_VALUEx
274
11011B–ATARM–21-Feb-12

274
11011B–ATARM–21-Feb-12

SAM3N
18. Enhanced Embedded Flash Controller (EEFC)

18.1 Description
The Enhanced Embedded Flash Controller (EEFC) ensures the interface of the Flash block with
the 32-bit internal bus.

Its 128-bit or 64-bit wide memory interface increases performance. It also manages the pro-
gramming, erasing, locking and unlocking sequences of the Flash using a full set of commands.
One of the commands returns the embedded Flash descriptor definition that informs the system
about the Flash organization, thus making the software generic.

18.2 Product Dependencies

18.2.1 Power Management
The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Man-
agement Controller has no effect on its behavior.

18.2.2 Interrupt Sources
The Enhanced Embedded Flash Controller (EEFC) interrupt line is connected to the Nested
Vectored Interrupt Controller (NVIC). Using the Enhanced Embedded Flash Controller (EEFC)
interrupt requires the NVIC to be programmed first. The EEFC interrupt is generated only on
FRDY bit rising.

18.3 Functional Description

18.3.1 Embedded Flash Organization
The embedded Flash interfaces directly with the 32-bit internal bus. The embedded Flash is
composed of:

• One memory plane organized in several pages of the same size.

• Two 128-bit or 64-bit read buffers used for code read optimization.

• One 128-bit or 64-bit read buffer used for data read optimization.

• One write buffer that manages page programming. The write buffer size is equal to the page
size. This buffer is write-only and accessible all along the 1 MByte address space, so that
each word can be written to its final address.

• Several lock bits used to protect write/erase operation on several pages (lock region). A lock
bit is associated with a lock region composed of several pages in the memory plane.

• Several bits that may be set and cleared through the Enhanced Embedded Flash Controller
(EEFC) interface, called General Purpose Non Volatile Memory bits (GPNVM bits).

The embedded Flash size, the page size, the lock regions organization and GPNVM bits defini-
tion are described in the product definition section. The Enhanced Embedded Flash Controller
(EEFC) returns a descriptor of the Flash controlled after a get descriptor command issued by the
application (see “Getting Embedded Flash Descriptor” on page 280).

Table 18-1. Peripheral IDs

Instance ID

EFC 6
275
11011B–ATARM–21-Feb-12

Figure 18-1. Embedded Flash Organization

Start Address
Page 0

Lock Region 0

Lock Region 1

Memory Plane

Page (m-1)

Lock Region (n-1)

Page (n*m-1)Start Address + Flash size -1

Lock Bit 0

Lock Bit 1

Lock Bit (n-1)
276
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
18.3.2 Read Operations
An optimized controller manages embedded Flash reads, thus increasing performance when the
processor is running in Thumb2 mode by means of the 128- or 64- bit wide memory interface.

The Flash memory is accessible through 8-, 16- and 32-bit reads.

As the Flash block size is smaller than the address space reserved for the internal memory area,
the embedded Flash wraps around the address space and appears to be repeated within it.

The read operations can be performed with or without wait states. Wait states must be pro-
grammed in the field FWS (Flash Read Wait State) in the Flash Mode Register (EEFC_FMR).
Defining FWS to be 0 enables the single-cycle access of the embedded Flash. Refer to the Elec-
trical Characteristics for more details.

18.3.2.1 128-bit or 64-bit Access Mode
By default the read accesses of the Flash are performed through a 128-bit wide memory inter-
face. It enables better system performance especially when 2 or 3 wait state needed.

For systems requiring only 1 wait state, or to privilege current consumption rather than perfor-
mance, the user can select a 64-bit wide memory access via the FAM bit in the Flash Mode
Register (EEFC_FMR)

Please refer to the electrical characteristics section of the product datasheet for more details.

18.3.2.2 Code Read Optimization
A system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize sequential Code Fetch.

Note: Immediate consecutive code read accesses are not mandatory to benefit from this optimization.

Figure 18-2. Code Read Optimization for FWS = 0

Note: When FWS is equal to 0, all the accesses are performed in a single-cycle access.

Flash Access

Buffer 0 (128bits)

Master Clock

ARM Request
 (32-bit)

XXX

Data To ARM

Bytes 0-15 Bytes 16-31 Bytes 32-47

Bytes 0-15

Buffer 1 (128bits)

Bytes 32-47

Bytes 0-3 Bytes 4-7 Bytes 8-11 Bytes 12-15 Bytes 16-19 Bytes 20-23 Bytes 24-27XXX

XXX Bytes 16-31

@Byte 0 @Byte 4 @Byte 8 @Byte 12 @Byte 16 @Byte 20 @Byte 24 @Byte 28 @Byte 32

Bytes 28-31
277
11011B–ATARM–21-Feb-12

Figure 18-3. Code Read Optimization for FWS = 3

Note: When FWS is included between 1 and 3, in case of sequential reads, the first access takes (FWS+1) cycles, the other ones only
1 cycle.

18.3.2.3 Data Read Optimization
The organization of the Flash in 128 bits (or 64 bits) is associated with two 128-bit (or 64-bit)
prefetch buffers and one 128-bit (or 64-bit) data read buffer, thus providing maximum system
performance. This buffer is added in order to store the requested data plus all the data contained
in the 128-bit (64-bit) aligned data. This speeds up sequential data reads if, for example, FWS is
equal to 1 (see Figure 18-4).

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 18-4. Data Read Optimization for FWS = 1

Flash Access

Buffer 0 (128bits)

Master Clock

ARM Request
 (32-bit)

Data To ARM

Buffer 1 (128bits)

0-3

XXX

XXX

Bytes 16-31

@Byte 0 @4 @8

Bytes 0-15 Bytes 16-31 Bytes 32-47 Bytes 48-63

XXX Bytes 0-15

4-7 8-11 12-15

@12 @16 @20

24-27 28-31 32-35 36-3916-19 20-23 40-43 44-47

@24 @28 @32 @36 @40 @44 @48 @52

Bytes 32-47

48-51

Flash Access

Buffer (128bits)

Master Clock

ARM Request
 (32-bit)

XXX

Data To ARM

Bytes 0-15 Bytes 16-31

Bytes 0-15

Bytes 0-3 4-7 8-11 12-15 16-19 20-23XXX

Bytes 16-31

@Byte 0 @ 4 @ 8 @ 12 @ 16 @ 20 @ 24 @ 28 @ 32 @ 36

XXX Bytes 32-47

24-27 28-31 32-35
278
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
18.3.3 Flash Commands
The Enhanced Embedded Flash Controller (EEFC) offers a set of commands such as program-
ming the memory Flash, locking and unlocking lock regions, consecutive programming and
locking and full Flash erasing, etc.

Commands and read operations can be performed in parallel only on different memory planes.
Code can be fetched from one memory plane while a write or an erase operation is performed
on another.

In order to perform one of these commands, the Flash Command Register (EEFC_FCR) has to
be written with the correct command using the FCMD field. As soon as the EEFC_FCR register
is written, the FRDY flag and the FVALUE field in the EEFC_FRR register are automatically
cleared. Once the current command is achieved, then the FRDY flag is automatically set. If an
interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the corresponding interrupt
line of the NVIC is activated. (Note that this is true for all commands except for the STUI Com-
mand. The FRDY flag is not set when the STUI command is achieved.)

All the commands are protected by the same keyword, which has to be written in the 8 highest
bits of the EEFC_FCR register.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid com-
mand has no effect on the whole memory plane, but the FCMDE flag is set in the EEFC_FSR
register. This flag is automatically cleared by a read access to the EEFC_FSR register.

When the current command writes or erases a page in a locked region, the command has no
effect on the whole memory plane, but the FLOCKE flag is set in the EEFC_FSR register. This
flag is automatically cleared by a read access to the EEFC_FSR register.

Table 18-2. Set of Commands

Command Value Mnemonic

Get Flash Descriptor 0x00 GETD

Write page 0x01 WP

Write page and lock 0x02 WPL

Erase page and write page 0x03 EWP

Erase page and write page then lock 0x04 EWPL

Erase all 0x05 EA

Set Lock Bit 0x08 SLB

Clear Lock Bit 0x09 CLB

Get Lock Bit 0x0A GLB

Set GPNVM Bit 0x0B SGPB

Clear GPNVM Bit 0x0C CGPB

Get GPNVM Bit 0x0D GGPB

Start Read Unique Identifier 0x0E STUI

Stop Read Unique Identifier 0x0F SPUI

Get CALIB Bit 0x10 GCALB
279
11011B–ATARM–21-Feb-12

Figure 18-5. Command State Chart

18.3.3.1 Getting Embedded Flash Descriptor
This command allows the system to learn about the Flash organization. The system can take full
advantage of this information. For instance, a device could be replaced by one with more Flash
capacity, and so the software is able to adapt itself to the new configuration.

To get the embedded Flash descriptor, the application writes the GETD command in the
EEFC_FCR register. The first word of the descriptor can be read by the software application in
the EEFC_FRR register as soon as the FRDY flag in the EEFC_FSR register rises. The next
reads of the EEFC_FRR register provide the following word of the descriptor. If extra read oper-

Check if FRDY flag Set
No

Yes

Read Status: MC_FSR

Write FCMD and PAGENB in Flash Command Register

Check if FLOCKE flag Set

Check if FRDY flag Set
No

Read Status: MC_FSR

Yes

Yes
Locking region violation

No

Check if FCMDE flag Set
Yes

No

Bad keyword violation

Command Successfull
280
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
ations to the EEFC_FRR register are done after the last word of the descriptor has been
returned, then the EEFC_FRR register value is 0 until the next valid command.

18.3.3.2 Write Commands
Several commands can be used to program the Flash.

Flash technology requires that an erase is done before programming. The full memory plane can
be erased at the same time, or several pages can be erased at the same time (refer to Section
”The Partial Programming mode works only with 128-bit (or higher) boundaries. It cannot be
used with boundaries lower than 128 bits (8, 16 or 32-bit for example).”). Also, a page erase can
be automatically done before a page write using EWP or EWPL commands.

After programming, the page (the whole lock region) can be locked to prevent miscellaneous
write or erase sequences. The lock bit can be automatically set after page programming using
WPL or EWPL commands.

Data to be written are stored in an internal latch buffer. The size of the latch buffer corresponds
to the page size. The latch buffer wraps around within the internal memory area address space
and is repeated as many times as the number of pages within this address space.

Note: Writing of 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.

Write operations are performed in a number of wait states equal to the number of wait states for
read operations.

Data are written to the latch buffer before the programming command is written to the Flash
Command Register EEFC_FCR. The sequence is as follows:

• Write the full page, at any page address, within the internal memory area address space.

• Programming starts as soon as the page number and the programming command are written
to the Flash Command Register. The FRDY bit in the Flash Programming Status Register
(EEFC_FSR) is automatically cleared.

• When programming is completed, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR,
the corresponding interrupt line of the NVIC is activated.

Table 18-3. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash Interface Description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes

FL_NB_PLANE 3 Number of planes.

FL_PLANE[0] 4 Number of bytes in the first plane.

...

FL_PLANE[FL_NB_PLANE-1] 4 + FL_NB_PLANE - 1 Number of bytes in the last plane.

FL_NB_LOCK 4 + FL_NB_PLANE

Number of lock bits. A bit is associated
with a lock region. A lock bit is used to
prevent write or erase operations in the
lock region.

FL_LOCK[0] 4 + FL_NB_PLANE + 1 Number of bytes in the first lock region.

...
281
11011B–ATARM–21-Feb-12

Two errors can be detected in the EEFC_FSR register after a programming sequence:

• a Command Error: a bad keyword has been written in the EEFC_FCR register.

• a Lock Error: the page to be programmed belongs to a locked region. A command must be
previously run to unlock the corresponding region.

By using the WP command, a page can be programmed in several steps if it has been erased
before (see Figure 18-6).

Figure 18-6. Example of Partial Page Programming

The Partial Programming mode works only with 128-bit (or higher) boundaries. It cannot be used
with boundaries lower than 128 bits (8, 16 or 32-bit for example).

18.3.3.3 Erase Commands
Erase commands are allowed only on unlocked regions.

The erase sequence is:

• Erase starts as soon as one of the erase commands and the FARG field are written in the
Flash Command Register.

• When the programming completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence:

• a Command Error: a bad keyword has been written in the EEFC_FCR register.

• a Lock Error: at least one page to be erased belongs to a locked region. The erase command
has been refused, no page has been erased. A command must be run previously to unlock
the corresponding region.

18.3.3.4 Lock Bit Protection
Lock bits are associated with several pages in the embedded Flash memory plane. This defines
lock regions in the embedded Flash memory plane. They prevent writing/erasing protected
pages.

Erase All Flash Programming of the second part of Page Y Programming of the third part of Page Y

32-bit wide 32-bit wide 32-bit wide

X words
FF FF FF FF

FF FF FF FF
FF FF FF FF

FF FF FF FF

FF FF FF FF
FF FF FF FF

FF FF FF FF

FF FF FF FF
FF FF FF FF

FF FF FF FF

FF FF FF FF
FF FF FF FF

...

CA FE CA FE

CA FE CA FE
CA FE CA FE

FF FF FF FF

FF FF FF FF
FF FF FF FF

FF FF FF FF

FF FF FF FF
FF FF FF FF

FF FF FF FF

FF FF FF FF
FF FF FF FF

CA FE CA FE

CA FE CA FE
CA FE CA FE

DE CA DE CA

DE CA DE CA
DE CA DE CA

FF FF FF FF

FF FF FF FF
FF FF FF FF

FF FF FF FF

FF FF FF FF
FF FF FF FF

Step 1. Step 2. Step 3.

...

...

...

...

...

...

...

...

...

...

...

X words

X words

X words

So Page Y erased
282
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
The lock sequence is:

• The Set Lock command (SLB) and a page number to be protected are written in the Flash
Command Register.

• When the locking completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

• If the lock bit number is greater than the total number of lock bits, then the command has no
effect. The result of the SLB command can be checked running a GLB (Get Lock Bit)
command.

One error can be detected in the EEFC_FSR register after a programming sequence:

• a Command Error: a bad keyword has been written in the EEFC_FCR register.

It is possible to clear lock bits previously set. Then the locked region can be erased or pro-
grammed. The unlock sequence is:

• The Clear Lock command (CLB) and a page number to be unprotected are written in the
Flash Command Register.

• When the unlock completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

• If the lock bit number is greater than the total number of lock bits, then the command has no
effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

• a Command Error: a bad keyword has been written in the EEFC_FCR register.

The status of lock bits can be returned by the Enhanced Embedded Flash Controller (EEFC).
The Get Lock Bit status sequence is:

• The Get Lock Bit command (GLB) is written in the Flash Command Register, FARG field is
meaningless.

• Lock bits can be read by the software application in the EEFC_FRR register. The first word
read corresponds to the 32 first lock bits, next reads providing the next 32 lock bits as long as
it is meaningful. Extra reads to the EEFC_FRR register return 0.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third lock
region is locked.

One error can be detected in the EEFC_FSR register after a programming sequence:

• a Command Error: a bad keyword has been written in the EEFC_FCR register.

Note: Access to the Flash in read is permitted when a set, clear or get lock bit command is performed.

18.3.3.5 GPNVM Bit
GPNVM bits do not interfere with the embedded Flash memory plane. Refer to the product defi-
nition section for information on the GPNVM Bit Action.

The set GPNVM bit sequence is:

• Start the Set GPNVM Bit command (SGPB) by writing the Flash Command Register with the
SGPB command and the number of the GPNVM bit to be set.
283
11011B–ATARM–21-Feb-12

• When the GPVNM bit is set, the bit FRDY in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt was enabled by setting the FRDY bit in EEFC_FMR, the
interrupt line of the NVIC is activated.

• If the GPNVM bit number is greater than the total number of GPNVM bits, then the command
has no effect. The result of the SGPB command can be checked by running a GGPB (Get
GPNVM Bit) command.

One error can be detected in the EEFC_FSR register after a programming sequence:

• A Command Error: a bad keyword has been written in the EEFC_FCR register.

It is possible to clear GPNVM bits previously set. The clear GPNVM bit sequence is:

• Start the Clear GPNVM Bit command (CGPB) by writing the Flash Command Register with
CGPB and the number of the GPNVM bit to be cleared.

• When the clear completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

• If the GPNVM bit number is greater than the total number of GPNVM bits, then the command
has no effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

• A Command Error: a bad keyword has been written in the EEFC_FCR register.

The status of GPNVM bits can be returned by the Enhanced Embedded Flash Controller
(EEFC). The sequence is:

• Start the Get GPNVM bit command by writing the Flash Command Register with GGPB. The
FARG field is meaningless.

• GPNVM bits can be read by the software application in the EEFC_FRR register. The first
word read corresponds to the 32 first GPNVM bits, following reads provide the next 32
GPNVM bits as long as it is meaningful. Extra reads to the EEFC_FRR register return 0.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third GPNVM
bit is active.

One error can be detected in the EEFC_FSR register after a programming sequence:

• a Command Error: a bad keyword has been written in the EEFC_FCR register.

Note: Access to the Flash in read is permitted when a set, clear or get GPNVM bit command is
performed.

18.3.3.6 Calibration Bit
Calibration bits do not interfere with the embedded Flash memory plane.

It is impossible to modify the calibration bits.

The status of calibration bits can be returned by the Enhanced Embedded Flash Controller
(EEFC). The sequence is:

• Issue the Get CALIB Bit command by writing the Flash Command Register with GCALB (see
Table 18-2). The FARG field is meaningless.

• Calibration bits can be read by the software application in the EEFC_FRR register. The first
word read corresponds to the 32 first calibration bits, following reads provide the next 32
calibration bits as long as it is meaningful. Extra reads to the EEFC_FRR register return 0.
284
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
The 4/8/12 MHz Fast RC oscillator is calibrated in production. This calibration can be read
through the Get CALIB Bit command. The table below shows the bit implementation for each
frequency:

The RC calibration for 4 MHz is set to 1,000,000.

18.3.3.7 Security Bit Protection
When the security is enabled, access to the Flash, either through the JTAG/SWD interface or
through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of
the code programmed in the Flash.

The security bit is GPNVM0.

Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full
Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are
permitted.

18.3.3.8 Unique Identifier
Each part is programmed with a 128-bit Unique Identifier. It can be used to generate keys for
example.

To read the Unique Identifier the sequence is:

• Send the Start Read unique Identifier command (STUI) by writing the Flash Command
Register with the STUI command.

• When the Unique Identifier is ready to be read, the FRDY bit in the Flash Programming
Status Register (EEFC_FSR) falls.

• The Unique Identifier is located in the first 128 bits of the Flash memory mapping. So, at the
address 0x80000-0x8000F.

• To stop the Unique Identifier mode, the user needs to send the Stop Read unique Identifier
command (SPUI) by writing the Flash Command Register with the SPUI command.

• When the Stop read Unique Identifier command (SPUI) has been performed, the FRDY bit in
the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt was enabled by
setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is activated.

Note that during the sequence, the software can not run out of Flash (or the second plane in
case of dual plane).

RC Calibration Frequency EEFC_FRR Bits

8 MHz output [28 - 22]

12 MHz output [38 - 32]
285
11011B–ATARM–21-Feb-12

18.4 Enhanced Embedded Flash Controller (EEFC) User Interface
The User Interface of the Enhanced Embedded Flash Controller (EEFC) is integrated within the System Controller with
base address 0x400E0800.

Table 18-4. Register Mapping

Offset Register Name Access Reset State

0x00 EEFC Flash Mode Register EEFC_FMR Read-write 0x0

0x04 EEFC Flash Command Register EEFC_FCR Write-only –

0x08 EEFC Flash Status Register EEFC_FSR Read-only 0x00000001

0x0C EEFC Flash Result Register EEFC_FRR Read-only 0x0

0x10 Reserved – – –
286
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
18.4.1 EEFC Flash Mode Register
Name: EEFC_FMR

Address: 0x400E0A00

Access: Read-write

Offset: 0x00

• FRDY: Ready Interrupt Enable
0: Flash Ready does not generate an interrupt.

1: Flash Ready (to accept a new command) generates an interrupt.

• FWS: Flash Wait State
This field defines the number of wait states for read and write operations:

Number of cycles for Read/Write operations = FWS+1

• FAM: Flash Access Mode
0: 128-bit access in read Mode only, to enhance access speed.

1: 64-bit access in read Mode only, to enhance power consumption.

No Flash read should be done during change of this register.

31 30 29 28 27 26 25 24

– – – – – – – FAM

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – FWS

7 6 5 4 3 2 1 0

– – – – – – FRDY
287
11011B–ATARM–21-Feb-12

18.4.2 EEFC Flash Command Register
Name: EEFC_FCR

Address: 0x400E0A04

Access: Write-only

Offset: 0x04

• FCMD: Flash Command
This field defines the flash commands. Refer to “Flash Commands” on page 279.

• FARG: Flash Command Argument

• FKEY: Flash Writing Protection Key
This field should be written with the value 0x5A to enable the command defined by the bits of the register. If the field is writ-
ten with a different value, the write is not performed and no action is started.

31 30 29 28 27 26 25 24

FKEY

23 22 21 20 19 18 17 16

FARG

15 14 13 12 11 10 9 8

FARG

7 6 5 4 3 2 1 0

FCMD

Erase command For erase all command, this field is meaningless.

Programming command FARG defines the page number to be programmed.

Lock command FARG defines the page number to be locked.

GPNVM command FARG defines the GPNVM number.

Get commands Field is meaningless.

Unique Identifier commands Field is meaningless.
288
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
18.4.3 EEFC Flash Status Register
Name: EEFC_FSR

Address: 0x400E0A08

Access: Read-only

Offset: 0x08

• FRDY: Flash Ready Status
0: The Enhanced Embedded Flash Controller (EEFC) is busy.

1: The Enhanced Embedded Flash Controller (EEFC) is ready to start a new command.

When it is set, this flags triggers an interrupt if the FRDY flag is set in the EEFC_FMR register.

This flag is automatically cleared when the Enhanced Embedded Flash Controller (EEFC) is busy.

• FCMDE: Flash Command Error Status
0: No invalid commands and no bad keywords were written in the Flash Mode Register EEFC_FMR.

1: An invalid command and/or a bad keyword was/were written in the Flash Mode Register EEFC_FMR.

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

• FLOCKE: Flash Lock Error Status
0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – FLOCKE FCMDE FRDY
289
11011B–ATARM–21-Feb-12

18.4.4 EEFC Flash Result Register
Name: EEFC_FRR

Address: 0x400E0A0C

Access: Read-only

Offset: 0x0C

• FVALUE: Flash Result Value
The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, then the next
resulting value is accessible at the next register read.

31 30 29 28 27 26 25 24

FVALUE

23 22 21 20 19 18 17 16

FVALUE

15 14 13 12 11 10 9 8

FVALUE

7 6 5 4 3 2 1 0

FVALUE
290
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
19. Fast Flash Programming Interface (FFPI)

19.1 Description
The Fast Flash Programming Interface provides parallel high-volume programming using a stan-
dard gang programmer. The parallel interface is fully handshaked and the device is considered
to be a standard EEPROM. Additionally, the parallel protocol offers an optimized access to all
the embedded Flash functionalities.

Although the Fast Flash Programming Mode is a dedicated mode for high volume programming,
this mode is not designed for in-situ programming.

19.2 Parallel Fast Flash Programming

19.2.1 Device Configuration
In Fast Flash Programming Mode, the device is in a specific test mode. Only a certain set of pins
is significant. The rest of the PIOs are used as inputs with a pull-up. The crystal oscillator is in
bypass mode. Other pins must be left unconnected.

Figure 19-1. SAM3NxA (48 bits) Parallel Programming Interface

Figure 19-2. SAM3NxB/C (64/100 pins) Parallel Programming Interface

NCMD PGMNCMD
RDY PGMRDY

NOE PGMNOE

NVALID PGMNVALID

MODE[3:0] PGMM[3:0]

DATA[7:0] PGMD[7:0]

XIN

TSTVDDIO
PGMEN0

PGMEN1

0 - 50MHz

VDDIO

VDDCORE

VDDIO

VDDPLL

GND

GND

VDDIO

PGMEN2

NCMD PGMNCMD
RDY PGMRDY

NOE PGMNOE

NVALID PGMNVALID

MODE[3:0] PGMM[3:0]

DATA[15:0] PGMD[15:0]

XIN

TSTVDDIO
PGMEN0

PGMEN1

0 - 50MHz

VDDIO

VDDCORE

VDDIO

VDDPLL

GND

GND

VDDIO

PGMEN2
291
11011B–ATARM–21-Feb-12

Notes: 1. DATA[7:0] pertains to the SAM3NxA (48 bits).

2. PGMD[7:0] pertains to the SAM3NxA (48 bits).

Table 19-1. Signal Description List

Signal Name Function Type
Active
Level Comments

Power

VDDIO I/O Lines Power Supply Power

VDDCORE Core Power Supply Power

VDDPLL PLL Power Supply Power

GND Ground Ground

Clocks

XIN Main Clock Input Input 32KHz to 50MHz

Test

TST Test Mode Select Input High Must be connected to VDDIO

PGMEN0 Test Mode Select Input High Must be connected to VDDIO

PGMEN1 Test Mode Select Input High Must be connected to VDDIO

PGMEN2 Test Mode Select Input Low Must be connected to GND

PIO

PGMNCMD Valid command available Input Low Pulled-up input at reset

PGMRDY
0: Device is busy

1: Device is ready for a new command
Output High Pulled-up input at reset

PGMNOE Output Enable (active high) Input Low Pulled-up input at reset

PGMNVALID
0: DATA[15:0] or DATA[7:0](1) is in input mode

1: DATA[15:0] or DATA[7:0](1) is in output mode
Output Low Pulled-up input at reset

PGMM[3:0] Specifies DATA type (See Table 19-2) Input Pulled-up input at reset

PGMD[15:0] or [7:0](2) Bi-directional data bus Input/Output Pulled-up input at reset
292
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
19.2.2 Signal Names
Depending on the MODE settings, DATA is latched in different internal registers.

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] or DATA[7:0]
signals) is stored in the command register.

Note: DATA[7:0] pertains to SAM3NxA (48 pins).

Table 19-2. Mode Coding

MODE[3:0] Symbol Data

0000 CMDE Command Register

0001 ADDR0 Address Register LSBs

0010 ADDR1

0011 ADDR2

0100 ADDR3 Address Register MSBs

0101 DATA Data Register

Default IDLE No register

Table 19-3. Command Bit Coding

DATA[15:0] Symbol Command Executed

0x0011 READ Read Flash

0x0012 WP Write Page Flash

0x0022 WPL Write Page and Lock Flash

0x0032 EWP Erase Page and Write Page

0x0042 EWPL Erase Page and Write Page then Lock

0x0013 EA Erase All

0x0014 SLB Set Lock Bit

0x0024 CLB Clear Lock Bit

0x0015 GLB Get Lock Bit

0x0034 SGPB Set General Purpose NVM bit

0x0044 CGPB Clear General Purpose NVM bit

0x0025 GGPB Get General Purpose NVM bit

0x0054 SSE Set Security Bit

0x0035 GSE Get Security Bit

0x001F WRAM Write Memory

0x001E GVE Get Version
293
11011B–ATARM–21-Feb-12

19.2.3 Entering Programming Mode
The following algorithm puts the device in Parallel Programming Mode:

• Apply GND, VDDIO, VDDCORE and VDDPLL.

• Apply XIN clock within TPOR_RESET if an external clock is available.

• Wait for TPOR_RESET

• Start a read or write handshaking.

19.2.4 Programmer Handshaking
An handshake is defined for read and write operations. When the device is ready to start a new
operation (RDY signal set), the programmer starts the handshake by clearing the NCMD signal.
The handshaking is achieved once NCMD signal is high and RDY is high.

19.2.4.1 Write Handshaking
For details on the write handshaking sequence, refer to Figure 19-3 Figure 19-4 and Table 19-4.

Figure 19-3. SAM3NxB/C (64/100 pins) Parallel Programming Timing, Write Sequence

Figure 19-4. SAM3NxA (48 pins) Parallel Programming Timing, Write Sequence

NCMD

RDY

NOE

NVALID

DATA[7:0]

MODE[3:0]

1

2

3

4

5

NCMD

RDY

NOE

NVALID

DATA[15:0]

MODE[3:0]

1

2

3

4

5

294
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
19.2.4.2 Read Handshaking
For details on the read handshaking sequence, refer toFigure 19-5 Figure 19-6 and Table 19-5.

Figure 19-5. SAM3NxB/C (64/100 pins) Parallel Programming Timing, Read Sequence

Figure 19-6. SAM3NxA (48 pins) Parallel Programming Timing, Read Sequence

Table 19-4. Write Handshake

Step Programmer Action Device Action Data I/O

1 Sets MODE and DATA signals Waits for NCMD low Input

2 Clears NCMD signal Latches MODE and DATA Input

3 Waits for RDY low Clears RDY signal Input

4 Releases MODE and DATA signals Executes command and polls NCMD high Input

5 Sets NCMD signal Executes command and polls NCMD high Input

6 Waits for RDY high Sets RDY Input

NCMD

RDY

NOE

NVALID

DATA[7:0]

MODE[3:0]

1

2

3

4

5

6

7

9

8

ADDR

Adress IN Z Data OUT

10

11

X IN

12

13

NCMD

RDY

NOE

NVALID

DATA[15:0]

MODE[3:0]

1

2

3

4

5

6

7

9

8

ADDR

Adress IN Z Data OUT

10

11

X IN

12

13
295
11011B–ATARM–21-Feb-12

Table 19-5. Read Handshake

Step Programmer Action Device Action DATA I/O

1 Sets MODE and DATA signals Waits for NCMD low Input

2 Clears NCMD signal Latch MODE and DATA Input

3 Waits for RDY low Clears RDY signal Input

4 Sets DATA signal in tristate Waits for NOE Low Input

5 Clears NOE signal Tristate

6 Waits for NVALID low
Sets DATA bus in output mode and outputs
the flash contents.

Output

7 Clears NVALID signal Output

8 Reads value on DATA Bus Waits for NOE high Output

9 Sets NOE signal Output

10 Waits for NVALID high Sets DATA bus in input mode X

11 Sets DATA in output mode Sets NVALID signal Input

12 Sets NCMD signal Waits for NCMD high Input

13 Waits for RDY high Sets RDY signal Input
296
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
19.2.5 Device Operations
Several commands on the Flash memory are available. These commands are summarized in
Table 19-3 on page 293. Each command is driven by the programmer through the parallel inter-
face running several read/write handshaking sequences.

When a new command is executed, the previous one is automatically achieved. Thus, chaining
a read command after a write automatically flushes the load buffer in the Flash.

In the following tables, Table 19-6 through Table 19-17

• DATA[15:0] pertains to ASAM3NxB/C (64/100 pins)

• DATA[7:0] pertains to SAM3BxA (48 pins)

19.2.5.1 Flash Read Command
This command is used to read the contents of the Flash memory. The read command can start
at any valid address in the memory plane and is optimized for consecutive reads. Read hand-
shaking can be chained; an internal address buffer is automatically increased.

Table 19-6. Read Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Read handshaking DATA *Memory Address++

5 Read handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Read handshaking DATA *Memory Address++

n+3 Read handshaking DATA *Memory Address++

...

Table 19-7. Read Command

Step Handshake Sequence MODE[3:0] DATA[7:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking ADDR2 Memory Address

5 Write handshaking ADDR3 Memory Address

6 Read handshaking DATA *Memory Address++

7 Read handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB
297
11011B–ATARM–21-Feb-12

19.2.5.2 Flash Write Command
This command is used to write the Flash contents.

The Flash memory plane is organized into several pages. Data to be written are stored in a load
buffer that corresponds to a Flash memory page. The load buffer is automatically flushed to the
Flash:

• before access to any page other than the current one

• when a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be
chained; an internal address buffer is automatically increased.

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking ADDR2 Memory Address

n+3 Write handshaking ADDR3 Memory Address

n+4 Read handshaking DATA *Memory Address++

n+5 Read handshaking DATA *Memory Address++

...

Table 19-7. Read Command (Continued)

Step Handshake Sequence MODE[3:0] DATA[7:0]

Table 19-8. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WP or WPL or EWP or EWPL

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++

n+3 Write handshaking DATA *Memory Address++

...

Table 19-9. Write Command

Step Handshake Sequence MODE[3:0] DATA[7:0]

1 Write handshaking CMDE WP or WPL or EWP or EWPL

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking ADDR2 Memory Address
298
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command.
However, the lock bit is automatically set at the end of the Flash write operation. As a lock region
is composed of several pages, the programmer writes to the first pages of the lock region using
Flash write commands and writes to the last page of the lock region using a Flash write and lock
command.

The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command.
However, before programming the load buffer, the page is erased.

The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL
commands.

19.2.5.3 Flash Full Erase Command
This command is used to erase the Flash memory planes.

All lock regions must be unlocked before the Full Erase command by using the CLB command.
Otherwise, the erase command is aborted and no page is erased.

19.2.5.4 Flash Lock Commands
Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set
Lock command (SLB). With this command, several lock bits can be activated. A Bit Mask is pro-
vided as argument to the command. When bit 0 of the bit mask is set, then the first lock bit is
activated.

5 Write handshaking ADDR3 Memory Address

6 Write handshaking DATA *Memory Address++

7 Write handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking ADDR2 Memory Address

n+3 Write handshaking ADDR3 Memory Address

n+4 Write handshaking DATA *Memory Address++

n+5 Write handshaking DATA *Memory Address++

...

Table 19-9. Write Command (Continued)

Step Handshake Sequence MODE[3:0] DATA[7:0]

Table 19-10. Full Erase Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]

1 Write handshaking CMDE EA

2 Write handshaking DATA 0
299
11011B–ATARM–21-Feb-12

In the same way, the Clear Lock command (CLB) is used to clear lock bits.

Lock bits can be read using Get Lock Bit command (GLB). The nth lock bit is active when the bit
n of the bit mask is set..

19.2.5.5 Flash General-purpose NVM Commands
General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB).
This command also activates GP NVM bits. A bit mask is provided as argument to the com-
mand. When bit 0 of the bit mask is set, then the first GP NVM bit is activated.

In the same way, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM
bits. The general-purpose NVM bit is deactivated when the corresponding bit in the pattern value
is set to 1.

General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The nth

GP NVM bit is active when bit n of the bit mask is set..

Table 19-11. Set and Clear Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]

1 Write handshaking CMDE SLB or CLB

2 Write handshaking DATA Bit Mask

Table 19-12. Get Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]

1 Write handshaking CMDE GLB

2 Read handshaking DATA
Lock Bit Mask Status
0 = Lock bit is cleared

1 = Lock bit is set

Table 19-13. Set/Clear GP NVM Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]

1 Write handshaking CMDE SGPB or CGPB

2 Write handshaking DATA GP NVM bit pattern value

Table 19-14. Get GP NVM Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]

1 Write handshaking CMDE GGPB

2 Read handshaking DATA

GP NVM Bit Mask Status

0 = GP NVM bit is cleared
1 = GP NVM bit is set
300
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
19.2.5.6 Flash Security Bit Command
A security bit can be set using the Set Security Bit command (SSE). Once the security bit is
active, the Fast Flash programming is disabled. No other command can be run. An event on the
Erase pin can erase the security bit once the contents of the Flash have been erased.

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security
bit is to erase the Flash.

In order to erase the Flash, the user must perform the following:

• Power-off the chip

• Power-on the chip with TST = 0

• Assert Erase during a period of more than 220 ms

• Power-off the chip

Then it is possible to return to FFPI mode and check that Flash is erased.

19.2.5.7 Memory Write Command
This command is used to perform a write access to any memory location.

The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking
can be chained; an internal address buffer is automatically increased.

Table 19-15. Set Security Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]

1 Write handshaking CMDE SSE

2 Write handshaking DATA 0

Table 19-16. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WRAM

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++

n+3 Write handshaking DATA *Memory Address++

...
301
11011B–ATARM–21-Feb-12

19.2.5.8 Get Version Command
The Get Version (GVE) command retrieves the version of the FFPI interface.

Table 19-17. Write Command

Step Handshake Sequence MODE[3:0] DATA[7:0]

1 Write handshaking CMDE WRAM

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking ADDR2 Memory Address

5 Write handshaking ADDR3 Memory Address

6 Write handshaking DATA *Memory Address++

7 Write handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking ADDR2 Memory Address

n+3 Write handshaking ADDR3 Memory Address

n+4 Write handshaking DATA *Memory Address++

n+5 Write handshaking DATA *Memory Address++

...

Table 19-18. Get Version Command

Step Handshake Sequence MODE[3:0] DATA[15:0] or DATA[7:0]

1 Write handshaking CMDE GVE

2 Write handshaking DATA Version
302
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
20. SAM3N Boot Program

20.1 Description
The SAM-BA® Boot Program integrates an array of programs permitting download and/or upload
into the different memories of the product.

20.2 Hardware and Software Constraints
• SAM-BA Boot uses the first 2048 bytes of the SRAM for variables and stacks. The remaining

available size can be used for user's code.

• UART0 requirements: None

20.3 Flow Diagram
The Boot Program implements the algorithm in Figure 20-1.

Figure 20-1. Boot Program Algorithm Flow Diagram

The SAM-BA Boot program uses the internal 12 MHz RC oscillator as source clock for PLL. The
MCK runs from PLL divided by 2. The core runs at 48 MHz.

20.4 Device Initialization
Initialization follows the steps described below:

1. Stack setup

2. Setup the Embedded Flash Controller

3. Switch on internal 12 MHz RC oscillator

4. Configure PLL to run at 96 MHz

5. Switch MCK to run on PLL divided by 2

6. Configure UART0

7. Disable Watchdog

8. Wait for a character on UART0

9. Jump to SAM-BA monitor (see Section 20.5 ”SAM-BA Monitor”)

Table 20-1. Pins Driven during Boot Program Execution

Peripheral Pin PIO Line

UART0 URXD0 PA9

UART0 UTXD0 PA10

Device
Setup

Character # received
from UART0?

Run SAM-BA Monitor

Yes

No
303
11011B–ATARM–21-Feb-12

20.5 SAM-BA Monitor
The SAM-BA boot principle:

Once the communication interface is identified, to run in an infinite loop waiting for different com-
mands as shown in Table 20-2.

• Mode commands:

– Normal mode configures SAM-BA Monitor to send/receive data in binary format,

– Terminal mode configures SAM-BA Monitor to send/receive data in ascii format.

• Write commands: Write a byte (O), a halfword (H) or a word (W) to the target.

– Address: Address in hexadecimal.

– Value: Byte, halfword or word to write in hexadecimal.

– Output: ‘>’.

• Read commands: Read a byte (o), a halfword (h) or a word (w) from the target.

– Address: Address in hexadecimal

– Output: The byte, halfword or word read in hexadecimal following by ‘>’

• Send a file (S): Send a file to a specified address

– Address: Address in hexadecimal

– Output: ‘>’.

Note: There is a time-out on this command which is reached when the prompt ‘>’ appears before the
end of the command execution.

• Receive a file (R): Receive data into a file from a specified address

– Address: Address in hexadecimal

– NbOfBytes: Number of bytes in hexadecimal to receive

– Output: ‘>’

• Go (G): Jump to a specified address and execute the code

– Address: Address to jump in hexadecimal

Table 20-2. Commands Available through the SAM-BA Boot

Command Action Argument(s) Example

N set Normal mode No argument N#

T set Terminal mode No argument T#

O write a byte Address, Value# O200001,CA#

o read a byte Address,# o200001,#

H write a half word Address, Value# H200002,CAFE#

h read a half word Address,# h200002,#

W write a word Address, Value# W200000,CAFEDECA#

w read a word Address,# w200000,#

S send a file Address,# S200000,#

R receive a file Address, NbOfBytes# R200000,1234#

G go Address# G200200#

V display version No argument V#
304
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
– Output: ‘>’

• Get Version (V): Return the SAM-BA boot version

– Output: ‘>’

20.5.1 UART0 Serial Port
Communication is performed through the UART0 initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal
performing this protocol can be used to send the application file to the target. The size of the
binary file to send depends on the SRAM size embedded in the product. In all cases, the size of
the binary file must be lower than the SRAM size because the Xmodem protocol requires some
SRAM memory to work. See, Section 20.2 ”Hardware and Software Constraints”

20.5.2 Xmodem Protocol
The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-charac-
ter CRC-16 to guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful
transmission. Each block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

– <SOH> = 01 hex

– <blk #> = binary number, starts at 01, increments by 1, and wraps 0FFH to 00H (not
to 01)

– <255-blk #> = 1’s complement of the blk#.

– <checksum> = 2 bytes CRC16

Figure 20-2 shows a transmission using this protocol.

Figure 20-2. Xmodem Transfer Example

Host Device

SOH 01 FE Data[128] CRC CRC

C

ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC

ACK

EOT

ACK
305
11011B–ATARM–21-Feb-12

SAM3N
20.5.3 In Application Programming (IAP) Feature
The IAP feature is a function located in ROM that can be called by any software application.

When called, this function sends the desired FLASH command to the EEFC and waits for the
Flash to be ready (looping while the FRDY bit is not set in the MC_FSR register).

Since this function is executed from ROM, this allows Flash programming (such as sector write)
to be done by code running in Flash.

The IAP function entry point is retrieved by reading the NMI vector in ROM (0x00800008).

This function takes one argument in parameter: the command to be sent to the EEFC.

This function returns the value of the MC_FSR register.

IAP software code example:

(unsigned int) (*IAP_Function)(unsigned long);

void main (void){

unsigned long FlashSectorNum = 200; //

unsigned long flash_cmd = 0;

unsigned long flash_status = 0;

unsigned long EFCIndex = 0; // 0:EEFC0, 1: EEFC1

/* Initialize the function pointer (retrieve function address from NMI
vector) */

IAP_Function = ((unsigned long) (*)(unsigned long)) 0x00800008;

/* Send your data to the sector here */

/* build the command to send to EEFC */

flash_cmd = (0x5A << 24) | (FlashSectorNum << 8) | AT91C_MC_FCMD_EWP;

/* Call the IAP function with appropriate command */

flash_status = IAP_Function (EFCIndex, flash_cmd);

}

306
11011B–ATARM–21-Feb-12

SAM3N
21. Bus Matrix (MATRIX)

21.1 Description
The Bus Matrix implements a multi-layer AHB that enables parallel access paths between multi-
ple AHB masters and slaves in a system, which increases the overall bandwidth. Bus Matrix
interconnects 3 AHB Masters to 4 AHB Slaves. The normal latency to connect a master to a
slave is one cycle except for the default master of the accessed slave which is connected
directly (zero cycle latency).

The Bus Matrix user interface also provides a Chip Configuration User Interface with Registers
that allow to support application specific features.

21.2 Embedded Characteristics

21.2.1 Matrix Masters
The Bus Matrix of the SAM3N product manages 3 masters, which means that each master can
perform an access concurrently with others, to an available slave.

Each master has its own decoder, which is defined specifically for each master. In order to sim-
plify the addressing, all the masters have the same decodings.

21.2.2 Matrix Slaves
The Bus Matrix of the SAM3N product manages 4 slaves. Each slave has its own arbiter, allow-
ing a different arbitration per slave.

Table 21-1. List of Bus Matrix Masters

Master 0 Cortex-M3 Instruction/Data

Master 1 Cortex-M3 System

Master 2 Peripheral DMA Controller (PDC)

List of Bus Matrix Slaves

Slave 0 Internal SRAM

Slave 1 Internal ROM

Slave 2 Internal Flash

Slave 3 Peripheral Bridge
307
11011B–ATARM–21-Feb-12

21.2.3 Master to Slave Access
All the Masters can normally access all the Slaves. However, some paths do not make sense,
for example allowing access from the Cortex-M3 S Bus to the Internal ROM. Thus, these paths
are forbidden or simply not wired and shown as “-” in the following table.

21.3 Memory Mapping
Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each AHB
Master several memory mappings. In fact, depending on the product, each memory area may be
assigned to several slaves. Booting at the same address while using different AHB slaves (i.e.
internal ROM or internal Flash) becomes possible.

21.4 Special Bus Granting Techniques
The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism allows to reduce latency at first accesses of a
burst or single transfer. The bus granting mechanism allows to set a default master for every
slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

21.4.1 No Default Master
At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low power mode.

21.4.2 Last Access Master
At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

21.4.3 Fixed Default Master
At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master doesn’t change unless the user mod-
ifies it by a software action (field FIXED_DEFMSTR of the related MATRIX_SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that allow to set a default master for each
slave. The Slave Configuration Register contains two fields:

DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field allows to choose
the default master type (no default, last access master, fixed default master) whereas the 4-bit

Table 21-2. SAM3N Master to Slave Access

Masters 0 1 2

Slaves Cortex-M3 I/D
Bus

Cortex-M3 S
Bus

PDC

0 Internal SRAM - X X

1 Internal ROM X - X

2 Internal Flash X - -

3 Peripheral Bridge - X X
308
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
FIXED_DEFMSTR field allows to choose a fixed default master provided that DEFMSTR_TYPE
is set to fixed default master. Please refer to the Bus Matrix user interface description.

21.5 Arbitration
The Bus Matrix provides an arbitration mechanism that allows to reduce latency when conflict
cases occur, basically when two or more masters try to access the same slave at the same time.
One arbiter per AHB slave is provided, allowing to arbitrate each slave differently.

The Bus Matrix provides to the user the possibility to choose between 2 arbitration types, and
this for each slave:

1. Round-Robin Arbitration (the default)

2. Fixed Priority Arbitration

This choice is given through the field ARBT of the Slave Configuration Registers
(MATRIX_SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration has to be done, it is realized only under some specific conditions detailed
in the following paragraph.

21.5.1 Arbitration Rules
Each arbiter has the ability to arbitrate between two or more different master’s requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: when a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: when a slave is currently doing a single access.

3. End of Burst Cycles: when the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst (See Section 21.5.1.1 “Undefined Length
Burst Arbitration” on page 309“).

4. Slot Cycle Limit: when the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken (See Section 21.5.1.2 “Slot
Cycle Limit Arbitration” on page 310).

21.5.1.1 Undefined Length Burst Arbitration
In order to avoid too long slave handling during undefined length bursts (INCR), the Bus Matrix
provides specific logic in order to re-arbitrate before the end of the INCR transfer.

A predicted end of burst is used as for defined length burst transfer, which is selected between
the following:

1. Infinite: no predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. Four beat bursts: predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.

3. Eight beat bursts: predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.

4. Sixteen beat bursts: predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.
309
11011B–ATARM–21-Feb-12

This selection can be done through the field ULBT of the Master Configuration Registers
(MATRIX_MCFG).

21.5.1.2 Slot Cycle Limit Arbitration
The Bus Matrix contains specific logic to break too long accesses such as very long bursts on a
very slow slave (e.g. an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (MATRIX_SCFG) and decreased at each clock cycle. When the counter
reaches zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or
word transfer.

21.5.2 Round-Robin Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master’s requests arise at the same
time, the master with the lowest number is first serviced then the others are serviced in a round-
robin manner.

There are three round-robin algorithm implemented:

• Round-Robin arbitration without default master

• Round-Robin arbitration with last access master

• Round-Robin arbitration with fixed default master

21.5.2.1 Round-Robin arbitration without default master
This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

21.5.2.2 Round-Robin arbitration with last access master
This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performs the access. Other non privileged masters will still get one latency cycle
if they want to access the same slave. This technique can be used for masters that mainly per-
form single accesses.

21.5.2.3 Round-Robin arbitration with fixed default master
This is another biased round-robin algorithm, it allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

21.5.3 Fixed Priority Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master’s requests
are active at the same time, the master with the highest priority number is serviced first. If two or
310
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
more master’s requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (MATRIX_PRAS and MATRIX_PRBS).

21.6 System I/O Configuration
The System I/O Configuration register (CCFG_SYSIO) allows to configure some I/O lines in
System I/O mode (such as JTAG, ERASE, etc...) or as general purpose I/O lines. Enabling or
disabling the corresponding I/O lines in peripheral mode or in PIO mode (PIO_PER or PIO_PDR
registers) in the PIO controller as no effect. However, the direction (input or output), pull-up, pull-
down and other mode control is still managed by the PIO controller.

21.7 Write Protect Registers
To prevent any single software error that may corrupt MATRIX behavior, the entire MATRIX
address space from address offset 0x000 to 0x1FC can be write-protected by setting the
WPEN bit in the MATRIX Write Protect Mode Register (MATRIX_WPMR).

If a write access to anywhere in the MATRIX address space from address offset 0x000 to 0x1FC
is detected, then the WPVS flag in the MATRIX Write Protect Status Register (MATRIX_WPSR)
is set and the field WPVSRC indicates in which register the write access has been attempted.

The WPVS flag is reset by writing the MATRIX Write Protect Mode Register (MATRIX_WPMR)
with the appropriate access key WPKEY.
311
11011B–ATARM–21-Feb-12

SAM3N
21.8 Bus Matrix (MATRIX) User Interface

Table 21-3. Register Mapping

Offset Register Name Access Reset

0x0000 Master Configuration Register 0 MATRIX_MCFG0 Read-write 0x00000000

0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read-write 0x00000000

0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read-write 0x00000000

0x000C - 0x003C Reserved – – –

0x0040 Slave Configuration Register 0 MATRIX_SCFG0 Read-write 0x00010010

0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read-write 0x00050010

0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read-write 0x00000010

0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read-write 0x00000010

0x0050 - 0x007C Reserved – – –

0x0080 Priority Register A for Slave 0 MATRIX_PRAS0 Read-write 0x00000000

0x0084 Reserved – – –

0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read-write 0x00000000

0x008C Reserved – – –

0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read-write 0x00000000

0x0094 Reserved – – –

0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read-write 0x00000000

0x009C - 0x0110 Reserved – – –

0x0114 System I/O Configuration register CCFG_SYSIO Read/Write 0x00000000

0x0118- 0x011C Reserved – – –

0x0120 - 0x010C Reserved – – –

0x1E4 Write Protect Mode Register MATRIX_WPMR Read-write 0x0

0x1E8 Write Protect Status Register MATRIX_WPSR Read-only 0x0

0x0110 - 0x01FC Reserved – – –
312
11011B–ATARM–21-Feb-12

SAM3N
21.8.1 Bus Matrix Master Configuration Registers
Name: MATRIX_MCFG0..MATRIX_MCFG2

Address: 0x400E0200

Access: Read-write

• ULBT: Undefined Length Burst Type
0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.

1: Single Access

The undefined length burst is treated as a succession of single access allowing rearbitration at each beat of the INCR
burst.

2: Four Beat Burst

The undefined length burst is split into a 4-beat bursts allowing rearbitration at each 4-beat burst end.

3: Eight Beat Burst

The undefined length burst is split into 8-beat bursts allowing rearbitration at each 8-beat burst end.

4: Sixteen Beat Burst

The undefined length burst is split into 16-beat bursts allowing rearbitration at each 16-beat burst end.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – ULBT
313
11011B–ATARM–21-Feb-12

SAM3N
21.8.2 Bus Matrix Slave Configuration Registers
Name: MATRIX_SCFG0..MATRIX_SCFG3

Address: 0x400E0240

Access: Read-write

• SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reach for a burst it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking very slow slaves when very long bursts are used.

This limit should not be very small though. An unreasonable small value will break every burst and the Bus Matrix will
spend its time to arbitrate without performing any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

• DEFMSTR_TYPE: Default Master Type
0: No Default Master

At the end of current slave access, if no other master request is pending, the slave is disconnected from all masters.

This results in having a one cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of current slave access, if no other master request is pending, the slave stays connected to the last master hav-
ing accessed it.

This results in not having the one cycle latency when the last master re-tries access on the slave again.

2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having the one cycle latency when the fixed master re-tries access on the slave again.

• FIXED_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

• ARBT: Arbitration Type
0: Round-Robin Arbitration

1: Fixed Priority Arbitration

2: Reserved

3: Reserved

31 30 29 28 27 26 25 24

– – – – – – ARBT

23 22 21 20 19 18 17 16

– – – FIXED_DEFMSTR DEFMSTR_TYPE

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SLOT_CYCLE
314
11011B–ATARM–21-Feb-12

SAM3N
21.8.3 Bus Matrix Priority Registers For Slaves
Name: MATRIX_PRAS0..MATRIX_PRAS3

Addresses: 0x400E0280 [0], 0x400E0288 [1], 0x400E0290 [2], 0x400E0298 [3]

Access: Read-write

• MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – M3PR – – M2PR

7 6 5 4 3 2 1 0

– – M1PR – – M0PR
315
11011B–ATARM–21-Feb-12

21.8.4 System I/O Configuration Register

Name: CCFG_SYSIO

Address: 0x400E0314

Access Read-write

Reset: 0x0000_0000

• SYSIO4: PB4 or TDI Assignment

0 = TDI function selected.

1 = PB4 function selected.

• SYSIO5: PB5 or TDO/TRACESWO Assignment

0 = TDO/TRACESWO function selected.

1 = PB5 function selected.

• SYSIO6: PB6 or TMS/SWDIO Assignment

0 = TMS/SWDIO function selected.

1 = PB6 function selected.

• SYSIO7: PB7 or TCK/SWCLK Assignment

0 = TCK/SWCLK function selected.

1 = PB7 function selected.

• SYSIO12: PB12 or ERASE Assignment

0 = ERASE function selected.

1 = PB12 function selected.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – SYSIO12 – – – –

7 6 5 4 3 2 1 0

SYSIO7 SYSIO6 SYSIO5 SYSIO4 – – – –
316
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
21.8.5 Write Protect Mode Register
Name: MATRIX_WPMR

Address: 0x400E03E4

Access: Read-write

For more details on MATRIX_WPMR, refer to Section 21.7 “Write Protect Registers” on page 311.

• WPEN: Write Protect ENable
0 = Disables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

Protects the entire MATRIX address space from address offset 0x000 to 0x1FC.

• WPKEY: Write Protect KEY (Write-only)
Should be written at value 0x4D4154 (“MAT” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN
317
11011B–ATARM–21-Feb-12

21.8.6 Write Protect Status Register
Name: MATRIX_WPSR

Address: 0x400E03E8

Access: Read-only

For more details on MATRIX_WPSR, refer to Section 21.7 “Write Protect Registers” on page 311.

• WPVS: Write Protect Violation Status
0: No Write Protect Violation has occurred since the last write of MATRIX_WPMR.

1: At least one Write Protect Violation has occurred since the last write of MATRIX_WPMR.

• WPVSRC: Write Protect Violation Source
Should be written at value 0x4D4154 (“MAT” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS
318
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
22. Peripheral DMA Controller (PDC)

22.1 Description
The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the
on- and/or off-chip memories. The link between the PDC and a serial peripheral is operated by
the AHB to ABP bridge.

The user interface of each PDC channel is integrated into the user interface of the peripheral it
serves. The user interface of mono directional channels (receive only or transmit only), contains
two 32-bit memory pointers and two 16-bit counters, one set (pointer, counter) for current trans-
fer and one set (pointer, counter) for next transfer. The bi-directional channel user interface
contains four 32-bit memory pointers and four 16-bit counters. Each set (pointer, counter) is
used by current transmit, next transmit, current receive and next receive.

Using the PDC removes processor overhead by reducing its intervention during the transfer.
This significantly reduces the number of clock cycles required for a data transfer, which
improves microcontroller performance.

To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and
receive signals. When the programmed data is transferred, an end of transfer interrupt is gener-
ated by the peripheral itself.

22.2 Embedded Characteristics
• Handles data transfer between peripherals and memories

• Low bus arbitration overhead

– One Master Clock cycle needed for a transfer from memory to peripheral

– Two Master Clock cycles needed for a transfer from peripheral to memory

• Next Pointer management for reducing interrupt latency requirement

The Peripheral DMA Controller handles transfer requests from the channel according to the fol-
lowing priorities (Low to High priorities):

Table 22-1. Peripheral DMA Controller

Instance name Channel T/R 100 & 64 Pins 48 Pins

TWI0 Transmit x x

UART0 Transmit x x

USART0 Transmit x x

DAC Transmit x N/A

SPI Transmit x x

TWI0 Receive x x

UART0 Receive x x

USART0 Receive x x

ADC Receive x x

SPI Receive x x
319
11011B–ATARM–21-Feb-12

22.3 Block Diagram

Figure 22-1. Block Diagram

PDCFULL DUPLEX
PERIPHERAL

THR

RHR

PDC Channel A

PDC Channel B

Control

Status & Control
Control

PDC Channel C

HALF DUPLEX
PERIPHERAL

THR

Status & Control

RECEIVE or TRANSMIT
PERIPHERAL

RHR or THR

Control

Control

RHR

PDC Channel D

Status & Control
320
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
22.4 Functional Description

22.4.1 Configuration
The PDC channel user interface enables the user to configure and control data transfers for
each channel. The user interface of each PDC channel is integrated into the associated periph-
eral user interface.

The user interface of a serial peripheral, whether it is full or half duplex, contains four 32-bit
pointers (RPR, RNPR, TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR,
TNCR). However, the transmit and receive parts of each type are programmed differently: the
transmit and receive parts of a full duplex peripheral can be programmed at the same time,
whereas only one part (transmit or receive) of a half duplex peripheral can be programmed at a
time.

32-bit pointers define the access location in memory for current and next transfer, whether it is
for read (transmit) or write (receive). 16-bit counters define the size of current and next transfers.
It is possible, at any moment, to read the number of transfers left for each channel.

The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for
each channel. The status for each channel is located in the associated peripheral status register.
Transfers can be enabled and/or disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in
the peripheral’s Transfer Control Register.

At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These
flags are visible in the peripheral status register (ENDRX, ENDTX, RXBUFF, and TXBUFE).
Refer to Section 22.4.3 and to the associated peripheral user interface.

22.4.2 Memory Pointers
Each full duplex peripheral is connected to the PDC by a receive channel and a transmit chan-
nel. Both channels have 32-bit memory pointers that point respectively to a receive area and to
a transmit area in on- and/or off-chip memory.

Each half duplex peripheral is connected to the PDC by a bidirectional channel. This channel
has two 32-bit memory pointers, one for current transfer and the other for next transfer. These
pointers point to transmit or receive data depending on the operating mode of the peripheral.

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
respectively by 1, 2 or 4 bytes.

If a memory pointer address changes in the middle of a transfer, the PDC channel continues
operating using the new address.

22.4.3 Transfer Counters
Each channel has two 16-bit counters, one for current transfer and the other one for next trans-
fer. These counters define the size of data to be transferred by the channel. The current transfer
counter is decremented first as the data addressed by current memory pointer starts to be trans-
ferred. When the current transfer counter reaches zero, the channel checks its next transfer
counter. If the value of next counter is zero, the channel stops transferring data and sets the
appropriate flag. But if the next counter value is greater then zero, the values of the next
pointer/next counter are copied into the current pointer/current counter and the channel resumes
the transfer whereas next pointer/next counter get zero/zero as values. At the end of this trans-
fer the PDC channel sets the appropriate flags in the Peripheral Status Register.
321
11011B–ATARM–21-Feb-12

The following list gives an overview of how status register flags behave depending on the coun-
ters’ values:

• ENDRX flag is set when the PERIPH_RCR register reaches zero.

• RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.

• ENDTX flag is set when the PERIPH_TCR register reaches zero.

• TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.

These status flags are described in the Peripheral Status Register.

22.4.4 Data Transfers
The serial peripheral triggers its associated PDC channels’ transfers using transmit enable
(TXEN) and receive enable (RXEN) flags in the transfer control register integrated in the periph-
eral’s user interface.

When the peripheral receives an external data, it sends a Receive Ready signal to its PDC
receive channel which then requests access to the Matrix. When access is granted, the PDC
receive channel starts reading the peripheral Receive Holding Register (RHR). The read data
are stored in an internal buffer and then written to memory.

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit chan-
nel which then requests access to the Matrix. When access is granted, the PDC transmit
channel reads data from memory and puts them to Transmit Holding Register (THR) of its asso-
ciated peripheral. The same peripheral sends data according to its mechanism.

22.4.5 PDC Flags and Peripheral Status Register
Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the
PDC sends back flags to the peripheral. All these flags are only visible in the Peripheral Status
Register.

Depending on the type of peripheral, half or full duplex, the flags belong to either one single
channel or two different channels.

22.4.5.1 Receive Transfer End
This flag is set when PERIPH_RCR register reaches zero and the last data has been transferred
to memory.

It is reset by writing a non zero value in PERIPH_RCR or PERIPH_RNCR.

22.4.5.2 Transmit Transfer End
This flag is set when PERIPH_TCR register reaches zero and the last data has been written into
peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

22.4.5.3 Receive Buffer Full
This flag is set when PERIPH_RCR register reaches zero with PERIPH_RNCR also set to zero
and the last data has been transferred to memory.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.
322
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
22.4.5.4 Transmit Buffer Empty
This flag is set when PERIPH_TCR register reaches zero with PERIPH_TNCR also set to zero
and the last data has been written into peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.
323
11011B–ATARM–21-Feb-12

22.5 Peripheral DMA Controller (PDC) User Interface

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the desired peripheral.)

Table 22-2. Register Mapping

Offset Register Name Access Reset

0x100 Receive Pointer Register PERIPH(1)_RPR Read-write 0

0x104 Receive Counter Register PERIPH_RCR Read-write 0

0x108 Transmit Pointer Register PERIPH_TPR Read-write 0

0x10C Transmit Counter Register PERIPH_TCR Read-write 0

0x110 Receive Next Pointer Register PERIPH_RNPR Read-write 0

0x114 Receive Next Counter Register PERIPH_RNCR Read-write 0

0x118 Transmit Next Pointer Register PERIPH_TNPR Read-write 0

0x11C Transmit Next Counter Register PERIPH_TNCR Read-write 0

0x120 Transfer Control Register PERIPH_PTCR Write-only 0

0x124 Transfer Status Register PERIPH_PTSR Read-only 0
324
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
22.5.1 Receive Pointer Register
Name: PERIPH_RPR

Access: Read-write

• RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.

When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

31 30 29 28 27 26 25 24
RXPTR

23 22 21 20 19 18 17 16

RXPTR

15 14 13 12 11 10 9 8
RXPTR

7 6 5 4 3 2 1 0

RXPTR
325
11011B–ATARM–21-Feb-12

22.5.2 Receive Counter Register
Name: PERIPH_RCR

Access: Read-write

• RXCTR: Receive Counter Register
RXCTR must be set to receive buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0 = Stops peripheral data transfer to the receiver

1 - 65535 = Starts peripheral data transfer if corresponding channel is active

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
RXCTR

7 6 5 4 3 2 1 0

RXCTR
326
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
22.5.3 Transmit Pointer Register
Name: PERIPH_TPR

Access: Read-write

• TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.

When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

31 30 29 28 27 26 25 24
TXPTR

23 22 21 20 19 18 17 16

TXPTR

15 14 13 12 11 10 9 8
TXPTR

7 6 5 4 3 2 1 0

TXPTR
327
11011B–ATARM–21-Feb-12

SAM3N
22.5.4 Transmit Counter Register
Name: PERIPH_TCR

Access: Read-write

• TXCTR: Transmit Counter Register
TXCTR must be set to transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0 = Stops peripheral data transfer to the transmitter

1- 65535 = Starts peripheral data transfer if corresponding channel is active

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
TXCTR

7 6 5 4 3 2 1 0

TXCTR
328
11011B–ATARM–21-Feb-12

SAM3N
22.5.5 Receive Next Pointer Register
Name: PERIPH_RNPR

Access: Read-write

• RXNPTR: Receive Next Pointer
RXNPTR contains next receive buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

22.5.6 Receive Next Counter Register
Name: PERIPH_RNCR

Access: Read-write

• RXNCTR: Receive Next Counter
RXNCTR contains next receive buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24
RXNPTR

23 22 21 20 19 18 17 16

RXNPTR

15 14 13 12 11 10 9 8
RXNPTR

7 6 5 4 3 2 1 0

RXNPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

RXNCTR

7 6 5 4 3 2 1 0

RXNCTR
329
11011B–ATARM–21-Feb-12

SAM3N
22.5.7 Transmit Next Pointer Register
Name: PERIPH_TNPR

Access: Read-write

• TXNPTR: Transmit Next Pointer
TXNPTR contains next transmit buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

22.5.8 Transmit Next Counter Register
Name: PERIPH_TNCR

Access: Read-write

• TXNCTR: Transmit Counter Next
TXNCTR contains next transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24
TXNPTR

23 22 21 20 19 18 17 16

TXNPTR

15 14 13 12 11 10 9 8
TXNPTR

7 6 5 4 3 2 1 0

TXNPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

TXNCTR

7 6 5 4 3 2 1 0

TXNCTR
330
11011B–ATARM–21-Feb-12

SAM3N
22.5.9 Transfer Control Register
Name: PERIPH_PTCR

Access: Write-only

• RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables PDC receiver channel requests if RXTDIS is not set.

When a half duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

• RXTDIS: Receiver Transfer Disable
0 = No effect.

1 = Disables the PDC receiver channel requests.

When a half duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmit-
ter channel requests.

• TXTEN: Transmitter Transfer Enable
0 = No effect.

1 = Enables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not
set. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

• TXTDIS: Transmitter Transfer Disable
0 = No effect.

1 = Disables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – TXTDIS TXTEN

7 6 5 4 3 2 1 0

– – – – – – RXTDIS RXTEN
331
11011B–ATARM–21-Feb-12

22.5.10 Transfer Status Register
Name: PERIPH_PTSR

Access: Read-only

• RXTEN: Receiver Transfer Enable
0 = PDC Receiver channel requests are disabled.

1 = PDC Receiver channel requests are enabled.

• TXTEN: Transmitter Transfer Enable
0 = PDC Transmitter channel requests are disabled.

1 = PDC Transmitter channel requests are enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – TXTEN

7 6 5 4 3 2 1 0

– – – – – – – RXTEN
332
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
23. Clock Generator

23.1 Description
The Clock Generator User Interface is embedded within the Power Management Controller and
is described in Section 24.15 ”Power Management Controller (PMC) User Interface”. However,
the Clock Generator registers are named CKGR_.

23.2 Embedded Characteristics
The Clock Generator is made up of:

• A Low Power 32,768 Hz Slow Clock Oscillator with bypass mode

• A Low Power RC Oscillator

• A 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator which can be bypassed

• A factory programmed Fast RC Oscillator, 3 output frequencies can be selected: 4, 8 or
12 MHz. By default 4 MHz is selected.

• A 60 to 130 MHz programmable PLL (input from 3.5 to 20 MHz), capable of providing the
clock MCK to the processor and to the peripherals.

It provides the following clocks:

• SLCK, the Slow Clock, which is the only permanent clock within the system

• MAINCK is the output of the Main Clock Oscillator selection: either the Crystal or Ceramic
Resonator-based Oscillator or 4/8/12 MHz Fast RC Oscillator

• PLLCK is the output of the Divider and 60 to 130 MHz programmable PLL
333
11011B–ATARM–21-Feb-12

23.3 Block Diagram

Figure 23-1. Clock Generator Block Diagram

Power
Management

Controller

Main Clock
MAINCK

PLL Clock
PLLCK

ControlStatus

MOSCSEL

Clock Generator

PLL and
Divider

XIN

XOUT

XIN32

XOUT32

Slow Clock
SLCK

XTALSEL

(Supply Controller)

0

1

0

1

3-20 MHz
Crystal

or
Ceramic

Resonator
Oscillator

Embedded
4/8/12 MHz

Fast
RC Oscillator

32768 Hz
Crystal

Oscillator

Embedded
32 kHz

RC Oscillator
334
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
23.4 Slow Clock
The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power-
supply. As soon as VDDIO is supplied, both the crystal oscillator and the embedded RC
oscillator are powered up, but only the embedded RC oscillator is enabled. This allows the slow
clock to be valid in a short time (about 100 µs).

The Slow Clock is generated either by the Slow Clock Crystal Oscillator or by the Slow Clock RC
Oscillator.

The selection between the RC or crystal oscillator is made by writing the XTALSEL bit in the
Supply Controller Control Register (SUPC_CR).

23.4.1 Slow Clock RC Oscillator
By default, the Slow Clock RC Oscillator is enabled and selected. The user has to take into
account the possible drifts of the RC Oscillator. More details are given in the section “DC Char-
acteristics” of the product datasheet.

It can be disabled via the XTALSEL bit in the Supply Controller Control Register (SUPC_CR).

23.4.2 Slow Clock Crystal Oscillator
The Clock Generator integrates a 32,768 Hz low-power oscillator. In order to use this oscillator,
the XIN32/PA7 and XOUT32/P8 pins must be connected to a 32,768 Hz crystal. Two external
capacitors must be wired as shown in Figure 23-2. More details are given in the section “DC
Characteristics” of the product datasheet.

Note that the user is not obliged to use the Slow Clock Crystal and can use the RC Oscillator
instead.

Figure 23-2. Typical Slow Clock Crystal Oscillator Connection

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more
accurate frequency. The command is made by writing the Supply Controller Control Register
(SUPC_CR) with the XTALSEL bit at 1. This results in a sequence which first configures the PIO
lines multiplexed with XIN32 and XOUT32 to be driven by the oscillator, then enables the crystal
oscillator and then disables the RC oscillator to save power. The switch of the slow clock source
is glitch free. The OSCSEL bit of the Supply Controller Status Register (SUPC_SR) allows
knowing when the switch sequence is done.

Coming back on the RC oscillator is only possible by shutting down the VDDIO power supply. If
the user does not need the crystal oscillator, the XIN32 and XOUT32 pins can be left uncon-
nected since by default the XIN32 and XOUT32 system I/O pins are in PIO input mode after
reset.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In
this case, the user has to provide the external clock signal on XIN32. The input characteristics of

XIN32 XOUT32 GND
32,768 Hz

Crystal
335
11011B–ATARM–21-Feb-12

the XIN32 pin are given in the product electrical characteristics section. In order to set the
bypass mode, the OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs
to be set at 1.

The user can set the Slow Clock Crystal Oscillator in bypass mode instead of connecting a crys-
tal. In this case, the user has to provide the external clock signal on XIN32. The input
characteristics of the XIN32 pin under these conditions are given in the product electrical char-
acteristics section.

The programmer has to be sure to set the OSCBYPASS bit in the Supply Controller Mode Reg-
ister (SUPC_MR) and XTALSEL bit in the Supply Controller Control Register (SUPC_CR).

23.5 Main Clock
Figure 23-3 shows the Main Clock block diagram.

Figure 23-3. Main Clock Block Diagram

The Main Clock has two sources:

• 4/8/12 MHz Fast RC Oscillator which starts very quickly and is used at startup

• 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator which can be bypassed

XIN

XOUT

MOSCXTEN

MOSCXTCNT

MOSCXTS

Main Clock
Frequency

Counter

MAINF

MAINRDY

SLCK
Slow Clock

3-20 MHz
Crystal

or
Ceramic Resonator

Oscillator

3-20 MHz
Oscillator
Counter

MOSCRCEN

4/8/12 MHz
Fast RC
Oscillator

MOSCRCS

MOSCRCF

MOSCRCEN

MOSCXTEN

MOSCSEL

MOSCSEL MOSCSELS

1

0

MAINCK
Main Clock
336
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
23.5.1 4/8/12 MHz Fast RC Oscillator
After reset, the 4/8/12 MHz Fast RC Oscillator is enabled with the 4 MHz frequency selected and
it is selected as the source of MAINCK. MAINCK is the default clock selected to start up the
system.

The Fast RC Oscillator 8 and 12 MHz frequencies are calibrated in production. Note that is not
the case for the 4 MHz frequency.

Please refer to the “DC Characteristics” section of the product datasheet.

The software can disable or enable the 4/8/12 MHz Fast RC Oscillator with the MOSCRCEN bit
in the Clock Generator Main Oscillator Register (CKGR_MOR).

The user can also select the output frequency of the Fast RC Oscillator: either 4 MHz, 8 MHz or
12 MHz are available. It can be done through MOSCRCF bits in CKGR_MOR. When changing
this frequency selection, the MOSCRCS bit in the Power Management Controller Status Regis-
ter (PMC_SR) is automatically cleared and MAINCK is stopped until the oscillator is stabilized.
Once the oscillator is stabilized, MAINCK restarts and MOSCRCS is set.

When disabling the Main Clock by clearing the MOSCRCEN bit in CKGR_MOR, the MOSCRCS
bit in the Power Management Controller Status Register (PMC_SR) is automatically cleared,
indicating the Main Clock is off.

Setting the MOSCRCS bit in the Power Management Controller Interrupt Enable Register
(PMC_IER) can trigger an interrupt to the processor.

It is recommended to disable the Main Clock as soon as the processor no longer uses it and
runs out of SLCK or PLLCK.

The CAL4, CAL8 and CAL12 values in the PMC_OCR registers are the default values set by
Atmel during production. These values are stored in a specific Flash memory area different from
the main memory plane. These values cannot be modified by the user and cannot be erased by
a Flash erase command or by the ERASE pin. Values written by the user's application in the
PMC_OCR register are reset after each power up or peripheral reset.

23.5.2 4/8/12 MHz Fast RC Oscillator Clock Frequency Adjustment
It is possible for the user to adjust the main RC oscillator frequency through PMC_OCR register.
By default, SEL4/8/12 are low, so the RC oscillator will be driven with Flash calibration bits which
are programmed during chip production.

The user can adjust the trimming of the 4/8/12 MHz Fast RC oscillator through this register in
order to obtain more accurate frequency (to compensate derating factors such as temperature
and voltage).

In order to calibrate the 4 MHz Fast RC oscillator frequency, SEL4 must be set to 1 and a valid
frequency value must be configured in CAL4. Likewise, SEL8/12 must be set to 1 and a trim
value must be configured in CAL8/12 in order to adjust the 8/12 MHz frequency oscillator.

However, the adjustment can not be done to the frequency from which the oscillator is operating.
For example, while running from a frequency of 8 MHz, the user can adjust the 4 and 12 MHz
frequency but not the 8 MHz.
337
11011B–ATARM–21-Feb-12

23.5.3 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator
After reset, the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is disabled and it is
not selected as the source of MAINCK.

The user can select the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator to be the
source of MAINCK, as it provides a more accurate frequency. The software enables or disables
the main oscillator so as to reduce power consumption by clearing the MOSCXTEN bit in the
Main Oscillator Register (CKGR_MOR).

When disabling the main oscillator by clearing the MOSCXTEN bit in CKGR_MOR, the
MOSCXTS bit in PMC_SR is automatically cleared, indicating the Main Clock is off.

When enabling the main oscillator, the user must initiate the main oscillator counter with a value
corresponding to the startup time of the oscillator. This startup time depends on the crystal fre-
quency connected to the oscillator.

When the MOSCXTEN bit and the MOSCXTCNT are written in CKGR_MOR to enable the main
oscillator, the MOSCXTS bit in the Power Management Controller Status Register (PMC_SR) is
cleared and the counter starts counting down on the slow clock divided by 8 from the MOSCX-
TCNT value. Since the MOSCXTCNT value is coded with 8 bits, the maximum startup time is
about 62 ms.

When the counter reaches 0, the MOSCXTS bit is set, indicating that the main clock is valid.
Setting the MOSCXTS bit in PMC_IMR can trigger an interrupt to the processor.

23.5.4 Main Clock Oscillator Selection
The user can select either the 4/8/12 MHz Fast RC oscillator or the 3 to 20 MHz Crystal or
Ceramic Resonator-based oscillator to be the source of Main Clock.

The advantage of the 4/8/12 MHz Fast RC oscillator is that it provides fast startup time, this is
why it is selected by default (to start up the system) and when entering Wait Mode.

The advantage of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is that it is very
accurate.

The selection is made by writing the MOSCSEL bit in the Main Oscillator Register
(CKGR_MOR). The switch of the Main Clock source is glitch free, so there is no need to run out
of SLCK or PLLCK in order to change the selection. The MOSCSELS bit of the Power Manage-
ment Controller Status Register (PMC_SR) allows knowing when the switch sequence is done.

Setting the MOSCSELS bit in PMC_IMR can trigger an interrupt to the processor.

23.5.5 Main Clock Frequency Counter
The device features a Main Clock frequency counter that provides the frequency of the Main
Clock.

The Main Clock frequency counter is reset and starts incrementing at the Main Clock speed after
the next rising edge of the Slow Clock in the following cases:

• when the 4/8/12 MHz Fast RC oscillator clock is selected as the source of Main Clock and
when this oscillator becomes stable (i.e., when the MOSCRCS bit is set)

• when the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is selected as the
source of Main Clock and when this oscillator becomes stable (i.e., when the MOSCXTS bit
is set)

• when the Main Clock Oscillator selection is modified
338
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Then, at the 16th falling edge of Slow Clock, the MAINFRDY bit in the Clock Generator Main
Clock Frequency Register (CKGR_MCFR) is set and the counter stops counting. Its value can
be read in the MAINF field of CKGR_MCFR and gives the number of Main Clock cycles during
16 periods of Slow Clock, so that the frequency of the 4/8/12 MHz Fast RC oscillator or 3 to 20
MHz Crystal or Ceramic Resonator-based oscillator can be determined.
339
11011B–ATARM–21-Feb-12

23.6 Divider and PLL Block
The device features a Divider/PLL Block that permits a wide range of frequencies to be selected
on either the master clock, the processor clock or the programmable clock outputs.

Figure 23-4 shows the block diagram of the divider and PLL block.

Figure 23-4. Divider and PLL Block Diagram

23.6.1 Divider and Phase Lock Loop Programming
The divider can be set between 1 and 255 in steps of 1. When the divider field (DIV) is set to 0,
the output of the divider and the PLL output is a continuous signal at level 0. On reset, the DIV
field is set to 0, thus the PLL input clock is set to 0.

The PLL allows multiplication of the divider’s output. The PLL clock signal has a frequency that
depends on the respective source signal frequency and on the DIV and MUL parameters. The
factor applied to the source signal frequency is (MUL + 1)/DIV. When MUL is written to 0, the
PLL is disabled and its power consumption is saved. Re-enabling the PLL can be performed by
writing a value higher than 0 in the MUL field.

Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK bit in PMC_SR
is automatically cleared. The value written in the PLLCOUNT field in CKGR_PLLR is loaded in
the PLL counter. The PLL counter then decrements at the speed of the Slow Clock until it
reaches 0. At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the pro-
cessor. The user has to load the number of Slow Clock cycles required to cover the PLL
transient time into the PLLCOUNT field.

The PLL clock can be divided by 2 by writing the PLLDIV2 bit in PMC_MCKR register.

It is forbidden to change 4/8/12 Fast RC oscillator frequency or main selection in CKGR_MOR
register while Master clock source is PLL and PLL reference clock is Fast RC oscillator.

The user must:

• Switch on the Main RC oscillator by writing 1 in CSS field of PMC_MCKR.

• Change the frequency (MOSCRCF) or oscillator selection (MOSCSEL) in CKGR_MOR.

• Wait for MOSCRCS (if frequency changes) or MOSCSELS (if oscillator selection changes) in
PMC_IER.

• Disable and then enable the PLL (LOCK in PMC_IDR and PMC_IER register)

• Wait for PLLRDY.

• Switch back to PLL.

Divider

DIV

PLL

MUL

PLLCOUNT

LOCK

OUT

SLCK

MAINCK PLLCK

PLL
Counter
340
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24. Power Management Controller (PMC)

24.1 Description
The Power Management Controller (PMC) optimizes power consumption by controlling all sys-
tem and user peripheral clocks. The PMC enables/disables the clock inputs to many of the
peripherals and the Cortex-M3 Processor.

The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The
unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the fast RC oscillator running at
4 MHz.

The user can trim the 8 and 12 MHz RC Oscillator frequency by software.

24.2 Embedded Characteristics
The Power Management Controller provides the following clocks:

• MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating
frequency of the device. It is available to the modules running permanently, such as the
Enhanced Embedded Flash Controller.

• Processor Clock (HCLK) is automatically switched off when the processor enters Sleep Mode

• Free running processor Clock (FCLK)

• the Cortex-M3 SysTick external clock

• Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SPI, TWI,
TC, etc.) and are independently controllable. In order to reduce the number of clock names in
a product, the Peripheral Clocks are named MCK in the product datasheet.

• Programmable Clock Outputs can be selected from the clocks provided by the clock
generator and driven on the PCKx pins.
341
11011B–ATARM–21-Feb-12

24.3 Block Diagram

Figure 24-1. General Clock Block Diagram

24.4 Master Clock Controller
The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is
the clock provided to all the peripherals.

The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting
the Slow Clock provides a Slow Clock signal to the whole device. Selecting the Main Clock
saves power consumption of the PLL.

The Master Clock Controller is made up of a clock selector and a prescaler.

The Master Clock selection is made by writing the CSS field (Clock Source Selection) in
PMC_MCKR (Master Clock Register). The prescaler supports the division by a power of 2 of the
selected clock between 1 and 64, and the division by 3. The PRES field in PMC_MCKR pro-
grams the prescaler.

Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in
PMC_SR. It reads 0 until the Master Clock is established. Then, the MCKRDY bit is set and can
trigger an interrupt to the processor. This feature is useful when switching from a high-speed
clock to a lower one to inform the software when the change is actually done.

Power
Management

Controller

Main Clock
MAINCK

PLL Clock
PLLCK

ControlStatus

3-20 MHz
Crystal

or
Ceramic

Resonator
Oscillator

MOSCSEL

Clock Generator

PLL and
Divider

XIN

XOUT

XIN32

XOUT32

Slow Clock
SLCK

EXTALSEL

(Supply Controller)

Embedded
32 kHz RC
Oscillator

32768 Hz
Crystal

Oscillator

0

1

0

1

MCK

periph_clk[..]

int

SLCK

MAINCK

PLLCK

Prescaler
/1,/2,/3,/4,...,/64

HCLK

Processor
Clock

Controller

 Sleep Mode

Master Clock Controller
 (PMC_MCKR)

Peripherals
Clock Controller
(PMC_PCERx) ON/OFF

Prescaler
/1,/2,/4,...,/64

pck[..]

ON/OFF

FCLK

SysTick
Divider

/8

SLCK

MAINCK

PLLCK

Processor clock

Free runnning clock

Master clock

Embedded
4/8/12 MHz

Fast
RC Oscillator

Programmable Clock Controller

MCK

CSS PRES

CSS PRES
342
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 24-2. Master Clock Controller

24.5 Processor Clock Controller
The PMC features a Processor Clock Controller (HCLK) that implements the Processor Sleep
Mode. The Processor Clock can be disabled by executing the WFI (WaitForInterrupt) or the
WFE (WaitForEvent) processor instruction while the LPM bit is at 0 in the PMC Fast Startup
Mode Register (PMC_FSMR).

The Processor Clock HCLK is enabled after a reset and is automatically re-enabled by any
enabled interrupt. The Processor Sleep Mode is achieved by disabling the Processor Clock,
which is automatically re-enabled by any enabled fast or normal interrupt, or by the reset of the
product.

When Processor Sleep Mode is entered, the current instruction is finished before the clock is
stopped, but this does not prevent data transfers from other masters of the system bus.

24.6 SysTick Clock
The SysTick calibration value is fixed at 6000 which allows the generation of a time base of 1 ms
with SysTick clock at 6 MHz (max MCK/8).

24.7 Peripheral Clock Controller
The Power Management Controller controls the clocks of each embedded peripheral by means
of the Peripheral Clock Controller. The user can individually enable and disable the Clock on the
peripherals.

The user can also enable and disable these clocks by writing Peripheral Clock Enable
(PMC_PCER) and Peripheral Clock Disable (PMC_PCDR) registers. The status of the periph-
eral clock activity can be read in the Peripheral Clock Status Register (PMC_PCSR).

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are
automatically disabled after a reset.

In order to stop a peripheral, it is recommended that the system software wait until the peripheral
has executed its last programmed operation before disabling the clock. This is to avoid data cor-
ruption or erroneous behavior of the system.

The bit number within the Peripheral Clock Control registers (PMC_PCER, PMC_PCDR and
PMC_PCSR) is the Peripheral Identifier defined at the product level. The bit number corre-
sponds to the interrupt source number assigned to the peripheral.

SLCK
Master Clock

Prescaler
MCK

PRESCSS

MAINCK

PLLCK

To the Processor
Clock Controller (PCK)

PMC_MCKR PMC_MCKR
343
11011B–ATARM–21-Feb-12

24.8 Free Running Processor Clock
The Free running processor clock (FCLK) used for sampling interrupts and clocking debug
blocks ensures that interrupts can be sampled, and sleep events can be traced, while the pro-
cessor is sleeping. It is connected to Master Clock (MCK).

24.9 Programmable Clock Output Controller
The PMC controls 3 signals to be output on external pins, PCKx. Each signal can be indepen-
dently programmed via the PMC_PCKx registers.

PCKx can be independently selected between the Slow Clock (SLCK), the Main Clock
(MAINCK), the PLL Clock (PLLCK) and the Master Clock (MCK) by writing the CSS field in
PMC_PCKx. Each output signal can also be divided by a power of 2 between 1 and 64 by writing
the PRES (Prescaler) field in PMC_PCKx.

Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of
PMC_SCER and PMC_SCDR, respectively. Status of the active programmable output clocks
are given in the PCKx bits of PMC_SCSR (System Clock Status Register).

Moreover, like the PCK, a status bit in PMC_SR indicates that the Programmable Clock is actu-
ally what has been programmed in the Programmable Clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching
clocks, it is strongly recommended to disable the Programmable Clock before any configuration
change and to re-enable it after the change is actually performed.
344
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.10 Fast Startup
The SAM3N device allows the processor to restart in less than10 µs while the device is in Wait
mode. The system enters Wait mode either by writing the WAITMODE bit at 1 in the PMC Clock
Generator Main Oscillator Register (CKGR_MOR), or by executing the WaitForEvent (WFE)
instruction of the processor while the LPM bit is at 1 in the PMC Fast Startup Mode Register
(PMC_FSMR).

A Fast Startup is enabled upon the detection of a programmed level on one of the 16 wake-up
inputs (WKUP), SM or upon an active alarm from the RTC and RTT. The polarity of the 16
wake-up inputs is programmable by writing the PMC Fast Startup Polarity Register
(PMC_FSPR).

The Fast Restart circuitry, as shown in Figure 24-3, is fully asynchronous and provides a fast
startup signal to the Power Management Controller. As soon as the fast startup signal is
asserted, this automatically restarts the embedded 4/8/12 MHz Fast RC oscillator.

Figure 24-3. Fast Startup Circuitry

Each wake-up input pin and alarm can be enabled to generate a Fast Startup event by writing at
1 the corresponding bit in the Fast Startup Mode Register PMC_FSMR.

The user interface does not provide any status for Fast Startup, but the user can easily recover
this information by reading the PIO Controller, and the status registers of the RTC and RTT.

fast_restartWKUP15

FSTT15

FSTP15

WKUP1

FSTT1

FSTP1

WKUP0

FSTT0

FSTP0

RTTAL

RTCAL

RTT Alarm

RTC Alarm
345
11011B–ATARM–21-Feb-12

24.11 Clock Failure Detector
The clock failure detector allows to monitor the 3 to 20 MHz Crystal or Ceramic Resonator-
based oscillator and to detect an eventual defect of this oscillator (for example if the crystal is
unconnected).

The clock failure detector can be enabled or disabled by means of the CFDEN bit in the PMC
Clock Generator Main Oscillator Register (CKGR_MOR). After reset, the detector is disabled.
However, if the 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator is disabled, the
clock failure detector is disabled too.

A failure is detected by means of a counter incrementing on the 3 to 20 MHzCrystal oscillator or
Ceramic Resonator-based oscillator clock edge and timing logic clocked on the slow clock RC
oscillator controlling the counter. The counter is cleared when the slow clock RC oscillator signal
is low and enabled when the slow clock RC oscillator is high. Thus the failure detection time is 1
slow clock RC oscillator clock period. If, during the high level period of slow clock RC oscillator,
less than 8 fast crystal clock periods have been counted, then a failure is declared.

If a failure of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator clock is detected,
the CFDEV flag is set in the PMC Status Register (PMC_SR), and can generate an interrupt if it
is not masked. The interrupt remains active until a read operation in the PMC_SR register. The
user can know the status of the clock failure detector at any time by reading the CFDS bit in the
PMC_SR register.

If the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator clock is selected as the source
clock of MAINCK (MOSCSEL = 1), and if the Master Clock Source is PLLCK (CSS = 2), then a
clock failure detection switches automatically the Master Clock on MAINCK. Then whatever the
PMC configuration is, a clock failure detection switches automatically MAINCK on the 4/8/12
MHz Fast RC Oscillator clock. If the Fast RC oscillator is disabled when a clock failure detection
occurs, it is automatically re-enabled by the clock failure detection mechanism.

It takes 2 slow clock RC oscillator cycles to detect and switch from the 3 to 20 MHz Crystal or
Ceramic Resonator-based oscillator to the 4/8/12 MHz Fast RC Oscillator if the Master Clock
Source is Main Clock or 3 slow clock RC oscillator cycles if the Master Clock Source is PLL.

The user can know the status of the fault output at any time by reading the FOS bit in the
PMC_SR register.
346
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.12 Programming Sequence
1. Enabling the Main Oscillator:

The main oscillator is enabled by setting the MOSCXTEN field in the CKGR_MOR reg-
ister. The user can define a start-up time. This can be achieved by writing a value in the
MOSCXTST field in the CKGR_MOR register. Once this register has been correctly
configured, the user must wait for MOSCXTS field in the PMC_SR register to be set.
This can be done either by polling the status register, or by waiting the interrupt line to
be raised if the associated interrupt to MOSCXTS has been enabled in the PMC_IER
register.
Start Up Time = 8 * MOSCXTST / SLCK = 56 Slow Clock Cycles.
So, the main oscillator will be enabled (MOSCXTS bit set) after 56 Slow Clock Cycles.

2. Checking the Main Oscillator Frequency (Optional):

In some situations the user may need an accurate measure of the main clock frequency.
This measure can be accomplished via the CKGR_MCFR register.

Once the MAINFRDY field is set in CKGR_MCFR register, the user may read the MAINF
field in CKGR_MCFR register. This provides the number of main clock cycles within sixteen
slow clock cycles.

3. Setting PLL and Divider:

All parameters needed to configure PLL and the divider are located in the CKGR_PLLR
register.

The DIV field is used to control the divider itself. It must be set to 1 when PLL is used. By
default, DIV parameter is set to 0 which means that the divider is turned off.

The MUL field is the PLL multiplier factor. This parameter can be programmed between 0
and 2047. If MUL is set to 0, PLL will be turned off, otherwise the PLL output frequency is
PLL input frequency multiplied by (MUL + 1).

The PLLCOUNT field specifies the number of slow clock cycles before LOCK bit is set in the
PMC_SR register after CKGR_PLLR register has been written.

Once the PMC_PLL register has been written, the user must wait for the LOCK bit to be set
in the PMC_SR register. This can be done either by polling the status register or by waiting
the interrupt line to be raised if the associated interrupt to LOCK has been enabled in the
PMC_IER register. All parameters in CKGR_PLLR can be programmed in a single write
operation. If at some stage one of the following parameters, MUL, DIV is modified, LOCK bit
will go low to indicate that PLL is not ready yet. When PLL is locked, LOCK will be set again.
The user is constrained to wait for LOCK bit to be set before using the PLL output clock.

4. Selection of Master Clock and Processor Clock

The Master Clock and the Processor Clock are configurable via the PMC_MCKR register.

The CSS field is used to select the Master Clock divider source. By default, the selected
clock source is main clock.

Once the PMC_MCKR register has been written, the user must wait for the MCKRDY bit to
be set in the PMC_SR register. This can be done either by polling the status register or by
waiting for the interrupt line to be raised if the associated interrupt to MCKRDY has been
enabled in the PMC_IER register.

The PMC_MCKR register must not be programmed in a single write operation. The pre-
ferred programming sequence for the PMC_MCKR register is as follows:
347
11011B–ATARM–21-Feb-12

• If a new value for CSS field corresponds to PLL Clock,

– Program the PRES field in the PMC_MCKR register.

– Wait for the MCKRDY bit to be set in the PMC_SR register.

– Program the CSS field in the PMC_MCKR register.

– Wait for the MCKRDY bit to be set in the PMC_SR register.

• If a new value for CSS field corresponds to Main Clock or Slow Clock,

– Program the CSS field in the PMC_MCKR register.

– Wait for the MCKRDY bit to be set in the PMC_SR register.

– Program the PRES field in the PMC_MCKR register.

– Wait for the MCKRDY bit to be set in the PMC_SR register.

If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY
bit will go low to indicate that the Master Clock and the Processor Clock are not ready yet.
The user must wait for MCKRDY bit to be set again before using the Master and Processor
Clocks.

Note: IF PLL clock was selected as the Master Clock and the user decides to modify it by writing in
CKGR_PLLR, the MCKRDY flag will go low while PLL is unlocked. Once PLL is locked again,
LOCK goes high and MCKRDY is set.
While PLL is unlocked, the Master Clock selection is automatically changed to Slow Clock. For fur-
ther information, see Section 24.13.2 “Clock Switching Waveforms” on page 350.

Code Example:

write_register(PMC_MCKR,0x00000001)

wait (MCKRDY=1)

write_register(PMC_MCKR,0x00000011)

wait (MCKRDY=1)

The Master Clock is main clock divided by 2.

The Processor Clock is the Master Clock.

5. Selection of Programmable Clocks

Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and
PMC_SCSR.

Programmable clocks can be enabled and/or disabled via the PMC_SCER and PMC_SCDR
registers. 3 Programmable clocks can be enabled or disabled. The PMC_SCSR provides a
clear indication as to which Programmable clock is enabled. By default all Programmable
clocks are disabled.

PMC_PCKx registers are used to configure Programmable clocks.

The CSS field is used to select the Programmable clock divider source. Three clock options
are available: main clock, slow clock, PLL. By default, the clock source selected is slow
clock.

The PRES field is used to control the Programmable clock prescaler. It is possible to choose
between different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler
input divided by PRES parameter. By default, the PRES parameter is set to 0 which means
that master clock is equal to slow clock.
348
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Once the PMC_PCKx register has been programmed, The corresponding Programmable
clock must be enabled and the user is constrained to wait for the PCKRDYx bit to be set in
the PMC_SR register. This can be done either by polling the status register or by waiting the
interrupt line to be raised if the associated interrupt to PCKRDYx has been enabled in the
PMC_IER register. All parameters in PMC_PCKx can be programmed in a single write
operation.

If the CSS and PRES parameters are to be modified, the corresponding Programmable
clock must be disabled first. The parameters can then be modified. Once this has been
done, the user must re-enable the Programmable clock and wait for the PCKRDYx bit to be
set.

6. Enabling Peripheral Clocks

Once all of the previous steps have been completed, the peripheral clocks can be enabled
and/or disabled v ia registers PMC_PCER0, PMC_PCER1, PMC_PCDR0 and
PMC_PCDR1.
349
11011B–ATARM–21-Feb-12

24.13 Clock Switching Details

24.13.1 Master Clock Switching Timings
Table 24-1 gives the worst case timings required for the Master Clock to switch from one
selected clock to another one. This is in the event that the prescaler is de-activated. When the
prescaler is activated, an additional time of 64 clock cycles of the new selected clock has to be
added.

24.13.2 Clock Switching Waveforms

Figure 24-4. Switch Master Clock from Slow Clock to PLL Clock

Table 24-1. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLL Clock

To

Main Clock –
4 x SLCK +

2.5 x Main Clock

3 x PLL Clock +

4 x SLCK +
1 x Main Clock

SLCK
0.5 x Main Clock +

4.5 x SLCK
–

3 x PLL Clock +
5 x SLCK

PLL Clock

0.5 x Main Clock +
4 x SLCK +

PLLCOUNT x SLCK +
2.5 x PLL Clock

2.5 x PLL Clock +
5 x SLCK +

PLLCOUNT x SLCK

2.5 x PLL Clock +
4 x SLCK +

PLLCOUNT x SLCK

Slow Clock

LOCK

MCKRDY

Master Clock

Write PMC_MCKR

PLL Clock
350
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 24-5. Switch Master Clock from Main Clock to Slow Clock

Figure 24-6. Change PLL Programming

Slow Clock

Main Clock

MCKRDY

Master Clock

Write PMC_MCKR

Slow Clock

Slow Clock

PLL Clock

LOCK

MCKRDY

Master Clock

Write CKGR_PLLR
351
11011B–ATARM–21-Feb-12

Figure 24-7. Programmable Clock Output Programming

PLL Clock

PCKRDY

PCKx Output

Write PMC_PCKx

Write PMC_SCER

Write PMC_SCDR PCKx is disabled

PCKx is enabled

PLL Clock is selected
352
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.14 Write Protection Registers
To prevent any single software error that may corrupt PMC behavior, certain address spaces
can be write protected by setting the WPEN bit in the “PMC Write Protect Mode Register”
(PMC_WPMR).

If a write access to the protected registers is detected, then the WPVS flag in the PMC Write
Protect Status Register (PMC_WPSR) is set and the field WPVSRC indicates in which register
the write access has been attempted.

The WPVS flag is reset by writing the PMC Write Protect Mode Register (PMC_WPMR) with the
appropriate access key, WPKEY.

The protected registers are:

“PMC System Clock Enable Register” on page 355

“PMC System Clock Disable Register” on page 355

“PMC Peripheral Clock Enable Register” on page 357

“PMC Peripheral Clock Disable Register” on page 358

“PMC Clock Generator Main Oscillator Register” on page 360

“PMC Clock Generator PLL Register” on page 363

“PMC Master Clock Register” on page 364

“PMC Programmable Clock Register” on page 365

“PMC Fast Startup Mode Register” on page 371

“PMC Fast Startup Polarity Register” on page 372

“PMC Oscillator Calibration Register” on page 376
353
11011B–ATARM–21-Feb-12

24.15 Power Management Controller (PMC) User Interface

Note: if an offset is not listed in the table it must be considered as “reserved”.

Table 24-2. Register Mapping

Offset Register Name Access Reset

0x0000 System Clock Enable Register PMC_SCER Write-only –

0x0004 System Clock Disable Register PMC_SCDR Write-only –

0x0008 System Clock Status Register PMC_SCSR Read-only 0x0000_0001

0x000C Reserved – – –

0x0010 Peripheral Clock Enable Register PMC_PCER Write-only –

0x0014 Peripheral Clock Disable Register PMC_PCDR Write-only –

0x0018 Peripheral Clock Status Register PMC_PCSR Read-only 0x0000_0000

0x001C Reserved – – –

0x0020 Main Oscillator Register CKGR_MOR Read-write 0x0000_0001

0x0024 Main Clock Frequency Register CKGR_MCFR Read-only 0x0000_0000

0x0028 PLL Register CKGR_PLLR Read-write 0x0000_3F00

0x002C Reserved – – –

0x0030 Master Clock Register PMC_MCKR Read-write 0x0000_0001

0x0034 - 0x003C Reserved – – –

0x0040 Programmable Clock 0 Register PMC_PCK0 Read-write 0x0000_0000

0x0044 Programmable Clock 1 Register PMC_PCK1 Read-write 0x0000_0000

0x0048 Programmable Clock 2 Register PMC_PCK2 Read-write 0x0000_0000

0x004C - 0x005C Reserved – – –

0x0060 Interrupt Enable Register PMC_IER Write-only –

0x0064 Interrupt Disable Register PMC_IDR Write-only –

0x0068 Status Register PMC_SR Read-only 0x0001_0008

0x006C Interrupt Mask Register PMC_IMR Read-only 0x0000_0000

0x0070 Fast Startup Mode Register PMC_FSMR Read-write 0x0000_0000

0x0074 Fast Startup Polarity Register PMC_FSPR Read-write 0x0000_0000

0x0078 Fault Output Clear Register PMC_FOCR Write-only –

0x007C- 0x00E0 Reserved – – –

0x00E4 Write Protect Mode Register PMC_WPMR Read-write 0x0

0x00E8 Write Protect Status Register PMC_WPSR Read-only 0x0

0x00EC-0x010C Reserved – – –

0x0110 Oscillator Calibration Register PMC_OCR Read-write 0x0040_4040
354
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.15.1 PMC System Clock Enable Register
Name: PMC_SCER

Address: 0x400E0400

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• PCKx: Programmable Clock x Output Enable
0 = No effect.

1 = Enables the corresponding Programmable Clock output.

24.15.2 PMC System Clock Disable Register
Name: PMC_SCDR

Address: 0x400E0404

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• PCKx: Programmable Clock x Output Disable
0 = No effect.

1 = Disables the corresponding Programmable Clock output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

– – – – – – – –

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

– – – – – – – –
355
11011B–ATARM–21-Feb-12

24.15.3 PMC System Clock Status Register
Name: PMC_SCSR

Address: 0x400E0408

Access: Read-only

• PCKx: Programmable Clock x Output Status
0 = The corresponding Programmable Clock output is disabled.

1 = The corresponding Programmable Clock output is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

– – – – – – – –
356
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.15.4 PMC Peripheral Clock Enable Register
Name: PMC_PCER

Address: 0x400E0410

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• PIDx: Peripheral Clock x Enable
0 = No effect.

1 = Enables the corresponding peripheral clock.

Note: PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 – –
357
11011B–ATARM–21-Feb-12

24.15.5 PMC Peripheral Clock Disable Register
Name: PMC_PCDR

Address: 0x400E0414

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• PIDx: Peripheral Clock x Disable
0 = No effect.

1 = Disables the corresponding peripheral clock.

Note: PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 - -
358
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.15.6 PMC Peripheral Clock Status Register
Name: PMC_PCSR

Address: 0x400E0418

Access: Read-only

• PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

Note: PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 – –
359
11011B–ATARM–21-Feb-12

24.15.7 PMC Clock Generator Main Oscillator Register
Name: CKGR_MOR

Address: 0x400E0420

Access: Read-write

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• KEY: Password
Should be written at value 0x37. Writing any other value in this field aborts the write operation.

• MOSCXTEN: Main Crystal Oscillator Enable
A crystal must be connected between XIN and XOUT.

0 = The Main Crystal Oscillator is disabled.

1 = The Main Crystal Oscillator is enabled. MOSCXTBY must be set to 0.

When MOSCXTEN is set, the MOSCXTS flag is set once the Main Crystal Oscillator startup time is achieved.

• MOSCXTBY: Main Crystal Oscillator Bypass
0 = No effect.

1 = The Main Crystal Oscillator is bypassed. MOSCXTEN must be set to 0. An external clock must be connected on XIN.

When MOSCXTBY is set, the MOSCXTS flag in PMC_SR is automatically set.

Clearing MOSCXTEN and MOSCXTBY bits allows resetting the MOSCXTS flag.

• WAITMODE: Wait Mode Command
0 = No effect.

1 = Enters the device in Wait mode.

Note: The bit WAITMODE is write-only

• MOSCRCEN: Main On-Chip RC Oscillator Enable
0 = The Main On-Chip RC Oscillator is disabled.

1 = The Main On-Chip RC Oscillator is enabled.

When MOSCRCEN is set, the MOSCRCS flag is set once the Main On-Chip RC Oscillator startup time is achieved.

31 30 29 28 27 26 25 24

– – – – – – CFDEN MOSCSEL

23 22 21 20 19 18 17 16
KEY

15 14 13 12 11 10 9 8
MOSCXTST

7 6 5 4 3 2 1 0
– MOSCRCF MOSCRCEN WAITMODE MOSCXTBY MOSCXTEN
360
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
• MOSCRCF: Main On-Chip RC Oscillator Frequency Selection

• MOSCXTST: Main Crystal Oscillator Start-up Time
Specifies the number of Slow Clock cycles multiplied by 8 for the Main Crystal Oscillator start-up time.

• MOSCSEL: Main Oscillator Selection
0 = The Main On-Chip RC Oscillator is selected.

1 = The Main Crystal Oscillator is selected.

• CFDEN: Clock Failure Detector Enable
0 = The Clock Failure Detector is disabled.

1 = The Clock Failure Detector is enabled.

Value Name Description

0x0 4MHZ The Fast RC Oscillator Frequency is at 4 MHz (default)

0x1 8MHZ The Fast RC Oscillator Frequency is at 8 MHz

0x2 12MHZ The Fast RC Oscillator Frequency is at 12 MHz
361
11011B–ATARM–21-Feb-12

24.15.8 PMC Clock Generator Main Clock Frequency Register
Name: CKGR_MCFR

Address: 0x400E0424

Access: Read-only

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• MAINF: Main Clock Frequency
Gives the number of Main Clock cycles within 16 Slow Clock periods.

• MAINFRDY: Main Clock Ready
0 = MAINF value is not valid or the Main Oscillator is disabled.

1 = The Main Oscillator has been enabled previously and MAINF value is available.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – MAINFRDY

15 14 13 12 11 10 9 8
MAINF

7 6 5 4 3 2 1 0
MAINF
362
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.15.9 PMC Clock Generator PLL Register
Name: CKGR_PLLR

Address: 0x400E0428

Access: Read-write

Possible limitations on PLL input frequencies and multiplier factors should be checked before using the PMC.

Warning: Bit 29 must always be set to 1 when programming the CKGR_PLLR register.

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• DIV: Divider

• PLLCOUNT: PLL Counter
Specifies the number of Slow Clock cycles x8 before the LOCK bit is set in PMC_SR after CKGR_PLLR is written.

• MUL: PLL Multiplier
0 = The PLL is deactivated.

1 up to 2047 = The PLL Clock frequency is the PLL input frequency multiplied by MUL + 1.

31 30 29 28 27 26 25 24

– – 1 – – MUL

23 22 21 20 19 18 17 16
MUL

15 14 13 12 11 10 9 8
– – PLLCOUNT

7 6 5 4 3 2 1 0
DIV

DIV Divider Selected

0 Divider output is 0

1 Divider is bypassed (DIV = 1)

2 - 255 Divider output is DIV
363
11011B–ATARM–21-Feb-12

24.15.10 PMC Master Clock Register
Name: PMC_MCKR

Address: 0x400E0430

Access: Read-write

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• CSS: Master Clock Source Selection

• PRES: Processor Clock Prescaler

• PLLDIV2: PLL Divisor by 2

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – PLLDIV2 – – – –

7 6 5 4 3 2 1 0

– PRES – – CSS

Value Name Description

0 SLOW_CLK Slow Clock is selected

1 MAIN_CLK Main Clock is selected

2 PLL_CLK PLL Clock is selected

3 – Reserved

Value Name Description

0 CLK Selected clock

1 CLK_2 Selected clock divided by 2

2 CLK_4 Selected clock divided by 4

3 CLK_28 Selected clock divided by 8

4 CLK_16 Selected clock divided by 16

5 CLK_32 Selected clock divided by 32

6 CLK_64 Selected clock divided by 64

7 CLK_3 Selected clock divided by 3

PLLDIV2 PLL Clock Division

0 PLL clock frequency is divided by 1

1 PLL clock frequency is divided by 2
364
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.15.11 PMC Programmable Clock Register
Name: PMC_PCKx

Address: 0x400E0440

Access: Read-write

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• CSS: Master Clock Source Selection

• PRES: Processor Clock Prescaler

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– PRES – CSS

Value Name Description

0 SLOW_CLK Slow Clock is selected

1 MAIN_CLK Main Clock is selected

2 PLLA_CLK PLLA Clock is selected

3 PLLB_CLK PLLB Clock is selected

4 MCK Master Clock is selected

Value Name Description

0 CLK Selected clock

1 CLK_2 Selected clock divided by 2

2 CLK_4 Selected clock divided by 4

3 CLK_28 Selected clock divided by 8

4 CLK_16 Selected clock divided by 16

5 CLK_32 Selected clock divided by 32

6 CLK_64 Selected clock divided by 64
365
11011B–ATARM–21-Feb-12

24.15.12 PMC Interrupt Enable Register
Name: PMC_IER

Address: 0x400E0460

Access: Write-only

• MOSCXTS: Main Crystal Oscillator Status Interrupt Enable

• LOCK: PLL Lock Interrupt Enable

• MCKRDY: Master Clock Ready Interrupt Enable

• PCKRDYx: Programmable Clock Ready x Interrupt Enable

• MOSCSELS: Main Oscillator Selection Status Interrupt Enable

• MOSCRCS: Main On-Chip RC Status Interrupt Enable

• CFDEV: Clock Failure Detector Event Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8

– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0
– – – – MCKRDY – LOCK MOSCXTS
366
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.15.13 PMC Interrupt Disable Register
Name: PMC_IDR

Address: 0x400E0464

Access: Write-only

• MOSCXTS: Main Crystal Oscillator Status Interrupt Disable

• LOCK: PLL Lock Interrupt Disable

• MCKRDY: Master Clock Ready Interrupt Disable

• PCKRDYx: Programmable Clock Ready x Interrupt Disable

• MOSCSELS: Main Oscillator Selection Status Interrupt Disable

• MOSCRCS: Main On-Chip RC Status Interrupt Disable

• CFDEV: Clock Failure Detector Event Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8

– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0
– – – – MCKRDY – LOCK MOSCXTS
367
11011B–ATARM–21-Feb-12

24.15.14 PMC Status Register
Name: PMC_SR

Address: 0x400E0468

Access: Read-only

• MOSCXTS: Main XTAL Oscillator Status
0 = Main XTAL oscillator is not stabilized.

1 = Main XTAL oscillator is stabilized.

• LOCK: PLL Lock Status
0 = PLL is not locked

1 = PLL is locked.

• MCKRDY: Master Clock Status
0 = Master Clock is not ready.

1 = Master Clock is ready.

• OSCSELS: Slow Clock Oscillator Selection
0 = Internal slow clock RC oscillator is selected.

1 = External slow clock 32 kHz oscillator is selected.

• PCKRDYx: Programmable Clock Ready Status
0 = Programmable Clock x is not ready.

1 = Programmable Clock x is ready.

• MOSCSELS: Main Oscillator Selection Status
0 = Selection is in progress

1 = Selection is done

• MOSCRCS: Main On-Chip RC Oscillator Status
0 = Main on-chip RC oscillator is not stabilized.

1 = Main on-chip RC oscillator is stabilized.

• CFDEV: Clock Failure Detector Event
0 = No clock failure detection of the main on-chip RC oscillator clock has occurred since the last read of PMC_SR.

1 = At least one clock failure detection of the main on-chip RC oscillator clock has occurred since the last read of PMC_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – FOS CFDS CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8

– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0
OSCSELS – – – MCKRDY – LOCK MOSCXTS
368
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
• CFDS: Clock Failure Detector Status
0 = A clock failure of the main on-chip RC oscillator clock is not detected.

1 = A clock failure of the main on-chip RC oscillator clock is detected.

• FOS: Clock Failure Detector Fault Output Status
0 = The fault output of the clock failure detector is inactive.

1 = The fault output of the clock failure detector is active.
369
11011B–ATARM–21-Feb-12

24.15.15 PMC Interrupt Mask Register
Name: PMC_IMR

Address: 0x400E046C

Access: Read-only

• MOSCXTS: Main Crystal Oscillator Status Interrupt Mask

• LOCK: PLL Lock Interrupt Mask

• MCKRDY: Master Clock Ready Interrupt Mask

• PCKRDYx: Programmable Clock Ready x Interrupt Mask

• MOSCSELS: Main Oscillator Selection Status Interrupt Mask

• MOSCRCS: Main On-Chip RC Status Interrupt Mask

• CFDEV: Clock Failure Detector Event Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8

– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0
– – – – MCKRDY – LOCK MOSCXTS
370
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.15.16 PMC Fast Startup Mode Register
Name: PMC_FSMR

Address: 0x400E0470

Access: Read-write

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• FSTT0 - FSTT15: Fast Startup Input Enable 0 to 15
0 = The corresponding wake up input has no effect on the Power Management Controller.

1 = The corresponding wake up input enables a fast restart signal to the Power Management Controller.

• RTTAL: RTT Alarm Enable
0 = The RTT alarm has no effect on the Power Management Controller.

1 = The RTT alarm enables a fast restart signal to the Power Management Controller.

• RTCAL: RTC Alarm Enable
0 = The RTC alarm has no effect on the Power Management Controller.

1 = The RTC alarm enables a fast restart signal to the Power Management Controller.

• LPM: Low Power Mode
0 = The WaitForInterrupt (WFI) or WaitForEvent (WFE) instruction of the processor causes the processor to enter Idle
Mode.

1 = The WaitForEvent (WFE) instruction of the processor causes the system to enter Wait Mode.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – LPM – – RTCAL RTTAL

15 14 13 12 11 10 9 8
FSTT15 FSTT14 FSTT13 FSTT12 FSTT11 FSTT10 FSTT9 FSTT8

7 6 5 4 3 2 1 0
FSTT7 FSTT6 FSTT5 FSTT4 FSTT3 FSTT2 FSTT1 FSTT0
371
11011B–ATARM–21-Feb-12

24.15.17 PMC Fast Startup Polarity Register
Name: PMC_FSPR

Address: 0x400E0474

Access: Read-write

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• FSTPx: Fast Startup Input Polarityx
Defines the active polarity of the corresponding wake up input. If the corresponding wake up input is enabled and at the
FSTP level, it enables a fast restart signal.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
FSTP15 FSTP14 FSTP13 FSTP12 FSTP11 FSTP10 FSTP9 FSTP8

7 6 5 4 3 2 1 0
FSTP7 FSTP6 FSTP5 FSTP4 FSTP3 FSTP2 FSTP1 FSTP0
372
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.15.18 PMC Fault Output Clear Register
Name: PMC_FOCR

Address: 0x400E0478

Access: Write-only

• FOCLR: Fault Output Clear
Clears the clock failure detector fault output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – FOCLR
373
11011B–ATARM–21-Feb-12

24.15.19 PMC Write Protect Mode Register
Name: PMC_WPMR

Address: 0x400E04E4

Access: Read-write

Reset: See Table 24-2

• WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

Protects the registers:

• “PMC System Clock Enable Register” on page 355

• “PMC System Clock Disable Register” on page 355

• “PMC Peripheral Clock Enable Register” on page 357

• “PMC Peripheral Clock Disable Register” on page 358

• “PMC Clock Generator Main Oscillator Register” on page 360

• “PMC Clock Generator PLL Register” on page 363

• “PMC Master Clock Register” on page 364

• “PMC Programmable Clock Register” on page 365

• “PMC Fast Startup Mode Register” on page 371

• “PMC Fast Startup Polarity Register” on page 372

• “PMC Oscillator Calibration Register” on page 376

• WPKEY: Write Protect KEY
Should be written at value 0x504D43 (“PMC” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN
374
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24.15.20 PMC Write Protect Status Register
Name: PMC_WPSR

Address: 0x400E04E8

Access: Read-only

Reset: See Table 24-2

• WPVS: Write Protect Violation Status
0 = No Write Protect Violation has occurred since the last read of the PMC_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the PMC_WPSR register. If this violation is an unauthor-
ized attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protect Violation Source
When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write
access has been attempted.

Reading PMC_WPSR automatically clears all fields.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS
375
11011B–ATARM–21-Feb-12

24.15.21 PMC Oscillator Calibration Register
Name: PMC_OCR

Address: 0x400E0510

Access: Read-Write

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 374.

• CAL4: RC Oscillator Calibration bits for 4 MHz
Calibration bits applied to the RC Oscillator when SEL4 is set.

• SEL4: Selection of RC Oscillator Calibration bits for 4 MHz
0 = Default value stored in Flash memory.

1 = Value written by user in CAL4 field of this register.

• CAL8: RC Oscillator Calibration bits for 8 MHz
Calibration bits applied to the RC Oscillator when SEL8 is set.

• SEL8: Selection of RC Oscillator Calibration bits for 8 MHz
0 = Factory determined value stored in Flash memory.

1 = Value written by user in CAL8 field of this register.

• CAL12: RC Oscillator Calibration bits for 12 MHz
Calibration bits applied to the RC Oscillator when SEL12 is set.

• SEL12: Selection of RC Oscillator Calibration bits for 12 MHz
0 = Factory determined value stored in Flash memory.

1 = Value written by user in CAL12 field of this register.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
SEL12 CAL12

15 14 13 12 11 10 9 8
SEL8 CAL8

7 6 5 4 3 2 1 0
SEL4 CAL4
376
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

25. Chip Identifier (CHIPID)

25.1 Description
Chip Identifier registers permit recognition of the device and its revision. These registers provide
the sizes and types of the on-chip memories, as well as the set of embedded peripherals.

Two chip identifier registers are embedded: CHIPID_CIDR (Chip ID Register) and CHIPID_EXID
(Extension ID). Both registers contain a hard-wired value that is read-only. The first register con-
tains the following fields:

• EXT - shows the use of the extension identifier register

• NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size

• ARCH - identifies the set of embedded peripherals

• SRAMSIZ - indicates the size of the embedded SRAM

• EPROC - indicates the embedded ARM processor

• VERSION - gives the revision of the silicon

The second register is device-dependent and reads 0 if the bit EXT is 0.

Table 25-1. ATSAM3N Chip IDs Register

Chip Name CHIPID_CIDR CHIPID_EXID

ATSAM3N4C (Rev A) 0x29540960 0x0

ATSAM3N2C (Rev A) 0x29590760 0x0

ATSAM3N1C (Rev A) 0x29580560 0x0

ATSAM3N4B (Rev A) 0x29440960 0x0

ATSAM3N2B (Rev A) 0x29490760 0x0

ATSAM3N1B (Rev A) 0x29480560 0x0

ATSAM3N4A (Rev A) 0x29340960 0x0

ATSAM3N2A (Rev A) 0x29390760 0x0

ATSAM3N1A (Rev A) 0x29380560 0x0

ATSAM3N1C (Rev B) 0x29580561 0x0

ATSAM3N1B (Rev B) 0x29480561 0x0

ATSAM3N1A (Rev B) 0x29380561 0x0

ATSAM3N0C (Rev A) 0x295 80361 0x0

ATSAM3N0B (Rev A) 0x294 80361 0x0

ATSAM3N0A (Rev A) 0x293 80361 0x0

 ATSAM3N00B (Rev A) 0x294 50261 0x0

 ATSAM3N00A (Rev A) 0x293 50261 0x0
377
11011B–ATARM–21-Feb-12

377
11011B–ATARM–21-Feb-12

25.2 Chip Identifier (CHIPID) User Interface

Table 25-2. Register Mapping

Offset Register Name Access Reset

0x0 Chip ID Register CHIPID_CIDR Read-only –

0x4 Chip ID Extension Register CHIPID_EXID Read-only –
378
11011B–ATARM–21-Feb-12

SAM3N378
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

25.2.1 Chip ID Register
Name: CHIPID_CIDR

Address: 0x400E0740

Access: Read-only

• VERSION: Version of the Device
Current version of the device.

• EPROC: Embedded Processor

• NVPSIZ: Nonvolatile Program Memory Size

31 30 29 28 27 26 25 24

EXT NVPTYP ARCH

23 22 21 20 19 18 17 16

ARCH SRAMSIZ

15 14 13 12 11 10 9 8

NVPSIZ2 NVPSIZ

7 6 5 4 3 2 1 0

EPROC VERSION

Value Name Description

1 ARM946ES ARM946ES

2 ARM7TDMI ARM7TDMI

3 CM3 Cortex-M3

4 ARM920T ARM920T

5 ARM926EJS ARM926EJS

6 CA5 Cortex-A5

Value Name Description

0 NONE None

1 8K 8K bytes

2 16K 16K bytes

3 32K 32K bytes

4 Reserved

5 64K 64K bytes

6 Reserved

7 128K 128K bytes

8 Reserved

9 256K 256K bytes

10 512K 512K bytes

11 Reserved

12 1024K 1024K bytes
379
11011B–ATARM–21-Feb-12

379
11011B–ATARM–21-Feb-12

• NVPSIZ2 Second Nonvolatile Program Memory Size

• SRAMSIZ: Internal SRAM Size

13 Reserved

14 2048K 2048K bytes

15 Reserved

Value Name Description

0 NONE None

1 8K 8K bytes

2 16K 16K bytes

3 32K 32K bytes

4 Reserved

5 64K 64K bytes

6 Reserved

7 128K 128K bytes

8 Reserved

9 256K 256K bytes

10 512K 512K bytes

11 Reserved

12 1024K 1024K bytes

13 Reserved

14 2048K 2048K bytes

15 Reserved

Value Name Description

0 48K 48K bytes

1 1K 1K bytes

2 2K 2K bytes

3 6K 6K bytes

4 112K 112K bytes

5 4K 4K bytes

6 80K 80K bytes

7 160K 160K bytes

8 8K 8K bytes

9 16K 16K bytes

10 32K 32K bytes

11 64K 64K bytes

12 128K 128K bytes

Value Name Description
380
11011B–ATARM–21-Feb-12

SAM3N380
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

• ARCH: Architecture Identifier

13 256K 256K bytes

14 96K 96K bytes

15 512K 512K bytes

Value Name Description

0x19 AT91SAM9xx AT91SAM9xx Series

0x29 AT91SAM9XExx AT91SAM9XExx Series

0x34 AT91x34 AT91x34 Series

0x37 CAP7 CAP7 Series

0x39 CAP9 CAP9 Series

0x3B CAP11 CAP11 Series

0x40 AT91x40 AT91x40 Series

0x42 AT91x42 AT91x42 Series

0x55 AT91x55 AT91x55 Series

0x60 AT91SAM7Axx AT91SAM7Axx Series

0x61 AT91SAM7AQxx AT91SAM7AQxx Series

0x63 AT91x63 AT91x63 Series

0x70 AT91SAM7Sxx AT91SAM7Sxx Series

0x71 AT91SAM7XCxx AT91SAM7XCxx Series

0x72 AT91SAM7SExx AT91SAM7SExx Series

0x73 AT91SAM7Lxx AT91SAM7Lxx Series

0x75 AT91SAM7Xxx AT91SAM7Xxx Series

0x76 AT91SAM7SLxx AT91SAM7SLxx Series

0x80 ATSAM3UxC ATSAM3UxC Series (100-pin version)

0x81 ATSAM3UxE ATSAM3UxE Series (144-pin version)

0x83 ATSAM3AxC ATSAM3AxC Series (100-pin version)

0x84 ATSAM3XxC ATSAM3XxC Series (100-pin version)

0x85 ATSAM3XxE ATSAM3XxE Series (144-pin version)

0x86 ATSAM3XxG ATSAM3XxG Series (208/217-pin version)

0x88 ATSAM3SxA ATSAM3SxA Series (48-pin version)

0x89 ATSAM3SxB ATSAM3SxB Series (64-pin version)

0x8A ATSAM3SxC ATSAM3SxC Series (100-pin version)

0x92 AT91x92 AT91x92 Series

0x93 ATSAM3NxA ATSAM3NxA Series (48-pin version)

0x94 ATSAM3NxB ATSAM3NxB Series (64-pin version)

0x95 ATSAM3NxC ATSAM3NxC Series (100-pin version)

Value Name Description
381
11011B–ATARM–21-Feb-12

381
11011B–ATARM–21-Feb-12

• NVPTYP: Nonvolatile Program Memory Type

• EXT: Extension Flag
0 = Chip ID has a single register definition without extension

1 = An extended Chip ID exists.

0x98 ATSAM3SDxA ATSAM3SDxA Series (48-pin version)

0x99 ATSAM3SDxB ATSAM3SDxB Series (64-pin version)

0x9A ATSAM3SDxC ATSAM3SDxC Series (100-pin version)

0xA5 ATSAM5A ATSAM5A

0xF0 AT75Cxx AT75Cxx Series

Value Name Description

0 ROM ROM

1 ROMLESS ROMless or on-chip Flash

4 SRAM SRAM emulating ROM

2 FLASH Embedded Flash Memory

3 ROM_FLASH
ROM and Embedded Flash Memory

 NVPSIZ is ROM size
 NVPSIZ2 is Flash size

Value Name Description
382
11011B–ATARM–21-Feb-12

SAM3N382
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

25.2.2 Chip ID Extension Register
Name: CHIPID_EXID

Address: 0x400E0744

Access: Read-only

• EXID: Chip ID Extension
Reads 0 if the bit EXT in CHIPID_CIDR is 0.

31 30 29 28 27 26 25 24

EXID

23 22 21 20 19 18 17 16

EXID

15 14 13 12 11 10 9 8

EXID

7 6 5 4 3 2 1 0

EXID
383
11011B–ATARM–21-Feb-12

383
11011B–ATARM–21-Feb-12

384
11011B–ATARM–21-Feb-12

SAM3N384
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26. Parallel Input/Output (PIO) Controller

26.1 Description
The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.

Each I/O line of the PIO Controller features:

• An input change interrupt enabling level change detection on any I/O line.

• Additional Interrupt modes enabling rising edge, falling edge, low level or high level detection
on any I/O line.

• A glitch filter providing rejection of glitches lower than one-half of PIO clock cycle.

• A debouncing filter providing rejection of unwanted pulses from key or push button
operations.

• Multi-drive capability similar to an open drain I/O line.

• Control of the pull-up and pull-down of the I/O line.

• Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.

26.2 Embedded Characteristics
• Up to 32 Programmable I/O Lines

• Fully Programmable through Set/Clear Registers

• Multiplexing of Four Peripheral Functions per I/O Line

• For each I/O Line (Whether Assigned to a Peripheral or Used as General Purpose I/O)

– Input Change Interrupt

– Programmable Glitch Filter

– Programmable Debouncing Filter

– Multi-drive Option Enables Driving in Open Drain

– Programmable Pull Up on Each I/O Line

– Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time

– Additional Interrupt Modes on a Programmable Event: Rising Edge, Falling Edge,
Low Level or High Level

– Lock of the Configuration by the Connected Peripheral

• Synchronous Output, Provides Set and Clear of Several I/O lines in a Single Write

• Write Protect Registers

• Programmable Schmitt Trigger Inputs
385
11011B–ATARM–21-Feb-12

385
11011B–ATARM–21-Feb-12

26.3 Block Diagram

Figure 26-1. Block Diagram

Figure 26-2. Application Block Diagram

Embedded
Peripheral

Embedded
Peripheral

PIO Interrupt

PIO Controller

Up to 32 pins

PMC

Up to 32
peripheral IOs

Up to 32
peripheral IOs

PIO Clock

APB

Interrupt Controller

Data, Enable

PIN 31

PIN 1

PIN 0

Data, Enable

On-Chip Peripherals

PIO Controller

On-Chip Peripheral Drivers
Control & Command

Driver
Keyboard Driver

Keyboard Driver General Purpose I/Os External Devices
386
11011B–ATARM–21-Feb-12

SAM3N386
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.4 Product Dependencies

26.4.1 Pin Multiplexing
Each pin is configurable, according to product definition as either a general-purpose I/O line
only, or as an I/O line multiplexed with one or two peripheral I/Os. As the multiplexing is hard-
ware defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an I/O line is general-purpose only, i.e. not multiplexed with any peripheral I/O, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Con-
troller can control how the pin is driven by the product.

26.4.2 Power Management
The Power Management Controller controls the PIO Controller clock in order to save power.
Writing any of the registers of the user interface does not require the PIO Controller clock to be
enabled. This means that the configuration of the I/O lines does not require the PIO Controller
clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available,
including glitch filtering. Note that the Input Change Interrupt, Interrupt Modes on a programma-
ble event and the read of the pin level require the clock to be validated.

After a hardware reset, the PIO clock is disabled by default.

The user must configure the Power Management Controller before any access to the input line
information.

26.4.3 Interrupt Generation
The PIO Controller is connected on one of the sources of the Nested Vectored Interrupt Control-
ler (NVIC). Using the PIO Controller requires the NVIC to be programmed first.

The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled.
387
11011B–ATARM–21-Feb-12

387
11011B–ATARM–21-Feb-12

26.5 Functional Description
The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic asso-
ciated to each I/O is represented in Figure 26-3. In this description each signal shown
represents but one of up to 32 possible indexes.

Figure 26-3. I/O Line Control Logic

1

0

1

0

1

0

1

0
D Q D Q

DFF

1

0

1

0

11

00

01

10

Programmable
Glitch

or
Debouncing

Filter

PIO_PDSR[0]
PIO_ISR[0]

PIO_IDR[0]

PIO_IMR[0]

PIO_IER[0]

PIO Interrupt

(Up to 32 possible inputs)

PIO_ISR[31]

PIO_IDR[31]

PIO_IMR[31]

PIO_IER[31]

Pad

PIO_PUDR[0]

PIO_PUSR[0]

PIO_PUER[0]

PIO_MDDR[0]

PIO_MDSR[0]

PIO_MDER[0]

PIO_CODR[0]

PIO_ODSR[0]

PIO_SODR[0]

PIO_PDR[0]

PIO_PSR[0]

PIO_PER[0]
PIO_ABCDSR1[0]

PIO_ODR[0]

PIO_OSR[0]

PIO_OER[0]

Resynchronization
Stage

Peripheral A Input

Peripheral D Output Enable

Peripheral A Output Enable

EVENT
DETECTORDFF

PIO_IFDR[0]

PIO_IFSR[0]

PIO_IFER[0]

System Clock

Clock
Divider

PIO_IFSCR[0]

PIO_DCIFSR[0]

PIO_SCIFSR[0]

PIO_SCDR

Slow Clock

Peripheral B Output Enable

Peripheral C Output Enable

11

00

01

10

Peripheral D Output

Peripheral A Output

Peripheral B Output

Peripheral C Output

PIO_ABCDSR2[0]

Peripheral B Input

Peripheral C Input

Peripheral D Input
388
11011B–ATARM–21-Feb-12

SAM3N388
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.5.1 Pull-up and Pull-down Resistor Control
Each I/O line is designed with an embedded pull-up resistor and an embedded pull-down resis-
tor. The pull-up resistor can be enabled or disabled by writing respectively PIO_PUER (Pull-up
Enable Register) and PIO_PUDR (Pull-up Disable Resistor). Writing in these registers results in
setting or clearing the corresponding bit in PIO_PUSR (Pull-up Status Register). Reading a 1 in
PIO_PUSR means the pull-up is disabled and reading a 0 means the pull-up is enabled. The
pull-down resistor can be enabled or disabled by writing respectively PIO_PPDER (Pull-down
Enable Register) and PIO_PPDDR (Pull-down Disable Resistor). Writing in these registers
results in setting or clearing the corresponding bit in PIO_PPDSR (Pull-down Status Register).
Reading a 1 in PIO_PPDSR means the pull-up is disabled and reading a 0 means the pull-down
is enabled.

Enabling the pull-down resistor while the pull-up resistor is still enabled is not possible. In this
case, the write of PIO_PPDER for the concerned I/O line is discarded. Likewise, enabling the
pull-up resistor while the pull-down resistor is still enabled is not possible. In this case, the write
of PIO_PUER for the concerned I/O line is discarded.

Control of the pull-up resistor is possible regardless of the configuration of the I/O line.

After reset, all of the pull-ups are enabled, i.e. PIO_PUSR resets at the value 0x0, and all the
pull-downs are disabled, i.e. PIO_PPDSR resets at the value 0xFFFFFFFF.

26.5.2 I/O Line or Peripheral Function Selection
When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The regis-
ter PIO_PSR (PIO Status Register) is the result of the set and clear registers and indicates
whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value of
0 indicates that the pin is controlled by the corresponding on-chip peripheral selected in the
PIO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers). A value of 1 indicates the pin is
controlled by the PIO controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral),
PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PIO_PSR
resets at 1. However, in some events, it is important that PIO lines are controlled by the periph-
eral (as in the case of memory chip select lines that must be driven inactive after reset or for
address lines that must be driven low for booting out of an external memory). Thus, the reset
value of PIO_PSR is defined at the product level, depending on the multiplexing of the device.

26.5.3 Peripheral A or B or C or D Selection
The PIO Controller provides multiplexing of up to four peripheral functions on a single pin. The
selection is performed by writing PIO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers).

For each pin:

• the corresponding bit at level 0 in PIO_ABCDSR1 and the corresponding bit at level 0 in
PIO_ABCDSR2 means peripheral A is selected.

• the corresponding bit at level 1 in PIO_ABCDSR1 and the corresponding bit at level 0 in
PIO_ABCDSR2 means peripheral B is selected.

• the corresponding bit at level 0 in PIO_ABCDSR1 and the corresponding bit at level 1 in
PIO_ABCDSR2 means peripheral C is selected.
389
11011B–ATARM–21-Feb-12

389
11011B–ATARM–21-Feb-12

• the corresponding bit at level 1 in PIO_ABCDSR1 and the corresponding bit at level 1 in
PIO_ABCDSR2 means peripheral D is selected.

Note that multiplexing of peripheral lines A, B, C and D only affects the output line. The periph-
eral input lines are always connected to the pin input.

After reset, PIO_ABCDSR1 and PIO_ABCDSR2 are 0, thus indicating that all the PIO lines are
configured on peripheral A. However, peripheral A generally does not drive the pin as the PIO
Controller resets in I/O line mode.

Writing in PIO_ABCDSR1 and PIO_ABCDSR2 manages the multiplexing regardless of the con-
figuration of the pin. However, assignment of a pin to a peripheral function requires a write in the
peripheral selection registers (PIO_ABCDSR1 and PIO_ABCDSR2) in addition to a write in
PIO_PDR.

26.5.4 Output Control
When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at
0, the drive of the I/O line is controlled by the peripheral. Peripheral A or B or C or D depending
on the value in PIO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers) determines
whether the pin is driven or not.

When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register).
The results of these write operations are detected in PIO_OSR (Output Status Register). When
a bit in this register is at 0, the corresponding I/O line is used as an input only. When the bit is at
1, the corresponding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data
Register) and PIO_CODR (Clear Output Data Register). These write operations respectively set
and clear PIO_ODSR (Output Data Status Register), which represents the data driven on the I/O
lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to
be controlled by the PIO controller or assigned to a peripheral function. This enables configura-
tion of the I/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it
defines the first level driven on the I/O line.

26.5.5 Synchronous Data Output
Clearing one (or more) PIO line(s) and setting another one (or more) PIO line(s) synchronously
cannot be done by using PIO_SODR and PIO_CODR registers. It requires two successive write
operations into two different registers. To overcome this, the PIO Controller offers a direct con-
trol of PIO outputs by single write access to PIO_ODSR (Output Data Status Register).Only bits
unmasked by PIO_OWSR (Output Write Status Register) are written. The mask bits in
PIO_OWSR are set by writing to PIO_OWER (Output Write Enable Register) and cleared by
writing to PIO_OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at
0x0.

26.5.6 Multi Drive Control (Open Drain)
Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This
feature permits several drivers to be connected on the I/O line which is driven low only by each
device. An external pull-up resistor (or enabling of the internal one) is generally required to guar-
antee a high level on the line.
390
11011B–ATARM–21-Feb-12

SAM3N390
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and
PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the I/O line
is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-driver
Status Register) indicates the pins that are configured to support external drivers.

After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.

26.5.7 Output Line Timings
Figure 26-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by
directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is
set. Figure 26-4 also shows when the feedback in PIO_PDSR is available.

Figure 26-4. Output Line Timings

26.5.8 Inputs
The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This reg-
ister indicates the level of the I/O lines regardless of their configuration, whether uniquely as an
input or driven by the PIO controller or driven by a peripheral.

Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

26.5.9 Input Glitch and Debouncing Filters
Optional input glitch and debouncing filters are independently programmable on each I/O line.

The glitch filter can filter a glitch with a duration of less than 1/2 Master Clock (MCK) and the
debouncing filter can filter a pulse of less than 1/2 Period of a Programmable Divided Slow
Clock.

The selection between glitch filtering or debounce filtering is done by writing in the registers
PIO_IFSCDR (PIO Input Filter Slow Clock Disable Register) and PIO_IFSCER (PIO Input Filter
Slow Clock Enable Register). Writing PIO_IFSCDR and PIO_IFSCER respectively, sets and
clears bits in PIO_IFSCSR.

The current selection status can be checked by reading the register PIO_IFSCSR (Input Filter
Slow Clock Status Register).

• If PIO_IFSCSR[i] = 0: The glitch filter can filter a glitch with a duration of less than 1/2 Period
of Master Clock.

2 cycles

APB Access

2 cycles

APB Access

MCK

Write PIO_SODR
Write PIO_ODSR at 1

PIO_ODSR

PIO_PDSR

Write PIO_CODR
Write PIO_ODSR at 0
391
11011B–ATARM–21-Feb-12

391
11011B–ATARM–21-Feb-12

• If PIO_IFSCSR[i] = 1: The debouncing filter can filter a pulse with a duration of less than 1/2
Period of the Programmable Divided Slow Clock.

For the debouncing filter, the Period of the Divided Slow Clock is performed by writing in the DIV
field of the PIO_SCDR (Slow Clock Divider Register)

Tdiv_slclk = ((DIV+1)*2).Tslow_clock

When the glitch or debouncing filter is enabled, a glitch or pulse with a duration of less than 1/2
Selected Clock Cycle (Selected Clock represents MCK or Divided Slow Clock depending on
PIO_IFSCDR and PIO_IFSCER programming) is automatically rejected, while a pulse with a
duration of 1 Selected Clock (MCK or Divided Slow Clock) cycle or more is accepted. For pulse
durations between 1/2 Selected Clock cycle and 1 Selected Clock cycle the pulse may or may
not be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to
be visible it must exceed 1 Selected Clock cycle, whereas for a glitch to be reliably filtered out,
its duration must not exceed 1/2 Selected Clock cycle.

The filters also introduce some latencies, this is illustrated in Figure 26-5 and Figure 26-6.

The glitch filters are controlled by the register set: PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.

When the glitch and/or debouncing filter is enabled, it does not modify the behavior of the inputs
on the peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt
detection. The glitch and debouncing filters require that the PIO Controller clock is enabled.

Figure 26-5. Input Glitch Filter Timing

 MCK

Pin Level

PIO_PDSR
if PIO_IFSR = 0

PIO_PDSR
if PIO_IFSR = 1

1 cycle 1 cycle 1 cycle

up to 1.5 cycles

2 cycles

up to 2.5 cycles

up to 2 cycles

1 cycle

1 cycle

PIO_IFCSR = 0
392
11011B–ATARM–21-Feb-12

SAM3N392
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 26-6. Input Debouncing Filter Timing

26.5.10 Input Edge/Level Interrupt
The PIO Controller can be programmed to generate an interrupt when it detects an edge or a
level on an I/O line. The Input Edge/Level Interrupt is controlled by writing PIO_IER (Interrupt
Enable Register) and PIO_IDR (Interrupt Disable Register), which respectively enable and dis-
able the input change interrupt by setting and clearing the corresponding bit in PIO_IMR
(Interrupt Mask Register). As Input change detection is possible only by comparing two succes-
sive samplings of the input of the I/O line, the PIO Controller clock must be enabled. The Input
Change Interrupt is available, regardless of the configuration of the I/O line, i.e. configured as an
input only, controlled by the PIO Controller or assigned to a peripheral function.

By default, the interrupt can be generated at any time an edge is detected on the input.

Some additional Interrupt modes can be enabled/disabled by writing in the PIO_AIMER (Addi-
tional Interrupt Modes Enable Register) and PIO_AIMDR (Additional Interrupt Modes Disable
Register). The current state of this selection can be read through the PIO_AIMMR (Additional
Interrupt Modes Mask Register)

These Additional Modes are:

• Rising Edge Detection

• Falling Edge Detection

• Low Level Detection

• High Level Detection

In order to select an Additional Interrupt Mode:

• The type of event detection (Edge or Level) must be selected by writing in the set of registers;
PIO_ESR (Edge Select Register) and PIO_LSR (Level Select Register) which enable
respectively, the Edge and Level Detection. The current status of this selection is accessible
through the PIO_ELSR (Edge/Level Status Register).

• The Polarity of the event detection (Rising/Falling Edge or High/Low Level) must be selected
by writing in the set of registers; PIO_FELLSR (Falling Edge /Low Level Select Register) and
PIO_REHLSR (Rising Edge/High Level Select Register) which allow to select Falling or
Rising Edge (if Edge is selected in the PIO_ELSR) Edge or High or Low Level Detection (if

Divided Slow Clock

Pin Level

PIO_PDSR
if PIO_IFSR = 0

PIO_PDSR
if PIO_IFSR = 1

1 cycle Tdiv_slclk

up to 1.5 cycles Tdiv_slclk

1 cycle Tdiv_slclk

up to 2 cycles Tmck up to 2 cycles Tmck

up to 2 cycles Tmckup to 2 cycles Tmck

up to 1.5 cycles Tdiv_slclk

PIO_IFCSR = 1
393
11011B–ATARM–21-Feb-12

393
11011B–ATARM–21-Feb-12

Level is selected in the PIO_ELSR). The current status of this selection is accessible through
the PIO_FRLHSR (Fall/Rise - Low/High Status Register).

When an input Edge or Level is detected on an I/O line, the corresponding bit in PIO_ISR (Inter-
rupt Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller
interrupt line is asserted. The interrupt signals of the thirty-two channels are ORed-wired
together to generate a single interrupt signal to the . Nested Vector Interrupt Controller (NVIC).

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that
all the interrupts that are pending when PIO_ISR is read must be handled. When an Interrupt is
enabled on a “Level”, the interrupt is generated as long as the interrupt source is not cleared,
even if some read accesses in PIO_ISR are performed.

Figure 26-7. Event Detector on Input Lines (Figure represents line 0)

26.5.10.1 Example
If generating an interrupt is required on the following:

• Rising edge on PIO line 0

• Falling edge on PIO line 1

• Rising edge on PIO line 2

• Low Level on PIO line 3

• High Level on PIO line 4

• High Level on PIO line 5

• Falling edge on PIO line 6

• Rising edge on PIO line 7

• Any edge on the other lines

The configuration required is described below.

Event Detector

0

1

0

1

1

0

0

1

Edge
Detector

Falling Edge
Detector

Rising Edge
Detector

PIO_FELLSR[0]

PIO_FRLHSR[0]

PIO_REHLSR[0]

Low Level
Detector

High Level
Detector

PIO_ESR[0]

PIO_ELSR[0]

PIO_LSR[0]

PIO_AIMDR[0]

PIO_AIMMR[0]

PIO_AIMER[0]

Event detection on line 0

Resynchronized input on line 0
394
11011B–ATARM–21-Feb-12

SAM3N394
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.5.10.2 Interrupt Mode Configuration
All the interrupt sources are enabled by writing 32’hFFFF_FFFF in PIO_IER.

Then the Additional Interrupt Mode is enabled for line 0 to 7 by writing 32’h0000_00FF in
PIO_AIMER.

26.5.10.3 Edge or Level Detection Configuration
Lines 3, 4 and 5 are configured in Level detection by writing 32’h0000_0038 in PIO_LSR.

The other lines are configured in Edge detection by default, if they have not been previously con-
figured. Otherwise, lines 0, 1, 2, 6 and 7 must be configured in Edge detection by writing
32’h0000_00C7 in PIO_ESR.

26.5.10.4 Falling/Rising Edge or Low/High Level Detection Configuration.
Lines 0, 2, 4, 5 and 7 are configured in Rising Edge or High Level detection by writing
32’h0000_00B5 in PIO_REHLSR.

The other lines are configured in Falling Edge or Low Level detection by default, if they have not
been previously configured. Otherwise, lines 1, 3 and 6 must be configured in Falling Edge/Low
Level detection by writing 32’h0000_004A in PIO_FELLSR.

Figure 26-8. Input Change Interrupt Timings if there are no Additional Interrupt Modes

26.5.11 I/O Lines Lock
When an I/O line is controlled by a peripheral (particularly the Pulse Width Modulation Controller
PWM), it can become locked by the action of this peripheral via an input of the PIO controller.
When an I/O line is locked, the write of the corresponding bit in the registers PIO_PER,
PIO_PDR, PIO_MDER, PIO_MDDR, PIO_PUDR, PIO_PUER, PIO_ABCDSR1 and
PIO_ABCDSR2 is discarded in order to lock its configuration. The user can know at anytime
which I/O line is locked by reading the PIO Lock Status register PIO_LOCKSR. Once an I/O line
is locked, the only way to unlock it is to apply a hardware reset to the PIO Controller.

26.5.12 Programmable Schmitt Trigger
It is possible to configure each input for the Schmitt Trigger. By default the Schmitt trigger is
active. Disabling the Schmitt Trigger is requested when using the QTouch™ Library.

MCK

Pin Level

Read PIO_ISR APB Access

PIO_ISR

APB Access
395
11011B–ATARM–21-Feb-12

395
11011B–ATARM–21-Feb-12

26.5.13 Write Protection Registers
To prevent any single software error that may corrupt PIO behavior, certain address spaces can
be write-protected by setting the WPEN bit in the “PIO Write Protect Mode Register”
(PIO_WPMR).

If a write access to the protected registers is detected, then the WPVS flag in the PIO Write Pro-
tect Status Register (PIO_WPSR) is set and the field WPVSRC indicates in which register the
write access has been attempted.

The WPVS flag is reset by writing the PIO Write Protect Mode Register (PIO_WPMR) with the
appropriate access key, WPKEY.

The protected registers are:

• “PIO Enable Register” on page 401

• “PIO Disable Register” on page 401

• “PIO Output Enable Register” on page 402

• “PIO Output Disable Register” on page 403

• “PIO Input Filter Enable Register” on page 404

• “PIO Input Filter Disable Register” on page 404

• “PIO Multi-driver Enable Register” on page 409

• “PIO Multi-driver Disable Register” on page 410

• “PIO Pull Up Disable Register” on page 411

• “PIO Pull Up Enable Register” on page 411

• “PIO Peripheral ABCD Select Register 1” on page 413

• “PIO Peripheral ABCD Select Register 2” on page 414

• “PIO Output Write Enable Register” on page 419

• “PIO Output Write Disable Register” on page 419

• “PIO Pad Pull Down Disable Register” on page 417

• “PIO Pad Pull Down Status Register” on page 418
396
11011B–ATARM–21-Feb-12

SAM3N396
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.6 I/O Lines Programming Example
The programing example as shown in Table 26-1 below is used to obtain the following
configuration.

• 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation), open-drain,
with pull-up resistor

• Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no
pull-up resistor, no pull-down resistor

• Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up
resistors, glitch filters and input change interrupts

• Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input
change interrupt), no pull-up resistor, no glitch filter

• I/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor

• I/O lines 20 to 23 assigned to peripheral B functions with pull-down resistor

• I/O line 24 to 27 assigned to peripheral C with Input Change Interrupt, no pull-up resistor and
no pull-down resistor

• I/O line 28 to 31 assigned to peripheral D, no pull-up resistor and no pull-down resistor

Table 26-1. Programming Example

Register Value to be Written

PIO_PER 0x0000_FFFF

PIO_PDR 0xFFFF_0000

PIO_OER 0x0000_00FF

PIO_ODR 0xFFFF_FF00

PIO_IFER 0x0000_0F00

PIO_IFDR 0xFFFF_F0FF

PIO_SODR 0x0000_0000

PIO_CODR 0x0FFF_FFFF

PIO_IER 0x0F00_0F00

PIO_IDR 0xF0FF_F0FF

PIO_MDER 0x0000_000F

PIO_MDDR 0xFFFF_FFF0

PIO_PUDR 0xFFF0_00F0

PIO_PUER 0x000F_FF0F

PIO_PPDDR 0xFF0F_FFFF

PIO_PPDER 0x00F0_0000

PIO_ABCDSR1 0xF0F0_0000

PIO_ABCDSR2 0xFF00_0000

PIO_OWER 0x0000_000F

PIO_OWDR 0x0FFF_ FFF0
397
11011B–ATARM–21-Feb-12

397
11011B–ATARM–21-Feb-12

26.7 Parallel Input/Output Controller (PIO) User Interface
Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Control-
ler User Interface registers. Each register is 32 bits wide. If a parallel I/O line is not defined,
writing to the corresponding bits has no effect. Undefined bits read zero. If the I/O line is not mul-
tiplexed with any peripheral, the I/O line is controlled by the PIO Controller and PIO_PSR returns
1 systematically.

Table 26-2. Register Mapping

Offset Register Name Access Reset

0x0000 PIO Enable Register PIO_PER Write-only –

0x0004 PIO Disable Register PIO_PDR Write-only –

0x0008 PIO Status Register PIO_PSR Read-only (1)

0x000C Reserved

0x0010 Output Enable Register PIO_OER Write-only –

0x0014 Output Disable Register PIO_ODR Write-only –

0x0018 Output Status Register PIO_OSR Read-only 0x0000 0000

0x001C Reserved

0x0020 Glitch Input Filter Enable Register PIO_IFER Write-only –

0x0024 Glitch Input Filter Disable Register PIO_IFDR Write-only –

0x0028 Glitch Input Filter Status Register PIO_IFSR Read-only 0x0000 0000

0x002C Reserved

0x0030 Set Output Data Register PIO_SODR Write-only –

0x0034 Clear Output Data Register PIO_CODR Write-only

0x0038 Output Data Status Register PIO_ODSR
Read-only

or(2)

Read-write
–

0x003C Pin Data Status Register PIO_PDSR Read-only (3)

0x0040 Interrupt Enable Register PIO_IER Write-only –

0x0044 Interrupt Disable Register PIO_IDR Write-only –

0x0048 Interrupt Mask Register PIO_IMR Read-only 0x00000000

0x004C Interrupt Status Register(4) PIO_ISR Read-only 0x00000000

0x0050 Multi-driver Enable Register PIO_MDER Write-only –

0x0054 Multi-driver Disable Register PIO_MDDR Write-only –

0x0058 Multi-driver Status Register PIO_MDSR Read-only 0x00000000

0x005C Reserved – – –

0x0060 Pull-up Disable Register PIO_PUDR Write-only –

0x0064 Pull-up Enable Register PIO_PUER Write-only –

0x0068 Pad Pull-up Status Register PIO_PUSR Read-only 0x00000000

0x006C Reserved – – –
398
11011B–ATARM–21-Feb-12

SAM3N398
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

0x0070 Peripheral Select Register 1 PIO_ABCDSR1 Read-write 0x00000000

0x0074 Peripheral Select Register 2 PIO_ABCDSR2 Read-write 0x00000000

0x0078
to
0x007C

Reserved – – –

0x0080 Input Filter Slow Clock Disable Register PIO_IFSCDR Write-only –

0x0084 Input Filter Slow Clock Enable Register PIO_IFSCER Write-only –

0x0088 Input Filter Slow Clock Status Register PIO_IFSCSR Read-only 0x00000000

0x008C Slow Clock Divider Debouncing Register PIO_SCDR Read-write 0x00000000

0x0090 Pad Pull-down Disable Register PIO_PPDDR Write-only –

0x0094 Pad Pull-down Enable Register PIO_PPDER Write-only –

0x0098 Pad Pull-down Status Register PIO_PPDSR Read-only 0xFFFFFFFF

0x009C Reserved – –

0x00A0 Output Write Enable PIO_OWER Write-only –

0x00A4 Output Write Disable PIO_OWDR Write-only –

0x00A8 Output Write Status Register PIO_OWSR Read-only 0x00000000

0x00AC Reserved – –

0x00B0 Additional Interrupt Modes Enable Register PIO_AIMER Write-only –

0x00B4 Additional Interrupt Modes Disables Register PIO_AIMDR Write-only –

0x00B8 Additional Interrupt Modes Mask Register PIO_AIMMR Read-only 0x00000000

0x00BC Reserved – – –

0x00C0 Edge Select Register PIO_ESR Write-only –

0x00C4 Level Select Register PIO_LSR Write-only –

0x00C8 Edge/Level Status Register PIO_ELSR Read-only 0x00000000

0x00CC Reserved – – –

0x00D0 Falling Edge/Low Level Select Register PIO_FELLSR Write-only –

0x00D4 Rising Edge/ High Level Select Register PIO_REHLSR Write-only –

0x00D8 Fall/Rise - Low/High Status Register PIO_FRLHSR Read-only 0x00000000

0x00DC Reserved – – –

0x00E0 Lock Status PIO_LOCKSR Read-only 0x00000000

0x00E4 Write Protect Mode Register PIO_WPMR Read-write 0x0

0x00E8 Write Protect Status Register PIO_WPSR Read-only 0x0

0x00EC
to
0x00F8

Reserved – – –

0x0100 Schmitt Trigger Register PIO_SCHMITT Read-write 0x00000000

Table 26-2. Register Mapping (Continued)

Offset Register Name Access Reset
399
11011B–ATARM–21-Feb-12

399
11011B–ATARM–21-Feb-12

Notes: 1. Reset value of PIO_PSR depends on the product implementation.

2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines.

3. Reset value of PIO_PDSR depends on the level of the I/O lines. Reading the I/O line levels requires the clock of the PIO
Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have
occurred.

Note: if an offset is not listed in the table it must be considered as reserved.

0x0104-
0x010C

Reserved – – –

0x0110 Reserved – – –

0x0114-
0x011C

Reserved – – –

Table 26-2. Register Mapping (Continued)

Offset Register Name Access Reset
400
11011B–ATARM–21-Feb-12

SAM3N400
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.1 PIO Enable Register
Name: PIO_PER

Addresses: 0x400E0E00 (PIOA), 0x400E1000 (PIOB), 0x400E1200 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: PIO Enable
0 = No effect.

1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

26.7.2 PIO Disable Register
Name: PIO_PDR

Addresses: 0x400E0E04 (PIOA), 0x400E1004 (PIOB), 0x400E1204 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: PIO Disable
0 = No effect.

1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
401
11011B–ATARM–21-Feb-12

401
11011B–ATARM–21-Feb-12

26.7.3 PIO Status Register
Name: PIO_PSR

Addresses: 0x400E0E08 (PIOA), 0x400E1008 (PIOB), 0x400E1208 (PIOC)

Access: Read-only

• P0-P31: PIO Status
0 = PIO is inactive on the corresponding I/O line (peripheral is active).

1 = PIO is active on the corresponding I/O line (peripheral is inactive).

26.7.4 PIO Output Enable Register
Name: PIO_OER

Addresses: 0x400E0E10 (PIOA), 0x400E1010 (PIOB), 0x400E1210 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Output Enable
0 = No effect.

1 = Enables the output on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
402
11011B–ATARM–21-Feb-12

SAM3N402
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.5 PIO Output Disable Register
Name: PIO_ODR

Addresses: 0x400E0E14 (PIOA), 0x400E1014 (PIOB), 0x400E1214 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Output Disable
0 = No effect.

1 = Disables the output on the I/O line.

26.7.6 PIO Output Status Register
Name: PIO_OSR

Addresses: 0x400E0E18 (PIOA), 0x400E1018 (PIOB), 0x400E1218 (PIOC)

Access: Read-only

• P0-P31: Output Status
0 = The I/O line is a pure input.

1 = The I/O line is enabled in output.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
403
11011B–ATARM–21-Feb-12

403
11011B–ATARM–21-Feb-12

26.7.7 PIO Input Filter Enable Register
Name: PIO_IFER

Addresses: 0x400E0E20 (PIOA), 0x400E1020 (PIOB), 0x400E1220 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Input Filter Enable
0 = No effect.

1 = Enables the input glitch filter on the I/O line.

26.7.8 PIO Input Filter Disable Register
Name: PIO_IFDR

Addresses: 0x400E0E24 (PIOA), 0x400E1024 (PIOB), 0x400E1224 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Input Filter Disable
0 = No effect.

1 = Disables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
404
11011B–ATARM–21-Feb-12

SAM3N404
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.9 PIO Input Filter Status Register
Name: PIO_IFSR

Addresses: 0x400E0E28 (PIOA), 0x400E1028 (PIOB), 0x400E1228 (PIOC)

Access: Read-only

• P0-P31: Input Filer Status
0 = The input glitch filter is disabled on the I/O line.

1 = The input glitch filter is enabled on the I/O line.

26.7.10 PIO Set Output Data Register
Name: PIO_SODR

Addresses: 0x400E0E30 (PIOA), 0x400E1030 (PIOB), 0x400E1230 (PIOC)

Access: Write-only

• P0-P31: Set Output Data
0 = No effect.

1 = Sets the data to be driven on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
405
11011B–ATARM–21-Feb-12

405
11011B–ATARM–21-Feb-12

26.7.11 PIO Clear Output Data Register
Name: PIO_CODR

Addresses: 0x400E0E34 (PIOA), 0x400E1034 (PIOB), 0x400E1234 (PIOC)

Access: Write-only

• P0-P31: Clear Output Data
0 = No effect.

1 = Clears the data to be driven on the I/O line.

26.7.12 PIO Output Data Status Register
Name: PIO_ODSR

Addresses: 0x400E0E38 (PIOA), 0x400E1038 (PIOB), 0x400E1238 (PIOC)

Access: Read-only or Read-write

• P0-P31: Output Data Status
0 = The data to be driven on the I/O line is 0.

1 = The data to be driven on the I/O line is 1.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
406
11011B–ATARM–21-Feb-12

SAM3N406
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.13 PIO Pin Data Status Register
Name: PIO_PDSR

Addresses: 0x400E0E3C (PIOA), 0x400E103C (PIOB), 0x400E123C (PIOC)

Access: Read-only

• P0-P31: Output Data Status
0 = The I/O line is at level 0.

1 = The I/O line is at level 1.

26.7.14 PIO Interrupt Enable Register
Name: PIO_IER

Addresses: 0x400E0E40 (PIOA), 0x400E1040 (PIOB), 0x400E1240 (PIOC)

Access: Write-only

• P0-P31: Input Change Interrupt Enable
0 = No effect.

1 = Enables the Input Change Interrupt on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
407
11011B–ATARM–21-Feb-12

407
11011B–ATARM–21-Feb-12

26.7.15 PIO Interrupt Disable Register
Name: PIO_IDR

Addresses: 0x400E0E44 (PIOA), 0x400E1044 (PIOB), 0x400E1244 (PIOC)

Access: Write-only

• P0-P31: Input Change Interrupt Disable
0 = No effect.

1 = Disables the Input Change Interrupt on the I/O line.

26.7.16 PIO Interrupt Mask Register
Name: PIO_IMR

Addresses: 0x400E0E48 (PIOA), 0x400E1048 (PIOB), 0x400E1248 (PIOC)

Access: Read-only

• P0-P31: Input Change Interrupt Mask
0 = Input Change Interrupt is disabled on the I/O line.

1 = Input Change Interrupt is enabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
408
11011B–ATARM–21-Feb-12

SAM3N408
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.17 PIO Interrupt Status Register
Name: PIO_ISR

Addresses: 0x400E0E4C (PIOA), 0x400E104C (PIOB), 0x400E124C (PIOC)

Access: Read-only

• P0-P31: Input Change Interrupt Status
0 = No Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

1 = At least one Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

26.7.18 PIO Multi-driver Enable Register
Name: PIO_MDER

Addresses: 0x400E0E50 (PIOA), 0x400E1050 (PIOB), 0x400E1250 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Multi Drive Enable.
0 = No effect.

1 = Enables Multi Drive on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
409
11011B–ATARM–21-Feb-12

409
11011B–ATARM–21-Feb-12

26.7.19 PIO Multi-driver Disable Register
Name: PIO_MDDR

Addresses: 0x400E0E54 (PIOA), 0x400E1054 (PIOB), 0x400E1254 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Multi Drive Disable.
0 = No effect.

1 = Disables Multi Drive on the I/O line.

26.7.20 PIO Multi-driver Status Register
Name: PIO_MDSR

Addresses: 0x400E0E58 (PIOA), 0x400E1058 (PIOB), 0x400E1258 (PIOC)

Access: Read-only

• P0-P31: Multi Drive Status.
0 = The Multi Drive is disabled on the I/O line. The pin is driven at high and low level.

1 = The Multi Drive is enabled on the I/O line. The pin is driven at low level only.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
410
11011B–ATARM–21-Feb-12

SAM3N410
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.21 PIO Pull Up Disable Register
Name: PIO_PUDR

Addresses: 0x400E0E60 (PIOA), 0x400E1060 (PIOB), 0x400E1260 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Pull Up Disable.
0 = No effect.

1 = Disables the pull up resistor on the I/O line.

26.7.22 PIO Pull Up Enable Register
Name: PIO_PUER

Addresses: 0x400E0E64 (PIOA), 0x400E1064 (PIOB), 0x400E1264 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Pull Up Enable.
0 = No effect.

1 = Enables the pull up resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
411
11011B–ATARM–21-Feb-12

411
11011B–ATARM–21-Feb-12

26.7.23 PIO Pull Up Status Register
Name: PIO_PUSR

Addresses: 0x400E0E68 (PIOA), 0x400E1068 (PIOB), 0x400E1268 (PIOC)

Access: Read-only

• P0-P31: Pull Up Status.
0 = Pull Up resistor is enabled on the I/O line.

1 = Pull Up resistor is disabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
412
11011B–ATARM–21-Feb-12

SAM3N412
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.24 PIO Peripheral ABCD Select Register 1
Name: PIO_ABCDSR1

Access: Read-write

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Peripheral Select.
If the same bit is set to 0 in PIO_ABCDSR2:

0 = Assigns the I/O line to the Peripheral A function.

1 = Assigns the I/O line to the Peripheral B function.

If the same bit is set to 1 in PIO_ABCDSR2:

0 = Assigns the I/O line to the Peripheral C function.

1 = Assigns the I/O line to the Peripheral D function.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
413
11011B–ATARM–21-Feb-12

413
11011B–ATARM–21-Feb-12

26.7.25 PIO Peripheral ABCD Select Register 2
Name: PIO_ABCDSR2

Access: Read-write

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Peripheral Select.
If the same bit is set to 0 in PIO_ABCDSR1:

0 = Assigns the I/O line to the Peripheral A function.

1 = Assigns the I/O line to the Peripheral C function.

If the same bit is set to 1 in PIO_ABCDSR1:

0 = Assigns the I/O line to the Peripheral B function.

1 = Assigns the I/O line to the Peripheral D function.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
414
11011B–ATARM–21-Feb-12

SAM3N414
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.26 PIO Input Filter Slow Clock Disable Register
Name: PIO_IFSCDR

Addresses: 0x400E0E80 (PIOA), 0x400E1080 (PIOB), 0x400E1280 (PIOC)

Access: Write-only

• P0-P31: PIO Clock Glitch Filtering Select.
0 = No Effect.

1 = The Glitch Filter is able to filter glitches with a duration < Tmck/2.

26.7.27 PIO Input Filter Slow Clock Enable Register
Name: PIO_IFSCER

Addresses: 0x400E0E84 (PIOA), 0x400E1084 (PIOB), 0x400E1284 (PIOC)

Access: Write-only

• P0-P31: Debouncing Filtering Select.
0 = No Effect.

1 = The Debouncing Filter is able to filter pulses with a duration < Tdiv_slclk/2.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
415
11011B–ATARM–21-Feb-12

415
11011B–ATARM–21-Feb-12

26.7.28 PIO Input Filter Slow Clock Status Register
Name: PIO_IFSCSR

Addresses: 0x400E0E88 (PIOA), 0x400E1088 (PIOB), 0x400E1288 (PIOC)

Access: Read-only

• P0-P31: Glitch or Debouncing Filter Selection Status
0 = The Glitch Filter is able to filter glitches with a duration < Tmck2.

1 = The Debouncing Filter is able to filter pulses with a duration < Tdiv_slclk/2.

26.7.29 PIO Slow Clock Divider Debouncing Register
Name: PIO_SCDR

Addresses: 0x400E0E8C (PIOA), 0x400E108C (PIOB), 0x400E128C (PIOC)

Access: Read-write

• DIVx: Slow Clock Divider Selection for Debouncing
Tdiv_slclk = 2*(DIV+1)*Tslow_clock.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - DIV13 DIV12 DIV11 DIV10 DIV9 DIV8

7 6 5 4 3 2 1 0

DIV7 DIV6 DIV5 DIV4 DIV3 DIV2 DIV1 DIV0
416
11011B–ATARM–21-Feb-12

SAM3N416
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.30 PIO Pad Pull Down Disable Register
Name: PIO_PPDDR

Addresses: 0x400E0E90 (PIOA), 0x400E1090 (PIOB), 0x400E1290 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Pull Down Disable.
0 = No effect.

1 = Disables the pull down resistor on the I/O line.

26.7.31 PIO Pad Pull Down Enable Register
Name: PIO_PPDER

Addresses: 0x400E0E94 (PIOA), 0x400E1094 (PIOB), 0x400E1294 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Pull Down Enable.
0 = No effect.

1 = Enables the pull down resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
417
11011B–ATARM–21-Feb-12

417
11011B–ATARM–21-Feb-12

26.7.32 PIO Pad Pull Down Status Register
Name: PIO_PPDSR

Addresses: 0x400E0E98 (PIOA), 0x400E1098 (PIOB), 0x400E1298 (PIOC)

Access: Read-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Pull Down Status.
0 = Pull Down resistor is enabled on the I/O line.

1 = Pull Down resistor is disabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
418
11011B–ATARM–21-Feb-12

SAM3N418
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.33 PIO Output Write Enable Register
Name: PIO_OWER

Addresses: 0x400E0EA0 (PIOA), 0x400E10A0 (PIOB), 0x400E12A0 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Output Write Enable.
0 = No effect.

1 = Enables writing PIO_ODSR for the I/O line.

26.7.34 PIO Output Write Disable Register
Name: PIO_OWDR

Addresses: 0x400E0EA4 (PIOA), 0x400E10A4 (PIOB), 0x400E12A4 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register” .

• P0-P31: Output Write Disable.
0 = No effect.

1 = Disables writing PIO_ODSR for the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
419
11011B–ATARM–21-Feb-12

419
11011B–ATARM–21-Feb-12

26.7.35 PIO Output Write Status Register
Name: PIO_OWSR

Addresses: 0x400E0EA8 (PIOA), 0x400E10A8 (PIOB), 0x400E12A8 (PIOC)

Access: Read-only

• P0-P31: Output Write Status.
0 = Writing PIO_ODSR does not affect the I/O line.

1 = Writing PIO_ODSR affects the I/O line.

26.7.36 PIO Additional Interrupt Modes Enable Register
Name: PIO_AIMER

Addresses: 0x400E0EB0 (PIOA), 0x400E10B0 (PIOB), 0x400E12B0 (PIOC)

Access: Write-only

• P0-P31: Additional Interrupt Modes Enable.
0 = No effect.

1 = The interrupt source is the event described in PIO_ELSR and PIO_FRLHSR.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
420
11011B–ATARM–21-Feb-12

SAM3N420
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.37 PIO Additional Interrupt Modes Disable Register
Name: PIO_AIMDR

Addresses: 0x400E0EB4 (PIOA), 0x400E10B4 (PIOB), 0x400E12B4 (PIOC)

Access: Write-only

• P0-P31: Additional Interrupt Modes Disable.
0 = No effect.

1 = The interrupt mode is set to the default interrupt mode (Both Edge detection).

26.7.38 PIO Additional Interrupt Modes Mask Register
Name: PIO_AIMMR

Addresses: 0x400E0EB8 (PIOA), 0x400E10B8 (PIOB), 0x400E12B8 (PIOC)

Access: Read-only

• P0-P31: Peripheral CD Status.
0 = The interrupt source is a Both Edge detection event

1 = The interrupt source is described by the registers PIO_ELSR and PIO_FRLHSR

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
421
11011B–ATARM–21-Feb-12

421
11011B–ATARM–21-Feb-12

26.7.39 PIO Edge Select Register
Name: PIO_ESR

Addresses: 0x400E0EC0 (PIOA), 0x400E10C0 (PIOB), 0x400E12C0 (PIOC)

Access: Write-only

• P0-P31: Edge Interrupt Selection.
0 = No effect.

1 = The interrupt source is an Edge detection event.

26.7.40 PIO Level Select Register
Name: PIO_LSR

Addresses: 0x400E0EC4 (PIOA), 0x400E10C4 (PIOB), 0x400E12C4 (PIOC)

Access: Write-only

• P0-P31: Level Interrupt Selection.
0 = No effect.

1 = The interrupt source is a Level detection event.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
422
11011B–ATARM–21-Feb-12

SAM3N422
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.41 PIO Edge/Level Status Register
Name: PIO_ELSR

Addresses: 0x400E0EC8 (PIOA), 0x400E10C8 (PIOB), 0x400E12C8 (PIOC)

Access: Read-only

• P0-P31: Edge/Level Interrupt source selection.
0 = The interrupt source is an Edge detection event.

1 = The interrupt source is a Level detection event.

26.7.42 PIO Falling Edge/Low Level Select Register
Name: PIO_FELLSR

Addresses: 0x400E0ED0 (PIOA), 0x400E10D0 (PIOB), 0x400E12D0 (PIOC)

Access: Write-only

• P0-P31: Falling Edge/Low Level Interrupt Selection.
0 = No effect.

1 = The interrupt source is set to a Falling Edge detection or Low Level detection event, depending on PIO_ELSR.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
423
11011B–ATARM–21-Feb-12

423
11011B–ATARM–21-Feb-12

26.7.43 PIO Rising Edge/High Level Select Register
Name: PIO_REHLSR

Addresses: 0x400E0ED4 (PIOA), 0x400E10D4 (PIOB), 0x400E12D4 (PIOC)

Access: Write-only

• P0-P31: Rising Edge /High Level Interrupt Selection.
0 = No effect.

1 = The interrupt source is set to a Rising Edge detection or High Level detection event, depending on PIO_ELSR.

26.7.44 PIO Fall/Rise - Low/High Status Register
Name: PIO_FRLHSR

Addresses: 0x400E0ED8 (PIOA), 0x400E10D8 (PIOB), 0x400E12D8 (PIOC)

Access: Read-only

• P0-P31: Edge /Level Interrupt Source Selection.
0 = The interrupt source is a Falling Edge detection (if PIO_ELSR = 0) or Low Level detection event (if PIO_ELSR = 1).

1 = The interrupt source is a Rising Edge detection (if PIO_ELSR = 0) or High Level detection event (if PIO_ELSR = 1).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
424
11011B–ATARM–21-Feb-12

SAM3N424
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

26.7.45 PIO Lock Status Register
Name: PIO_LOCKSR

Addresses: 0x400E0EE0 (PIOA), 0x400E10E0 (PIOB), 0x400E12E0 (PIOC)

Access: Read-only

• P0-P31: Lock Status.
0 = The I/O line is not locked.

1 = The I/O line is locked.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
425
11011B–ATARM–21-Feb-12

425
11011B–ATARM–21-Feb-12

26.7.46 PIO Write Protect Mode Register
Name: PIO_WPMR

Addresses: 0x400E0EE4 (PIOA), 0x400E10E4 (PIOB), 0x400E12E4 (PIOC)

Access: Read-write

Reset: See Table 26-2

For more information on Write Protection Registers, refer to Section 26.7 ”Parallel Input/Output Controller (PIO) User
Interface”.

• WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x50494F (“PIO” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x50494F (“PIO” in ASCII).

Protects the registers:

“PIO Enable Register” on page 401

“PIO Disable Register” on page 401

“PIO Output Enable Register” on page 402

“PIO Output Disable Register” on page 403

“PIO Input Filter Enable Register” on page 404

“PIO Input Filter Disable Register” on page 404

“PIO Multi-driver Enable Register” on page 409

“PIO Multi-driver Disable Register” on page 410

“PIO Pull Up Disable Register” on page 411

“PIO Pull Up Enable Register” on page 411

“PIO Peripheral ABCD Select Register 1” on page 413

“PIO Peripheral ABCD Select Register 2” on page 414

“PIO Output Write Enable Register” on page 419

“PIO Output Write Disable Register” on page 419

“PIO Pad Pull Down Disable Register” on page 417

“PIO Pad Pull Down Status Register” on page 418

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

— — — — — — — WPEN
426
11011B–ATARM–21-Feb-12

SAM3N426
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

• WPKEY: Write Protect KEY
Should be written at value 0x50494F (“PIO” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

26.7.47 PIO Write Protect Status Register
Name: PIO_WPSR

Addresses: 0x400E0EE8 (PIOA), 0x400E10E8 (PIOB), 0x400E12E8 (PIOC)

Access: Read-only

Reset: See Table 26-2

• WPVS: Write Protect Violation Status
0 = No Write Protect Violation has occurred since the last read of the PIO_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the PIO_WPSR register. If this violation is an unauthorized
attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protect Violation Source
When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write
access has been attempted.

Note: Reading PIO_WPSR automatically clears all fields.

31 30 29 28 27 26 25 24

— — — — — — — —

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

— — — — — — — WPVS
427
11011B–ATARM–21-Feb-12

427
11011B–ATARM–21-Feb-12

26.7.48 PIO Schmitt Trigger Register
Name: PIO_SCHMITT

Addresses: 0x400E0F00 (PIOA), 0x400E1100 (PIOB), 0x400E1300 (PIOC)

Access: Read-write

Reset: See Figure 26-2

• SCHMITTx [x=0..31]:
0 = Schmitt Trigger is enabled.

1= Schmitt Trigger is disabled.

31 30 29 28 27 26 25 24

SCHMITT31 SCHMITT30 SCHMITT29 SCHMITT28 SCHMITT27 SCHMITT26 SCHMITT25 SCHMITT24

23 22 21 20 19 18 17 16

SCHMITT23 SCHMITT22 SCHMITT21 SCHMITT20 SCHMITT19 SCHMITT18 SCHMITT17 SCHMITT16

15 14 13 12 11 10 9 8

SCHMITT15 SCHMITT14 SCHMITT13 SCHMITT12 SCHMITT11 SCHMITT10 SCHMITT9 SCHMITT8

7 6 5 4 3 2 1 0

SCHMITT7 SCHMITT6 SCHMITT5 SCHMITT4 SCHMITT3 SCHMITT2 SCHMITT1 SCHMITT0
428
11011B–ATARM–21-Feb-12

SAM3N428
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

27. Serial Peripheral Interface (SPI)

27.1 Description
The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master”' which controls the data
flow, while the other devices act as “slaves'' which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

• Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

• Master In Slave Out (MISO): This data line supplies the output data from a slave to the input
of the master. There may be no more than one slave transmitting data during any particular
transfer.

• Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the
data bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once
for each bit that is transmitted.

• Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

27.2 Embedded Characteristics
• Compatible with an Embedded 32-bit Microcontroller

• Supports Communication with Serial External Devices

– Four Chip Selects with External Decoder Support Allow Communication with Up to
15 Peripherals

– Serial Memories, such as DataFlash and 3-wire EEPROMs

– Serial Peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors

– External Co-processors

• Master or Slave Serial Peripheral Bus Interface

– 8- to 16-bit Programmable Data Length Per Chip Select

– Programmable Phase and Polarity Per Chip Select

– Programmable Transfer Delays Between Consecutive Transfers and Between Clock
and Data Per Chip Select

– Programmable Delay Between Consecutive Transfers

– Selectable Mode Fault Detection

• Connection to PDC Channel Capabilities Optimizes Data Transfers

– One Channel for the Receiver, One Channel for the Transmitter

– Next Buffer Support
429
11011B–ATARM–21-Feb-12

429
11011B–ATARM–21-Feb-12

27.3 Block Diagram

Figure 27-1. Block Diagram

27.4 Application Block Diagram

Figure 27-2. Application Block Diagram: Single Master/Multiple Slave Implementation

SPI Interface

Interrupt Control

PIO

PDC

PMC
MCK

SPI Interrupt

SPCK

MISO

MOSI

NPCS0/NSS

NPCS1

NPCS2

NPCS3

APB

SPI Master

SPCK

MISO

MOSI

NPCS0

NPCS1

NPCS2

SPCK

MISO

MOSI

NSS

Slave 0

SPCK

MISO

MOSI

NSS

Slave 1

SPCK

MISO

MOSI

NSS

Slave 2

NC

NPCS3
430
11011B–ATARM–21-Feb-12

SAM3N430
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

27.5 Signal Description

27.6 Product Dependencies

27.6.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the SPI pins to their peripheral
functions.

27.6.2 Power Management
The SPI may be clocked through the Power Management Controller (PMC), thus the program-
mer must first configure the PMC to enable the SPI clock.

Table 27-1. Signal Description

Pin Name Pin Description

Type

Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1-NPCS3 Peripheral Chip Selects Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

Table 27-2. I/O Lines

Instance Signal I/O Line Peripheral

SPI MISO PA12 A

SPI MOSI PA13 A

SPI NPCS0 PA11 A

SPI NPCS1 PA9 B

SPI NPCS1 PA31 A

SPI NPCS1 PB14 A

SPI NPCS1 PC4 B

SPI NPCS2 PA10 B

SPI NPCS2 PA30 B

SPI NPCS2 PB2 B

SPI NPCS2 PC7 B

SPI NPCS3 PA3 B

SPI NPCS3 PA5 B

SPI NPCS3 PA22 B

SPI SPCK PA14 A
431
11011B–ATARM–21-Feb-12

431
11011B–ATARM–21-Feb-12

27.6.3 Interrupt
The SPI interface has an interrupt line connected to the Nested Vector Interrupt Controller
(NVIC).Handling the SPI interrupt requires programming the NVIC before configuring the SPI.

27.7 Functional Description

27.7.1 Modes of Operation
The SPI operates in Master Mode or in Slave Mode.

Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCS0 to NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCS0 pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.

27.7.2 Data Transfer
Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 27-4 shows the four modes and corresponding parameter settings.

Figure 27-3 and Figure 27-4 show examples of data transfers.

Table 27-3. Peripheral IDs

Instance ID

SPI 21

Table 27-4. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA Shift SPCK Edge Capture SPCK Edge SPCK Inactive Level

0 0 1 Falling Rising Low

1 0 0 Rising Falling Low

2 1 1 Rising Falling High

3 1 0 Falling Rising High
432
11011B–ATARM–21-Feb-12

SAM3N432
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 27-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

Figure 27-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

6

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference)

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

* Not defined, but normally MSB of previous character received.

1 2 3 4 5 7 86

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

1 2 3 4 5 7

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

1

1

* Not defined but normally LSB of previous character transmitted.

2

2

6

433
11011B–ATARM–21-Feb-12

433
11011B–ATARM–21-Feb-12

27.7.3 Master Mode Operations
When configured in Master Mode, the SPI operates on the clock generated by the internal pro-
grammable baud rate generator. It fully controls the data transfers to and from the slave(s)
connected to the SPI bus. The SPI drives the chip select line to the slave and the serial clock
signal (SPCK).

The SPI features two holding registers, the Transmit Data Register and the Receive Data Regis-
ter, and a single Shift Register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the SPI_TDR (Trans-
mit Data Register). The written data is immediately transferred in the Shift Register and transfer
on the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO
line is sampled and shifted in the Shift Register. Receiving data cannot occur without transmit-
ting data. If receiving mode is not needed, for example when communicating with a slave
receiver only (such as an LCD), the receive status flags in the status register can be discarded.

Before writing the TDR, the PCS field in the SPI_MR register must be set in order to select a
slave.

After enabling the SPI, a data transfer begins when the processor writes to the SPI_TDR (Trans-
mit Data Register). The written data is immediately transferred in the Shift Register and transfer
on the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO
line is sampled and shifted in the Shift Register. Transmission cannot occur without reception.

Before writing the TDR, the PCS field must be set in order to select a slave.

If new data is written in SPI_TDR during the transfer, it stays in it until the current transfer is
completed. Then, the received data is transferred from the Shift Register to SPI_RDR, the data
in SPI_TDR is loaded in the Shift Register and a new transfer starts.

The transfer of a data written in SPI_TDR in the Shift Register is indicated by the TDRE bit
(Transmit Data Register Empty) in the Status Register (SPI_SR). When new data is written in
SPI_TDR, this bit is cleared. The TDRE bit is used to trigger the Transmit PDC channel.

The end of transfer is indicated by the TXEMPTY flag in the SPI_SR register. If a transfer delay
(DLYBCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of said
delay. The master clock (MCK) can be switched off at this time.

The transfer of received data from the Shift Register in SPI_RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SPI_SR). When the received data is read,
the RDRF bit is cleared.

If the SPI_RDR (Receive Data Register) has not been read before new data is received, the
Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data is loaded in
SPI_RDR. The user has to read the status register to clear the OVRES bit.

Figure 27-5, shows a block diagram of the SPI when operating in Master Mode. Figure 27-6 on
page 436 shows a flow chart describing how transfers are handled.
434
11011B–ATARM–21-Feb-12

SAM3N434
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

27.7.3.1 Master Mode Block Diagram

Figure 27-5. Master Mode Block Diagram

Shift Register

SPCK

MOSI
LSB MSB

MISO

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0..3

CPOL
NCPHA

BITS

MCK Baud Rate Generator

SPI_CSR0..3

SCBR

NPCS3

NPCS0

NPCS2

NPCS1

NPCS0

0

1

PS

SPI_MR
PCS

SPI_TDR
PCS

MODF

Current
Peripheral

SPI_RDR
PCS

SPI_CSR0..3

CSAAT

PCSDEC

MODFDIS

MSTR
435
11011B–ATARM–21-Feb-12

435
11011B–ATARM–21-Feb-12

27.7.3.2 Master Mode Flow Diagram

Figure 27-6. Master Mode Flow Diagram

SPI Enable

CSAAT ?

PS ?

1

0

0

1

1

NPCS = SPI_TDR(PCS) NPCS = SPI_MR(PCS)

Delay DLYBS

Serializer = SPI_TDR(TD)
TDRE = 1

Data Transfer

SPI_RDR(RD) = Serializer
RDRF = 1

TDRE ?

NPCS = 0xF

Delay DLYBCS

Fixed
 peripheral

Variable
peripheral

Delay DLYBCT

0

1
CSAAT ?

0

TDRE ?
1

0

PS ?
0

1

SPI_TDR(PCS)
= NPCS ?

no

yes
SPI_MR(PCS)

= NPCS ?

no

NPCS = 0xF

Delay DLYBCS

NPCS = SPI_TDR(PCS)

NPCS = 0xF

Delay DLYBCS

NPCS = SPI_MR(PCS),
 SPI_TDR(PCS)

Fixed
 peripheral

Variable
peripheral

- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the
 Chip Select Register corresponding to the Current Chip Select
- When NPCS is 0xF, CSAAT is 0.
436
11011B–ATARM–21-Feb-12

SAM3N436
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 27-7 shows Transmit Data Register Empty (TDRE), Receive Data Register (RDRF) and
Transmission Register Empty (TXEMPTY) status flags behavior within the SPI_SR (Status Reg-
ister) during an 8-bit data transfer in fixed mode and no Peripheral Data Controller involved.

Figure 27-7. Status Register Flags Behavior

Figure 27-8 shows Transmission Register Empty (TXEMPTY), End of RX buffer (ENDRX), End
of TX buffer (ENDTX), RX Buffer Full (RXBUFF) and TX Buffer Empty (TXBUFE) status flags
behavior within the SPI_SR (Status Register) during an 8-bit data transfer in fixed mode with the
Peripheral Data Controller involved. The PDC is programmed to transfer and receive three data.
The next pointer and counter are not used. The RDRF and TDRE are not shown because these
flags are managed by the PDC when using the PDC.

6

SPCK

MOSI
(from master)

MISO
(from slave)

NPCS0

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

1 2 3 4 5 7 86

RDRF

TDRE

TXEMPTY

Write in
SPI_TDR

RDR read

shift register empty
437
11011B–ATARM–21-Feb-12

437
11011B–ATARM–21-Feb-12

Figure 27-8. PDC Status Register Flags Behavior

27.7.3.3 Clock Generation
The SPI Baud rate clock is generated by dividing the Master Clock (MCK), by a value between 1
and 255.

This allows a maximum operating baud rate at up to Master Clock and a minimum operating
baud rate of MCK divided by 255.

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.

27.7.3.4 Transfer Delays
Figure 27-9 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:

• The delay between chip selects, programmable only once for all the chip selects by writing
the DLYBCS field in the Mode Register. Allows insertion of a delay between release of one
chip select and before assertion of a new one.

• The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.

• The delay between consecutive transfers, independently programmable for each chip select
by writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on
the same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.

MSB LSB6 5 4 3 2 1

SPCK

MOSI
(from master)

NPCS0

MSB LSB6 5 4 3 2 1

1 2 3

ENDTX

TXEMPTY

MSB LSB6 5 4 3 2 1

MSB LSB6 5 4 3 2 1MISO
(from slave)

MSB LSB6 5 4 3 2 1 MSB LSB6 5 4 3 2 1

ENDRX

TXBUFE

RXBUFF
438
11011B–ATARM–21-Feb-12

SAM3N438
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 27-9. Programmable Delays

27.7.3.5 Peripheral Selection
The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.

• Fixed Peripheral Select: SPI exchanges data with only one peripheral

Fixed Peripheral Select is activated by writing the PS bit to zero in SPI_MR (Mode Register). In
this case, the current peripheral is defined by the PCS field in SPI_MR and the PCS field in the
SPI_TDR has no effect.

• Variable Peripheral Select: Data can be exchanged with more than one peripheral without
having to reprogram the NPCS field in the SPI_MR register.

Variable Peripheral Select is activated by setting PS bit to one. The PCS field in SPI_TDR is
used to select the current peripheral. This means that the peripheral selection can be defined for
each new data. The value to write in the SPI_TDR register as the following format.

[xxxxxxx(7-bit) + LASTXFER(1-bit)()+ xxxx(4-bit) + PCS (4-bit) + DATA (8 to 16-bit)] with PCS
equals to the chip select to assert as defined in Section 27.8.4 (SPI Transmit Data Register) and
LASTXFER bit at 0 or 1 depending on CSAAT bit.

Note: 1. Optional.

CSAAT, LASTXFER and CSNAAT bits are discussed in Section 27.7.3.9 ”Peripheral Deselec-
tion with PDC” .

If LASTXFER is used, the command must be issued before writing the last character. Instead of
LASTXFER, the user can use the SPIDIS command. After the end of the PDC transfer, wait for
the TXEMPTY flag, then write SPIDIS into the SPI_CR register (this will not change the configu-
ration register values); the NPCS will be deactivated after the last character transfer. Then,
another PDC transfer can be started if the SPIEN was previously written in the SPI_CR register.

27.7.3.6 SPI Peripheral DMA Controller (PDC)
In both fixed and variable mode the Peripheral DMA Controller (PDC) can be used to reduce
processor overhead.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.

DLYBCS DLYBS DLYBCT DLYBCT

Chip Select 1

Chip Select 2

SPCK
439
11011B–ATARM–21-Feb-12

439
11011B–ATARM–21-Feb-12

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the Mode Register. Data written in SPI_TDR is 32 bits wide and defines the real data
to be transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit
wide buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, how-
ever the SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI
lines with the chip select configuration registers. This is not the optimal means in term of mem-
ory size for the buffers, but it provides a very effective means to exchange data with several
peripherals without any intervention of the processor.

Transfer Size

Depending on the data size to transmit, from 8 to 16 bits, the PDC manages automatically the
type of pointer's size it has to point to. The PDC will perform the following transfer size depend-
ing on the mode and number of bits per data.

Fixed Mode:

• 8-bit Data:
Byte transfer,
PDC Pointer Address = Address + 1 byte,
PDC Counter = Counter - 1

• 8-bit to 16-bit Data:
2 bytes transfer. n-bit data transfer with don’t care data (MSB) filled with 0’s,
PDC Pointer Address = Address + 2 bytes,
PDC Counter = Counter - 1

Variable Mode:

In variable Mode, PDC Pointer Address = Address +4 bytes and PDC Counter = Counter - 1 for
8 to 16-bit transfer size. When using the PDC, the TDRE and RDRF flags are handled by the
PDC, thus the user’s application does not have to check those bits. Only End of RX Buffer
(ENDRX), End of TX Buffer (ENDTX), Buffer Full (RXBUFF), TX Buffer Empty (TXBUFE) are
significant. For further details about the Peripheral DMA Controller and user interface, refer to
the PDC section of the product datasheet.

27.7.3.7 Peripheral Chip Select Decoding
The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCS0 to NPCS3 with 1 of up to 16 decoder/demultiplexer. This can be enabled by
writing the PCSDEC bit at 1 in the Mode Register (SPI_MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e., one NPCS line driven low at a time. If two bits are defined low in a PCS field,
only the lowest numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field on
NPCS lines of either the Mode Register or the Transmit Data Register (depending on PS).

As the SPI sets a default value of 0xF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14. Figure 27-10 below shows such
an implementation.
440
11011B–ATARM–21-Feb-12

SAM3N440
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

If the CSAAT bit is used, with or without the PDC, the Mode Fault detection for NPCS0 line must
be disabled. This is not needed for all other chip select lines since Mode Fault Detection is only
on NPCS0.

Figure 27-10. Chip Select Decoding Application Block Diagram: Single Master/Multiple Slave Implementation

27.7.3.8 Peripheral Deselection without PDC
During a transfer of more than one data on a Chip Select without the PDC, the SPI_TDR is
loaded by the processor, the flag TDRE rises as soon as the content of the SPI_TDR is trans-
ferred into the internal shift register. When this flag is detected high, the SPI_TDR can be
reloaded. If this reload by the processor occurs before the end of the current transfer and if the
next transfer is performed on the same chip select as the current transfer, the Chip Select is not
de-asserted between the two transfers. But depending on the application software handling the
SPI status register flags (by interrupt or polling method) or servicing other interrupts or other
tasks, the processor may not reload the SPI_TDR in time to keep the chip select active (low). A
null Delay Between Consecutive Transfer (DLYBCT) value in the SPI_CSR register, will give
even less time for the processor to reload the SPI_TDR. With some SPI slave peripherals,
requiring the chip select line to remain active (low) during a full set of transfers might lead to
communication errors.

To facilitate interfacing with such devices, the Chip Select Register [CSR0...CSR3] can be pro-
grammed with the CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select
lines to remain in their current state (low = active) until transfer to another chip select is required.
Even if the SPI_TDR is not reloaded the chip select will remain active. To have the chip select
line to raise at the end of the transfer the Last transfer Bit (LASTXFER) in the SPI_MR register
must be set at 1 before writing the last data to transmit into the SPI_TDR.

SPI Master

SPCK
MISO
MOSI

NPCS0

NPCS1

NPCS2

SPCK

1-of-n Decoder/Demultiplexer

MISO MOSI

NSS

Slave 0

SPCK MISO MOSI

NSS

Slave 1

SPCK MISO MOSI

NSS

Slave 14

NPCS3
441
11011B–ATARM–21-Feb-12

441
11011B–ATARM–21-Feb-12

27.7.3.9 Peripheral Deselection with PDC
When the Peripheral DMA Controller is used, the chip select line will remain low during the
whole transfer since the TDRE flag is managed by the PDC itself. The reloading of the SPI_TDR
by the PDC is done as soon as TDRE flag is set to one. In this case the use of CSAAT bit might
not be needed. However, it may happen that when other PDC channels connected to other
peripherals are in use as well, the SPI PDC might be delayed by another (PDC with a higher pri-
ority on the bus). Having PDC buffers in slower memories like flash memory or SDRAM
compared to fast internal SRAM, may lengthen the reload time of the SPI_TDR by the PDC as
well. This means that the SPI_TDR might not be reloaded in time to keep the chip select line
low. In this case the chip select line may toggle between data transfer and according to some
SPI Slave devices, the communication might get lost. The use of the CSAAT bit might be
needed.

When the CSAAT bit is set at 0, the NPCS does not rise in all cases between two transfers on
the same peripheral. During a transfer on a Chip Select, the flag TDRE rises as soon as the con-
tent of the SPI_TDR is transferred into the internal shifter. When this flag is detected the
SPI_TDR can be reloaded. If this reload occurs before the end of the current transfer and if the
next transfer is performed on the same chip select as the current transfer, the Chip Select is not
de-asserted between the two transfers. This might lead to difficulties for interfacing with some
serial peripherals requiring the chip select to be de-asserted after each transfer. To facilitate
interfacing with such devices, the Chip Select Register can be programmed with the CSNAAT bit
(Chip Select Not Active After Transfer) at 1. This allows to de-assert systematically the chip
select lines during a time DLYBCS. (The value of the CSNAAT bit is taken into account only if
the CSAAT bit is set at 0 for the same Chip Select).

Figure 27-11 shows different peripheral deselection cases and the effect of the CSAAT and
CSNAAT bits.
442
11011B–ATARM–21-Feb-12

SAM3N442
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 27-11. Peripheral Deselection

A

NPCS[0..3]

Write SPI_TDR

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

DLYBCT

PCS=A

A

DLYBCS

DLYBCT

A

PCS = A

AA

DLYBCT

A A

CSAAT = 0 and CSNAAT = 0

DLYBCT

A A

 CSAAT = 1 and CSNAAT= 0 / 1

A

DLYBCS

PCS = A

DLYBCT

A A

CSAAT = 0 and CSNAAT = 1

NPCS[0..3]

Write SPI_TDR

TDRE

PCS = A

DLYBCT

A A

CSAAT = 0 and CSNAAT = 0
443
11011B–ATARM–21-Feb-12

443
11011B–ATARM–21-Feb-12

27.7.3.10 Mode Fault Detection
A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCS0/NSS signal. In this case, multi-master configuration,
NPCS0, MOSI, MISO and SPCK pins must be configured in open drain (through the PIO control-
ler). When a mode fault is detected, the MODF bit in the SPI_SR is set until the SPI_SR is read
and the SPI is automatically disabled until re-enabled by writing the SPIEN bit in the SPI_CR
(Control Register) at 1.

By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (SPI_MR).

27.7.4 SPI Slave Mode
When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
defined by the BITS field of the Chip Select Register 0 (SPI_CSR0). These bits are processed
following a phase and a polarity defined respectively by the NCPHA and CPOL bits of the
SPI_CSR0. Note that BITS, CPOL and NCPHA of the other Chip Select Registers have no
effect when the SPI is programmed in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

(For more information on BITS field, see also, the (Note:) below the register table; Section 27.8.9
“SPI Chip Select Register” on page 458.)

When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDRF bit rises. If the SPI_RDR (Receive Data Register) has not been read before new
data is received, the Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data
is loaded in SPI_RDR. The user has to read the status register to clear the OVRES bit.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (SPI_TDR), the last data received is transferred.
If no data has been received since the last reset, all bits are transmitted low, as the Shift Regis-
ter resets at 0.

When a first data is written in SPI_TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in SPI_TDR until a transfer occurs, i.e. NSS falls
and there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in
SPI_TDR is transferred in the Shift Register and the TDRE bit rises. This enables frequent
updates of critical variables with single transfers.

Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in SPI_TDR since the last
load from SPI_TDR to the Shift Register, the Shift Register is not modified and the last received
character is retransmitted. In this case the Underrun Error Status Flag (UNDES) is set in the
SPI_SR.

Figure 27-12 shows a block diagram of the SPI when operating in Slave Mode.
444
11011B–ATARM–21-Feb-12

SAM3N444
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 27-12. Slave Mode Functional Bloc Diagram

Shift Register

SPCK

SPIENS

LSB MSB

NSS

MOSI

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0

CPOL
NCPHA

BITS

SPIEN

SPIDIS

MISO
445
11011B–ATARM–21-Feb-12

445
11011B–ATARM–21-Feb-12

27.7.5 Write Protected Registers
To prevent any single software error that may corrupt SPI behavior, the registers listed below
can be write-protected by setting the SPIWPEN bit in the SPI Write Protection Mode Register
(SPI_WPMR).

If a write access in a write-protected register is detected, then the SPIWPVS flag in the SPI
Write Protection Status Register (SPI_WPSR) is set and the field SPIWPVSRC indicates in
which register the write access has been attempted.

The SPIWPVS flag is automatically reset after reading the SPI Write Protection Status Register
(SPI_WPSR).

List of the write-protected registers:

Section 27.8.2 ”SPI Mode Register”

Section 27.8.9 ”SPI Chip Select Register”
446
11011B–ATARM–21-Feb-12

SAM3N446
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

27.8 Serial Peripheral Interface (SPI) User Interface

Table 27-5. Register Mapping

Offset Register Name Access Reset

0x00 Control Register SPI_CR Write-only ---

0x04 Mode Register SPI_MR Read-write 0x0

0x08 Receive Data Register SPI_RDR Read-only 0x0

0x0C Transmit Data Register SPI_TDR Write-only ---

0x10 Status Register SPI_SR Read-only 0x000000F0

0x14 Interrupt Enable Register SPI_IER Write-only ---

0x18 Interrupt Disable Register SPI_IDR Write-only ---

0x1C Interrupt Mask Register SPI_IMR Read-only 0x0

0x20 - 0x2C Reserved

0x30 Chip Select Register 0 SPI_CSR0 Read-write 0x0

0x34 Chip Select Register 1 SPI_CSR1 Read-write 0x0

0x38 Chip Select Register 2 SPI_CSR2 Read-write 0x0

0x3C Chip Select Register 3 SPI_CSR3 Read-write 0x0

0x4C - 0xE0 Reserved – – –

0xE4 Write Protection Control Register SPI_WPMR Read-write 0x0

0xE8 Write Protection Status Register SPI_WPSR Read-only 0x0

0x00E8 - 0x00F8 Reserved – – –

0x00FC Reserved – – –

0x100 - 0x124 Reserved for the PDC – – –
447
11011B–ATARM–21-Feb-12

447
11011B–ATARM–21-Feb-12

27.8.1 SPI Control Register
Name: SPI_CR

Address: 0x40008000

Access: Write-only

• SPIEN: SPI Enable
0 = No effect.

1 = Enables the SPI to transfer and receive data.

• SPIDIS: SPI Disable
0 = No effect.

1 = Disables the SPI.

As soon as SPIDIS is set, SPI finishes its transfer.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.

• SWRST: SPI Software Reset
0 = No effect.

1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.

The SPI is in slave mode after software reset.

PDC channels are not affected by software reset.

• LASTXFER: Last Transfer
0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

Refer to Section 27.7.3.5 ”Peripheral Selection” for more details.

31 30 29 28 27 26 25 24

– – – – – – – LASTXFER

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – – – SPIDIS SPIEN
448
11011B–ATARM–21-Feb-12

SAM3N448
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

27.8.2 SPI Mode Register
Name: SPI_MR

Address: 0x40008004

Access: Read-write

• MSTR: Master/Slave Mode
0 = SPI is in Slave mode.

1 = SPI is in Master mode.

• PS: Peripheral Select
0 = Fixed Peripheral Select.

1 = Variable Peripheral Select.

• PCSDEC: Chip Select Decode
0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules:

SPI_CSR0 defines peripheral chip select signals 0 to 3.

SPI_CSR1 defines peripheral chip select signals 4 to 7.

SPI_CSR2 defines peripheral chip select signals 8 to 11.

SPI_CSR3 defines peripheral chip select signals 12 to 14.

• MODFDIS: Mode Fault Detection
0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

• WDRBT: Wait Data Read Before Transfer
0 = No Effect. In master mode, a transfer can be initiated whatever the state of the Receive Data Register is.

1 = In Master Mode, a transfer can start only if the Receive Data Register is empty, i.e. does not contain any unread data.
This mode prevents overrun error in reception.

31 30 29 28 27 26 25 24

DLYBCS

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

LLB – WDRBT MODFDIS – PCSDEC PS MSTR
449
11011B–ATARM–21-Feb-12

449
11011B–ATARM–21-Feb-12

• LLB: Local Loopback Enable
0 = Local loopback path disabled.

1 = Local loopback path enabled

LLB controls the local loopback on the data serializer for testing in Master Mode only. (MISO is internally connected on
MOSI.)

• PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS.

• DLYBCS: Delay Between Chip Selects
This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods will be inserted by default.

Otherwise, the following equation determines the delay:

Delay Between Chip Selects DLYBCS
MCK

-----------------------=
450
11011B–ATARM–21-Feb-12

SAM3N450
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

27.8.3 SPI Receive Data Register
Name: SPI_RDR

Address: 0x40008008

Access: Read-only

• RD: Receive Data
Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

• PCS: Peripheral Chip Select
In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.

Note: When using variable peripheral select mode (PS = 1 in SPI_MR) it is mandatory to also set the WDRBT field to 1 if the
SPI_RDR PCS field is to be processed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

RD

7 6 5 4 3 2 1 0

RD
451
11011B–ATARM–21-Feb-12

451
11011B–ATARM–21-Feb-12

SAM3NSAM3N

27.8.4 SPI Transmit Data Register
Name: SPI_TDR

Address: 0x4000800C

Access: Write-only

• TD: Transmit Data
Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.

• PCS: Peripheral Chip Select
This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS

• LASTXFER: Last Transfer
0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

This field is only used if Variable Peripheral Select is active (PS = 1).

31 30 29 28 27 26 25 24

– – – – – – – LASTXFER

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

TD

7 6 5 4 3 2 1 0

TD
452
11011B–ATARM–21-Feb-12

452
11011B–ATARM–21-Feb-12

SAM3NSAM3N

27.8.5 SPI Status Register
Name: SPI_SR

Address: 0x40008010

Access: Read-only

• RDRF: Receive Data Register Full
0 = No data has been received since the last read of SPI_RDR

1 = Data has been received and the received data has been transferred from the serializer to SPI_RDR since the last read
of SPI_RDR.

• TDRE: Transmit Data Register Empty
0 = Data has been written to SPI_TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.

TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

• MODF: Mode Fault Error
0 = No Mode Fault has been detected since the last read of SPI_SR.

1 = A Mode Fault occurred since the last read of the SPI_SR.

• OVRES: Overrun Error Status
0 = No overrun has been detected since the last read of SPI_SR.

1 = An overrun has occurred since the last read of SPI_SR.

An overrun occurs when SPI_RDR is loaded at least twice from the serializer since the last read of the SPI_RDR.

• ENDRX: End of RX buffer
0 = The Receive Counter Register has not reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).

1 = The Receive Counter Register has reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).

• ENDTX: End of TX buffer
0 = The Transmit Counter Register has not reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).

1 = The Transmit Counter Register has reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).

• RXBUFF: RX Buffer Full
0 = SPI_RCR(1) or SPI_RNCR(1) has a value other than 0.

1 = Both SPI_RCR(1) and SPI_RNCR(1) have a value of 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – SPIENS

15 14 13 12 11 10 9 8

– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF
453
11011B–ATARM–21-Feb-12

453
11011B–ATARM–21-Feb-12

SAM3NSAM3N

• TXBUFE: TX Buffer Empty
0 = SPI_TCR(1) or SPI_TNCR(1) has a value other than 0.

1 = Both SPI_TCR(1) and SPI_TNCR(1) have a value of 0.

• NSSR: NSS Rising
0 = No rising edge detected on NSS pin since last read.

1 = A rising edge occurred on NSS pin since last read.

• TXEMPTY: Transmission Registers Empty
0 = As soon as data is written in SPI_TDR.

1 = SPI_TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of
such delay.

• UNDES: Underrun Error Status (Slave Mode Only)
0 = No underrun has been detected since the last read of SPI_SR.

1 = A transfer begins whereas no data has been loaded in the Transmit Data Register.

• SPIENS: SPI Enable Status
0 = SPI is disabled.

1 = SPI is enabled.

Note: 1. SPI_RCR, SPI_RNCR, SPI_TCR, SPI_TNCR are physically located in the PDC.
454
11011B–ATARM–21-Feb-12

454
11011B–ATARM–21-Feb-12

SAM3NSAM3N

27.8.6 SPI Interrupt Enable Register
Name: SPI_IER

Address: 0x40008014

Access: Write-only

0 = No effect.

1 = Enables the corresponding interrupt.

• RDRF: Receive Data Register Full Interrupt Enable

• TDRE: SPI Transmit Data Register Empty Interrupt Enable

• MODF: Mode Fault Error Interrupt Enable

• OVRES: Overrun Error Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• NSSR: NSS Rising Interrupt Enable

• TXEMPTY: Transmission Registers Empty Enable

• UNDES: Underrun Error Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF
455
11011B–ATARM–21-Feb-12

455
11011B–ATARM–21-Feb-12

SAM3NSAM3N

27.8.7 SPI Interrupt Disable Register
Name: SPI_IDR

Address: 0x40008018

Access: Write-only

0 = No effect.

1 = Disables the corresponding interrupt.

• RDRF: Receive Data Register Full Interrupt Disable

• TDRE: SPI Transmit Data Register Empty Interrupt Disable

• MODF: Mode Fault Error Interrupt Disable

• OVRES: Overrun Error Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

• NSSR: NSS Rising Interrupt Disable

• TXEMPTY: Transmission Registers Empty Disable

• UNDES: Underrun Error Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF
456
11011B–ATARM–21-Feb-12

456
11011B–ATARM–21-Feb-12

SAM3NSAM3N

27.8.8 SPI Interrupt Mask Register
Name: SPI_IMR

Address: 0x4000801C

Access: Read-only

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

• RDRF: Receive Data Register Full Interrupt Mask

• TDRE: SPI Transmit Data Register Empty Interrupt Mask

• MODF: Mode Fault Error Interrupt Mask

• OVRES: Overrun Error Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• NSSR: NSS Rising Interrupt Mask

• TXEMPTY: Transmission Registers Empty Mask

• UNDES: Underrun Error Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF
457
11011B–ATARM–21-Feb-12

457
11011B–ATARM–21-Feb-12

SAM3NSAM3N

27.8.9 SPI Chip Select Register
Name: SPI_CSRx[x=0..3]

Address: 0x40008030

Access: Read/Write

Note: SPI_CSRx registers must be written even if the user wants to use the defaults. The BITS field will not be updated with the trans-
lated value unless the register is written.

• CPOL: Clock Polarity
0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

• NCPHA: Clock Phase
0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

• CSNAAT: Chip Select Not Active After Transfer (Ignored if CSAAT = 1)
0 = The Peripheral Chip Select does not rise between two transfers if the SPI_TDR is reloaded before the end of the first
transfer and if the two transfers occur on the same Chip Select.

1 = The Peripheral Chip Select rises systematically between each transfer performed on the same slave for a minimal dura-
tion of:

– (if DLYBCT field is different from 0)

– (if DLYBCT field equal 0)

• CSAAT: Chip Select Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.

31 30 29 28 27 26 25 24

DLYBCT

23 22 21 20 19 18 17 16

DLYBS

15 14 13 12 11 10 9 8

SCBR

7 6 5 4 3 2 1 0

BITS CSAAT CSNAAT NCPHA CPOL

DLYBCS
MCK

DLYBCS 1+
MCK

458
11011B–ATARM–21-Feb-12

458
11011B–ATARM–21-Feb-12

SAM3NSAM3N

• BITS: Bits Per Transfer
(See the (Note:) below the register table; Section 27.8.9 “SPI Chip Select Register” on page 458.)

The BITS field determines the number of data bits transferred. Reserved values should not be used.

• SCBR: Serial Clock Baud Rate
In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

Note: If one of the SCBR fields inSPI_CSRx is set to 1, the other SCBR fields in SPI_CSRx must be set to 1 as well, if they are
required to process transfers. If they are not used to transfer data, they can be set at any value.

• DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

Otherwise, the following equations determine the delay:

Value Name Description
0 8_BIT 8_bits for transfer

1 9_BIT 9_bits for transfer

2 10_BIT 8_bits for transfer

3 11_BIT 8_bits for transfer
4 12_BIT 8_bits for transfer

5 13_BIT 8_bits for transfer

6 14_BIT 8_bits for transfer
7 15_BIT 8_bits for transfer

8 16_BIT 8_bits for transfer

10 – Reserved
11 – Reserved

12 – Reserved

13 – Reserved
14 – Reserved

15 – Reserved

16 – Reserved

 SPCK Baudrate MCK
SCBR
---------------=

Delay Before SPCK DLYBS
MCK

-------------------=
459
11011B–ATARM–21-Feb-12

459
11011B–ATARM–21-Feb-12

SAM3NSAM3N

• DLYBCT: Delay Between Consecutive Transfers
This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.

Otherwise, the following equation determines the delay:

Delay Between Consecutive Transfers 32 DLYBCT×
MCK

-------------------------------------=
460
11011B–ATARM–21-Feb-12

460
11011B–ATARM–21-Feb-12

SAM3NSAM3N

27.8.10 SPI Write Protection Mode Register
Name: SPI_WPMR

Address: 0x400080E4

Access: Read-write

• SPIWPEN: SPI Write Protection Enable
0: The Write Protection is Disabled

1: The Write Protection is Enabled

• SPIWPKEY: SPI Write Protection Key Password
If a value is written in SPIWPEN, the value is taken into account only if SPIWPKEY is written with “SPI” (SPI written in
ASCII Code, ie 0x535049 in hexadecimal).

31 30 29 28 27 26 25 24

SPIWPKEY

23 22 21 20 19 18 17 16

SPIWPKEY

15 14 13 12 11 10 9 8

SPIWPKEY

7 6 5 4 3 2 1 0

- - - - - - - SPIWPEN
461
11011B–ATARM–21-Feb-12

461
11011B–ATARM–21-Feb-12

SAM3NSAM3N

27.8.11 SPI Write Protection Status Register
Name: SPI_WPSR

Address: 0x400080E8

Access: Read-only

• SPIWPVS: SPI Write Protection Violation Status

• SPIWPVSRC: SPI Write Protection Violation Source
This Field indicates the APB Offset of the register concerned by the violation (SPI_MR or SPI_CSRx)

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

SPIWPVSRC

7 6 5 4 3 2 1 0

– – – – – SPIWPVS

SPIWPVS value Violation Type
0x1 The Write Protection has blocked a Write access to a protected register (since the last read).

0x2
Software Reset has been performed while Write Protection was enabled (since the last read or
since the last write access on SPI_MR, SPI_IER, SPI_IDR or SPI_CSRx).

0x3
Both Write Protection violation and software reset with Write Protection enabled have occurred
since the last read.

0x4
Write accesses have been detected on SPI_MR (while a chip select was active) or on SPI_CSRi
(while the Chip Select “i” was active) since the last read.

0x5
The Write Protection has blocked a Write access to a protected register and write accesses have
been detected on SPI_MR (while a chip select was active) or on SPI_CSRi (while the Chip Select
“i” was active) since the last read.

0x6

Software Reset has been performed while Write Protection was enabled (since the last read or
since the last write access on SPI_MR, SPI_IER, SPI_IDR or SPI_CSRx) and some write
accesses have been detected on SPI_MR (while a chip select was active) or on SPI_CSRi (while
the Chip Select “i” was active) since the last read.

0x7

- The Write Protection has blocked a Write access to a protected register.

and

- Software Reset has been performed while Write Protection was enabled.
and

- Write accesses have been detected on SPI_MR (while a chip select was active) or on SPI_CSRi
(while the Chip Select “i” was active) since the last read.
462
11011B–ATARM–21-Feb-12

462
11011B–ATARM–21-Feb-12

SAM3NSAM3N

28. Two-wire Interface (TWI)

28.1 Description
The Atmel Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made
up of one clock line and one data line with speeds of up to 400 Kbits per second, based on a
byte-oriented transfer format. It can be used with any Atmel Two-wire Interface bus Serial
EEPROM and I²C compatible device such as Real Time Clock (RTC), Dot Matrix/Graphic LCD
Controllers and Temperature Sensor, to name but a few. The TWI is programmable as a master
or a slave with sequential or single-byte access. Multiple master capability is supported. 20

Arbitration of the bus is performed internally and puts the TWI in slave mode automatically if the
bus arbitration is lost.

A configurable baud rate generator permits the output data rate to be adapted to a wide range of
core clock frequencies.

Below, Table 28-1 lists the compatibility level of the Atmel Two-wire Interface in Master Mode and
a full I2C compatible device.

Note: 1. START + b000000001 + Ack + Sr

Table 28-1. Atmel TWI compatibility with i2C Standard

I2C Standard Atmel TWI

Standard Mode Speed (100 KHz) Supported

Fast Mode Speed (400 KHz) Supported

7 or 10 bits Slave Addressing Supported

START BYTE(1) Not Supported

Repeated Start (Sr) Condition Supported

ACK and NACK Management Supported

Slope control and input filtering (Fast mode) Not Supported

Clock stretching Supported

Multi Master Capability Supported
463
11011B–ATARM–21-Feb-12

463
11011B–ATARM–21-Feb-12

28.2 Embedded Characteristics
• Two TWIs

• Compatible with Atmel Two-wire Interface Serial Memory and I²C Compatible Devices(Note:)

• One, Two or Three Bytes for Slave Address

• Sequential Read-write Operations

• Master, Multi-master and Slave Mode Operation

• Bit Rate: Up to 400 Kbits

• General Call Supported in Slave mode

• SMBUS Quick Command Supported in Master Mode

• Connection to Peripheral DMA Controller (PDC) Channel Capabilities Optimizes Data
Transfers in Master Mode Only

– One Channel for the Receiver, One Channel for the Transmitter

– Next Buffer Support

• Connection to DMA Controller (DMAC) Channel Capabilities Optimizes Data Transfers in
Master Mode Only

Note: See Table 28-1 for details on compatibility with I²C Standard.

28.3 List of Abbreviations

Table 28-2. Abbreviations

Abbreviation Description

TWI Two-wire Interface

A Acknowledge

NA Non Acknowledge

P Stop

S Start

Sr Repeated Start

SADR Slave Address

ADR Any address except SADR

R Read

W Write
464
11011B–ATARM–21-Feb-12

SAM3N464
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.4 Block Diagram

Figure 28-1. Block Diagram

28.5 Application Block Diagram

Figure 28-2. Application Block Diagram

28.5.1 I/O Lines Description

APB Bridge

PMC MCK

Two-wire
Interface

PIO

NVIC
TWI

Interrupt

TWCK

TWD

Host with
TWI

Interface

TWD

TWCK

Atmel TWI
Serial EEPROM

I²C RTC I²C LCD
Controller

Slave 1 Slave 2 Slave 3

VDD

I²C Temp.
Sensor

Slave 4

Rp: Pull up value as given by the I²C Standard

Rp Rp

Table 28-3. I/O Lines Description

Pin Name Pin Description Type

TWD Two-wire Serial Data Input/Output

TWCK Two-wire Serial Clock Input/Output
465
11011B–ATARM–21-Feb-12

465
11011B–ATARM–21-Feb-12

28.6 Product Dependencies

28.6.1 I/O Lines
Both TWD and TWCK are bidirectional lines, connected to a positive supply voltage via a current
source or pull-up resistor (see Figure 28-2 on page 465). When the bus is free, both lines are
high. The output stages of devices connected to the bus must have an open-drain or open-col-
lector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer
must perform the following step:

• Program the PIO controller to dedicate TWD and TWCK as peripheral lines.

The user must not program TWD and TWCK as open-drain. It is already done by the hardware.

28.6.2 Power Management

• Enable the peripheral clock.

The TWI interface may be clocked through the Power Management Controller (PMC), thus the
programmer must first configure the PMC to enable the TWI clock.

28.6.3 Interrupt
The TWI interface has an interrupt line connected to the Nested Vector Interrupt Controller
(NVIC). In order to handle interrupts, the NVIC must be programmed before configuring the TWI.

Table 28-4. I/O Lines

Instance Signal I/O Line Peripheral

TWI0 TWCK0 PA4 A

TWI0 TWD0 PA3 A

TWI1 TWCK1 PB5 A

TWI1 TWD1 PB4 A

Table 28-5. Peripheral IDs

Instance ID

TWI0 19

TWI1 20
466
11011B–ATARM–21-Feb-12

SAM3N466
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.7 Functional Description

28.7.1 Transfer Format
The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
28-4).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
28-3).

• A high-to-low transition on the TWD line while TWCK is high defines the START condition.

• A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 28-3. START and STOP Conditions

Figure 28-4. Transfer Format

28.7.2 Modes of Operation
The TWI has six modes of operations:

• Master transmitter mode

• Master receiver mode

• Multi-master transmitter mode

• Multi-master receiver mode

• Slave transmitter mode

• Slave receiver mode

These modes are described in the following chapters.

TWD

TWCK

Start Stop

TWD

TWCK

Start Address R/W Ack Data Ack Data Ack Stop
467
11011B–ATARM–21-Feb-12

467
11011B–ATARM–21-Feb-12

28.8 Master Mode

28.8.1 Definition
The Master is the device that starts a transfer, generates a clock and stops it.

28.8.2 Application Block Diagram

Figure 28-5. Master Mode Typical Application Block Diagram

28.8.3 Programming Master Mode
The following registers have to be programmed before entering Master mode:

1. DADR (+ IADRSZ + IADR if a 10 bit device is addressed): The device address is used
to access slave devices in read or write mode.

2. CKDIV + CHDIV + CLDIV: Clock Waveform.

3. SVDIS: Disable the slave mode.

4. MSEN: Enable the master mode.

28.8.4 Master Transmitter Mode
After the master initiates a Start condition when writing into the Transmit Holding Register,
TWI_THR, it sends a 7-bit slave address, configured in the Master Mode register (DADR in
TWI_MMR), to notify the slave device. The bit following the slave address indicates the transfer
direction, 0 in this case (MREAD = 0 in TWI_MMR).

The TWI transfers require the slave to acknowledge each received byte. During the acknowl-
edge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull
it down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the Not Acknowledge bit (NACK) in the status register if the slave does not
acknowledge the byte. As with the other status bits, an interrupt can be generated if enabled in
the interrupt enable register (TWI_IER). If the slave acknowledges the byte, the data written in
the TWI_THR, is then shifted in the internal shifter and transferred. When an acknowledge is
detected, the TXRDY bit is set until a new write in the TWI_THR.

While no new data is written in the TWI_THR, the Serial Clock Line is tied low. When new data is
written in the TWI_THR, the SCL is released and the data is sent. To generate a STOP event,
the STOP command must be performed by writing in the STOP field of TWI_CR.

Host with
TWI

Interface

TWD

TWCK

Atmel TWI
Serial EEPROM

I²C RTC I²C LCD
Controller

Slave 1 Slave 2 Slave 3

VDD

I²C Temp.
Sensor

Slave 4

Rp: Pull up value as given by the I²C Standard

Rp Rp
468
11011B–ATARM–21-Feb-12

SAM3N468
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

After a Master Write transfer, the Serial Clock line is stretched (tied low) while no new data is
written in the TWI_THR or until a STOP command is performed.

See Figure 28-6, Figure 28-7, and Figure 28-8.

Figure 28-6. Master Write with One Data Byte

Figure 28-7. Master Write with Multiple Data Bytes

TXCOMP

TXRDY

Write THR (DATA)

STOP Command sent (write in TWI_CR)

TWD A DATA AS DADR W P

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

TXRDY

Write THR (Data n)

Write THR (Data n+1) Write THR (Data n+2)
Last data sent

STOP command performed
(by writing in the TWI_CR)

TWD

TWCK
469
11011B–ATARM–21-Feb-12

469
11011B–ATARM–21-Feb-12

Figure 28-8. Master Write with One Byte Internal Address and Multiple Data Bytes

TXRDY is used as Transmit Ready for the PDC transmit channel.

28.8.5 Master Receiver Mode
The read sequence begins by setting the START bit. After the start condition has been sent, the
master sends a 7-bit slave address to notify the slave device. The bit following the slave address
indicates the transfer direction, 1 in this case (MREAD = 1 in TWI_MMR). During the acknowl-
edge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull
it down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the NACK bit in the status register if the slave does not acknowledge the byte.

If an acknowledge is received, the master is then ready to receive data from the slave. After data
has been received, the master sends an acknowledge condition to notify the slave that the data
has been received except for the last data, after the stop condition. See Figure 28-9. When the
RXRDY bit is set in the status register, a character has been received in the receive-holding reg-
ister (TWI_RHR). The RXRDY bit is reset when reading the TWI_RHR.

When a single data byte read is performed, with or without internal address (IADR), the START
and STOP bits must be set at the same time. See Figure 28-9. When a multiple data byte read is
performed, with or without internal address (IADR), the STOP bit must be set after the next-to-
last data received. See Figure 28-10. For Internal Address usage see Section 28.8.6.

Figure 28-9. Master Read with One Data Byte

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

TXRDY

Write THR (Data n)

Write THR (Data n+1) Write THR (Data n+2)
Last data sent

STOP command performed
(by writing in the TWI_CR)

TWD IADR A

TWCK

AS DADR R DATA N P

TXCOMP

Write START &
STOP Bit

RXRDY

Read RHR

TWD
470
11011B–ATARM–21-Feb-12

SAM3N470
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 28-10. Master Read with Multiple Data Bytes

RXRDY is used as Receive Ready for the PDC receive channel.

28.8.6 Internal Address
The TWI interface can perform various transfer formats: Transfers with 7-bit slave address
devices and 10-bit slave address devices.

28.8.6.1 7-bit Slave Addressing
When Addressing 7-bit slave devices, the internal address bytes are used to perform random
address (read or write) accesses to reach one or more data bytes, within a memory page loca-
tion in a serial memory, for example. When performing read operations with an internal address,
the TWI performs a write operation to set the internal address into the slave device, and then
switch to Master Receiver mode. Note that the second start condition (after sending the IADR) is
sometimes called “repeated start” (Sr) in I2C fully-compatible devices. See Figure 28-12. See
Figure 28-11 and Figure 28-13 for Master Write operation with internal address.

The three internal address bytes are configurable through the Master Mode register
(TWI_MMR).

If the slave device supports only a 7-bit address, i.e. no internal address, IADRSZ must be set to
0.

In the figures below the following abbreviations are used:

NAS DADR R DATA n A ADATA (n+1) A DATA (n+m)DATA (n+m)-1 PTWD

TXCOMP

Write START Bit

RXRDY

Write STOP Bit
after next-to-last data read

Read RHR
DATA n

Read RHR
DATA (n+1)

Read RHR
DATA (n+m)-1

Read RHR
DATA (n+m)

• S Start

• Sr Repeated Start

• P Stop

• W Write

• R Read

• A Acknowledge

• N Not Acknowledge

• DADR Device Address

• IADR Internal Address
471
11011B–ATARM–21-Feb-12

471
11011B–ATARM–21-Feb-12

Figure 28-11. Master Write with One, Two or Three Bytes Internal Address and One Data Byte

Figure 28-12. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

28.8.6.2 10-bit Slave Addressing
For a slave address higher than 7 bits, the user must configure the address size (IADRSZ) and
set the other slave address bits in the internal address register (TWI_IADR). The two remaining
Internal address bytes, IADR[15:8] and IADR[23:16] can be used the same as in 7-bit Slave
Addressing.

Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

1. Program IADRSZ = 1,

2. Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)

3. Program TWI_IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit
address)

Figure 28-13 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates
the use of internal addresses to access the device.

Figure 28-13. Internal Address Usage

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A DATA A P

S DADR W A IADR(15:8) A IADR(7:0) A PDATA A

A IADR(7:0) A PDATA AS DADR W

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

TWD

TWD

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A

S DADR W A IADR(15:8) A IADR(7:0) A

A IADR(7:0) AS DADR W

DATA N P

Sr DADR R A

Sr DADR R A DATA N P

Sr DADR R A DATA N P

TWD

TWD

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

S
T
A
R
T

M
S
B

Device
Address

0

L
S
B

R
/

W

A
C
K

M
S
B

W
R
I
T
E

A
C
K

A
C
K

L
S
B

A
C
K

FIRST
WORD ADDRESS

SECOND
WORD ADDRESS DATA

S
T
O
P

472
11011B–ATARM–21-Feb-12

SAM3N472
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.8.7 Using the Peripheral DMA Controller (PDC)
The use of the PDC significantly reduces the CPU load.

To assure correct implementation, respect the following programming sequences:

28.8.7.1 Data Transmit with the PDC

1. Initialize the transmit PDC (memory pointers, size, etc.).

2. Configure the master mode (DADR, CKDIV, etc.).

3. Start the transfer by setting the PDC TXTEN bit.

4. Wait for the PDC end TX flag.

5. Disable the PDC by setting the PDC TXDIS bit.

28.8.7.2 Data Receive with the PDC

1. Initialize the receive PDC (memory pointers, size - 1, etc.).

2. Configure the master mode (DADR, CKDIV, etc.).

3. Start the transfer by setting the PDC RXTEN bit.

4. Wait for the PDC end RX flag.

5. Disable the PDC by setting the PDC RXDIS bit.

28.8.8 Using the DMA Controller (DMAC)
The use of the DMAC significantlly reduces the CPU load.

To assure correct implementation, respect the following programming sequence.

1. Initialize the DMAC (channels, memory pointers , size, etc.);

1. Configure the master mode (DADR, CKDIV, etc.).

1. Enable the DMAC.

1. Wait for the DMAC flag.

1. Disable the DMAC.

28.8.9 SMBUS Quick Command (Master Mode Only)
The TWI interface can perform a Quick Command:

1. Configure the master mode (DADR, CKDIV, etc.).

2. Write the MREAD bit in the TWI_MMR register at the value of the one-bit command to
be sent.

3. Start the transfer by setting the QUICK bit in the TWI_CR.

Figure 28-14. SMBUS Quick Command

TXCOMP

TXRDY

Write QUICK command in TWI_CR

TWD AS DADR R/W P
473
11011B–ATARM–21-Feb-12

473
11011B–ATARM–21-Feb-12

28.8.10 Read-write Flowcharts
The following flowcharts shown in Figure 28-16 on page 475, Figure 28-17 on page 476, Figure
28-18 on page 477, Figure 28-19 on page 478 and Figure 28-20 on page 479 give examples for
read and write operations. A polling or interrupt method can be used to check the status bits.
The interrupt method requires that the interrupt enable register (TWI_IER) be configured first.

Figure 28-15. TWI Write Operation with Single Data Byte without Internal Address

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)

- Transfer direction bit
Write ==> bit MREAD = 0

Load Transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Yes

Yes

BEGIN

No

No

Write STOP Command
TWI_CR = STOP
474
11011B–ATARM–21-Feb-12

SAM3N474
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 28-16. TWI Write Operation with Single Data Byte and Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)

- Internal address size (IADRSZ)
- Transfer direction bit

Write ==> bit MREAD = 0

Load transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Set the internal address
TWI_IADR = address

Yes

Yes

No

No

Write STOP command
TWI_CR = STOP
475
11011B–ATARM–21-Feb-12

475
11011B–ATARM–21-Feb-12

Figure 28-17. TWI Write Operation with Multiple Data Bytes with or without Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address

- Internal address size (if IADR used)
- Transfer direction bit

Write ==> bit MREAD = 0

Internal address size = 0?

Load Transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Data to send?

Read Status register

TXCOMP = 1?

END

BEGIN

Set the internal address
TWI_IADR = address

Yes

TWI_THR = data to send

Yes

Yes

Yes

No

No

No

Write STOP Command
TWI_CR = STOP

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)
476
11011B–ATARM–21-Feb-12

SAM3N476
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 28-18. TWI Read Operation with Single Data Byte without Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Transfer direction bit

Read ==> bit MREAD = 1

Start the transfer
TWI_CR = START | STOP

Read status register

RXRDY = 1?

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Yes

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Read Receive Holding Register

No

No
477
11011B–ATARM–21-Feb-12

477
11011B–ATARM–21-Feb-12

Figure 28-19. TWI Read Operation with Single Data Byte and Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address

- Internal address size (IADRSZ)
- Transfer direction bit

Read ==> bit MREAD = 1

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Yes

Set the internal address
TWI_IADR = address

Start the transfer
TWI_CR = START | STOP

Read Status register

RXRDY = 1?

Read Receive Holding register

No

No
478
11011B–ATARM–21-Feb-12

SAM3N478
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 28-20. TWI Read Operation with Multiple Data Bytes with or without Internal Address

Internal address size = 0?

Start the transfer
TWI_CR = START

Stop the transfer
TWI_CR = STOP

Read Status register

RXRDY = 1?

Last data to read
but one?

Read status register

TXCOMP = 1?

END

Set the internal address
TWI_IADR = address

Yes

Yes

Yes

No

Yes

Read Receive Holding register (TWI_RHR)

No

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address

- Internal address size (if IADR used)
- Transfer direction bit

Read ==> bit MREAD = 1

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

No

Read Status register

RXRDY = 1?

Yes

Read Receive Holding register (TWI_RHR)

No
479
11011B–ATARM–21-Feb-12

479
11011B–ATARM–21-Feb-12

28.9 Multi-master Mode

28.9.1 Definition
More than one master may handle the bus at the same time without data corruption by using
arbitration.

Arbitration starts as soon as two or more masters place information on the bus at the same time,
and stops (arbitration is lost) for the master that intends to send a logical one while the other
master sends a logical zero.

As soon as arbitration is lost by a master, it stops sending data and listens to the bus in order to
detect a stop. When the stop is detected, the master who has lost arbitration may put its data on
the bus by respecting arbitration.

Arbitration is illustrated in Figure 28-22 on page 481.

28.9.2 Different Multi-master Modes
Two multi-master modes may be distinguished:

1. TWI is considered as a Master only and will never be addressed.

2. TWI may be either a Master or a Slave and may be addressed.
Note: In both Multi-master modes arbitration is supported.

28.9.2.1 TWI as Master Only
In this mode, TWI is considered as a Master only (MSEN is always at one) and must be driven
like a Master with the ARBLST (ARBitration Lost) flag in addition.

If arbitration is lost (ARBLST = 1), the programmer must reinitiate the data transfer.

If the user starts a transfer (ex.: DADR + START + W + Write in THR) and if the bus is busy, the
TWI automatically waits for a STOP condition on the bus to initiate the transfer (see Figure 28-
21 on page 481).

Note: The state of the bus (busy or free) is not indicated in the user interface.

28.9.2.2 TWI as Master or Slave
The automatic reversal from Master to Slave is not supported in case of a lost arbitration.

Then, in the case where TWI may be either a Master or a Slave, the programmer must manage
the pseudo Multi-master mode described in the steps below.

1. Program TWI in Slave mode (SADR + MSDIS + SVEN) and perform Slave Access (if
TWI is addressed).

2. If TWI has to be set in Master mode, wait until TXCOMP flag is at 1.

3. Program Master mode (DADR + SVDIS + MSEN) and start the transfer (ex: START +
Write in THR).

4. As soon as the Master mode is enabled, TWI scans the bus in order to detect if it is
busy or free. When the bus is considered as free, TWI initiates the transfer.

5. As soon as the transfer is initiated and until a STOP condition is sent, the arbitration
becomes relevant and the user must monitor the ARBLST flag.

6. If the arbitration is lost (ARBLST is set to 1), the user must program the TWI in Slave
mode in the case where the Master that won the arbitration wanted to access the TWI.

7. If TWI has to be set in Slave mode, wait until TXCOMP flag is at 1 and then program the
Slave mode.
480
11011B–ATARM–21-Feb-12

SAM3N480
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Note: In the case where the arbitration is lost and TWI is addressed, TWI will not acknowledge even if it
is programmed in Slave mode as soon as ARBLST is set to 1. Then, the Master must repeat
SADR.

Figure 28-21. Programmer Sends Data While the Bus is Busy

Figure 28-22. Arbitration Cases

The flowchart shown in Figure 28-23 on page 482 gives an example of read and write operations
in Multi-master mode.

TWCK

TWD DATA sent by a master

STOP sent by the master START sent by the TWI

DATA sent by the TWI

Bus is busy

Bus is free

A transfer is programmed
(DADR + W + START + Write THR) Transfer is initiated

TWI DATA transfer Transfer is kept

Bus is considered as free

TWCK

Bus is busy Bus is free

A transfer is programmed
(DADR + W + START + Write THR) Transfer is initiated

TWI DATA transfer Transfer is kept

Bus is considered as free

Data from a Master

Data from TWI S 0

S 0 0

1

1

1

ARBLST

S 0

S 0 0

1

1

1

TWD S 0 01

1 1

1 1

Arbitration is lost

TWI stops sending data

P

S 01P 0

1 1

1 1Data from the master Data from the TWI

Arbitration is lost

The master stops sending data

Transfer is stopped
Transfer is programmed again

(DADR + W + START + Write THR)

TWCK

TWD
481
11011B–ATARM–21-Feb-12

481
11011B–ATARM–21-Feb-12

Figure 28-23. Multi-master Flowchart

Programm the SLAVE mode:
SADR + MSDIS + SVEN

SVACC = 1 ?

TXCOMP = 1 ?

GACC = 1 ?

Decoding of the
programming sequence

Prog seq
OK ?

Change SADR

SVREAD = 0 ?

Read Status Register

RXRDY= 0 ?

Read TWI_RHR

TXRDY= 1 ?EOSACC = 1 ?

Write in TWI_THR

Need to perform
a master access ?

Program the Master mode
DADR + SVDIS + MSEN + CLK + R / W

Read Status Register

ARBLST = 1 ?

MREAD = 1 ?

TXRDY= 0 ?

Write in TWI_THRData to send ?

RXRDY= 0 ?

Read TWI_RHR Data to read?

Read Status Register

TXCOMP = 0 ?

GENERAL CALL TREATMENT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Stop Transfer
TWI_CR = STOP

No

No No

No

No

No

No

No

No

No

No

No

No

No No

No

START
482
11011B–ATARM–21-Feb-12

SAM3N482
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.10 Slave Mode

28.10.1 Definition
The Slave Mode is defined as a mode where the device receives the clock and the address from
another device called the master.

In this mode, the device never initiates and never completes the transmission (START,
REPEATED_START and STOP conditions are always provided by the master).

28.10.2 Application Block Diagram

Figure 28-24. Slave Mode Typical Application Block Diagram

28.10.3 Programming Slave Mode
The following fields must be programmed before entering Slave mode:

1. SADR (TWI_SMR): The slave device address is used in order to be accessed by mas-
ter devices in read or write mode.

2. MSDIS (TWI_CR): Disable the master mode.

3. SVEN (TWI_CR): Enable the slave mode.

As the device receives the clock, values written in TWI_CWGR are not taken into account.

28.10.4 Receiving Data
After a Start or Repeated Start condition is detected and if the address sent by the Master
matches with the Slave address programmed in the SADR (Slave ADdress) field, SVACC (Slave
ACCess) flag is set and SVREAD (Slave READ) indicates the direction of the transfer.

SVACC remains high until a STOP condition or a repeated START is detected. When such a
condition is detected, EOSACC (End Of Slave ACCess) flag is set.

28.10.4.1 Read Sequence
In the case of a Read sequence (SVREAD is high), TWI transfers data written in the TWI_THR
(TWI Transmit Holding Register) until a STOP condition or a REPEATED_START + an address
different from SADR is detected. Note that at the end of the read sequence TXCOMP (Transmis-
sion Complete) flag is set and SVACC reset.

As soon as data is written in the TWI_THR, TXRDY (Transmit Holding Register Ready) flag is
reset, and it is set when the shift register is empty and the sent data acknowledged or not. If the
data is not acknowledged, the NACK flag is set.

Host with
TWI

Interface

TWD

TWCK

LCD Controller

Slave 1 Slave 2 Slave 3

R R

VDD

Host with TWI
Interface

Host with TWI
Interface

Master
483
11011B–ATARM–21-Feb-12

483
11011B–ATARM–21-Feb-12

Note that a STOP or a repeated START always follows a NACK.

See Figure 28-25 on page 485.

28.10.4.2 Write Sequence
In the case of a Write sequence (SVREAD is low), the RXRDY (Receive Holding Register
Ready) flag is set as soon as a character has been received in the TWI_RHR (TWI Receive
Holding Register). RXRDY is reset when reading the TWI_RHR.

TWI continues receiving data until a STOP condition or a REPEATED_START + an address dif-
ferent from SADR is detected. Note that at the end of the write sequence TXCOMP flag is set
and SVACC reset.

See Figure 28-26 on page 485.

28.10.4.3 Clock Synchronization Sequence
In the case where TWI_THR or TWI_RHR is not written/read in time, TWI performs a clock
synchronization.

Clock stretching information is given by the SCLWS (Clock Wait state) bit.

See Figure 28-28 on page 487 and Figure 28-29 on page 488.

28.10.4.4 General Call
In the case where a GENERAL CALL is performed, GACC (General Call ACCess) flag is set.

After GACC is set, it is up to the programmer to interpret the meaning of the GENERAL CALL
and to decode the new address programming sequence.

See Figure 28-27 on page 486.

28.10.4.5 PDC
As it is impossible to know the exact number of data to receive/send, the use of PDC is NOT rec-
ommended in SLAVE mode.

28.10.4.6 DMAC
As it is impossible to know the exact number of data to receive/send, the use of DMAC is NOT
recommended in SLAVE mode.

28.10.5 Data Transfer

28.10.5.1 Read Operation
The read mode is defined as a data requirement from the master.

After a START or a REPEATED START condition is detected, the decoding of the address
starts. If the slave address (SADR) is decoded, SVACC is set and SVREAD indicates the direc-
tion of the transfer.

Until a STOP or REPEATED START condition is detected, TWI continues sending data loaded
in the TWI_THR register.

If a STOP condition or a REPEATED START + an address different from SADR is detected,
SVACC is reset.

Figure 28-25 on page 485 describes the write operation.
484
11011B–ATARM–21-Feb-12

SAM3N484
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 28-25. Read Access Ordered by a MASTER

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.

2. TXRDY is reset when data has been transmitted from TWI_THR to the shift register and set when this data has been
acknowledged or non acknowledged.

28.10.5.2 Write Operation
The write mode is defined as a data transmission from the master.

After a START or a REPEATED START, the decoding of the address starts. If the slave address
is decoded, SVACC is set and SVREAD indicates the direction of the transfer (SVREAD is low in
this case).

Until a STOP or REPEATED START condition is detected, TWI stores the received data in the
TWI_RHR register.

If a STOP condition or a REPEATED START + an address different from SADR is detected,
SVACC is reset.

Figure 28-26 on page 485 describes the Write operation.

Figure 28-26. Write Access Ordered by a Master

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.

2. RXRDY is set when data has been transmitted from the shift register to the TWI_RHR and reset when this data is read.

Write THR Read RHR

SVREAD has to be taken into account only while SVACC is active

TWD

TXRDY

NACK

SVACC

SVREAD

EOSVACC

SADRS ADR R NA R A DATA A A DATA NA S/SrDATA NA P/S/Sr

SADR matches,
TWI answers with an ACK

SADR does not match,
TWI answers with a NACK

ACK/NACK from the Master

RXRDY

Read RHR

SVREAD has to be taken into account only while SVACC is active

TWD

SVACC

SVREAD

EOSVACC

SADR does not match,
TWI answers with a NACK

SADRS ADR W NA W A DATA A A DATA NA S/SrDATA NA P/S/Sr

SADR matches,
TWI answers with an ACK
485
11011B–ATARM–21-Feb-12

485
11011B–ATARM–21-Feb-12

28.10.5.3 General Call
The general call is performed in order to change the address of the slave.

If a GENERAL CALL is detected, GACC is set.

After the detection of General Call, it is up to the programmer to decode the commands which
come afterwards.

In case of a WRITE command, the programmer has to decode the programming sequence and
program a new SADR if the programming sequence matches.

Figure 28-27 on page 486 describes the General Call access.

Figure 28-27. Master Performs a General Call

Note: This method allows the user to create an own programming sequence by choosing the program-
ming bytes and the number of them. The programming sequence has to be provided to the
master.

0000000 + W

GENERAL CALL PS AGENERAL CALL Reset or write DADD A New SADRDATA1 A DATA2 AA

New SADR
Programming sequence

TXD

GCACC

SVACC

RESET command = 00000110X
WRITE command = 00000100X

Reset after read
486
11011B–ATARM–21-Feb-12

SAM3N486
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.10.5.4 Clock Synchronization
In both read and write modes, it may happen that TWI_THR/TWI_RHR buffer is not filled /emp-
tied before the emission/reception of a new character. In this case, to avoid sending/receiving
undesired data, a clock stretching mechanism is implemented.

Clock Synchronization in Read Mode

The clock is tied low if the shift register is empty and if a STOP or REPEATED START condition
was not detected. It is tied low until the shift register is loaded.

Figure 28-28 on page 487 describes the clock synchronization in Read mode.

Figure 28-28. Clock Synchronization in Read Mode

Notes: 1. TXRDY is reset when data has been written in the TWI_THR to the shift register and set when this data has been acknowl-
edged or non acknowledged.

2. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from
SADR.

3. SCLWS is automatically set when the clock synchronization mechanism is started.

DATA1

The clock is stretched after the ACK, the state of TWD is undefined during clock stretching

SCLWS

SVACC
SVREAD

TXRDY

TWCK

TWI_THR

TXCOMP

The data is memorized in TWI_THR until a new value is written

TWI_THR is transmitted to the shift register Ack or Nack from the master

DATA0DATA0 DATA2

1

2

1

CLOCK is tied low by the TWI
as long as THR is empty

S SADRS R DATA0A A DATA1 A DATA2 NA SXXXXXXX

2

Write THR

As soon as a START is detected
487
11011B–ATARM–21-Feb-12

487
11011B–ATARM–21-Feb-12

Clock Synchronization in Write Mode

The clock is t ied low i f the shi f t register and the TWI_RHR is ful l . I f a STOP or
REPEATED_START condition was not detected, it is tied low until TWI_RHR is read.

Figure 28-29 on page 488 describes the clock synchronization in Read mode.

Figure 28-29. Clock Synchronization in Write Mode

Notes: 1. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from
SADR.

2. SCLWS is automatically set when the clock synchronization mechanism is started and automatically reset when the mecha-
nism is finished.

Rd DATA0 Rd DATA1 Rd DATA2
SVACC

SVREAD

RXRDY

SCLWS

TXCOMP

DATA1 DATA2

SCL is stretched on the last bit of DATA1

As soon as a START is detected

TWCK

TWD

TWI_RHR

CLOCK is tied low by the TWI as long as RHR is full

DATA0 is not read in the RHR

ADRS SADR W ADATA0A A DATA2DATA1 SNA
488
11011B–ATARM–21-Feb-12

SAM3N488
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.10.5.5 Reversal after a Repeated Start
Reversal of Read to Write

The master initiates the communication by a read command and finishes it by a write command.

Figure 28-30 on page 489 describes the repeated start + reversal from Read to Write mode.

Figure 28-30. Repeated Start + Reversal from Read to Write Mode

1. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

Reversal of Write to Read

The master initiates the communication by a write command and finishes it by a read com-
mand.Figure 28-31 on page 489 describes the repeated start + reversal from Write to Read
mode.

Figure 28-31. Repeated Start + Reversal from Write to Read Mode

Notes: 1. In this case, if TWI_THR has not been written at the end of the read command, the clock is automatically stretched before
the ACK.

2. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

S SADR R ADATA0A DATA1 SADRSrNA W A DATA2 A DATA3 A P

Cleared after read

DATA0 DATA1

DATA2 DATA3

SVACC

SVREAD

TWD

TWI_THR

TWI_RHR

EOSACC

TXRDY

RXRDY

TXCOMP As soon as a START is detected

S SADR W ADATA0A DATA1 SADRSrA R A DATA2 A DATA3 NA P

Cleared after read

DATA0

DATA2 DATA3

DATA1

TXCOMP

TXRDY

RXRDY

As soon as a START is detected

Read TWI_RHR

SVACC

SVREAD

TWD

TWI_RHR

TWI_THR

EOSACC
489
11011B–ATARM–21-Feb-12

489
11011B–ATARM–21-Feb-12

28.10.6 Read Write Flowcharts
The flowchart shown in Figure 28-32 on page 490 gives an example of read and write operations
in Slave mode. A polling or interrupt method can be used to check the status bits. The interrupt
method requires that the interrupt enable register (TWI_IER) be configured first.

Figure 28-32. Read Write Flowchart in Slave Mode

Set the SLAVE mode:
SADR + MSDIS + SVEN

SVACC = 1 ?

TXCOMP = 1 ?

GACC = 1 ?

Decoding of the
programming sequence

Prog seq
OK ?

Change SADR

SVREAD = 0 ?

Read Status Register

RXRDY= 0 ?

Read TWI_RHR

TXRDY= 1 ?EOSACC = 1 ?

Write in TWI_THR

END

GENERAL CALL TREATMENT

No

No

No
No

No

No

No

No
490
11011B–ATARM–21-Feb-12

SAM3N490
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.11 Two-wire Interface (TWI) User Interface

Note: 1. All unlisted offset values are conisedered as “reserved”.

Table 28-6. Register Mapping

Offset Register Name Access Reset

0x00 Control Register TWI_CR Write-only N / A

0x04 Master Mode Register TWI_MMR Read-write 0x00000000

0x08 Slave Mode Register TWI_SMR Read-write 0x00000000

0x0C Internal Address Register TWI_IADR Read-write 0x00000000

0x10 Clock Waveform Generator Register TWI_CWGR Read-write 0x00000000

0x14 - 0x1C Reserved – – –

0x20 Status Register TWI_SR Read-only 0x0000F009

0x24 Interrupt Enable Register TWI_IER Write-only N / A

0x28 Interrupt Disable Register TWI_IDR Write-only N / A

0x2C Interrupt Mask Register TWI_IMR Read-only 0x00000000

0x30 Receive Holding Register TWI_RHR Read-only 0x00000000

0x34 Transmit Holding Register TWI_THR Write-only 0x00000000

0xEC - 0xFC(1) Reserved – – –

0x100 - 0x124 Reserved for the PDC – – –
491
11011B–ATARM–21-Feb-12

491
11011B–ATARM–21-Feb-12

28.11.1 TWI Control Register
Name: TWI_CR

Addresses: 0x40018000 (0), 0x4001C000 (1)

Access: Write-only

Reset: 0x00000000

• START: Send a START Condition
0 = No effect.

1 = A frame beginning with a START bit is transmitted according to the features defined in the mode register.

This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (TWI_THR).

• STOP: Send a STOP Condition
0 = No effect.

1 = STOP Condition is sent just after completing the current byte transmission in master read mode.

– In single data byte master read, the START and STOP must both be set.

– In multiple data bytes master read, the STOP must be set after the last data received but one.

– In master read mode, if a NACK bit is received, the STOP is automatically performed.

– In master data write operation, a STOP condition will be sent after the transmission of the current data is
finished.

• MSEN: TWI Master Mode Enabled
0 = No effect.

1 = If MSDIS = 0, the master mode is enabled.

Note: Switching from Slave to Master mode is only permitted when TXCOMP = 1.

• MSDIS: TWI Master Mode Disabled
0 = No effect.

1 = The master mode is disabled, all pending data is transmitted. The shifter and holding characters (if it contains data) are
transmitted in case of write operation. In read operation, the character being transferred must be completely received
before disabling.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST QUICK SVDIS SVEN MSDIS MSEN STOP START
492
11011B–ATARM–21-Feb-12

SAM3N492
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

• SVEN: TWI Slave Mode Enabled
0 = No effect.

1 = If SVDIS = 0, the slave mode is enabled.

Note: Switching from Master to Slave mode is only permitted when TXCOMP = 1.

• SVDIS: TWI Slave Mode Disabled
0 = No effect.

1 = The slave mode is disabled. The shifter and holding characters (if it contains data) are transmitted in case of read oper-
ation. In write operation, the character being transferred must be completely received before disabling.

• QUICK: SMBUS Quick Command
0 = No effect.

1 = If Master mode is enabled, a SMBUS Quick Command is sent.

• SWRST: Software Reset
0 = No effect.

1 = Equivalent to a system reset.
493
11011B–ATARM–21-Feb-12

493
11011B–ATARM–21-Feb-12

28.11.2 TWI Master Mode Register
Name: TWI_MMR

Addresses: 0x40018004 (0), 0x4001C004 (1)

Access: Read-write

Reset: 0x00000000

• IADRSZ: Internal Device Address Size

• MREAD: Master Read Direction
0 = Master write direction.

1 = Master read direction.

• DADR: Device Address
The device address is used to access slave devices in read or write mode. Those bits are only used in Master mode.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– DADR

15 14 13 12 11 10 9 8

– – – MREAD – – IADRSZ

7 6 5 4 3 2 1 0

– – – – – – – –

Value Name Description

0 NONE No internal device address

1 1_BYTE One-byte internal device address

2 2_BYTE Two-byte internal device address

3 3_BYTE Three-byte internal device address
494
11011B–ATARM–21-Feb-12

SAM3N494
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.11.3 TWI Slave Mode Register
Name: TWI_SMR

Addresses: 0x40018008 (0), 0x4001C008 (1)

Access: Read-write

Reset: 0x00000000

• SADR: Slave Address
The slave device address is used in Slave mode in order to be accessed by master devices in read or write mode.

SADR must be programmed before enabling the Slave mode or after a general call. Writes at other times have no effect.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– SADR

15 14 13 12 11 10 9 8

– – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –
495
11011B–ATARM–21-Feb-12

495
11011B–ATARM–21-Feb-12

28.11.4 TWI Internal Address Register
Name: TWI_IADR

Addresses: 0x4001800C (0), 0x4001C00C (1)

Access: Read-write

Reset: 0x00000000

• IADR: Internal Address
0, 1, 2 or 3 bytes depending on IADRSZ.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

IADR

15 14 13 12 11 10 9 8

IADR

7 6 5 4 3 2 1 0

IADR
496
11011B–ATARM–21-Feb-12

SAM3N496
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.11.5 TWI Clock Waveform Generator Register
Name: TWI_CWGR

Addresses: 0x40018010 (0), 0x4001C010 (1)

Access: Read-write

Reset: 0x00000000

TWI_CWGR is only used in Master mode.

• CLDIV: Clock Low Divider
The SCL low period is defined as follows:

• CHDIV: Clock High Divider
The SCL high period is defined as follows:

• CKDIV: Clock Divider
The CKDIV is used to increase both SCL high and low periods.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CKDIV

15 14 13 12 11 10 9 8

CHDIV

7 6 5 4 3 2 1 0

CLDIV

Tlow CLDIV(2CKDIV×() 4)+ TMCK×=

Thigh CHDIV(2CKDIV×() 4)+ TMCK×=
497
11011B–ATARM–21-Feb-12

497
11011B–ATARM–21-Feb-12

28.11.6 TWI Status Register
Name: TWI_SR

Addresses: 0x40018020 (0), 0x4001C020 (1)

Access: Read-only

Reset: 0x0000F009

• TXCOMP: Transmission Completed (automatically set / reset)
TXCOMP used in Master mode:

0 = During the length of the current frame.

1 = When both holding and shifter registers are empty and STOP condition has been sent.

TXCOMP behavior in Master mode can be seen in Figure 28-8 on page 470 and in Figure 28-10 on page 471.

TXCOMP used in Slave mode:

0 = As soon as a Start is detected.

1 = After a Stop or a Repeated Start + an address different from SADR is detected.

TXCOMP behavior in Slave mode can be seen in Figure 28-28 on page 487, Figure 28-29 on page 488, Figure 28-30 on
page 489 and Figure 28-31 on page 489.

• RXRDY: Receive Holding Register Ready (automatically set / reset)
0 = No character has been received since the last TWI_RHR read operation.

1 = A byte has been received in the TWI_RHR since the last read.

RXRDY behavior in Master mode can be seen in Figure 28-10 on page 471.

RXRDY behavior in Slave mode can be seen in Figure 28-26 on page 485, Figure 28-29 on page 488, Figure 28-30 on
page 489 and Figure 28-31 on page 489.

• TXRDY: Transmit Holding Register Ready (automatically set / reset)
TXRDY used in Master mode:

0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into TWI_THR register.

1 = As soon as a data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at
the same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

TXRDY behavior in Master mode can be seen in Figure 28-8 on page 470.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXBUFE RXBUFF ENDTX ENDRX EOSACC SCLWS ARBLST NACK

7 6 5 4 3 2 1 0

– OVRE GACC SVACC SVREAD TXRDY RXRDY TXCOMP
498
11011B–ATARM–21-Feb-12

SAM3N498
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

TXRDY used in Slave mode:

0 = As soon as data is written in the TWI_THR, until this data has been transmitted and acknowledged (ACK or NACK).

1 = It indicates that the TWI_THR is empty and that data has been transmitted and acknowledged.

If TXRDY is high and if a NACK has been detected, the transmission will be stopped. Thus when TRDY = NACK = 1, the
programmer must not fill TWI_THR to avoid losing it.

TXRDY behavior in Slave mode can be seen in Figure 28-25 on page 485, Figure 28-28 on page 487, Figure 28-30 on
page 489 and Figure 28-31 on page 489.

• SVREAD: Slave Read (automatically set / reset)
This bit is only used in Slave mode. When SVACC is low (no Slave access has been detected) SVREAD is irrelevant.

0 = Indicates that a write access is performed by a Master.

1 = Indicates that a read access is performed by a Master.

SVREAD behavior can be seen in Figure 28-25 on page 485, Figure 28-26 on page 485, Figure 28-30 on page 489 and
Figure 28-31 on page 489.

• SVACC: Slave Access (automatically set / reset)
This bit is only used in Slave mode.

0 = TWI is not addressed. SVACC is automatically cleared after a NACK or a STOP condition is detected.

1 = Indicates that the address decoding sequence has matched (A Master has sent SADR). SVACC remains high until a
NACK or a STOP condition is detected.

SVACC behavior can be seen in Figure 28-25 on page 485, Figure 28-26 on page 485, Figure 28-30 on page 489 and Fig-
ure 28-31 on page 489.

• GACC: General Call Access (clear on read)
This bit is only used in Slave mode.

0 = No General Call has been detected.

1 = A General Call has been detected. After the detection of General Call, if need be, the programmer may acknowledge
this access and decode the following bytes and respond according to the value of the bytes.

GACC behavior can be seen in Figure 28-27 on page 486.

• OVRE: Overrun Error (clear on read)
This bit is only used in Master mode.

0 = TWI_RHR has not been loaded while RXRDY was set

1 = TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set.

• NACK: Not Acknowledged (clear on read)
NACK used in Master mode:

0 = Each data byte has been correctly received by the far-end side TWI slave component.

1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP.

NACK used in Slave Read mode:

0 = Each data byte has been correctly received by the Master.
499
11011B–ATARM–21-Feb-12

499
11011B–ATARM–21-Feb-12

1 = In read mode, a data byte has not been acknowledged by the Master. When NACK is set the programmer must not fill
TWI_THR even if TXRDY is set, because it means that the Master will stop the data transfer or re initiate it.

Note that in Slave Write mode all data are acknowledged by the TWI.

• ARBLST: Arbitration Lost (clear on read)
This bit is only used in Master mode.

0: Arbitration won.

1: Arbitration lost. Another master of the TWI bus has won the multi-master arbitration. TXCOMP is set at the same time.

• SCLWS: Clock Wait State (automatically set / reset)
This bit is only used in Slave mode.

0 = The clock is not stretched.

1 = The clock is stretched. TWI_THR / TWI_RHR buffer is not filled / emptied before the emission / reception of a new
character.

SCLWS behavior can be seen in Figure 28-28 on page 487 and Figure 28-29 on page 488.

• EOSACC: End Of Slave Access (clear on read)
This bit is only used in Slave mode.

0 = A slave access is being performing.

1 = The Slave Access is finished. End Of Slave Access is automatically set as soon as SVACC is reset.

EOSACC behavior can be seen in Figure 28-30 on page 489 and Figure 28-31 on page 489

• ENDRX: End of RX buffer
This bit is only used in Master mode.

0 = The Receive Counter Register has not reached 0 since the last write in TWI_RCR or TWI_RNCR.

1 = The Receive Counter Register has reached 0 since the last write in TWI_RCR or TWI_RNCR.

• ENDTX: End of TX buffer
This bit is only used in Master mode.

0 = The Transmit Counter Register has not reached 0 since the last write in TWI_TCR or TWI_TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in TWI_TCR or TWI_TNCR.

• RXBUFF: RX Buffer Full
This bit is only used in Master mode.

0 = TWI_RCR or TWI_RNCR have a value other than 0.

1 = Both TWI_RCR and TWI_RNCR have a value of 0.

• TXBUFE: TX Buffer Empty
This bit is only used in Master mode.

0 = TWI_TCR or TWI_TNCR have a value other than 0.

1 = Both TWI_TCR and TWI_TNCR have a value of 0.
500
11011B–ATARM–21-Feb-12

SAM3N500
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.11.7 TWI Interrupt Enable Register
Name: TWI_IER

Addresses: 0x40018024 (0), 0x4001C024 (1)

Access: Write-only

Reset: 0x00000000

• TXCOMP: Transmission Completed Interrupt Enable

• RXRDY: Receive Holding Register Ready Interrupt Enable

• TXRDY: Transmit Holding Register Ready Interrupt Enable

• SVACC: Slave Access Interrupt Enable

• GACC: General Call Access Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• NACK: Not Acknowledge Interrupt Enable

• ARBLST: Arbitration Lost Interrupt Enable

• SCL_WS: Clock Wait State Interrupt Enable

• EOSACC: End Of Slave Access Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0

– OVRE GACC SVACC – TXRDY RXRDY TXCOMP
501
11011B–ATARM–21-Feb-12

501
11011B–ATARM–21-Feb-12

28.11.8 TWI Interrupt Disable Register
Name: TWI_IDR

Addresses: 0x40018028 (0), 0x4001C028 (1)

Access: Write-only

Reset: 0x00000000

• TXCOMP: Transmission Completed Interrupt Disable

• RXRDY: Receive Holding Register Ready Interrupt Disable

• TXRDY: Transmit Holding Register Ready Interrupt Disable

• SVACC: Slave Access Interrupt Disable

• GACC: General Call Access Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• NACK: Not Acknowledge Interrupt Disable

• ARBLST: Arbitration Lost Interrupt Disable

• SCL_WS: Clock Wait State Interrupt Disable

• EOSACC: End Of Slave Access Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0

– OVRE GACC SVACC – TXRDY RXRDY TXCOMP
502
11011B–ATARM–21-Feb-12

SAM3N502
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

28.11.9 TWI Interrupt Mask Register
Name: TWI_IMR

Addresses: 0x4001802C (0), 0x4001C02C (1)

Access: Read-only

Reset: 0x00000000

• TXCOMP: Transmission Completed Interrupt Mask

• RXRDY: Receive Holding Register Ready Interrupt Mask

• TXRDY: Transmit Holding Register Ready Interrupt Mask

• SVACC: Slave Access Interrupt Mask

• GACC: General Call Access Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• NACK: Not Acknowledge Interrupt Mask

• ARBLST: Arbitration Lost Interrupt Mask

• SCL_WS: Clock Wait State Interrupt Mask

• EOSACC: End Of Slave Access Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0

– OVRE GACC SVACC – TXRDY RXRDY TXCOMP
503
11011B–ATARM–21-Feb-12

503
11011B–ATARM–21-Feb-12

28.11.10 TWI Receive Holding Register
Name: TWI_RHR

Addresses: 0x40018030 (0), 0x4001C030 (1)

Access: Read-only

Reset: 0x00000000

• RXDATA: Master or Slave Receive Holding Data

28.11.11 TWI Transmit Holding Register
Name: TWI_THR

Addresses: 0x40018034 (0), 0x4001C034 (1)

Access: Read-write

Reset: 0x00000000

• TXDATA: Master or Slave Transmit Holding Data

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

RXDATA

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TXDATA
504
11011B–ATARM–21-Feb-12

SAM3N504
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

29. Universal Asynchronous Receiver Transceiver (UART)

29.1 Description
The Universal Asynchronous Receiver Transmitter features a two-pin UART that can be used for
communication and trace purposes and offers an ideal medium for in-situ programming solu-
tions. Moreover, the association with two peripheral DMA controller (PDC) channels permits
packet handling for these tasks with processor time reduced to a minimum.

29.2 Embedded Characteristics
• Two-pin UART

– Implemented Features are USART Compatible

– Independent Receiver and Transmitter with a Common Programmable Baud Rate
Generator

– Even, Odd, Mark or Space Parity Generation

– Parity, Framing and Overrun Error Detection

– Automatic Echo, Local Loopback and Remote Loopback Channel Modes

– Interrupt Generation

– Support for Two PDC Channels with Connection to Receiver and Transmitter
505
11011B–ATARM–21-Feb-12

505
11011B–ATARM–21-Feb-12

29.3 Block Diagram

Figure 29-1. UART Functional Block Diagram

29.4 Product Dependencies

29.4.1 I/O Lines
The UART pins are multiplexed with PIO lines. The programmer must first configure the corre-
sponding PIO Controller to enable I/O line operations of the UART.

29.4.2 Power Management
The UART clock is controllable through the Power Management Controller. In this case, the pro-
grammer must first configure the PMC to enable the UART clock. Usually, the peripheral
identifier used for this purpose is 1.

Peripheral DMA Controller

Baud Rate
Generator

Transmit

Receive

Interrupt
Control

Peripheral
Bridge

Parallel
Input/
Output

UTXD

URXD

Power
Management

Controller

MCK

uart_irq

APB UART

Table 29-1. UART Pin Description

Pin Name Description Type

URXD UART Receive Data Input

UTXD UART Transmit Data Output

Table 29-2. I/O Lines

Instance Signal I/O Line Peripheral

UART0 URXD0 PA9 A

UART0 UTXD0 PA10 A

UART1 URXD1 PB2 A

UART1 UTXD1 PB3 A
506
11011B–ATARM–21-Feb-12

SAM3N506
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

29.4.3 Interrupt Source
The UART interrupt line is connected to one of the interrupt sources of the Nested Vectored
Interrupt Controller (NVIC). Interrupt handling requires programming of the NVIC before config-
uring the UART.

29.5 UART Operations
The UART operates in asynchronous mode only and supports only 8-bit character handling (with
parity). It has no clock pin.

The UART is made up of a receiver and a transmitter that operate independently, and a common
baud rate generator. Receiver timeout and transmitter time guard are not implemented. How-
ever, all the implemented features are compatible with those of a standard USART.

29.5.1 Baud Rate Generator
The baud rate generator provides the bit period clock named baud rate clock to both the receiver
and the transmitter.

The baud rate clock is the master clock divided by 16 times the value (CD) written in
UART_BRGR (Baud Rate Generator Register). If UART_BRGR is set to 0, the baud rate clock is
disabled and the UART remains inactive. The maximum allowable baud rate is Master Clock
divided by 16. The minimum allowable baud rate is Master Clock divided by (16 x 65536).

Figure 29-2. Baud Rate Generator

29.5.2 Receiver

29.5.2.1 Receiver Reset, Enable and Disable
After device reset, the UART receiver is disabled and must be enabled before being used. The
receiver can be enabled by writing the control register UART_CR with the bit RXEN at 1. At this
command, the receiver starts looking for a start bit.

The programmer can disable the receiver by writing UART_CR with the bit RXDIS at 1. If the
receiver is waiting for a start bit, it is immediately stopped. However, if the receiver has already
detected a start bit and is receiving the data, it waits for the stop bit before actually stopping its
operation.

 Baud Rate
MCK

16 CD ×
------------------------ =

MCK 16-bit Counter

0

Baud Rate
Clock

CD

CD

OUT

Divide
by 16

0

1

>1

Receiver
Sampling Clock
507
11011B–ATARM–21-Feb-12

507
11011B–ATARM–21-Feb-12

The programmer can also put the receiver in its reset state by writing UART_CR with the bit
RSTRX at 1. In doing so, the receiver immediately stops its current operations and is disabled,
whatever its current state. If RSTRX is applied when data is being processed, this data is lost.

29.5.2.2 Start Detection and Data Sampling
The UART only supports asynchronous operations, and this affects only its receiver. The UART
receiver detects the start of a received character by sampling the URXD signal until it detects a
valid start bit. A low level (space) on URXD is interpreted as a valid start bit if it is detected for
more than 7 cycles of the sampling clock, which is 16 times the baud rate. Hence, a space that is
longer than 7/16 of the bit period is detected as a valid start bit. A space which is 7/16 of a bit
period or shorter is ignored and the receiver continues to wait for a valid start bit.

When a valid start bit has been detected, the receiver samples the URXD at the theoretical mid-
point of each bit. It is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period)
so the bit sampling point is eight cycles (0.5-bit period) after the start of the bit. The first sampling
point is therefore 24 cycles (1.5-bit periods) after the falling edge of the start bit was detected.

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

Figure 29-3. Start Bit Detection

Figure 29-4. Character Reception

29.5.2.3 Receiver Ready
When a complete character is received, it is transferred to the UART_RHR and the RXRDY sta-
tus bit in UART_SR (Status Register) is set. The bit RXRDY is automatically cleared when the
receive holding register UART_RHR is read.

Sampling Clock

URXD

True Start
Detection

D0

Baud Rate
Clock

D0 D1 D2 D3 D4 D5 D6 D7

URXD

True Start Detection
Sampling

Parity Bit
Stop Bit

Example: 8-bit, parity enabled 1 stop

1 bit
period

0.5 bit
period
508
11011B–ATARM–21-Feb-12

SAM3N508
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 29-5. Receiver Ready

29.5.2.4 Receiver Overrun
If UART_RHR has not been read by the software (or the Peripheral Data Controller or DMA
Controller) since the last transfer, the RXRDY bit is still set and a new character is received, the
OVRE status bit in UART_SR is set. OVRE is cleared when the software writes the control regis-
ter UART_CR with the bit RSTSTA (Reset Status) at 1.

Figure 29-6. Receiver Overrun

29.5.2.5 Parity Error
Each time a character is received, the receiver calculates the parity of the received data bits, in
accordance with the field PAR in UART_MR. It then compares the result with the received parity
bit. If different, the parity error bit PARE in UART_SR is set at the same time the RXRDY is set.
The parity bit is cleared when the control register UART_CR is written with the bit RSTSTA
(Reset Status) at 1. If a new character is received before the reset status command is written,
the PARE bit remains at 1.

Figure 29-7. Parity Error

29.5.2.6 Receiver Framing Error
When a start bit is detected, it generates a character reception when all the data bits have been
sampled. The stop bit is also sampled and when it is detected at 0, the FRAME (Framing Error)
bit in UART_SR is set at the same time the RXRDY bit is set. The FRAME bit remains high until
the control register UART_CR is written with the bit RSTSTA at 1.

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PURXD

Read UART_RHR

RXRDY

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PURXD

RSTSTA

RXRDY

OVRE

stop stop

stopD0 D1 D2 D3 D4 D5 D6 D7 PSURXD

RSTSTA

RXRDY

PARE

Wrong Parity Bit
509
11011B–ATARM–21-Feb-12

509
11011B–ATARM–21-Feb-12

Figure 29-8. Receiver Framing Error

29.5.3 Transmitter

29.5.3.1 Transmitter Reset, Enable and Disable
After device reset, the UART transmitter is disabled and it must be enabled before being used.
The transmitter is enabled by writing the control register UART_CR with the bit TXEN at 1. From
this command, the transmitter waits for a character to be written in the Transmit Holding Register
(UART_THR) before actually starting the transmission.

The programmer can disable the transmitter by writing UART_CR with the bit TXDIS at 1. If the
transmitter is not operating, it is immediately stopped. However, if a character is being pro-
cessed into the Shift Register and/or a character has been written in the Transmit Holding
Register, the characters are completed before the transmitter is actually stopped.

The programmer can also put the transmitter in its reset state by writing the UART_CR with the
bit RSTTX at 1. This immediately stops the transmitter, whether or not it is processing
characters.

29.5.3.2 Transmit Format
The UART transmitter drives the pin UTXD at the baud rate clock speed. The line is driven
depending on the format defined in the Mode Register and the data stored in the Shift Register.
One start bit at level 0, then the 8 data bits, from the lowest to the highest bit, one optional parity
bit and one stop bit at 1 are consecutively shifted out as shown in the following figure. The field
PARE in the mode register UART_MR defines whether or not a parity bit is shifted out. When a
parity bit is enabled, it can be selected between an odd parity, an even parity, or a fixed space or
mark bit.

Figure 29-9. Character Transmission

29.5.3.3 Transmitter Control
When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in the status register
UART_SR. The transmission starts when the programmer writes in the Transmit Holding Regis-
ter (UART_THR), and after the written character is transferred from UART_THR to the Shift

D0 D1 D2 D3 D4 D5 D6 D7 PSURXD

RSTSTA

RXRDY

FRAME

Stop Bit
Detected at 0

stop

D0 D1 D2 D3 D4 D5 D6 D7

UTXD

Start
Bit

Parity
Bit

Stop
Bit

Example: Parity enabled

Baud Rate
 Clock
510
11011B–ATARM–21-Feb-12

SAM3N510
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Register. The TXRDY bit remains high until a second character is written in UART_THR. As
soon as the first character is completed, the last character written in UART_THR is transferred
into the shift register and TXRDY rises again, showing that the holding register is empty.

When both the Shift Register and UART_THR are empty, i.e., all the characters written in
UART_THR have been processed, the TXEMPTY bit rises after the last stop bit has been
completed.

Figure 29-10. Transmitter Control

29.5.4 Peripheral DMA Controller
Both the receiver and the transmitter of the UART are connected to a Peripheral DMA Controller
(PDC) channel.

The peripheral data controller channels are programmed via registers that are mapped within
the UART user interface from the offset 0x100. The status bits are reported in the UART status
register (UART_SR) and can generate an interrupt.

The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of
the data in UART_RHR. The TXRDY bit triggers the PDC channel data transfer of the transmit-
ter. This results in a write of data in UART_THR.

29.5.5 Test Modes
The UART supports three test modes. These modes of operation are programmed by using the
field CHMODE (Channel Mode) in the mode register (UART_MR).

The Automatic Echo mode allows bit-by-bit retransmission. When a bit is received on the URXD
line, it is sent to the UTXD line. The transmitter operates normally, but has no effect on the
UTXD line.

The Local Loopback mode allows the transmitted characters to be received. UTXD and URXD
pins are not used and the output of the transmitter is internally connected to the input of the
receiver. The URXD pin level has no effect and the UTXD line is held high, as in idle state.

The Remote Loopback mode directly connects the URXD pin to the UTXD line. The transmitter
and the receiver are disabled and have no effect. This mode allows a bit-by-bit retransmission.

UART_THR

Shift Register

UTXD

TXRDY

TXEMPTY

Data 0 Data 1

Data 0

Data 0

Data 1

Data 1S S PP

Write Data 0
in UART_THR

Write Data 1
in UART_THR

stopstop
511
11011B–ATARM–21-Feb-12

511
11011B–ATARM–21-Feb-12

Figure 29-11. Test Modes

Receiver

Transmitter
Disabled

RXD

TXD

Receiver

Transmitter
Disabled

RXD

TXD

VDD

Disabled

Receiver

Transmitter
Disabled

RXD

TXD

Disabled

Automatic Echo

Local Loopback

Remote Loopback VDD
512
11011B–ATARM–21-Feb-12

SAM3N512
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

29.6 Universal Asynchronous Receiver Transmitter (UART) User Interface

Table 29-3. Register Mapping

Offset Register Name Access Reset

0x0000 Control Register UART_CR Write-only –

0x0004 Mode Register UART_MR Read-write 0x0

0x0008 Interrupt Enable Register UART_IER Write-only –

0x000C Interrupt Disable Register UART_IDR Write-only –

0x0010 Interrupt Mask Register UART_IMR Read-only 0x0

0x0014 Status Register UART_SR Read-only –

0x0018 Receive Holding Register UART_RHR Read-only 0x0

0x001C Transmit Holding Register UART_THR Write-only –

0x0020 Baud Rate Generator Register UART_BRGR Read-write 0x0

0x0024 - 0x003C Reserved – – –

0x004C - 0x00FC Reserved – – –

0x0100 - 0x0124 PDC Area – – –
513
11011B–ATARM–21-Feb-12

513
11011B–ATARM–21-Feb-12

29.6.1 UART Control Register
Name: UART_CR

Addresses: 0x400E0600 (0), 0x400E0800 (1)

Access: Write-only

• RSTRX: Reset Receiver
0 = No effect.

1 = The receiver logic is reset and disabled. If a character is being received, the reception is aborted.

• RSTTX: Reset Transmitter
0 = No effect.

1 = The transmitter logic is reset and disabled. If a character is being transmitted, the transmission is aborted.

• RXEN: Receiver Enable
0 = No effect.

1 = The receiver is enabled if RXDIS is 0.

• RXDIS: Receiver Disable
0 = No effect.

1 = The receiver is disabled. If a character is being processed and RSTRX is not set, the character is completed before the
receiver is stopped.

• TXEN: Transmitter Enable
0 = No effect.

1 = The transmitter is enabled if TXDIS is 0.

• TXDIS: Transmitter Disable
0 = No effect.

1 = The transmitter is disabled. If a character is being processed and a character has been written in the UART_THR and
RSTTX is not set, both characters are completed before the transmitter is stopped.

• RSTSTA: Reset Status Bits
0 = No effect.

1 = Resets the status bits PARE, FRAME and OVRE in the UART_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –
514
11011B–ATARM–21-Feb-12

SAM3N514
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

29.6.2 UART Mode Register
Name: UART_MR

Addresses: 0x400E0604 (0), 0x400E0804 (1)

Access: Read-write

• PAR: Parity Type

• CHMODE: Channel Mode

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CHMODE – – PAR –

7 6 5 4 3 2 1 0

– – – – – – – –

Value Name Description

0 EVEN Even parity

1 ODD Odd parity

2 SPACE Space: parity forced to 0

3 MARK Mark: parity forced to 1

4 NO No parity

Value Name Description

0 NORMAL Normal Mode

1 AUTOMATIC Automatic Echo

2 LOCAL_LOOPBACK Local Loopback

3 REMOTE_LOOPBACK Remote Loopback
515
11011B–ATARM–21-Feb-12

515
11011B–ATARM–21-Feb-12

29.6.3 UART Interrupt Enable Register
Name: UART_IER

Addresses: 0x400E0608 (0), 0x400E0808 (1)

Access: Write-only

• RXRDY: Enable RXRDY Interrupt

• TXRDY: Enable TXRDY Interrupt

• ENDRX: Enable End of Receive Transfer Interrupt

• ENDTX: Enable End of Transmit Interrupt

• OVRE: Enable Overrun Error Interrupt

• FRAME: Enable Framing Error Interrupt

• PARE: Enable Parity Error Interrupt

• TXEMPTY: Enable TXEMPTY Interrupt

• TXBUFE: Enable Buffer Empty Interrupt

• RXBUFF: Enable Buffer Full Interrupt
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
516
11011B–ATARM–21-Feb-12

SAM3N516
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

29.6.4 UART Interrupt Disable Register
Name: UART_IDR

Addresses: 0x400E060C (0), 0x400E080C (1)

Access: Write-only

• RXRDY: Disable RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Disable End of Receive Transfer Interrupt

• ENDTX: Disable End of Transmit Interrupt

• OVRE: Disable Overrun Error Interrupt

• FRAME: Disable Framing Error Interrupt

• PARE: Disable Parity Error Interrupt

• TXEMPTY: Disable TXEMPTY Interrupt

• TXBUFE: Disable Buffer Empty Interrupt

• RXBUFF: Disable Buffer Full Interrupt
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
517
11011B–ATARM–21-Feb-12

517
11011B–ATARM–21-Feb-12

29.6.5 UART Interrupt Mask Register
Name: UART_IMR

Addresses: 0x400E0610 (0), 0x400E0810 (1)

Access: Read-only

• RXRDY: Mask RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Mask End of Receive Transfer Interrupt

• ENDTX: Mask End of Transmit Interrupt

• OVRE: Mask Overrun Error Interrupt

• FRAME: Mask Framing Error Interrupt

• PARE: Mask Parity Error Interrupt

• TXEMPTY: Mask TXEMPTY Interrupt

• TXBUFE: Mask TXBUFE Interrupt

• RXBUFF: Mask RXBUFF Interrupt
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
518
11011B–ATARM–21-Feb-12

SAM3N518
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

29.6.6 UART Status Register
Name: UART_SR

Addresses: 0x400E0614 (0), 0x400E0814 (1)

Access: Read-only

• RXRDY: Receiver Ready
0 = No character has been received since the last read of the UART_RHR or the receiver is disabled.

1 = At least one complete character has been received, transferred to UART_RHR and not yet read.

• TXRDY: Transmitter Ready
0 = A character has been written to UART_THR and not yet transferred to the Shift Register, or the transmitter is disabled.

1 = There is no character written to UART_THR not yet transferred to the Shift Register.

• ENDRX: End of Receiver Transfer
0 = The End of Transfer signal from the receiver Peripheral Data Controller channel is inactive.

1 = The End of Transfer signal from the receiver Peripheral Data Controller channel is active.

• ENDTX: End of Transmitter Transfer
0 = The End of Transfer signal from the transmitter Peripheral Data Controller channel is inactive.

1 = The End of Transfer signal from the transmitter Peripheral Data Controller channel is active.

• OVRE: Overrun Error
0 = No overrun error has occurred since the last RSTSTA.

1 = At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error
0 = No framing error has occurred since the last RSTSTA.

1 = At least one framing error has occurred since the last RSTSTA.

• PARE: Parity Error
0 = No parity error has occurred since the last RSTSTA.

1 = At least one parity error has occurred since the last RSTSTA.

• TXEMPTY: Transmitter Empty
0 = There are characters in UART_THR, or characters being processed by the transmitter, or the transmitter is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
519
11011B–ATARM–21-Feb-12

519
11011B–ATARM–21-Feb-12

1 = There are no characters in UART_THR and there are no characters being processed by the transmitter.

• TXBUFE: Transmission Buffer Empty
0 = The buffer empty signal from the transmitter PDC channel is inactive.

1 = The buffer empty signal from the transmitter PDC channel is active.

• RXBUFF: Receive Buffer Full
0 = The buffer full signal from the receiver PDC channel is inactive.

1 = The buffer full signal from the receiver PDC channel is active.
520
11011B–ATARM–21-Feb-12

SAM3N520
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

29.6.7 UART Receiver Holding Register
Name: UART_RHR

Addresses: 0x400E0618 (0), 0x400E0818 (1)

Access: Read-only

• RXCHR: Received Character
Last received character if RXRDY is set.

29.6.8 UART Transmit Holding Register
Name: UART_THR

Addresses: 0x400E061C (0), 0x400E081C (1)

Access: Write-only

• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

RXCHR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXCHR
521
11011B–ATARM–21-Feb-12

521
11011B–ATARM–21-Feb-12

29.6.9 UART Baud Rate Generator Register
Name: UART_BRGR

Addresses: 0x400E0620 (0), 0x400E0820 (1)

Access: Read-write

• CD: Clock Divisor
0 = Baud Rate Clock is disabled

1 to 65,535 = MCK / (CD x 16)

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CD

7 6 5 4 3 2 1 0

CD
522
11011B–ATARM–21-Feb-12

SAM3N522
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

30. Universal Synchronous Asynchronous Receiver Transmitter (USART)

30.1 Description
The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely programma-
ble (data length, parity, number of stop bits) to support a maximum of standards. The receiver
implements parity error, framing error and overrun error detection. The receiver time-out enables
handling variable-length frames and the transmitter timeguard facilitates communications with
slow remote devices. Multidrop communications are also supported through address bit han-
dling in reception and transmission.

The USART features three test modes: remote loopback, local loopback and automatic echo.

The USART supports specific operating modes providing interfaces on RS485 and SPI buses,
with ISO7816 T = 0 or T = 1 smart card slots and infrared transceivers (ISO7816 only on
USART0). The hardware handshaking feature enables an out-of-band flow control by automatic
management of the pins RTS and CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer manage-
ment without any intervention of the processor.

30.2 Embedded Characteristics
• Programmable Baud Rate Generator

• 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications

– 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode

– Parity Generation and Error Detection

– Framing Error Detection, Overrun Error Detection

– MSB- or LSB-first

– Optional Break Generation and Detection

– By 8 or by 16 Over-sampling Receiver Frequency

– Optional Hardware Handshaking RTS-CTS

– Receiver Time-out and Transmitter Timeguard

– Optional Multidrop Mode with Address Generation and Detection

• RS485 with Driver Control Signal

• ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards (Only on USART0)

– NACK Handling, Error Counter with Repetition and Iteration Limit

• IrDA Modulation and Demodulation (Only on USART0)

– Communication at up to 115.2 Kbps

• SPI Mode

– Master or Slave

– Serial Clock Programmable Phase and Polarity

– SPI Serial Clock (SCK) Frequency up to Internal Clock Frequency MCK/6

• Test Modes

– Remote Loopback, Local Loopback, Automatic Echo

• Supports Connection of Two Peripheral DMA Controller Channels (PDC)

– Offers Buffer Transfer without Processor Intervention
523
11011B–ATARM–21-Feb-12

523
11011B–ATARM–21-Feb-12

30.3 Block Diagram

Figure 30-1. USART Block Diagram

Table 30-1. SPI Operating Mode

PIN USART SPI Slave SPI Master

RXD RXD MOSI MISO

TXD TXD MISO MOSI

RTS RTS – CS

CTS CTS CS –

(Peripheral) DMA
Controller

Channel Channel

Interrupt
Controller

Receiver

USART
Interrupt

RXD

TXD

SCK

USART PIO
Controller

CTS

RTS

Transmitter

Baud Rate
Generator

User Interface

PMC
MCK

SLCK

DIV
MCK/DIV

APB
524
11011B–ATARM–21-Feb-12

SAM3N524
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

30.4 Application Block Diagram

Figure 30-2. Application Block Diagram

Smart
Card
Slot

USART

RS485
Drivers

Differential
Bus

IrDA
Transceivers

Field Bus
Driver

EMV
Driver IrDA

Driver

IrLAP

RS232
Drivers

Serial
Port

Serial
Driver

PPP

SPI
Driver

SPI
Bus
525
11011B–ATARM–21-Feb-12

525
11011B–ATARM–21-Feb-12

30.5 I/O Lines Description

Table 30-2. I/O Line Description

Name Description Type Active Level

SCK Serial Clock I/O

TXD
Transmit Serial Data
or Master Out Slave In (MOSI) in SPI Master Mode

or Master In Slave Out (MISO) in SPI Slave Mode

I/O

RXD

Receive Serial Data

or Master In Slave Out (MISO) in SPI Master Mode

or Master Out Slave In (MOSI) in SPI Slave Mode

Input

CTS
Clear to Send

or Slave Select (NSS) in SPI Slave Mode
Input Low

RTS
Request to Send

or Slave Select (NSS) in SPI Master Mode
Output Low
526
11011B–ATARM–21-Feb-12

SAM3N526
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

30.6 Product Dependencies

30.6.1 I/O Lines
The pins used for interfacing the USART may be multiplexed with the PIO lines. The program-
mer must first program the PIO controller to assign the desired USART pins to their peripheral
function. If I/O lines of the USART are not used by the application, they can be used for other
purposes by the PIO Controller.

To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up
is mandatory. If the hardware handshaking feature is used, the internal pull up on TXD must
also be enabled.

30.6.2 Power Management
The USART is not continuously clocked. The programmer must first enable the USART Clock in
the Power Management Controller (PMC) before using the USART. However, if the application
does not require USART operations, the USART clock can be stopped when not needed and be
restarted later. In this case, the USART will resume its operations where it left off.

Configuring the USART does not require the USART clock to be enabled.

30.6.3 Interrupt
The USART interrupt line is connected on one of the internal sources of the Interrupt Controller.
Using the USART interrupt requires the Interrupt Controller to be programmed first. Note that it is
not recommended to use the USART interrupt line in edge sensitive mode.

Table 30-3. I/O Lines

Instance Signal I/O Line Peripheral

USART0 CTS0 PA8 A

USART0 RTS0 PA7 A

USART0 RXD0 PA5 A

USART0 SCK0 PA2 B

USART0 TXD0 PA6 A

USART1 CTS1 PA25 A

USART1 RTS1 PA24 A

USART1 RXD1 PA21 A

USART1 SCK1 PA23 A

USART1 TXD1 PA22 A

Table 30-4. Peripheral IDs

Instance ID

USART0 14

USART1 15
527
11011B–ATARM–21-Feb-12

527
11011B–ATARM–21-Feb-12

30.7 Functional Description
The USART is capable of managing several types of serial synchronous or asynchronous
communications.

It supports the following communication modes:

• 5- to 9-bit full-duplex asynchronous serial communication

– MSB- or LSB-first

– 1, 1.5 or 2 stop bits

– Parity even, odd, marked, space or none

– By 8 or by 16 over-sampling receiver frequency

– Optional hardware handshaking

– Optional break management

– Optional multidrop serial communication

• High-speed 5- to 9-bit full-duplex synchronous serial communication

– MSB- or LSB-first

– 1 or 2 stop bits

– Parity even, odd, marked, space or none

– By 8 or by 16 over-sampling frequency

– Optional hardware handshaking

– Optional break management

– Optional multidrop serial communication

• RS485 with driver control signal

• ISO7816, T0 or T1 protocols for interfacing with smart cards (Only on USART0)

– NACK handling, error counter with repetition and iteration limit, inverted data.

• InfraRed IrDA Modulation and Demodulation

• SPI Mode

– Master or Slave

– Serial Clock Programmable Phase and Polarity

– SPI Serial Clock (SCK) Frequency up to Internal Clock Frequency MCK/6

• Test modes

– Remote loopback, local loopback, automatic echo
528
11011B–ATARM–21-Feb-12

SAM3N528
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

30.7.1 Baud Rate Generator
The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the
receiver and the transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode
Register (US_MR) between:

• the Master Clock MCK

• a division of the Master Clock, the divider being product dependent, but generally set to 8

• the external clock, available on the SCK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field
of the Baud Rate Generator Register (US_BRGR). If CD is programmed to 0, the Baud Rate
Generator does not generate any clock. If CD is programmed to 1, the divider is bypassed and
becomes inactive.

If the external SCK clock is selected, the duration of the low and high levels of the signal pro-
vided on the SCK pin must be longer than a Master Clock (MCK) period. The frequency of the
signal provided on SCK must be at least 3 times lower than MCK in USART mode, or 6 in SPI
mode.

Figure 30-3. Baud Rate Generator

30.7.1.1 Baud Rate in Asynchronous Mode
If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (US_BRGR).
The resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in US_MR.

If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is
cleared, the sampling is performed at 16 times the baud rate clock.

The following formula performs the calculation of the Baud Rate.

This gives a maximum baud rate of MCK divided by 8, assuming that MCK is the highest possi-
ble clock and that OVER is programmed to 1.

MCK/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

MCK

SCK

USCLKS

OVER

SCK

SYNC

SYNC

USCLKS = 3

1

0

2

3
0

1

0

1

FIDI

Baudrate SelectedClock
8 2 Over–()CD()

--=
529
11011B–ATARM–21-Feb-12

529
11011B–ATARM–21-Feb-12

Baud Rate Calculation Example

Table 30-5 shows calculations of CD to obtain a baud rate at 38400 bauds for different source
clock frequencies. This table also shows the actual resulting baud rate and the error.

The baud rate is calculated with the following formula:

The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.

30.7.1.2 Fractional Baud Rate in Asynchronous Mode
The Baud Rate generator previously defined is subject to the following limitation: the output fre-
quency changes by only integer multiples of the reference frequency. An approach to this
problem is to integrate a fractional N clock generator that has a high resolution. The generator
architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock.
This fractional part is programmed with the FP field in the Baud Rate Generator Register
(US_BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the

Table 30-5. Baud Rate Example (OVER = 0)

Source Clock
Expected Baud

Rate Calculation Result CD Actual Baud Rate Error

MHz Bit/s Bit/s

3 686 400 38 400 6.00 6 38 400.00 0.00%

4 915 200 38 400 8.00 8 38 400.00 0.00%

5 000 000 38 400 8.14 8 39 062.50 1.70%

7 372 800 38 400 12.00 12 38 400.00 0.00%

8 000 000 38 400 13.02 13 38 461.54 0.16%

12 000 000 38 400 19.53 20 37 500.00 2.40%

12 288 000 38 400 20.00 20 38 400.00 0.00%

14 318 180 38 400 23.30 23 38 908.10 1.31%

14 745 600 38 400 24.00 24 38 400.00 0.00%

18 432 000 38 400 30.00 30 38 400.00 0.00%

24 000 000 38 400 39.06 39 38 461.54 0.16%

24 576 000 38 400 40.00 40 38 400.00 0.00%

25 000 000 38 400 40.69 40 38 109.76 0.76%

32 000 000 38 400 52.08 52 38 461.54 0.16%

32 768 000 38 400 53.33 53 38 641.51 0.63%

33 000 000 38 400 53.71 54 38 194.44 0.54%

40 000 000 38 400 65.10 65 38 461.54 0.16%

50 000 000 38 400 81.38 81 38 580.25 0.47%

BaudRate MCK CD 16×⁄=

Error 1
ExpectedBaudRate

ActualBaudRate
---⎝ ⎠

⎛ ⎞–=
530
11011B–ATARM–21-Feb-12

SAM3N530
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

clock divider. This feature is only available when using USART normal mode. The fractional
Baud Rate is calculated using the following formula:

The modified architecture is presented below:

Figure 30-4. Fractional Baud Rate Generator

30.7.1.3 Baud Rate in Synchronous Mode or SPI Mode
If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in US_BRGR.

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART SCK pin. No division is active. The value written in
US_BRGR has no effect. The external clock frequency must be at least 3 times lower than the
system clock. In synchronous mode master (USCLKS = 0 or 1, CLK0 set to 1), the receive part
limits the SCK maximum frequency to MCK/3 in USART mode, or MCK/6 in SPI mode.

When either the external clock SCK or the internal clock divided (MCK/DIV) is selected, the
value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on the
SCK pin. If the internal clock MCK is selected, the Baud Rate Generator ensures a 50:50 duty
cycle on the SCK pin, even if the value programmed in CD is odd.

30.7.1.4 Baud Rate in ISO 7816 Mode
The ISO7816 specification defines the bit rate with the following formula:

Baudrate SelectedClock

8 2 Over–() CD FP
8

-------+⎝ ⎠
⎛ ⎞

⎝ ⎠
⎛ ⎞
---=

MCK/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

MCK

SCK

USCLKS

OVER

SCK

SYNC

SYNC

USCLKS = 3

1

0

2

3
0

1

0

1

FIDIglitch-free
 logic

Modulus
Control

FP

FP

BaudRate SelectedClock
CD

--------------------------------------=

B Di
Fi
------ f×=
531
11011B–ATARM–21-Feb-12

531
11011B–ATARM–21-Feb-12

where:

• B is the bit rate

• Di is the bit-rate adjustment factor

• Fi is the clock frequency division factor

• f is the ISO7816 clock frequency (Hz)

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 30-6.

Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 30-7.

Table 30-8 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816 clock and the
baud rate clock.

If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (US_MR) is first divided by the value programmed in the field CD in the Baud
Rate Generator Register (US_BRGR). The resulting clock can be provided to the SCK pin to
feed the smart card clock inputs. This means that the CLKO bit can be set in US_MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio
register (US_FIDI). This is performed by the Sampling Divider, which performs a division by up
to 2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the
user must program the FI_DI_RATIO field to a value as close as possible to the expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).

Figure 30-5 shows the relation between the Elementary Time Unit, corresponding to a bit time,
and the ISO 7816 clock.

Table 30-6. Binary and Decimal Values for Di

DI field 0001 0010 0011 0100 0101 0110 1000 1001

Di (decimal) 1 2 4 8 16 32 12 20

Table 30-7. Binary and Decimal Values for Fi

FI field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101

Fi (decimal) 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048

Table 30-8. Possible Values for the Fi/Di Ratio

Fi/Di 372 558 774 1116 1488 1806 512 768 1024 1536 2048

1 372 558 744 1116 1488 1860 512 768 1024 1536 2048

2 186 279 372 558 744 930 256 384 512 768 1024

4 93 139.5 186 279 372 465 128 192 256 384 512

8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256

16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128

32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64

12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6

20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4
532
11011B–ATARM–21-Feb-12

SAM3N532
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 30-5. Elementary Time Unit (ETU)

30.7.2 Receiver and Transmitter Control
After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (US_CR). However, the receiver registers can be programmed before the
receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (US_CR). However, the transmitter registers can be programmed before being
enabled.

The Receiver and the Transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by
setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register
(US_CR). The software resets clear the status flag and reset internal state machines but the
user interface configuration registers hold the value configured prior to software reset. Regard-
less of what the receiver or the transmitter is performing, the communication is immediately
stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in US_CR. If the receiver is disabled during a character reception, the
USART waits until the end of reception of the current character, then the reception is stopped. If
the transmitter is disabled while it is operating, the USART waits the end of transmission of both
the current character and character being stored in the Transmit Holding Register (US_THR). If
a timeguard is programmed, it is handled normally.

30.7.3 Synchronous and Asynchronous Modes

30.7.3.1 Transmitter Operations
The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(US_MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The
parity bit is set according to the PAR field in US_MR. The even, odd, space, marked or none
parity bit can be configured. The MSBF field in US_MR configures which data bit is sent first. If
written to 1, the most significant bit is sent first. If written to 0, the less significant bit is sent first.
The number of stop bits is selected by the NBSTOP field in US_MR. The 1.5 stop bit is sup-
ported in asynchronous mode only.

1 ETU

ISO7816 Clock
on SCK

ISO7816 I/O Line
on TXD

FI_DI_RATIO
ISO7816 Clock Cycles
533
11011B–ATARM–21-Feb-12

533
11011B–ATARM–21-Feb-12

Figure 30-6. Character Transmit

The characters are sent by writing in the Transmit Holding Register (US_THR). The transmitter
reports two status bits in the Channel Status Register (US_CSR): TXRDY (Transmitter Ready),
which indicates that US_THR is empty and TXEMPTY, which indicates that all the characters
written in US_THR have been processed. When the current character processing is completed,
the last character written in US_THR is transferred into the Shift Register of the transmitter and
US_THR becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in
US_THR while TXRDY is low has no effect and the written character is lost.

Figure 30-7. Transmitter Status

30.7.3.2 Asynchronous Receiver
If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver over-
samples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (US_MR).

The receiver samples the RXD line. If the line is sampled during one half of a bit time to 0, a start
bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16, (OVER to 0), a start is detected at the eighth sample to 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8
(OVER to 1), a start bit is detected at the fourth sample to 0. Then, data bits, parity bit and stop
bit are sampled on each 8 sampling clock cycle.

The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. For the synchronization
mechanism only, the number of stop bits has no effect on the receiver as it considers only one
stop bit, regardless of the field NBSTOP, so that resynchronization between the receiver and the

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled One Stop

Baud Rate
 Clock

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY
534
11011B–ATARM–21-Feb-12

SAM3N534
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

transmitter can occur. Moreover, as soon as the stop bit is sampled, the receiver starts looking
for a new start bit so that resynchronization can also be accomplished when the transmitter is
operating with one stop bit.

Figure 30-8 and Figure 30-9 illustrate start detection and character reception when USART
operates in asynchronous mode.

Figure 30-8. Asynchronous Start Detection

Figure 30-9. Asynchronous Character Reception

30.7.3.3 Synchronous Receiver
In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity
bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode
operations provide a high speed transfer capability.

Configuration fields and bits are the same as in asynchronous mode.

Figure 30-10 illustrates a character reception in synchronous mode.

Sampling
Clock (x16)

RXD

Start
Detection

Sampling

Baud Rate
Clock

RXD

Start
Rejection

Sampling

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 0 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D0

Sampling

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled

Baud Rate
Clock

Start
Detection

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples
535
11011B–ATARM–21-Feb-12

535
11011B–ATARM–21-Feb-12

Figure 30-10. Synchronous Mode Character Reception

30.7.3.4 Receiver Operations
When a character reception is completed, it is transferred to the Receive Holding Register
(US_RHR) and the RXRDY bit in the Status Register (US_CSR) rises. If a character is com-
pleted while the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is
transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing
the Control Register (US_CR) with the RSTSTA (Reset Status) bit to 1.

Figure 30-11. Receiver Status

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Sampling

Parity Bit
Stop Bit

Example: 8-bit, Parity Enabled 1 Stop

Baud Rate
Clock

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

RXRDY

OVRE

D0 D1 D2 D3 D4 D5 D6 D7
Start

Bit
Parity

Bit
Stop
Bit

RSTSTA = 1

Read
US_RHR
536
11011B–ATARM–21-Feb-12

SAM3N536
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

30.7.3.5 Parity
The USART supports five parity modes selected by programming the PAR field in the Mode
Register (US_MR). The PAR field also enables the Multidrop mode, see “Multidrop Mode” on
page 538. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit to 0 if a num-
ber of 1s in the character data bit is even, and to 1 if the number of 1s is odd. Accordingly, the
receiver parity checker counts the number of received 1s and reports a parity error if the sam-
pled parity bit does not correspond. If odd parity is selected, the parity generator of the
transmitter drives the parity bit to 1 if a number of 1s in the character data bit is even, and to 0 if
the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is
used, the parity generator of the transmitter drives the parity bit to 1 for all characters. The
receiver parity checker reports an error if the parity bit is sampled to 0. If the space parity is
used, the parity generator of the transmitter drives the parity bit to 0 for all characters. The
receiver parity checker reports an error if the parity bit is sampled to 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 30-9 shows an example of the parity bit for the character 0x41 (character ASCII “A”)
depending on the configuration of the USART. Because there are two bits to 1, 1 bit is added
when a parity is odd, or 0 is added when a parity is even.

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status
Register (US_CSR). The PARE bit can be cleared by writing the Control Register (US_CR) with
the RSTSTA bit to 1. Figure 30-12 illustrates the parity bit status setting and clearing.

Table 30-9. Parity Bit Examples

Character Hexa Binary Parity Bit Parity Mode

A 0x41 0100 0001 1 Odd

A 0x41 0100 0001 0 Even

A 0x41 0100 0001 1 Mark

A 0x41 0100 0001 0 Space

A 0x41 0100 0001 None None
537
11011B–ATARM–21-Feb-12

537
11011B–ATARM–21-Feb-12

Figure 30-12. Parity Error

30.7.3.6 Multidrop Mode
If the PAR field in the Mode Register (US_MR) is programmed to the value 0x6 or 0x07, the
USART runs in Multidrop Mode. This mode differentiates the data characters and the address
characters. Data is transmitted with the parity bit to 0 and addresses are transmitted with the
parity bit to 1.

If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when
the parity bit is high and the transmitter is able to send a character with the parity bit high when
the Control Register is written with the SENDA bit to 1.

To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA to 1.

The transmitter sends an address byte (parity bit set) when SENDA is written to US_CR. In this
case, the next byte written to US_THR is transmitted as an address. Any character written in
US_THR without having written the command SENDA is transmitted normally with the parity to
0.

30.7.3.7 Transmitter Timeguard
The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Regis-
ter (US_TTGR). When this field is programmed to zero no timeguard is generated. Otherwise,
the transmitter holds a high level on TXD after each transmitted byte during the number of bit
periods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 30-13, the behavior of TXRDY and TXEMPTY status bits is modified by
the programming of a timeguard. TXRDY rises only when the start bit of the next character is
sent, and thus remains to 0 during the timeguard transmission if a character has been written in
US_THR. TXEMPTY remains low until the timeguard transmission is completed as the time-
guard is part of the current character being transmitted.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Bad
Parity

Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

PARE

RXRDY

RSTSTA = 1
538
11011B–ATARM–21-Feb-12

SAM3N538
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 30-13. Timeguard Operations

Table 30-10 indicates the maximum length of a timeguard period that the transmitter can handle
in relation to the function of the Baud Rate.

30.7.3.8 Receiver Time-out
The Receiver Time-out provides support in handling variable-length frames. This feature detects
an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel
Status Register (US_CSR) rises and can generate an interrupt, thus indicating to the driver an
end of frame.

The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (US_RTOR). If the TO field is programmed to
0, the Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in US_CSR
remains to 0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO.
This counter is decremented at each bit period and reloaded each time a new character is
received. If the counter reaches 0, the TIMEOUT bit in the Status Register rises. Then, the user
can either:

• Stop the counter clock until a new character is received. This is performed by writing the
Control Register (US_CR) with the STTTO (Start Time-out) bit to 1. In this case, the idle state

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

TG = 4

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY

TG = 4

Table 30-10. Maximum Timeguard Length Depending on Baud Rate

Baud Rate Bit time Timeguard

Bit/sec µs ms

1 200 833 212.50

9 600 104 26.56

14400 69.4 17.71

19200 52.1 13.28

28800 34.7 8.85

33400 29.9 7.63

56000 17.9 4.55

57600 17.4 4.43

115200 8.7 2.21
539
11011B–ATARM–21-Feb-12

539
11011B–ATARM–21-Feb-12

on RXD before a new character is received will not provide a time-out. This prevents having
to handle an interrupt before a character is received and allows waiting for the next idle state
on RXD after a frame is received.

• Obtain an interrupt while no character is received. This is performed by writing US_CR with
the RETTO (Reload and Start Time-out) bit to 1. If RETTO is performed, the counter starts
counting down immediately from the value TO. This enables generation of a periodic interrupt
so that a user time-out can be handled, for example when no key is pressed on a keyboard.

If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time-out. This prevents having to
obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is
detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This
enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.

Figure 30-14 shows the block diagram of the Receiver Time-out feature.

Figure 30-14. Receiver Time-out Block Diagram

Table 30-11 gives the maximum time-out period for some standard baud rates.

Table 30-11. Maximum Time-out Period

Baud Rate Bit Time Time-out

bit/sec µs ms

600 1 667 109 225

1 200 833 54 613

2 400 417 27 306

4 800 208 13 653

9 600 104 6 827

14400 69 4 551

19200 52 3 413

28800 35 2 276

33400 30 1 962

16-bit Time-out
Counter

0

TO

TIMEOUT

Baud Rate
Clock

=

Character
Received

RETTO

Load

Clock

16-bit
Value

STTTO

D Q1

Clear
540
11011B–ATARM–21-Feb-12

SAM3N540
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

30.7.3.9 Framing Error
The receiver is capable of detecting framing errors. A framing error happens when the stop bit of
a received character is detected at level 0. This can occur if the receiver and the transmitter are
fully desynchronized.

A framing error is reported on the FRAME bit of the Channel Status Register (US_CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is
cleared by writing the Control Register (US_CR) with the RSTSTA bit to 1.

Figure 30-15. Framing Error Status

30.7.3.10 Transmit Break
The user can request the transmitter to generate a break condition on the TXD line. A break con-
dition drives the TXD line low during at least one complete character. It appears the same as a
0x00 character sent with the parity and the stop bits to 0. However, the transmitter holds the
TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing the Control Register (US_CR) with the STTBRK bit to 1. This
can be performed at any time, either while the transmitter is empty (no character in either the
Shift Register or in US_THR) or when a character is being transmitted. If a break is requested
while a character is being shifted out, the character is first completed before the TXD line is held
low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.

The break condition is removed by writing US_CR with the STPBRK bit to 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.

56000 18 1 170

57600 17 1 138

200000 5 328

Table 30-11. Maximum Time-out Period (Continued)

Baud Rate Bit Time Time-out

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

FRAME

RXRDY

RSTSTA = 1
541
11011B–ATARM–21-Feb-12

541
11011B–ATARM–21-Feb-12

The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in US_CSR is to 1 and the start of the
break condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing US_CR with both STTBRK and STPBRK bits to 1 can lead to an unpredictable result. All
STPBRK commands requested without a previous STTBRK command are ignored. A byte writ-
ten into the Transmit Holding Register while a break is pending, but not started, is ignored.

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times.
Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the
start of the next character. If the timeguard is programmed with a value higher than 12, the TXD
line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 30-16 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK)
commands on the TXD line.

Figure 30-16. Break Transmission

30.7.3.11 Receive Break
The receiver detects a break condition when all data, parity and stop bits are low. This corre-
sponds to detecting a framing error with data to 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit may
be cleared by writing the Control Register (US_CR) with the bit RSTSTA to 1.

An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchro-
nous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.

30.7.3.12 Hardware Handshaking
The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins
are used to connect with the remote device, as shown in Figure 30-17.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

TXRDY

TXEMPTY

STPBRK = 1STTBRK = 1

Break Transmission End of Break
542
11011B–ATARM–21-Feb-12

SAM3N542
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 30-17. Connection with a Remote Device for Hardware Handshaking

Setting the USART to operate with hardware handshaking is performed by writing the
USART_MODE field in the Mode Register (US_MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmitter
can handle hardware handshaking in any case.

Figure 30-18 shows how the receiver operates if hardware handshaking is enabled. The RTS
pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full) com-
ing from the PDC channel is high. Normally, the remote device does not start transmitting while
its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls, indicating
to the remote device that it can start transmitting. Defining a new buffer to the PDC clears the
status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 30-18. Receiver Behavior when Operating with Hardware Handshaking

Figure 30-19 shows how the transmitter operates if hardware handshaking is enabled. The CTS
pin disables the transmitter. If a character is being processing, the transmitter is disabled only
after the completion of the current character and transmission of the next character happens as
soon as the pin CTS falls.

Figure 30-19. Transmitter Behavior when Operating with Hardware Handshaking

USART

TXD

CTS

Remote
Device

RXD

TXDRXD

RTS

RTS

CTS

RTS

RXBUFF

Write
US_CR

RXEN = 1

RXD

RXDIS = 1

CTS

TXD
543
11011B–ATARM–21-Feb-12

543
11011B–ATARM–21-Feb-12

30.7.4 ISO7816 Mode
The USART features an ISO7816-compatible operating mode (Only on USART0). This mode
permits interfacing with smart cards and Security Access Modules (SAM) communicating
through an ISO7816 link. Both T = 0 and T = 1 protocols defined by the ISO7816 specification
are supported.

Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the
Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T =
1.

30.7.4.1 ISO7816 Mode Overview
The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see “Baud Rate Generator”
on page 529).

The USART connects to a smart card as shown in Figure 30-20. The TXD line becomes bidirec-
tional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is con-
sidered as the master of the communication as it generates the clock.

Figure 30-20. Connection of a Smart Card to the USART

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to
“USART Mode Register” on page 561 and “PAR: Parity Type” on page 562.

The USART cannot operate concurrently in both receiver and transmitter modes as the commu-
nication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.

The ISO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the I/O line at their negative value. The USART does not support this for-
mat and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (US_THR) or after reading it in the Receive Holding Register (US_RHR).

30.7.4.2 Protocol T = 0
In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/O line during the guard time.

Smart
Card

SCK
CLK

TXD
I/O

USART
544
11011B–ATARM–21-Feb-12

SAM3N544
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

If no parity error is detected, the I/O line remains to 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 30-21.

If a parity error is detected by the receiver, it drives the I/O line to 0 during the guard time, as
shown in Figure 30-22. This error bit is also named NACK, for Non Acknowledge. In this case,
the character lasts 1 bit time more, as the guard time length is the same and is added to the
error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character
in the Receive Holding Register (US_RHR). It appropriately sets the PARE bit in the Status Reg-
ister (US_SR) so that the software can handle the error.

Figure 30-21. T = 0 Protocol without Parity Error

Figure 30-22. T = 0 Protocol with Parity Error

Receive Error Counter

The USART receiver also records the total number of errors. This can be read in the Number of
Error (US_NER) register. The NB_ERRORS field can record up to 255 errors. Reading US_NER
automatically clears the NB_ERRORS field.

Receive NACK Inhibit

The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (US_MR). If INACK is to 1, no error signal is driven on the I/O
line even if a parity bit is detected.

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred and the RXRDY bit does rise.

Transmit Character Repetition

When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetit ion is enabled by writ ing the
MAX_ITERATION field in the Mode Register (US_MR) at a value higher than 0. Each character
can be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Next
Start

Bit

Guard
Time 2

D0 D1 D2 D3 D4 D5 D6 D7

I/O

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Start
Bit

Guard
Time 2

D0 D1

Error

Repetition
545
11011B–ATARM–21-Feb-12

545
11011B–ATARM–21-Feb-12

When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the
Channel Status Register (US_CSR). If the repetition of the character is acknowledged by the
receiver, the repetitions are stopped and the iteration counter is cleared.

The ITERATION bit in US_CSR can be cleared by writing the Control Register with the RSIT bit
to 1.

Disable Successive Receive NACK

The receiver can limit the number of successive NACKs sent back to the remote transmitter.
This is programmed by setting the bit DSNACK in the Mode Register (US_MR). The maximum
number of NACK transmitted is programmed in the MAX_ITERATION field. As soon as
MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on
the line and the ITERATION bit in the Channel Status Register is set.

30.7.4.3 Protocol T = 1
When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous for-
mat with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (US_CSR).

30.7.5 IrDA Mode
The USART features an IrDA mode (Only on USART0) supplying half-duplex point-to-point wire-
less communication. It embeds the modulator and demodulator which allows a glueless
connection to the infrared transceivers, as shown in Figure 30-23. The modulator and demodu-
lator are compliant with the IrDA specification version 1.1 and support data transfer speeds
ranging from 2.4 Kb/s to 115.2 Kb/s.

The USART IrDA mode is enabled by setting the USART_MODE field in the Mode Register
(US_MR) to the value 0x8. The IrDA Filter Register (US_IF) allows configuring the demodulator
filter. The USART transmitter and receiver operate in a normal asynchronous mode and all
parameters are accessible. Note that the modulator and the demodulator are activated.

Figure 30-23. Connection to IrDA Transceivers

The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.

To receive IrDA signals, the following needs to be done:

• Disable TX and Enable RX

IrDA
Transceivers

RXD RX

TXD

TX

USART

Demodulator

Modulator

Receiver

Transmitter
546
11011B–ATARM–21-Feb-12

SAM3N546
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

• Configure the TXD pin as PIO and set it as an output to 0 (to avoid LED emission). Disable
the internal pull-up (better for power consumption).

• Receive data

30.7.5.1 IrDA Modulation
For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. “0” is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are
shown in Table 30-12.

Figure 30-24 shows an example of character transmission.

Figure 30-24. IrDA Modulation

30.7.5.2 IrDA Baud Rate
Table 30-13 gives some examples of CD values, baud rate error and pulse duration. Note that
the requirement on the maximum acceptable error of ±1.87% must be met.

Table 30-12. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)

2.4 Kb/s 78.13 µs

9.6 Kb/s 19.53 µs

19.2 Kb/s 9.77 µs

38.4 Kb/s 4.88 µs

57.6 Kb/s 3.26 µs

115.2 Kb/s 1.63 µs

Bit Period Bit Period3
16

Start
Bit

Data Bits Stop
Bit

0 00 0 01 11 11
Transmitter

Output

TXD

Table 30-13. IrDA Baud Rate Error

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time

3 686 400 115 200 2 0.00% 1.63

20 000 000 115 200 11 1.38% 1.63

32 768 000 115 200 18 1.25% 1.63

40 000 000 115 200 22 1.38% 1.63

3 686 400 57 600 4 0.00% 3.26

20 000 000 57 600 22 1.38% 3.26

32 768 000 57 600 36 1.25% 3.26
547
11011B–ATARM–21-Feb-12

547
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.7.5.3 IrDA Demodulator

The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is
loaded with the value programmed in US_IF. When a falling edge is detected on the RXD pin,
the Filter Counter starts counting down at the Master Clock (MCK) speed. If a rising edge is
detected on the RXD pin, the counter stops and is reloaded with US_IF. If no rising edge is
detected when the counter reaches 0, the input of the receiver is driven low during one bit time.

Figure 30-25 illustrates the operations of the IrDA demodulator.

Figure 30-25. IrDA Demodulator Operations

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in
US_FIDI must be set to a value higher than 0 in order to assure IrDA communications operate
correctly.

40 000 000 57 600 43 0.93% 3.26

3 686 400 38 400 6 0.00% 4.88

20 000 000 38 400 33 1.38% 4.88

32 768 000 38 400 53 0.63% 4.88

40 000 000 38 400 65 0.16% 4.88

3 686 400 19 200 12 0.00% 9.77

20 000 000 19 200 65 0.16% 9.77

32 768 000 19 200 107 0.31% 9.77

40 000 000 19 200 130 0.16% 9.77

3 686 400 9 600 24 0.00% 19.53

20 000 000 9 600 130 0.16% 19.53

32 768 000 9 600 213 0.16% 19.53

40 000 000 9 600 260 0.16% 19.53

3 686 400 2 400 96 0.00% 78.13

20 000 000 2 400 521 0.03% 78.13

32 768 000 2 400 853 0.04% 78.13

Table 30-13. IrDA Baud Rate Error (Continued)

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time

MCK

RXD

Receiver
Input

Pulse
Rejected

6 5 4 3 2 6 16 5 4 3 2 0

Pulse
Accepted

Counter
Value
548
11011B–ATARM–21-Feb-12

548
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.7.6 RS485 Mode
The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configuration
of all the parameters is possible. The difference is that the RTS pin is driven high when the
transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical
connection of the USART to a RS485 bus is shown in Figure 30-26.

Figure 30-26. Typical Connection to a RS485 Bus

The USART is set in RS485 mode by programming the USART_MODE field in the Mode Regis-
ter (US_MR) to the value 0x1.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character com-
pletion. Figure 30-27 gives an example of the RTS waveform during a character transmission
when the timeguard is enabled.

Figure 30-27. Example of RTS Drive with Timeguard

USART

RTS

TXD

RXD

Differential
Bus

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

TG = 4

Write
US_THR

TXRDY

TXEMPTY

RTS
549
11011B–ATARM–21-Feb-12

549
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.7.7 SPI Mode
The Serial Peripheral Interface (SPI) Mode is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master” which controls the data
flow, while the other devices act as “slaves'' which have data shifted into and out by the master.
Different CPUs can take turns being masters and one master may simultaneously shift data into
multiple slaves. (Multiple Master Protocol is the opposite of Single Master Protocol, where one
CPU is always the master while all of the others are always slaves.) However, only one slave
may drive its output to write data back to the master at any given time.

A slave device is selected when its NSS signal is asserted by the master. The USART in SPI
Master mode can address only one SPI Slave because it can generate only one NSS signal.

The SPI system consists of two data lines and two control lines:

• Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input of the slave.

• Master In Slave Out (MISO): This data line supplies the output data from a slave to the input
of the master.

• Serial Clock (SCK): This control line is driven by the master and regulates the flow of the data
bits. The master may transmit data at a variety of baud rates. The SCK line cycles once for
each bit that is transmitted.

• Slave Select (NSS): This control line allows the master to select or deselect the slave.

30.7.7.1 Modes of Operation
The USART can operate in SPI Master Mode or in SPI Slave Mode.

Operation in SPI Master Mode is programmed by writing to 0xE the USART_MODE field in the
Mode Register. In this case the SPI lines must be connected as described below:

• the MOSI line is driven by the output pin TXD

• the MISO line drives the input pin RXD

• the SCK line is driven by the output pin SCK

• the NSS line is driven by the output pin RTS

Operation in SPI Slave Mode is programmed by writing to 0xF the USART_MODE field in the
Mode Register. In this case the SPI lines must be connected as described below:

• the MOSI line drives the input pin RXD

• the MISO line is driven by the output pin TXD

• the SCK line drives the input pin SCK

• the NSS line drives the input pin CTS

In order to avoid unpredicted behavior, any change of the SPI Mode must be followed by a soft-
ware reset of the transmitter and of the receiver (except the initial configuration after a hardware
reset). (See Section 30.7.7.4).

30.7.7.2 Baud Rate
In SPI Mode, the baudrate generator operates in the same way as in USART synchronous
mode: See “Baud Rate in Synchronous Mode or SPI Mode” on page 531. However, there are
some restrictions:
550
11011B–ATARM–21-Feb-12

550
11011B–ATARM–21-Feb-12

SAM3NSAM3N

In SPI Master Mode:

• the external clock SCK must not be selected (USCLKS ≠ 0x3), and the bit CLKO must be set
to “1” in the Mode Register (US_MR), in order to generate correctly the serial clock on the
SCK pin.

• to obtain correct behavior of the receiver and the transmitter, the value programmed in CD
must be superior or equal to 6.

• if the internal clock divided (MCK/DIV) is selected, the value programmed in CD must be
even to ensure a 50:50 mark/space ratio on the SCK pin, this value can be odd if the internal
clock is selected (MCK).

In SPI Slave Mode:

• the external clock (SCK) selection is forced regardless of the value of the USCLKS field in the
Mode Register (US_MR). Likewise, the value written in US_BRGR has no effect, because
the clock is provided directly by the signal on the USART SCK pin.

• to obtain correct behavior of the receiver and the transmitter, the external clock (SCK)
frequency must be at least 6 times lower than the system clock.
551
11011B–ATARM–21-Feb-12

551
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.7.7.3 Data Transfer
Up to 9 data bits are successively shifted out on the TXD pin at each rising or falling edge
(depending of CPOL and CPHA) of the programmed serial clock. There is no Start bit, no Parity
bit and no Stop bit.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(US_MR). The 9 bits are selected by setting the MODE 9 bit regardless of the CHRL field. The
MSB data bit is always sent first in SPI Mode (Master or Slave).

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Mode Register. The clock phase is programmed with the
CPHA bit. These two parameters determine the edges of the clock signal upon which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 30-14. SPI Bus Protocol Mode

SPI Bus Protocol Mode CPOL CPHA

0 0 1

1 0 0

2 1 1

3 1 0
552
11011B–ATARM–21-Feb-12

552
11011B–ATARM–21-Feb-12

SAM3NSAM3N

Figure 30-28. SPI Transfer Format (CPHA=1, 8 bits per transfer)

Figure 30-29. SPI Transfer Format (CPHA=0, 8 bits per transfer)

30.7.7.4 Receiver and Transmitter Control
See “Receiver and Transmitter Control” on page 533.

6

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
SPI Master ->TXD
SPI Slave -> RXD

NSS
SPI Master -> RTS
SPI Slave -> CTS

SCK cycle (for reference)

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

1 2 3 4 5 7 86

MISO
SPI Master ->RXD
SPI Slave -> TXD

SCK
(CPOL = 0)

SCK
(CPOL = 1)

1 2 3 4 5 7

MOSI
SPI Master -> TXD
SPI Slave -> RXD

MISO
SPI Master -> RXD

SPI Slave -> TXD

NSS
SPI Master -> RTS
SPI Slave -> CTS

SCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

1

1

2

2

6

553
11011B–ATARM–21-Feb-12

553
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.7.7.5 Character Transmission
The characters are sent by writing in the Transmit Holding Register (US_THR). An additional
condition for transmitting a character can be added when the USART is configured in SPI mas-
ter mode. In the USART_MR register, the value configured on INACK field can prevent any
character transmission (even if US_THR has been written) while the receiver side is not ready
(character not read). When INACK equals 0, the character is transmitted whatever the receiver
status. If INACK is set to 1, the transmitter waits for the receiver holding register to be read
before transmitting the character (RXRDY flag cleared), thus preventing any overflow (character
loss) on the receiver side.

The transmitter reports two status bits in the Channel Status Register (US_CSR): TXRDY
(Transmitter Ready), which indicates that US_THR is empty and TXEMPTY, which indicates
that all the characters written in US_THR have been processed. When the current character pro-
cessing is completed, the last character written in US_THR is transferred into the Shift Register
of the transmitter and US_THR becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in
US_THR while TXRDY is low has no effect and the written character is lost.

If the USART is in SPI Slave Mode and if a character must be sent while the Transmit Holding
Register (US_THR) is empty, the UNRE (Underrun Error) bit is set. The TXD transmission line
stays at high level during all this time. The UNRE bit is cleared by writing the Control Register
(US_CR) with the RSTSTA (Reset Status) bit to 1.

In SPI Master Mode, the slave select line (NSS) is asserted at low level 1 Tbit (Time bit) before
the transmission of the MSB bit and released at high level 1 Tbit after the transmission of the
LSB bit. So, the slave select line (NSS) is always released between each character transmission
and a minimum delay of 3 Tbits always inserted. However, in order to address slave devices
supporting the CSAAT mode (Chip Select Active After Transfer), the slave select line (NSS) can
be forced at low level by writing the Control Register (US_CR) with the RTSEN bit to 1. The
slave select line (NSS) can be released at high level only by writing the Control Register
(US_CR) with the RTSDIS bit to 1 (for example, when all data have been transferred to the slave
device).

In SPI Slave Mode, the transmitter does not require a falling edge of the slave select line (NSS)
to initiate a character transmission but only a low level. However, this low level must be present
on the slave select line (NSS) at least 1 Tbit before the first serial clock cycle corresponding to
the MSB bit.

30.7.7.6 Character Reception
When a character reception is completed, it is transferred to the Receive Holding Register
(US_RHR) and the RXRDY bit in the Status Register (US_CSR) rises. If a character is com-
pleted while RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred
into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing the Control
Register (US_CR) with the RSTSTA (Reset Status) bit to 1.

To ensure correct behavior of the receiver in SPI Slave Mode, the master device sending the
frame must ensure a minimum delay of 1 Tbit between each character transmission. The
receiver does not require a falling edge of the slave select line (NSS) to initiate a character
reception but only a low level. However, this low level must be present on the slave select line
(NSS) at least 1 Tbit before the first serial clock cycle corresponding to the MSB bit.
554
11011B–ATARM–21-Feb-12

554
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.7.7.7 Receiver Timeout
Because the receiver baudrate clock is active only during data transfers in SPI Mode, a receiver
timeout is impossible in this mode, whatever the Time-out value is (field TO) in the Time-out
Register (US_RTOR).

30.7.8 Test Modes

The USART can be programmed to operate in three different test modes. The internal loopback
capability allows on-board diagnostics. In the loopback mode the USART interface pins are dis-
connected or not and reconfigured for loopback internally or externally.

30.7.8.1 Normal Mode
Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD
pin.

Figure 30-30. Normal Mode Configuration

30.7.8.2 Automatic Echo Mode
Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it
is sent to the TXD pin, as shown in Figure 30-31. Programming the transmitter has no effect on
the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver remains
active.

Figure 30-31. Automatic Echo Mode Configuration

|
|
|
|

|
|
|
|

DATA 0

DATA N

RXRDY

USART3
LIN CONTROLLER

APB bus

READ BUFFER

NACT = SUBSCRIBEDATA 0

DATA N

TXRDY

USART3
LIN CONTROLLER

APB bus

WRITE BUFFER

(Peripheral) DMA
Controller

(Peripheral) DMA
Controller

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD
555
11011B–ATARM–21-Feb-12

555
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.7.8.3 Local Loopback Mode
Local loopback mode connects the output of the transmitter directly to the input of the receiver,
as shown in Figure 30-32. The TXD and RXD pins are not used. The RXD pin has no effect on
the receiver and the TXD pin is continuously driven high, as in idle state.

Figure 30-32. Local Loopback Mode Configuration

30.7.8.4 Remote Loopback Mode
Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 30-33.
The transmitter and the receiver are disabled and have no effect. This mode allows bit-by-bit
retransmission.

Figure 30-33. Remote Loopback Mode Configuration

30.7.9 Write Protection Registers
To prevent any single software error that may corrupt USART behavior, certain address spaces can be write-protected by
setting the WPEN bit in the USART Write Protect Mode Register (US_WPMR).

If a write access to the protected registers is detected, then the WPVS flag in the USART Write Protect Status Register
(US_WPSR) is set and the field WPVSRC indicates in which register the write access has been attempted.

The WPVS flag is reset by writing the USART Write Protect Mode Register (US_WPMR) with the appropriate access key,
WPKEY.

The protected registers are:

• “USART Mode Register”

• “USART Baud Rate Generator Register”

• “USART Receiver Time-out Register”

• “USART Transmitter Timeguard Register”

• “USART FI DI RATIO Register”

• “USART IrDA FILTER Register”

Receiver

Transmitter

RXD

TXD
1

Receiver

Transmitter

RXD

TXD

1

556
11011B–ATARM–21-Feb-12

556
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8 Universal Synchronous Asynchronous Receiver Transmitter (USART) User Interface

Table 30-15. Register Mapping

Offset Register Name Access Reset

0x0000 Control Register US_CR Write-only –

0x0004 Mode Register US_MR Read-write –

0x0008 Interrupt Enable Register US_IER Write-only –

0x000C Interrupt Disable Register US_IDR Write-only –

0x0010 Interrupt Mask Register US_IMR Read-only 0x0

0x0014 Channel Status Register US_CSR Read-only –

0x0018 Receiver Holding Register US_RHR Read-only 0x0

0x001C Transmitter Holding Register US_THR Write-only –

0x0020 Baud Rate Generator Register US_BRGR Read-write 0x0

0x0024 Receiver Time-out Register US_RTOR Read-write 0x0

0x0028 Transmitter Timeguard Register US_TTGR Read-write 0x0

0x2C - 0x3C Reserved – – –

0x0040 FI DI Ratio Register US_FIDI Read-write 0x174

0x0044 Number of Errors Register US_NER Read-only –

0x0048 Reserved – – –

0x004C IrDA Filter Register US_IF Read-write 0x0

0xE4 Write Protect Mode Register US_WPMR Read-write 0x0

0xE8 Write Protect Status Register US_WPSR Read-only 0x0

0x5C - 0xFC Reserved – – –

0x100 - 0x128 Reserved for PDC Registers – – –
557
11011B–ATARM–21-Feb-12

557
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.1 USART Control Register
Name: US_CR

Addresses: 0x40024000 (0), 0x40028000 (1)

Access: Write-only

• RSTRX: Reset Receiver
0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter
0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable
0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable
0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable
0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable
0: No effect.

1: Disables the transmitter.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RTSDIS/RCS RTSEN/FCS – –

15 14 13 12 11 10 9 8
RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0
TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –
558
11011B–ATARM–21-Feb-12

558
11011B–ATARM–21-Feb-12

SAM3NSAM3N

• RSTSTA: Reset Status Bits
0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, UNRE and RXBRK in US_CSR.

• STTBRK: Start Break
0: No effect.

1: Starts transmission of a break after the characters present in US_THR and the Transmit Shift Register have been trans-
mitted. No effect if a break is already being transmitted.

• STPBRK: Stop Break
0: No effect.

1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.
No effect if no break is being transmitted.

• STTTO: Start Time-out
0: No effect.

1: Starts waiting for a character before clocking the time-out counter. Resets the status bit TIMEOUT in US_CSR.

• SENDA: Send Address
0: No effect.

1: In Multidrop Mode only, the next character written to the US_THR is sent with the address bit set.

• RSTIT: Reset Iterations
0: No effect.

1: Resets ITERATION in US_CSR. No effect if the ISO7816 is not enabled.

• RSTNACK: Reset Non Acknowledge
0: No effect

1: Resets NACK in US_CSR.

• RETTO: Rearm Time-out
0: No effect

1: Restart Time-out

• RTSEN: Request to Send Enable
0: No effect.

1: Drives the pin RTS to 0.

• FCS: Force SPI Chip Select

– Applicable if USART operates in SPI Master Mode (USART_MODE = 0xE):

FCS = 0: No effect.

FCS = 1: Forces the Slave Select Line NSS (RTS pin) to 0, even if USART is no transmitting, in order to address SPI slave

devices supporting the CSAAT Mode (Chip Select Active After Transfer).
559
11011B–ATARM–21-Feb-12

559
11011B–ATARM–21-Feb-12

SAM3NSAM3N

• RTSDIS: Request to Send Disable
0: No effect.

1: Drives the pin RTS to 1.

• RCS: Release SPI Chip Select

– Applicable if USART operates in SPI Master Mode (USART_MODE = 0xE):

RCS = 0: No effect.

RCS = 1: Releases the Slave Select Line NSS (RTS pin).
560
11011B–ATARM–21-Feb-12

560
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.2 USART Mode Register
Name: US_MR

Addresses: 0x40024004 (0), 0x40028004 (1)

Access: Read-write

This register can only be written if the WPEN bit is cleared in “USART Write Protect Mode Register” on page 577.

• USART_MODE

• USCLKS: Clock Selection

• CHRL: Character Length.

31 30 29 28 27 26 25 24

– – – FILTER – MAX_ITERATION

23 22 21 20 19 18 17 16
INVDATA – DSNACK INACK OVER CLKO MODE9 MSBF/CPOL

15 14 13 12 11 10 9 8
CHMODE NBSTOP PAR SYNC/CPHA

7 6 5 4 3 2 1 0
CHRL USCLKS USART_MODE

Value Name Description

0x0 NORMAL Normal mode

0x1 RS485 RS485

0x2 HW_HANDSHAKING Hardware Handshaking

0x4 IS07816_T_0 IS07816 Protocol: T = 0

0x6 IS07816_T_1 IS07816 Protocol: T = 1

0x8 IRDA IrDA

0xE SPI_MASTER SPI Master

0xF SPI_SLAVE SPI Slave

Value Name Description

0 MCK Master Clock MCK is selected

1 DIV Internal Clock Divided MCK/DIV (DIV=8) is selected

3 SCK Serial Clock SLK is selected

Value Name Description

0 5_BIT Character length is 5 bits

1 6_BIT Character length is 6 bits

2 7_BIT Character length is 7 bits

3 8_BIT Character length is 8 bits
561
11011B–ATARM–21-Feb-12

561
11011B–ATARM–21-Feb-12

SAM3NSAM3N

• SYNC: Synchronous Mode Select
0: USART operates in Asynchronous Mode.

1: USART operates in Synchronous Mode.

• CPHA: SPI Clock Phase

– Applicable if USART operates in SPI Mode (USART_MODE = 0xE or 0xF):

CPHA = 0: Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

CPHA = 1: Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

CPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. CPHA is used
with CPOL to produce the required clock/data relationship between master and slave devices.

• PAR: Parity Type

• NBSTOP: Number of Stop Bits

• CHMODE: Channel Mode

• MSBF: Bit Order
0: Least Significant Bit is sent/received first.

1: Most Significant Bit is sent/received first.

• CPOL: SPI Clock Polarity

– Applicable if USART operates in SPI Mode (Slave or Master, USART_MODE = 0xE or 0xF):

CPOL = 0: The inactive state value of SPCK is logic level zero.

CPOL = 1: The inactive state value of SPCK is logic level one.

Value Name Description

0 EVEN Even parity

1 ODD Odd parity

2 SPACE Parity forced to 0 (Space)

3 MARK Parity forced to 1 (Mark)

4 NO No parity

6 MULTIDROP Multidrop mode

Value Name Description

0 1_BIT 1 stop bit

1 1_5_BIT 1.5 stop bit (SYNC = 0) or reserved (SYNC = 1)

2 2_BIT 2 stop bits

Value Name Description

0 NORMAL Normal Mode

1 AUTOMATIC Automatic Echo. Receiver input is connected to the TXD pin.

2 LOCAL_LOOPBACK Local Loopback. Transmitter output is connected to the Receiver Input.

3 REMOTE_LOOPBACK Remote Loopback. RXD pin is internally connected to the TXD pin.
562
11011B–ATARM–21-Feb-12

562
11011B–ATARM–21-Feb-12

SAM3NSAM3N

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with CPHA to produce the required
clock/data relationship between master and slave devices.

• MODE9: 9-bit Character Length
0: CHRL defines character length.

1: 9-bit character length.

• CLKO: Clock Output Select
0: The USART does not drive the SCK pin.

1: The USART drives the SCK pin if USCLKS does not select the external clock SCK.

• OVER: Oversampling Mode
0: 16x Oversampling.

1: 8x Oversampling.

• INACK: Inhibit Non Acknowledge
0: The NACK is generated.

1: The NACK is not generated.

Note: In SPI master mode, if INACK = 0 the character transmission starts as soon as a character is written into US_THR
register (assuming TXRDY was set). When INACK is 1, an additional condition must be met. The character transmission
starts when a character is written and only if RXRDY flag is cleared (Receiver Holding Register has been read).

• DSNACK: Disable Successive NACK
0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-
ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.

• INVDATA: INverted Data
0: The data field transmitted on TXD line is the same as the one written in US_THR register or the content read in US_RHR
is the same as RXD line. Normal mode of operation.

1: The data field transmitted on TXD line is inverted (voltage polarity only) compared to the value written on US_THR regis-
ter or the content read in US_RHR is inverted compared to what is received on RXD line (or ISO7816 IO line). Inverted
Mode of operation, useful for contactless card application. To be used with configuration bit MSBF.

• MAX_ITERATION
Defines the maximum number of iterations in mode ISO7816, protocol T= 0.

• FILTER: Infrared Receive Line Filter
0: The USART does not filter the receive line.

1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).
563
11011B–ATARM–21-Feb-12

563
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.3 USART Interrupt Enable Register
Name: US_IER

Addresses: 0x40024008 (0), 0x40028008 (1)

Access: Write-only

0: No effect

1: Enables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• RXBRK: Receiver Break Interrupt Enable

• ENDRX: End of Receive Transfer Interrupt Enable

• ENDTX: End of Transmit Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• FRAME: Framing Error Interrupt Enable

• PARE: Parity Error Interrupt Enable

• TIMEOUT: Time-out Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• ITER: Max number of Repetitions Reached

• UNRE: SPI Underrun Error

• TXBUFE: Buffer Empty Interrupt Enable

• RXBUFF: Buffer Full Interrupt Enable

• NACK: Non AcknowledgeInterrupt Enable

• CTSIC: Clear to Send Input Change Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – CTSIC – – –

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITER/UNRE TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
564
11011B–ATARM–21-Feb-12

564
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.4 USART Interrupt Disable Register
Name: US_IDR

Addresses: 0x4002400C (0), 0x4002800C (1)

Access: Write-only

0: No effect

1: Disables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• RXBRK: Receiver Break Interrupt Disable

• ENDRX: End of Receive Transfer Interrupt Disable

• ENDTX: End of Transmit Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• FRAME: Framing Error Interrupt Disable

• PARE: Parity Error Interrupt Disable

• TIMEOUT: Time-out Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• ITER: Max number of Repetitions Reached Disable

• UNRE: SPI Underrun Error Disable

• TXBUFE: Buffer Empty Interrupt Disable

• RXBUFF: Buffer Full Interrupt Disable

• NACK: Non AcknowledgeInterrupt Disable

• CTSIC: Clear to Send Input Change Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – CTSIC – – –

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITER/UNRE TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
565
11011B–ATARM–21-Feb-12

565
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.5 USART Interrupt Mask Register
Name: US_IMR

Addresses: 0x40024010 (0), 0x40028010 (1)

Access: Read-only

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• RXBRK: Receiver Break Interrupt Mask

• ENDRX: End of Receive Transfer Interrupt Mask

• ENDTX: End of Transmit Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• FRAME: Framing Error Interrupt Mask

• PARE: Parity Error Interrupt Mask

• TIMEOUT: Time-out Interrupt Mask

• TXEMPTY: TXEMPTY Interrupt Mask

• ITER: Max number of Repetitions Reached Mask

• UNRE: SPI Underrun Error Mask

• TXBUFE: Buffer Empty Interrupt Mask

• RXBUFF: Buffer Full Interrupt Mask

• NACK: Non AcknowledgeInterrupt Mask

• CTSIC: Clear to Send Input Change Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – CTSIC – – –

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITER/UNRE TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
566
11011B–ATARM–21-Feb-12

566
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.6 USART Channel Status Register
Name: US_CSR

Addresses: 0x40024014 (0), 0x40028014 (1)

Access: Read-only

• RXRDY: Receiver Ready
0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were
being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and US_RHR has not yet been read.

• TXRDY: Transmitter Ready
0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been
requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1: There is no character in the US_THR.

• RXBRK: Break Received/End of Break
0: No Break received or End of Break detected since the last RSTSTA.

1: Break Received or End of Break detected since the last RSTSTA.

• ENDRX: End of Receiver Transfer
0: The End of Transfer signal from the Receive PDC channel is inactive.

1: The End of Transfer signal from the Receive PDC channel is active.

• ENDTX: End of Transmitter Transfer
0: The End of Transfer signal from the Transmit PDC channel is inactive.

1: The End of Transfer signal from the Transmit PDC channel is active.

• OVRE: Overrun Error
0: No overrun error has occurred since the last RSTSTA.

1: At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error
0: No stop bit has been detected low since the last RSTSTA.

1: At least one stop bit has been detected low since the last RSTSTA.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
CTS – – – CTSIC – – –

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITER/UNRE TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
567
11011B–ATARM–21-Feb-12

567
11011B–ATARM–21-Feb-12

SAM3NSAM3N

• PARE: Parity Error
0: No parity error has been detected since the last RSTSTA.

1: At least one parity error has been detected since the last RSTSTA.

• TIMEOUT: Receiver Time-out
0: There has not been a time-out since the last Start Time-out command (STTTO in US_CR) or the Time-out Register is 0.

1: There has been a time-out since the last Start Time-out command (STTTO in US_CR).

• TXEMPTY: Transmitter Empty
0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.

1: There are no characters in US_THR, nor in the Transmit Shift Register.

• ITER: Max number of Repetitions Reached
0: Maximum number of repetitions has not been reached since the last RSTSTA.

1: Maximum number of repetitions has been reached since the last RSTSTA.

• UNRE: SPI Underrun Error
– Applicable if USART operates in SPI Slave Mode (USART_MODE = 0xF):

UNRE = 0: No SPI underrun error has occurred since the last RSTSTA.

UNRE = 1: At least one SPI underrun error has occurred since the last RSTSTA.

• TXBUFE: Transmission Buffer Empty
0: The signal Buffer Empty from the Transmit PDC channel is inactive.

1: The signal Buffer Empty from the Transmit PDC channel is active.

• RXBUFF: Reception Buffer Full
0: The signal Buffer Full from the Receive PDC channel is inactive.

1: The signal Buffer Full from the Receive PDC channel is active.

• NACK: Non AcknowledgeInterrupt
0: Non Acknowledge has not been detected since the last RSTNACK.

1: At least one Non Acknowledge has been detected since the last RSTNACK.

• CTSIC: Clear to Send Input Change Flag
0: No input change has been detected on the CTS pin since the last read of US_CSR.

1: At least one input change has been detected on the CTS pin since the last read of US_CSR.

• CTS: Image of CTS Input
0: CTS is set to 0.

1: CTS is set to 1.
568
11011B–ATARM–21-Feb-12

568
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.7 USART Receive Holding Register
Name: US_RHR

Addresses: 0x40024018 (0), 0x40028018 (1)

Access: Read-only

• RXCHR: Received Character
Last character received if RXRDY is set.

• RXSYNH: Received Sync
0: Last Character received is a Data.

1: Last Character received is a Command.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RXSYNH – – – – – – RXCHR

7 6 5 4 3 2 1 0
RXCHR
569
11011B–ATARM–21-Feb-12

569
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.8 USART Transmit Holding Register
Name: US_THR

Addresses: 0x4002401C (0), 0x4002801C (1)

Access: Write-only

• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

• TXSYNH: Sync Field to be transmitted
0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.

1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXSYNH – – – – – – TXCHR

7 6 5 4 3 2 1 0
TXCHR
570
11011B–ATARM–21-Feb-12

570
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.9 USART Baud Rate Generator Register
Name: US_BRGR

Addresses: 0x40024020 (0), 0x40028020 (1)

Access: Read-write

This register can only be written if the WPEN bit is cleared in “USART Write Protect Mode Register” on page 577.

• CD: Clock Divider

• FP: Fractional Part
0: Fractional divider is disabled.

1 - 7: Baudrate resolution, defined by FP x 1/8.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – FP

15 14 13 12 11 10 9 8
CD

7 6 5 4 3 2 1 0
CD

CD

USART_MODE ≠ ISO7816

USART_MODE =
ISO7816

SYNC = 0

SYNC = 1
or

USART_MODE = SPI
(Master or Slave)

OVER = 0 OVER = 1

0 Baud Rate Clock Disabled

1 to 65535
Baud Rate =

Selected Clock/(16*CD)

Baud Rate =

Selected Clock/(8*CD)

Baud Rate =

Selected Clock /CD
Baud Rate = Selected
Clock/(FI_DI_RATIO*CD)
571
11011B–ATARM–21-Feb-12

571
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.10 USART Receiver Time-out Register
Name: US_RTOR

Addresses: 0x40024024 (0), 0x40028024 (1)

Access: Read-write

This register can only be written if the WPEN bit is cleared in “USART Write Protect Mode Register” on page 577.

• TO: Time-out Value
0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TO

7 6 5 4 3 2 1 0

TO
572
11011B–ATARM–21-Feb-12

572
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.11 USART Transmitter Timeguard Register
Name: US_TTGR

Addresses: 0x40024028 (0), 0x40028028 (1)

Access: Read-write

This register can only be written if the WPEN bit is cleared in “USART Write Protect Mode Register” on page 577.

• TG: Timeguard Value

0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TG
573
11011B–ATARM–21-Feb-12

573
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.12 USART FI DI RATIO Register
Name: US_FIDI

Addresses: 0x40024040 (0), 0x40028040 (1)

Access: Read-write

Reset Value: 0x174

This register can only be written if the WPEN bit is cleared in “USART Write Protect Mode Register” on page 577.

• FI_DI_RATIO: FI Over DI Ratio Value
0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1 - 2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – FI_DI_RATIO

7 6 5 4 3 2 1 0

FI_DI_RATIO
574
11011B–ATARM–21-Feb-12

574
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.13 USART Number of Errors Register
Name: US_NER

Addresses: 0x40024044 (0), 0x40028044 (1)

Access: Read-only

• NB_ERRORS: Number of Errors
Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
NB_ERRORS
575
11011B–ATARM–21-Feb-12

575
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.14 USART IrDA FILTER Register
Name: US_IF

Addresses: 0x4002404C (0), 0x4002804C (1)

Access: Read-write

This register can only be written if the WPEN bit is cleared in “USART Write Protect Mode Register” on page 577.

• IRDA_FILTER: IrDA Filter
Sets the filter of the IrDA demodulator.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
IRDA_FILTER
576
11011B–ATARM–21-Feb-12

576
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.15 USART Write Protect Mode Register
Name: US_WPMR

Addresses: 0x400240E4 (0), 0x400280E4 (1)

Access: Read-write

Reset: See Table 30-15

• WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x555341 (“USA” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x555341 (“USA” in ASCII).

Protects the registers:

• “USART Mode Register” on page 561

• “USART Baud Rate Generator Register” on page 571

• “USART Receiver Time-out Register” on page 572

• “USART Transmitter Timeguard Register” on page 573

• “USART FI DI RATIO Register” on page 574

• “USART IrDA FILTER Register” on page 576

• WPKEY: Write Protect KEY
Should be written at value 0x555341 (“USA” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

— — — — — — — WPEN
577
11011B–ATARM–21-Feb-12

577
11011B–ATARM–21-Feb-12

SAM3NSAM3N

30.8.16 USART Write Protect Status Register
Name: US_WPSR

Addresses: 0x400240E8 (0), 0x400280E8 (1)

Access: Read-only

Reset: See Table 30-15

• WPVS: Write Protect Violation Status
0 = No Write Protect Violation has occurred since the last read of the US_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the US_WPSR register. If this violation is an unauthorized
attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protect Violation Source
When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write
access has been attempted.

Note: Reading US_WPSR automatically clears all fields.

31 30 29 28 27 26 25 24

— — — — — — — —

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

— — — — — — — WPVS
578
11011B–ATARM–21-Feb-12

578
11011B–ATARM–21-Feb-12

SAM3NSAM3N

31. Timer Counter (TC)

31.1 Description
The Timer Counter (TC) includes three identical 16-bit Timer Counter channels.

Each channel can be independently programmed to perform a wide range of functions including
frequency measurement, event counting, interval measurement, pulse generation, delay timing
and pulse width modulation.

Each channel has three external clock inputs, five internal clock inputs and two multi-purpose
input/output signals which can be configured by the user. Each channel drives an internal inter-
rupt signal which can be programmed to generate processor interrupts.

The Timer Counter (TC) embeds a quadrature decoder logic connected in front of the 3 timers
and driven by TIOA0, TIOB0 and TIOA1 inputs. When enabled, the quadrature decoder per-
forms the input lines filtering, decoding of quadrature signals and connects to the 3
timers/counters in order to read the position and speed of the motor through user interface.

The Timer Counter block has two global registers which act upon all three TC channels.

The Block Control Register allows the three channels to be started simultaneously with the same
instruction.

The Block Mode Register defines the external clock inputs for each channel, allowing them to be
chained.

Table 31-1 gives the assignment of the device Timer Counter clock inputs common to Timer
Counter 0 to 2.

Note: 1. When Slow Clock is selected for Master Clock (CSS = 0 in PMC Master CLock Register),
TIMER_CLOCK5 input is Master Clock, i.e., Slow CLock modified by PRES and MDIV fields.

31.2 Embedded Characteristics
• Three 16-bit Timer Counter Channels

• A Wide Range of Functions Including:

– Frequency Measurement

– Event Counting

– Interval Measurement

– Pulse Generation

– Delay Timing

– Pulse Width Modulation

– Up/down Capabilities

Table 31-1. Timer Counter Clock Assignment

Name Definition

TIMER_CLOCK1 MCK/2

TIMER_CLOCK2 MCK/8

TIMER_CLOCK3 MCK/32

TIMER_CLOCK4 MCK/128

TIMER_CLOCK5(1) SLCK
579
11011B–ATARM–21-Feb-12

579
11011B–ATARM–21-Feb-12

– Quadrature Decoder Logic

– 2-bit Gray Up/Down Count for Stepper Motor

• Each Channel is User-configurable and Contains:

– Three External Clock Inputs

– Five Internal Clock Inputs

– Two Multi-purpose Input/Output Signals

• Internal Interrupt Signal

• Two Global Registers that Act on All Three TC Channels

• Configuration Registers can be write protected
580
11011B–ATARM–21-Feb-12

SAM3N580
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.3 Block Diagram

Figure 31-1. Timer Counter Block Diagram

Timer/Counter
Channel 0

Timer/Counter
Channel 1

Timer/Counter
Channel 2

SYNC

Parallel I/O
Controller

TC1XC1S

TC0XC0S

TC2XC2S

INT0

INT1

INT2

TIOA0

TIOA1

TIOA2

TIOB0

TIOB1

TIOB2

XC0

XC1

XC2

XC0

XC1

XC2

XC0

XC1

XC2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TIOA1

TIOA2

TIOA0

TIOA2

TIOA0

TIOA1

Interrupt
Controller

TCLK0
TCLK1
TCLK2

TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Timer Counter

TIOA

TIOB

TIOA

TIOB

TIOA

TIOB

SYNC

SYNC

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

TIMER_CLOCK1

Table 31-2. Signal Name Description

Block/Channel Signal Name Description

Channel Signal

XC0, XC1, XC2 External Clock Inputs

TIOA
Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Output

TIOB
Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Input/Output

INT Interrupt Signal Output

SYNC Synchronization Input Signal
581
11011B–ATARM–21-Feb-12

581
11011B–ATARM–21-Feb-12

31.4 Pin Name List

31.5 Product Dependencies

31.5.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the TC pins to their peripheral
functions.

31.5.2 Power Management
The TC is clocked through the Power Management Controller (PMC), thus the programmer must
first configure the PMC to enable the Timer Counter clock.

31.5.3 Interrupt
The TC has an interrupt line connected to the Interrupt Controller (IC). Handling the TC interrupt
requires programming the IC before configuring the TC.

Pin Name Description Type

TCLK0-TCLK2 External Clock Input Input

TIOA0-TIOA2 I/O Line A I/O

TIOB0-TIOB2 I/O Line B I/O

Table 31-3. I/O Lines

Instance Signal I/O Line Peripheral

TC0 TCLK0 PA4 B

TC0 TCLK1 PA28 B

TC0 TCLK2 PA29 B

TC0 TIOA0 PA0 B

TC0 TIOA1 PA15 B

TC0 TIOA2 PA26 B

TC0 TIOB0 PA1 B

TC0 TIOB1 PA16 B

TC0 TIOB2 PA27 B

TC1 TCLK3 PC25 B

TC1 TCLK4 PC28 B

TC1 TCLK5 PC31 B

TC1 TIOA3 PC23 B

TC1 TIOA4 PC26 B

TC1 TIOA5 PC29 B

TC1 TIOB3 PC24 B

TC1 TIOB4 PC27 B

TC1 TIOB5 PC30 B
582
11011B–ATARM–21-Feb-12

SAM3N582
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.6 Functional Description

31.6.1 TC Description
The three channels of the Timer Counter are independent and identical in operation except
when quadrature decoder is enabled. The registers for channel programming are listed in Table
31-4 on page 603.

31.6.2 16-bit Counter
Each channel is organized around a 16-bit counter. The value of the counter is incremented at
each positive edge of the selected clock. When the counter has reached the value 0xFFFF and
passes to 0x0000, an overflow occurs and the COVFS bit in TC_SR (Status Register) is set.

The current value of the counter is accessible in real time by reading the Counter Value Regis-
ter, TC_CV. The counter can be reset by a trigger. In this case, the counter value passes to
0x0000 on the next valid edge of the selected clock.

31.6.3 Clock Selection
At block level, input clock signals of each channel can either be connected to the external inputs
TCLK0, TCLK1 or TCLK2, or be connected to the internal I/O signals TIOA0, TIOA1 or TIOA2
for chaining by programming the TC_BMR (Block Mode). See Figure 31-2 ”Clock Chaining
Selection”.

Each channel can independently select an internal or external clock source for its counter:

• Internal clock signals: TIMER_CLOCK1, TIMER_CLOCK2, TIMER_CLOCK3,
TIMER_CLOCK4, TIMER_CLOCK5

• External clock signals: XC0, XC1 or XC2

This selection is made by the TCCLKS bits in the TC Channel Mode Register.

The selected clock can be inverted with the CLKI bit in TC_CMR. This allows counting on the
opposite edges of the clock.

The burst function allows the clock to be validated when an external signal is high. The BURST
parameter in the Mode Register defines this signal (none, XC0, XC1, XC2). See Figure 31-3
”Clock Selection”

Note: In all cases, if an external clock is used, the duration of each of its levels must be longer than the
master clock period. The external clock frequency must be at least 2.5 times lower than the mas-
ter clock
583
11011B–ATARM–21-Feb-12

583
11011B–ATARM–21-Feb-12

Figure 31-2. Clock Chaining Selection

Figure 31-3. Clock Selection

Timer/Counter
Channel 0

SYNC

TC0XC0S

TIOA0

TIOB0

XC0

XC1 = TCLK1

XC2 = TCLK2

TCLK0
TIOA1

TIOA2

Timer/Counter
Channel 1

SYNC

TC1XC1S

TIOA1

TIOB1

XC0 = TCLK0

XC1

XC2 = TCLK2

TCLK1
TIOA0

TIOA2

Timer/Counter
Channel 2

SYNC

TC2XC2S

TIOA2

TIOB2

XC0 = TCLK0

XC1 = TCLK1

XC2

TCLK2
TIOA0

TIOA1

TIMER_CLOCK1

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC0

XC1

XC2

TCCLKS

CLKI
Synchronous

Edge Detection

BURST

MCK

1

Selected
Clock
584
11011B–ATARM–21-Feb-12

SAM3N584
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.6.4 Clock Control
The clock of each counter can be controlled in two different ways: it can be enabled/disabled
and started/stopped. See Figure 31-4.

• The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS
commands in the Control Register. In Capture Mode it can be disabled by an RB load event
if LDBDIS is set to 1 in TC_CMR. In Waveform Mode, it can be disabled by an RC Compare
event if CPCDIS is set to 1 in TC_CMR. When disabled, the start or the stop actions have no
effect: only a CLKEN command in the Control Register can re-enable the clock. When the
clock is enabled, the CLKSTA bit is set in the Status Register.

• The clock can also be started or stopped: a trigger (software, synchro, external or compare)
always starts the clock. The clock can be stopped by an RB load event in Capture Mode
(LDBSTOP = 1 in TC_CMR) or a RC compare event in Waveform Mode (CPCSTOP = 1 in
TC_CMR). The start and the stop commands have effect only if the clock is enabled.

Figure 31-4. Clock Control

31.6.5 TC Operating Modes
Each channel can independently operate in two different modes:

• Capture Mode provides measurement on signals.

• Waveform Mode provides wave generation.

The TC Operating Mode is programmed with the WAVE bit in the TC Channel Mode Register.

In Capture Mode, TIOA and TIOB are configured as inputs.

In Waveform Mode, TIOA is always configured to be an output and TIOB is an output if it is not
selected to be the external trigger.

31.6.6 Trigger
A trigger resets the counter and starts the counter clock. Three types of triggers are common to
both modes, and a fourth external trigger is available to each mode.

Q S

R

S

R

Q

CLKSTA CLKEN CLKDIS

Stop
Event

Disable
EventCounter

Clock

Selected
Clock Trigger
585
11011B–ATARM–21-Feb-12

585
11011B–ATARM–21-Feb-12

Regardless of the trigger used, it will be taken into account at the following active edge of the
selected clock. This means that the counter value can be read differently from zero just after a
trigger, especially when a low frequency signal is selected as the clock.

The following triggers are common to both modes:

• Software Trigger: Each channel has a software trigger, available by setting SWTRG in
TC_CCR.

• SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has
the same effect as a software trigger. The SYNC signals of all channels are asserted
simultaneously by writing TC_BCR (Block Control) with SYNC set.

• Compare RC Trigger: RC is implemented in each channel and can provide a trigger when
the counter value matches the RC value if CPCTRG is set in TC_CMR.

The channel can also be configured to have an external trigger. In Capture Mode, the external
trigger signal can be selected between TIOA and TIOB. In Waveform Mode, an external event
can be programmed on one of the following signals: TIOB, XC0, XC1 or XC2. This external
event can then be programmed to perform a trigger by setting ENETRG in TC_CMR.

If an external trigger is used, the duration of the pulses must be longer than the master clock
period in order to be detected.

31.6.7 Capture Operating Mode
This mode is entered by clearing the WAVE parameter in TC_CMR (Channel Mode Register).

Capture Mode allows the TC channel to perform measurements such as pulse timing, fre-
quency, period, duty cycle and phase on TIOA and TIOB signals which are considered as
inputs.

Figure 31-5 shows the configuration of the TC channel when programmed in Capture Mode.

31.6.8 Capture Registers A and B
Registers A and B (RA and RB) are used as capture registers. This means that they can be
loaded with the counter value when a programmable event occurs on the signal TIOA.

The LDRA parameter in TC_CMR defines the TIOA edge for the loading of register A, and the
LDRB parameter defines the TIOA edge for the loading of Register B.

RA is loaded only if it has not been loaded since the last trigger or if RB has been loaded since
the last loading of RA.

RB is loaded only if RA has been loaded since the last trigger or the last loading of RB.

Loading RA or RB before the read of the last value loaded sets the Overrun Error Flag (LOVRS)
in TC_SR (Status Register). In this case, the old value is overwritten.

31.6.9 Trigger Conditions
In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trig-
ger can be defined.

The ABETRG bit in TC_CMR selects TIOA or TIOB input signal as an external trigger. The
ETRGEDG parameter defines the edge (rising, falling or both) detected to generate an external
trigger. If ETRGEDG = 0 (none), the external trigger is disabled.
586
11011B–ATARM–21-Feb-12

SAM3N586
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 31-5. Capture Mode

T
IM

E
R

_C
LO

C
K

1

T
IM

E
R

_C
LO

C
K

2

T
IM

E
R

_C
LO

C
K

3

T
IM

E
R

_C
LO

C
K

4

T
IM

E
R

_C
LO

C
K

5

X
C

0

X
C

1

X
C

2

T
C

C
LK

S

C
LK

I

Q
S R

S R

Q

C
LK

S
T

A
C

LK
E

N
C

LK
D

IS

B
U

R
S

T

T
IO

B

R
eg

is
te

r
C

C
ap

tu
re

R

eg
is

te
r

A

C
ap

tu
re

R

eg
is

te
r

B
C

om
pa

re
 R

C
 =

16
-b

it
C

ou
nt

er

A
B

E
T

R
G

S
W

T
R

G

E
T

R
G

E
D

G
C

P
C

T
R

G

TC1_IMR

T
rig

LDRBS

LDRAS

ETRGS

TC1_SR

LOVRS

COVFS

S
Y

N
C

1

M
T

IO
B

T
IO

A

M
T

IO
A

LD
R

A

LD
B

S
T

O
P

If
R

A
 is

 n
ot

 lo
ad

ed
or

 R
B

 is
 L

oa
de

d
If

R
A

 is
 L

oa
de

d

LD
B

D
IS

CPCS

IN
T

E
dg

e
D

et
ec

to
r

E
dg

e
D

et
ec

to
r

LD
R

B

E
dg

e
D

et
ec

to
r

C
LK

O
V

F

R
E

S
E

T

T
im

er
/C

ou
nt

er
 C

ha
nn

el

M
C

K

S
yn

ch
ro

no
us

E
dg

e
D

et
ec

tio
n

587
11011B–ATARM–21-Feb-12

587
11011B–ATARM–21-Feb-12

31.6.10 Waveform Operating Mode
Waveform operating mode is entered by setting the WAVE parameter in TC_CMR (Channel
Mode Register).

In Waveform Operating Mode the TC channel generates 1 or 2 PWM signals with the same fre-
quency and independently programmable duty cycles, or generates different types of one-shot
or repetitive pulses.

In this mode, TIOA is configured as an output and TIOB is defined as an output if it is not used
as an external event (EEVT parameter in TC_CMR).

Figure 31-6 shows the configuration of the TC channel when programmed in Waveform Operat-
ing Mode.

31.6.11 Waveform Selection
Depending on the WAVSEL parameter in TC_CMR (Channel Mode Register), the behavior of
TC_CV varies.

With any selection, RA, RB and RC can all be used as compare registers.

RA Compare is used to control the TIOA output, RB Compare is used to control the TIOB output
(if correctly configured) and RC Compare is used to control TIOA and/or TIOB outputs.
588
11011B–ATARM–21-Feb-12

SAM3N588
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 31-6. Waveform Mode

T
C

C
LK

S

C
LK

I

Q
S R

S R

Q

C
LK

S
T

A
C

LK
E

N
C

LK
D

IS

C
P

C
D

IS

B
U

R
S

T

T
IO

B

R
eg

is
te

r
A

R
eg

is
te

r
B

R
eg

is
te

r
C

C
om

pa
re

 R
A

 =

C
om

pa
re

 R
B

 =

C
om

pa
re

 R
C

 =

C
P

C
S

T
O

P

16
-b

it
C

ou
nt

er

E
E

V
T

E
E

V
T

E
D

G

S
Y

N
C

S
W

T
R

G

E
N

E
T

R
G

W
A

V
S

E
L

TC1_IMR

T
rig

A
C

P
C

A
C

P
A

A
E

E
V

T

A
S

W
T

R
G

B
C

P
C

B
C

P
B

B
E

E
V

T

B
S

W
T

R
G

T
IO

A

M
T

IO
A

T
IO

B

M
T

IO
B

CPAS

COVFS

ETRGS

TC1_SR

CPCS

CPBS

C
LK

O
V

F
R

E
S

E
T

Output Controller Output Controller

IN
T

1

E
dg

e
D

et
ec

to
r

T
im

er
/C

ou
nt

er
 C

ha
nn

el

T
IM

E
R

_C
LO

C
K

1

T
IM

E
R

_C
LO

C
K

2

T
IM

E
R

_C
LO

C
K

3

T
IM

E
R

_C
LO

C
K

4

T
IM

E
R

_C
LO

C
K

5

X
C

0

X
C

1

X
C

2

W
A

V
S

E
L

M
C

K

S
yn

ch
ro

no
us

E
dg

e
D

et
ec

tio
n

589
11011B–ATARM–21-Feb-12

589
11011B–ATARM–21-Feb-12

31.6.11.1 WAVSEL = 00
When WAVSEL = 00, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF has
been reached, the value of TC_CV is reset. Incrementation of TC_CV starts again and the cycle
continues. See Figure 31-7.

An external event trigger or a software trigger can reset the value of TC_CV. It is important to
note that the trigger may occur at any time. See Figure 31-8.

RC Compare cannot be programmed to generate a trigger in this configuration. At the same
time, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the
counter clock (CPCDIS = 1 in TC_CMR).

Figure 31-7. WAVSEL= 00 without trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples
590
11011B–ATARM–21-Feb-12

SAM3N590
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 31-8. WAVSEL= 00 with trigger

31.6.11.2 WAVSEL = 10
When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then auto-
matically reset on a RC Compare. Once the value of TC_CV has been reset, it is then
incremented and so on. See Figure 31-9.

It is important to note that TC_CV can be reset at any time by an external event or a software
trigger if both are programmed correctly. See Figure 31-10.

In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable
the counter clock (CPCDIS = 1 in TC_CMR).

Figure 31-9. WAVSEL = 10 Without Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter cleared by trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples
591
11011B–ATARM–21-Feb-12

591
11011B–ATARM–21-Feb-12

Figure 31-10. WAVSEL = 10 With Trigger

31.6.11.3 WAVSEL = 01
When WAVSEL = 01, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF is
reached, the value of TC_CV is decremented to 0, then re-incremented to 0xFFFF and so on.
See Figure 31-11.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trig-
ger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received while
TC_CV is decrementing, TC_CV then increments. See Figure 31-12.

RC Compare cannot be programmed to generate a trigger in this configuration.

At the same time, RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the
counter clock (CPCDIS = 1).

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples

Counter cleared by trigger
592
11011B–ATARM–21-Feb-12

SAM3N592
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 31-11. WAVSEL = 01 Without Trigger

Figure 31-12. WAVSEL = 01 With Trigger

31.6.11.4 WAVSEL = 11
When WAVSEL = 11, the value of TC_CV is incremented from 0 to RC. Once RC is reached, the
value of TC_CV is decremented to 0, then re-incremented to RC and so on. See Figure 31-13.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trig-
ger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received while
TC_CV is decrementing, TC_CV then increments. See Figure 31-14.

RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock
(CPCDIS = 1).

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA
593
11011B–ATARM–21-Feb-12

593
11011B–ATARM–21-Feb-12

Figure 31-13. WAVSEL = 11 Without Trigger

Figure 31-14. WAVSEL = 11 With Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with RC

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with RC

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA
594
11011B–ATARM–21-Feb-12

SAM3N594
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.6.12 External Event/Trigger Conditions
An external event can be programmed to be detected on one of the clock sources (XC0, XC1,
XC2) or TIOB. The external event selected can then be used as a trigger.

The EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG parameter defines
the trigger edge for each of the possible external triggers (rising, falling or both). If EEVTEDG is
cleared (none), no external event is defined.

If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output
and the compare register B is not used to generate waveforms and subsequently no IRQs. In
this case the TC channel can only generate a waveform on TIOA.

When an external event is defined, it can be used as a trigger by setting bit ENETRG in
TC_CMR.

As in Capture Mode, the SYNC signal and the software trigger are also available as triggers. RC
Compare can also be used as a trigger depending on the parameter WAVSEL.

31.6.13 Output Controller
The output controller defines the output level changes on TIOA and TIOB following an event.
TIOB control is used only if TIOB is defined as output (not as an external event).

The following events control TIOA and TIOB: software trigger, external event and RC compare.
RA compare controls TIOA and RB compare controls TIOB. Each of these events can be pro-
grammed to set, clear or toggle the output as defined in the corresponding parameter in
TC_CMR.

31.6.14 Quadrature Decoder Logic

31.6.14.1 Description
The quadrature decoder logic is driven by TIOA0, TIOB0, TIOA1 input pins and drives the
timer/counter of channel 0 and 1. Channel 2 can be used as a time base in case of speed mea-
surement requirements (refer to Figure 31.7 ”Timer Counter (TC) User Interface”).

When writing 0 in the QDEN field of the TC_BMR register, the quadrature decoder logic is totally
transparent.

TIOA0 and TIOB0 are to be driven by the 2 dedicated quadrature signals from a rotary sensor
mounted on the shaft of the off-chip motor.

A third signal from the rotary sensor can be processed through pin TIOA1 and is typically dedi-
cated to be driven by an index signal if it is provided by the sensor. This signal is not required to
decode the quadrature signals PHA, PHB.

TCCLKS field of TC_CMR channels must be configured to select XC0 input (i.e. 0x101).
TC0XC0S field has no effect as soon as quadrature decoder is enabled.

Either speed or position/revolution can be measured. Position channel 0 accumulates the edges
of PHA, PHB input signals giving a high accuracy on motor position whereas channel 1 accumu-
lates the index pulses of the sensor, therefore the number of rotations. Concatenation of both
values provides a high level of precision on motion system position.

In speed mode, position cannot be measured but revolution can be measured.

Inputs from the rotary sensor can be filtered prior to down-stream processing. Accommodation
of input polarity, phase definition and other factors are configurable.
595
11011B–ATARM–21-Feb-12

595
11011B–ATARM–21-Feb-12

Interruptions can be generated on different events.

A compare function (using TC_RC register) is available on channel 0 (speed/position) or chan-
nel 1 (rotation) and can generate an interrupt by means of the CPCS flag in the TC_SR
registers.

Figure 31-15. Predefined Connection of the Quadrature Decoder with Timer Counters

31.6.14.2 Input Pre-processing
Input pre-processing consists of capabilities to take into account rotary sensor factors such as
polarities and phase definition followed by configurable digital filtering.

Each input can be negated and swapping PHA, PHB is also configurable.

Timer/Counter
Channel 0

1

XC0

TIOA

TIOB

Timer/Counter
Channel 1

1

XC0

TIOB

QDEN

Timer/Counter
Channel 2

1

TIOB0
XC0

1

1

SPEEDEN

1
XC0

Quadrature
Decoder

(Filter + Edge
Detect + QD)

PHA

PHB

IDX

TIOA0

TIOB0

TIOB1

TIOB1

TIOA0

Index

Speed/Position

Rotation

Speed Time Base

Reset pulse

Direction

PHEdges QDEN
596
11011B–ATARM–21-Feb-12

SAM3N596
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

By means of the MAXFILT field in TC_BMR, it is possible to configure a minimum duration for
which the pulse is stated as valid. When the filter is active, pulses with a duration lower than
MAXFILT+1 * tMCK ns are not passed to down-stream logic.

Filters can be disabled using the FILTER field in the TC_BMR register.

Figure 31-16. Input Stage

Input filtering can efficiently remove spurious pulses that might be generated by the presence of
particulate contamination on the optical or magnetic disk of the rotary sensor.

Spurious pulses can also occur in environments with high levels of electro-magnetic interfer-
ence. Or, simply if vibration occurs even when rotation is fully stopped and the shaft of the motor
is in such a position that the beginning of one of the reflective or magnetic bars on the rotary
sensor disk is aligned with the light or magnetic (Hall) receiver cell of the rotary sensor. Any
vibration can make the PHA, PHB signals toggle for a short duration.

1

1

1

MAXFILT

PHA

PHB

IDX

TIOA0

TIOB0

TIOB1

INVA

1

INVB

1

INVIDX

SWAP

1

IDXPHB

Filter

Filter

Filter 1

FILTER

Direction
and
Edge
Detection

IDX

PHedge

DIR

Input Pre-Processing
597
11011B–ATARM–21-Feb-12

597
11011B–ATARM–21-Feb-12

Figure 31-17. Filtering Examples

PHA,B

Filter Out

MCK
MAXFILT=2

particulate contamination

PHA

PHB
motor shaft stopped in such a position that
rotary sensor cell is aligned with an edge of the disk

rotation

PHA

PHB

PHB Edge area due to system vibration

Resulting PHA, PHB electrical waveforms

PHA

Optical/Magnetic disk strips

stop

PHB

mechanical shock on system

vibration

stop

PHA, PHB electrical waveforms after filtering

PHA

PHB
598
11011B–ATARM–21-Feb-12

SAM3N598
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.6.14.3 Direction Status and Change Detection
After filtering, the quadrature signals are analyzed to extract the rotation direction and edges of
the 2 quadrature signals detected in order to be counted by timer/counter logic downstream.

The direction status can be directly read at anytime on TC_QISR register. The polarity of the
direction flag status depends on the configuration written in TC_BMR register. INVA, INVB,
INVIDX, SWAP modify the polarity of DIR flag.

Any change in rotation direction is reported on TC_QISR register and can generate an interrupt.

The direction change condition is reported as soon as 2 consecutive edges on a phase signal
have sampled the same value on the other phase signal and there is an edge on the other sig-
nal. The 2 consecutive edges of 1 phase signal sampling the same value on other phase signal
is not sufficient to declare a direction change, for the reason that particulate contamination may
mask one or more reflective bar on the optical or magnetic disk of the sensor. (Refer to Figure
31-18 ”Rotation Change Detection” for waveforms.)

Figure 31-18. Rotation Change Detection

The direction change detection is disabled when QDTRANS is set to 1 in TC_BMR. In this case
the DIR flag report must not be used.

PHA

PHB

Direction Change under normal conditions

DIR

DIRCHG

change condition

Report Time

No direction change due to particulate contamination masking a reflective bar

PHA

PHB

DIR

DIRCHG
spurious change condition (if detected in a simple way)

same phase

missing pulse
599
11011B–ATARM–21-Feb-12

599
11011B–ATARM–21-Feb-12

A quadrature error is also reported by the quadrature decoder logic. Rather than reporting an
error only when 2 edges occur at the same time on PHA and PHB, which is unlikely to occur in
real life, there is a report if the time difference between 2 edges on PHA, PHB is lower than a
predefined value. This predefined value is configurable and corresponds to (MAXFILT+1) *
tMCK ns. After being filtered there is no reason to have 2 edges closer than (MAXFILT+1) *
tMCK ns under normal mode of operation. In the instance an anomaly occurs, a quadrature error
is reported on QERR flag on TC_QISR register.

Figure 31-19. Quadrature Error Detection

MAXFILT must be tuned according to several factors such as the system clock frequency
(MCK), type of rotary sensor and rotation speed to be achieved.

31.6.14.4 Position and Rotation Measurement
When POSEN is set in TC_BMR register, position is processed on channel 0 (by means of the
PHA,PHB edge detections) and motor revolutions are accumulated in channel 1 timer/counter
and can be read through TC_CV0 and/or TC_CV1 register if the IDX signal is provided on
TIOA1 input.

Channel 0 and 1 must be configured in capture mode (WAVE = 0 in TC_CMR0).

MCK
MAXFILT = 2

PHA

PHB

Abnormally formatted optical disk strips (theoretical view)

PHA

PHB

strip edge inaccurary due to disk etching/printing process

resulting PHA, PHB electrical waveforms

PHA

PHB

Even with an abnorrmaly formatted disk, there is no occurence of PHA, PHB switching at the same time.

QERR

duration < MAXFILT
600
11011B–ATARM–21-Feb-12

SAM3N600
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

In parallel, the number of edges are accumulated on timer/counter channel 0 and can be read on
the TC_CV0 register.

Therefore, the accurate position can be read on both TC_CV registers and concatenated to form
a 32-bit word.

The timer/counter channel 0 is cleared for each increment of IDX count value.

Depending on the quadrature signals, the direction is decoded and allows to count up or down in
timer/counter channels 0 and 1. The direction status is reported on TC_QISR register.

31.6.14.5 Speed Measurement
When SPEEDEN is set in TC_BMR register, the speed measure is enabled on channel 0.

A time base must be defined on channel 2 by writing the TC_RC2 period register. Channel 2
must be configured in waveform mode (WAVE bit field set) in TC_CMR2 register. WAVSEL bit
field must be defined with 0x10 to clear the counter by comparison and matching with TC_RC
value. ACPC field must be defined at 0x11 to toggle TIOA output.

This time base is automatically fed back to TIOA of channel 0 when QDEN and SPEEDEN are
set.

Channel 0 must be configured in capture mode (WAVE = 0 in TC_CMR0). ABETRG bit field of
TC_CMR0 must be configured at 1 to get TIOA as a trigger for this channel.

EDGTRG can be set to 0x01, to clear the counter on a rising edge of the TIOA signal and LDRA
field must be set accordingly to 0x01, to load TC_RA0 at the same time as the counter is cleared
(LDRB must be set to 0x01). As a consequence, at the end of each time base period the differ-
entiation required for the speed calculation is performed.

The process must be started by configuring the TC_CR register with CLKEN and SWTRG.

The speed can be read on TC_RA0 register in TC_CMR0.

Channel 1 can still be used to count the number of revolutions of the motor.

31.6.15 2-bit Gray Up/Down Counter for Stepper Motor
Each channel can be independently configured to generate a 2-bit gray count waveform on cor-
responding TIOA,TIOB outputs by means of GCEN bit in TC_SMMRx registers.

Up or Down count can be defined by writing bit DOWN in TC_SMMRx registers.

It is mandatory to configure the channel in WAVE mode in TC_CMR register.

The period of the counters can be programmed on TC_RCx registers.
601
11011B–ATARM–21-Feb-12

601
11011B–ATARM–21-Feb-12

Figure 31-20. 2-bit Gray Up/Down Counter.

31.6.16 Write Protection System
In order to bring security to the Timer Counter, a write protection system has been implemented.

The write protection mode prevent the write of TC_BMR, TC_CMRx, TC_SMMRx, TC_RAx,
TC_RBx, TC_RCx registers. When this mode is enabled and one of the protected registers
write, the register write request canceled.

Due to the nature of the write protection feature, enabling and disabling the write protection
mode requires the use of a security code. Thus when enabling or disabling the write protection
mode the WPKEY field of the TC_WPMR register must be filled with the “TIM” ASCII code (cor-
responding to 0x54494D) otherwise the register write will be canceled.

TIOAx

TIOBx

DOWNx

TC_RCx

WAVEx = GCENx =1
602
11011B–ATARM–21-Feb-12

SAM3N602
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.7 Timer Counter (TC) User Interface

Notes: 1. Channel index ranges from 0 to 2.

2. Read-only if WAVE = 0

Table 31-4. Register Mapping

Offset(1) Register Name Access Reset

0x00 + channel * 0x40 + 0x00 Channel Control Register TC_CCR Write-only –

0x00 + channel * 0x40 + 0x04 Channel Mode Register TC_CMR Read-write 0

0x00 + channel * 0x40 + 0x08 Stepper Motor Mode Register TC_SMMR Read-write 0

0x00 + channel * 0x40 + 0x0C Reserved

0x00 + channel * 0x40 + 0x10 Counter Value TC_CV Read-only 0

0x00 + channel * 0x40 + 0x14 Register A TC_RA Read-write(2) 0

0x00 + channel * 0x40 + 0x18 Register B TC_RB Read-write(2) 0

0x00 + channel * 0x40 + 0x1C Register C TC_RC Read-write 0

0x00 + channel * 0x40 + 0x20 Status Register TC_SR Read-only 0

0x00 + channel * 0x40 + 0x24 Interrupt Enable Register TC_IER Write-only –

0x00 + channel * 0x40 + 0x28 Interrupt Disable Register TC_IDR Write-only –

0x00 + channel * 0x40 + 0x2C Interrupt Mask Register TC_IMR Read-only 0

0xC0 Block Control Register TC_BCR Write-only –

0xC4 Block Mode Register TC_BMR Read-write 0

0xC8 QDEC Interrupt Enable Register TC_QIER Write-only –

0xCC QDEC Interrupt Disable Register TC_QIDR Write-only –

0xD0 QDEC Interrupt Mask Register TC_QIMR Read-only 0

0xD4 QDEC Interrupt Status Register TC_QISR Read-only 0

0xE4 Write Protect Mode Register TC_WPMR Read-write 0

 0xFC Reserved – – –
603
11011B–ATARM–21-Feb-12

603
11011B–ATARM–21-Feb-12

31.7.1 TC Block Control Register
Name: TC_BCR

Addresses: 0x400100C0 (0), 0x400140C0 (1)

Access: Write-only

• SYNC: Synchro Command
0 = no effect.

1 = asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SYNC
604
11011B–ATARM–21-Feb-12

SAM3N604
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.7.2 TC Block Mode Register
Name: TC_BMR

Addresses: 0x400100C4 (0), 0x400140C4 (1)

Access: Read-write

This register can only be written if the WPEN bit is cleared in “TC Write Protect Mode Register” on page 612.

• TC0XC0S: External Clock Signal 0 Selection

• TC1XC1S: External Clock Signal 1 Selection

• TC2XC2S: External Clock Signal 2 Selection

• QDEN: Quadrature Decoder ENabled
0 = disabled.

1 = enables the quadrature decoder logic (filter, edge detection and quadrature decoding).

quadrature decoding (direction change) can be disabled using QDTRANS bit.

One of the POSEN or SPEEDEN bits must be also enabled.

31 30 29 28 27 26 25 24

– – – – – – MAXFILT

23 22 21 20 19 18 17 16

MAXFILT FILTER – IDXPHB SWAP

15 14 13 12 11 10 9 8

INVIDX INVB INVA EDGPHA QDTRANS SPEEDEN POSEN QDEN

7 6 5 4 3 2 1 0

– – TC2XC2S TC1XC1S TC0XC0S

Value Name Description

0 TCLK0 Signal connected to XC0: TCLK0

1 – Reserved

2 TIOA1 Signal connected to XC0: TIOA1

3 TIOA2 Signal connected to XC0: TIOA2

Value Name Description

0 TCLK1 Signal connected to XC1: TCLK1

1 – Reserved

2 TIOA0 Signal connected to XC1: TIOA0

3 TIOA2 Signal connected to XC1: TIOA2

Value Name Description

0 TCLK2 Signal connected to XC2: TCLK2

1 – Reserved

2 TIOA1 Signal connected to XC2: TIOA1

3 TIOA2 Signal connected to XC2: TIOA2
605
11011B–ATARM–21-Feb-12

605
11011B–ATARM–21-Feb-12

• POSEN: POSition ENabled
0 = disable position.

1 = enables the position measure on channel 0 and 1

• SPEEDEN: SPEED ENabled
0 = disabled.

1 = enables the speed measure on channel 0, the time base being provided by channel 2.

• QDTRANS: Quadrature Decoding TRANSparent
0 = full quadrature decoding logic is active (direction change detected).

1 = quadrature decoding logic is inactive (direction change inactive) but input filtering and edge detection are performed.

• EDGPHA: EDGe on PHA count mode
0 = edges are detected on both PHA and PHB.

1 = edges are detected on PHA only.

• INVA: INVerted phA
0 = PHA (TIOA0) is directly driving quadrature decoder logic.

1 = PHA is inverted before driving quadrature decoder logic.

• INVB: INVerted phB
0 = PHB (TIOB0) is directly driving quadrature decoder logic.

1 = PHB is inverted before driving quadrature decoder logic.

• SWAP: SWAP PHA and PHB
0 = no swap between PHA and PHB.

1 = swap PHA and PHB internally, prior to driving quadrature decoder logic.

• INVIDX: INVerted InDeX
0 = IDX (TIOA1) is directly driving quadrature logic.

1 = IDX is inverted before driving quadrature logic.

• IDXPHB: InDeX pin is PHB pin
0 = IDX pin of the rotary sensor must drive TIOA1.

1 = IDX pin of the rotary sensor must drive TIOB0.

• FILTER:
0 = IDX,PHA, PHB input pins are not filtered.

1 = IDX,PHA, PHB input pins are filtered using MAXFILT value.

• MAXFILT: MAXimum FILTer
1.. 63: defines the filtering capabilities

Pulses with a period shorter than MAXFILT+1 MCK clock cycles are discarded.
606
11011B–ATARM–21-Feb-12

SAM3N606
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.7.3 TC Channel Control Register
Name: TC_CCRx [x=0..2]

Addresses: 0x40010000 (0)[0], 0x40010040 (0)[1], 0x40010080 (0)[2], 0x40014000 (1)[0], 0x40014040 (1)[1],
0x40014080 (1)[2]

Access: Write-only

• CLKEN: Counter Clock Enable Command
0 = no effect.

1 = enables the clock if CLKDIS is not 1.

• CLKDIS: Counter Clock Disable Command
0 = no effect.

1 = disables the clock.

• SWTRG: Software Trigger Command
0 = no effect.

1 = a software trigger is performed: the counter is reset and the clock is started.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – SWTRG CLKDIS CLKEN
607
11011B–ATARM–21-Feb-12

607
11011B–ATARM–21-Feb-12

31.7.4 TC QDEC Interrupt Enable Register
Name: TC_QIER

Addresses: 0x400100C8 (0), 0x400140C8 (1)

Access: Write-only

• IDX: InDeX
0 = no effect.

1 = enables the interrupt when a rising edge occurs on IDX input.

• DIRCHG: DIRection CHanGe
0 = no effect.

1 = enables the interrupt when a change on rotation direction is detected.

• QERR: Quadrature ERRor
0 = no effect.

1 = enables the interrupt when a quadrature error occurs on PHA,PHB.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX
608
11011B–ATARM–21-Feb-12

SAM3N608
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.7.5 TC QDEC Interrupt Disable Register
Name: TC_QIDR

Addresses: 0x400100CC (0), 0x400140CC (1)

Access: Write-only

• IDX: InDeX
0 = no effect.

1 = disables the interrupt when a rising edge occurs on IDX input.

• DIRCHG: DIRection CHanGe
0 = no effect.

1 = disables the interrupt when a change on rotation direction is detected.

• QERR: Quadrature ERRor
0 = no effect.

1 = disables the interrupt when a quadrature error occurs on PHA, PHB.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX
609
11011B–ATARM–21-Feb-12

609
11011B–ATARM–21-Feb-12

31.7.6 TC QDEC Interrupt Mask Register
Name: TC_QIMR

Addresses: 0x400100D0 (0), 0x400140D0 (1)

Access: Read-only

• IDX: InDeX
0 = the interrupt on IDX input is disabled.

1 = the interrupt on IDX input is enabled.

• DIRCHG: DIRection CHanGe
0 = the interrupt on rotation direction change is disabled.

1 = the interrupt on rotation direction change is enabled.

• QERR: Quadrature ERRor
0 = the interrupt on quadrature error is disabled.

1 = the interrupt on quadrature error is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX
610
11011B–ATARM–21-Feb-12

SAM3N610
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.7.7 TC QDEC Interrupt Status Register
Name: TC_QISR

Addresses: 0x400100D4 (0), 0x400140D4 (1)

Access: Read-only

• IDX: InDeX
0 = no Index input change since the last read of TC_QISR.

1 = the IDX input has change since the last read of TC_QISR.

• DIRCHG: DIRection CHanGe
0 = no change on rotation direction since the last read of TC_QISR.

1 = the rotation direction changed since the last read of TC_QISR.

• QERR: Quadrature ERRor
0 = no quadrature error since the last read of TC_QISR.

1 = A quadrature error occurred since the last read of TC_QISR.

• DIR: Direction
Returns an image of the actual rotation direction.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – DIR

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX
611
11011B–ATARM–21-Feb-12

611
11011B–ATARM–21-Feb-12

31.7.8 TC Write Protect Mode Register
Name: TC_WPMR

Addresses: 0x400100E4 (0), 0x400140E4 (1)

Access: Read-write

• WPEN: Write Protect Enable
0 = disables the Write Protect if WPKEY corresponds to 0x54494D (“TIM” in ASCII).

1 = enables the Write Protect if WPKEY corresponds to 0x54494D (“TIM” in ASCII).

Protects the registers:

”TC Block Mode Register”

”TC Channel Mode Register: Capture Mode”

”TC Channel Mode Register: Waveform Mode”

”TC Stepper Motor Mode Register”

”TC Register A”

”TC Register B”

”TC Register C”

• WPKEY: Write Protect KEY
This security code is needed to set/reset the WPROT bit value (see for details).

Must be filled with “TIM” ASCII code.

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN
612
11011B–ATARM–21-Feb-12

SAM3N612
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.7.9 TC Channel Mode Register: Capture Mode
Name: TC_CMRx [x=0..2] (WAVE = 0)

Addresses: 0x40010004 (0)[0], 0x40010044 (0)[1], 0x40010084 (0)[2], 0x40014004 (1)[0], 0x40014044 (1)[1],
0x40014084 (1)[2]

Access: Read-write

This register can only be written if the WPEN bit is cleared in “TC Write Protect Mode Register” on page 612

• TCCLKS: Clock Selection

• CLKI: Clock Invert
0 = counter is incremented on rising edge of the clock.

1 = counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• LDBSTOP: Counter Clock Stopped with RB Loading
0 = counter clock is not stopped when RB loading occurs.

1 = counter clock is stopped when RB loading occurs.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – LDRB LDRA

15 14 13 12 11 10 9 8

WAVE CPCTRG – – – ABETRG ETRGEDG

7 6 5 4 3 2 1 0

LDBDIS LDBSTOP BURST CLKI TCCLKS

Value Name Description

0 TIMER_CLOCK1 Clock selected: TCLK1

1 TIMER_CLOCK2 Clock selected: TCLK2

2 TIMER_CLOCK3 Clock selected: TCLK3

3 TIMER_CLOCK4 Clock selected: TCLK4

4 TIMER_CLOCK5 Clock selected: TCLK5

5 XC0 Clock selected: XC0

6 XC1 Clock selected: XC1

7 XC2 Clock selected: XC2

Value Name Description

0 NONE The clock is not gated by an external signal.

1 XC0 XC0 is ANDed with the selected clock.

2 XC1 XC1 is ANDed with the selected clock.

3 XC2 XC2 is ANDed with the selected clock.
613
11011B–ATARM–21-Feb-12

613
11011B–ATARM–21-Feb-12

• LDBDIS: Counter Clock Disable with RB Loading
0 = counter clock is not disabled when RB loading occurs.

1 = counter clock is disabled when RB loading occurs.

• ETRGEDG: External Trigger Edge Selection

• ABETRG: TIOA or TIOB External Trigger Selection
0 = TIOB is used as an external trigger.

1 = TIOA is used as an external trigger.

• CPCTRG: RC Compare Trigger Enable
0 = RC Compare has no effect on the counter and its clock.

1 = RC Compare resets the counter and starts the counter clock.

• WAVE
0 = Capture Mode is enabled.

1 = Capture Mode is disabled (Waveform Mode is enabled).

• LDRA: RA Loading Selection

• LDRB: RB Loading Selection

Value Name Description

0 NONE The clock is not gated by an external signal.

1 RISING Rising edge

2 FALLING Falling edge

3 EDGE Each edge

Value Name Description

0 NONE None

1 RISING Rising edge of TIOA

2 FALLING Falling edge of TIOA

3 EDGE Each edge of TIOA

Value Name Description

0 NONE None

1 RISING Rising edge of TIOA

2 FALLING Falling edge of TIOA

3 EDGE Each edge of TIOA
614
11011B–ATARM–21-Feb-12

SAM3N614
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.7.10 TC Channel Mode Register: Waveform Mode
Name: TC_CMRx [x=0..2] (WAVE = 1)

Addresses: 0x40010004 (0)[0], 0x40010044 (0)[1], 0x40010084 (0)[2], 0x40014004 (1)[0], 0x40014044 (1)[1],
0x40014084 (1)[2]

Access: Read-write

This register can only be written if the WPEN bit is cleared in “TC Write Protect Mode Register” on page 612

• TCCLKS: Clock Selection

• CLKI: Clock Invert
0 = counter is incremented on rising edge of the clock.

1 = counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• CPCSTOP: Counter Clock Stopped with RC Compare
0 = counter clock is not stopped when counter reaches RC.

1 = counter clock is stopped when counter reaches RC.

31 30 29 28 27 26 25 24

BSWTRG BEEVT BCPC BCPB

23 22 21 20 19 18 17 16

ASWTRG AEEVT ACPC ACPA

15 14 13 12 11 10 9 8

WAVE WAVSEL ENETRG EEVT EEVTEDG

7 6 5 4 3 2 1 0

CPCDIS CPCSTOP BURST CLKI TCCLKS

Value Name Description

0 TIMER_CLOCK1 Clock selected: TCLK1

1 TIMER_CLOCK2 Clock selected: TCLK2

2 TIMER_CLOCK3 Clock selected: TCLK3

3 TIMER_CLOCK4 Clock selected: TCLK4

4 TIMER_CLOCK5 Clock selected: TCLK5

5 XC0 Clock selected: XC0

6 XC1 Clock selected: XC1

7 XC2 Clock selected: XC2

Value Name Description

0 NONE The clock is not gated by an external signal.

1 XC0 XC0 is ANDed with the selected clock.

2 XC1 XC1 is ANDed with the selected clock.

3 XC2 XC2 is ANDed with the selected clock.
615
11011B–ATARM–21-Feb-12

615
11011B–ATARM–21-Feb-12

• CPCDIS: Counter Clock Disable with RC Compare
0 = counter clock is not disabled when counter reaches RC.

1 = counter clock is disabled when counter reaches RC.

• EEVTEDG: External Event Edge Selection

• EEVT: External Event Selection
Signal selected as external event.

Note: 1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and subse-
quently no IRQs.

• ENETRG: External Event Trigger Enable
0 = the external event has no effect on the counter and its clock. In this case, the selected external event only controls the
TIOA output.

1 = the external event resets the counter and starts the counter clock.

• WAVSEL: Waveform Selection

• WAVE
0 = Waveform Mode is disabled (Capture Mode is enabled).

1 = Waveform Mode is enabled.

Value Name Description

0 NONE None

1 RISING Rising edge

2 FALLING Falling edge

3 EDGE Each edge

Value Name Description TIOB Direction

0 TIOB TIOB(1) input

1 XC0 XC0 output

2 XC1 XC1 output

3 XC2 XC2 output

Value Name Description

0 UP UP mode without automatic trigger on RC Compare

1 UPDOWN UPDOWN mode without automatic trigger on RC Compare

2 UP_RC UP mode with automatic trigger on RC Compare

3 UPDOWN_RC UPDOWN mode with automatic trigger on RC Compare
616
11011B–ATARM–21-Feb-12

SAM3N616
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

• ACPA: RA Compare Effect on TIOA

• ACPC: RC Compare Effect on TIOA

• AEEVT: External Event Effect on TIOA

• ASWTRG: Software Trigger Effect on TIOA

• BCPB: RB Compare Effect on TIOB

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle
617
11011B–ATARM–21-Feb-12

617
11011B–ATARM–21-Feb-12

• BCPC: RC Compare Effect on TIOB

• BEEVT: External Event Effect on TIOB

• BSWTRG: Software Trigger Effect on TIOB

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle
618
11011B–ATARM–21-Feb-12

SAM3N618
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.7.11 TC Stepper Motor Mode Register
Name: TC_SMMRx [x=0..2]

Addresses: 0x40010008 (0)[0], 0x40010048 (0)[1], 0x40010088 (0)[2], 0x40014008 (1)[0], 0x40014048 (1)[1],
0x40014088 (1)[2]

Access: Read-write

This register can only be written if the WPEN bit is cleared in “TC Write Protect Mode Register” on page 612

• GCEN: Gray Count Enable
0 = TIOAx [x=0..2] and TIOBx [x=0..2] are driven by internal counter of channel x.

1 = TIOAx [x=0..2] and TIOBx [x=0..2] are driven by a 2-bit gray counter.

• DOWN: DOWN Count
0 = Up counter.

1 = Down counter.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– DOWN GCEN
619
11011B–ATARM–21-Feb-12

619
11011B–ATARM–21-Feb-12

31.7.12 TC Counter Value Register
Name: TC_CVx [x=0..2]

Addresses: 0x40010010 (0)[0], 0x40010050 (0)[1], 0x40010090 (0)[2], 0x40014010 (1)[0], 0x40014050 (1)[1],
0x40014090 (1)[2]

Access: Read-only

• CV: Counter Value
CV contains the counter value in real time.

31.7.13 TC Register A
Name: TC_RAx [x=0..2]

Addresses: 0x40010014 (0)[0], 0x40010054 (0)[1], 0x40010094 (0)[2], 0x40014014 (1)[0], 0x40014054 (1)[1],
0x40014094 (1)[2]

Access: Read-only if WAVE = 0, Read-write if WAVE = 1

This register can only be written if the WPEN bit is cleared in “TC Write Protect Mode Register” on page 612

• RA: Register A
RA contains the Register A value in real time.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CV

7 6 5 4 3 2 1 0

CV

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RA

7 6 5 4 3 2 1 0

RA
620
11011B–ATARM–21-Feb-12

SAM3N620
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.7.14 TC Register B
Name: TC_RBx [x=0..2]

Addresses: 0x40010018 (0)[0], 0x40010058 (0)[1], 0x40010098 (0)[2], 0x40014018 (1)[0], 0x40014058 (1)[1],
0x40014098 (1)[2]

Access: Read-only if WAVE = 0, Read-write if WAVE = 1

This register can only be written if the WPEN bit is cleared in “TC Write Protect Mode Register” on page 612

• RB: Register B
RB contains the Register B value in real time.

31.7.15 TC Register C
Name: TC_RCx [x=0..2]

Addresses: 0x4001001C (0)[0], 0x4001005C (0)[1], 0x4001009C (0)[2], 0x4001401C (1)[0], 0x4001405C (1)[1],
0x4001409C (1)[2]

Access: Read-write

This register can only be written if the WPEN bit is cleared in “TC Write Protect Mode Register” on page 612

• RC: Register C
RC contains the Register C value in real time.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RB

7 6 5 4 3 2 1 0

RB

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RC

7 6 5 4 3 2 1 0

RC
621
11011B–ATARM–21-Feb-12

621
11011B–ATARM–21-Feb-12

31.7.16 TC Status Register
Name: TC_SRx [x=0..2]

Addresses: 0x40010020 (0)[0], 0x40010060 (0)[1], 0x400100A0 (0)[2], 0x40014020 (1)[0], 0x40014060 (1)[1],
0x400140A0 (1)[2]

Access: Read-only

• COVFS: Counter Overflow Status
0 = no counter overflow has occurred since the last read of the Status Register.

1 = a counter overflow has occurred since the last read of the Status Register.

• LOVRS: Load Overrun Status
0 = Load overrun has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Sta-
tus Register, if WAVE = 0.

• CPAS: RA Compare Status
0 = RA Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RA Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPBS: RB Compare Status
0 = RB Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RB Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPCS: RC Compare Status
0 = RC Compare has not occurred since the last read of the Status Register.

1 = RC Compare has occurred since the last read of the Status Register.

• LDRAS: RA Loading Status
0 = RA Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA Load has occurred since the last read of the Status Register, if WAVE = 0.

• LDRBS: RB Loading Status
0 = RB Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RB Load has occurred since the last read of the Status Register, if WAVE = 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – MTIOB MTIOA CLKSTA

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
622
11011B–ATARM–21-Feb-12

SAM3N622
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

• ETRGS: External Trigger Status
0 = external trigger has not occurred since the last read of the Status Register.

1 = external trigger has occurred since the last read of the Status Register.

• CLKSTA: Clock Enabling Status
0 = clock is disabled.

1 = clock is enabled.

• MTIOA: TIOA Mirror
0 = TIOA is low. If WAVE = 0, this means that TIOA pin is low. If WAVE = 1, this means that TIOA is driven low.

1 = TIOA is high. If WAVE = 0, this means that TIOA pin is high. If WAVE = 1, this means that TIOA is driven high.

• MTIOB: TIOB Mirror
0 = TIOB is low. If WAVE = 0, this means that TIOB pin is low. If WAVE = 1, this means that TIOB is driven low.

1 = TIOB is high. If WAVE = 0, this means that TIOB pin is high. If WAVE = 1, this means that TIOB is driven high.
623
11011B–ATARM–21-Feb-12

623
11011B–ATARM–21-Feb-12

31.7.17 TC Interrupt Enable Register
Name: TC_IERx [x=0..2]

Addresses: 0x40010024 (0)[0], 0x40010064 (0)[1], 0x400100A4 (0)[2], 0x40014024 (1)[0], 0x40014064 (1)[1],
0x400140A4 (1)[2]

Access: Write-only

• COVFS: Counter Overflow
0 = no effect.

1 = enables the Counter Overflow Interrupt.

• LOVRS: Load Overrun
0 = no effect.

1 = enables the Load Overrun Interrupt.

• CPAS: RA Compare
0 = no effect.

1 = enables the RA Compare Interrupt.

• CPBS: RB Compare
0 = no effect.

1 = enables the RB Compare Interrupt.

• CPCS: RC Compare
0 = no effect.

1 = enables the RC Compare Interrupt.

• LDRAS: RA Loading
0 = no effect.

1 = enables the RA Load Interrupt.

• LDRBS: RB Loading
0 = no effect.

1 = enables the RB Load Interrupt.

• ETRGS: External Trigger
0 = no effect.

1 = enables the External Trigger Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
624
11011B–ATARM–21-Feb-12

SAM3N624
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

31.7.18 TC Interrupt Disable Register
Name: TC_IDRx [x=0..2]

Addresses: 0x40010028 (0)[0], 0x40010068 (0)[1], 0x400100A8 (0)[2], 0x40014028 (1)[0], 0x40014068 (1)[1],
0x400140A8 (1)[2]

Access: Write-only

• COVFS: Counter Overflow
0 = no effect.

1 = disables the Counter Overflow Interrupt.

• LOVRS: Load Overrun
0 = no effect.

1 = disables the Load Overrun Interrupt (if WAVE = 0).

• CPAS: RA Compare
0 = no effect.

1 = disables the RA Compare Interrupt (if WAVE = 1).

• CPBS: RB Compare
0 = no effect.

1 = disables the RB Compare Interrupt (if WAVE = 1).

• CPCS: RC Compare
0 = no effect.

1 = disables the RC Compare Interrupt.

• LDRAS: RA Loading
0 = no effect.

1 = disables the RA Load Interrupt (if WAVE = 0).

• LDRBS: RB Loading
0 = no effect.

1 = disables the RB Load Interrupt (if WAVE = 0).

• ETRGS: External Trigger
0 = no effect.

1 = disables the External Trigger Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
625
11011B–ATARM–21-Feb-12

625
11011B–ATARM–21-Feb-12

31.7.19 TC Interrupt Mask Register
Name: TC_IMRx [x=0..2]

Addresses: 0x4001002C (0)[0], 0x4001006C (0)[1], 0x400100AC (0)[2], 0x4001402C (1)[0], 0x4001406C (1)[1],
0x400140AC (1)[2]

Access: Read-only

• COVFS: Counter Overflow
0 = the Counter Overflow Interrupt is disabled.

1 = the Counter Overflow Interrupt is enabled.

• LOVRS: Load Overrun
0 = the Load Overrun Interrupt is disabled.

1 = the Load Overrun Interrupt is enabled.

• CPAS: RA Compare
0 = the RA Compare Interrupt is disabled.

1 = the RA Compare Interrupt is enabled.

• CPBS: RB Compare
0 = the RB Compare Interrupt is disabled.

1 = the RB Compare Interrupt is enabled.

• CPCS: RC Compare
0 = the RC Compare Interrupt is disabled.

1 = the RC Compare Interrupt is enabled.

• LDRAS: RA Loading
0 = the Load RA Interrupt is disabled.

1 = the Load RA Interrupt is enabled.

• LDRBS: RB Loading
0 = the Load RB Interrupt is disabled.

1 = the Load RB Interrupt is enabled.

• ETRGS: External Trigger
0 = the External Trigger Interrupt is disabled.

1 = the External Trigger Interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
626
11011B–ATARM–21-Feb-12

SAM3N626
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
32. Pulse Width Modulation Controller (PWM)

32.1 Description
The PWM macrocell controls several channels independently. Each channel controls one
square output waveform. Characteristics of the output waveform such as period, duty-cycle and
polarity are configurable through the user interface. Each channel selects and uses one of the
clocks provided by the clock generator. The clock generator provides several clocks resulting
from the division of the PWM macrocell master clock.

All PWM macrocell accesses are made through APB mapped registers.

Channels can be synchronized, to generate non overlapped waveforms. All channels integrate a
double buffering system in order to prevent an unexpected output waveform while modifying the
period or the duty-cycle.

32.2 Embedded Characteristics
• 4 Channels

• One 16-bit Counter Per Channel

• Common Clock Generator Providing Thirteen Different Clocks

– A Modulo n Counter Providing Eleven Clocks

– Two Independent Linear Dividers Working on Modulo n Counter Outputs

• Independent Channels

– Independent Enable Disable Command for Each Channel

– Independent Clock Selection for Each Channel

– Independent Period and Duty Cycle for Each Channel

– Double Buffering of Period or Duty Cycle for Each Channel

– Programmable Selection of The Output Waveform Polarity for Each Channel

– Programmable Center or Left Aligned Output Waveform for Each Channel
627
11011B–ATARM–21-Feb-12

32.3 Block Diagram

Figure 32-1. Pulse Width Modulation Controller Block Diagram

32.4 I/O Lines Description
Each channel outputs one waveform on one external I/O line.

32.5 Product Dependencies

32.5.1 I/O Lines
The pins used for interfacing the PWM may be multiplexed with PIO lines. The programmer must
first program the PIO controller to assign the desired PWM pins to their peripheral function. If I/O
lines of the PWM are not used by the application, they can be used for other purposes by the
PIO controller.

PWM
Controller

APB

PWMx

PWMx

PWMx

Channel

Update

Duty Cycle

Counter

PWM0
Channel

PIO

Interrupt ControllerPMC
MCK

Clock Generator APB Interface Interrupt Generator

Clock
Selector

Period

Update

Duty Cycle

Counter
Clock

Selector

Period

PWM0

PWM0
Comparator

Comparator

Table 32-1. I/O Line Description

Name Description Type

PWMx PWM Waveform Output for channel x Output
628
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
All of the PWM outputs may or may not be enabled. If an application requires only four channels,
then only four PIO lines will be assigned to PWM outputs.

32.5.2 Power Management
The PWM is not continuously clocked. The programmer must first enable the PWM clock in the
Power Management Controller (PMC) before using the PWM. However, if the application does
not require PWM operations, the PWM clock can be stopped when not needed and be restarted
later. In this case, the PWM will resume its operations where it left off.

Configuring the PWM does not require the PWM clock to be enabled.

Table 32-2. I/O Lines

Instance Signal I/O Line Peripheral

PWM PWM0 PA0 A

PWM PWM0 PA11 B

PWM PWM0 PA23 B

PWM PWM0 PB0 A

PWM PWM0 PC8 B

PWM PWM0 PC18 B

PWM PWM0 PC22 B

PWM PWM1 PA1 A

PWM PWM1 PA12 B

PWM PWM1 PA24 B

PWM PWM1 PB1 A

PWM PWM1 PC9 B

PWM PWM1 PC19 B

PWM PWM2 PA2 A

PWM PWM2 PA13 B

PWM PWM2 PA25 B

PWM PWM2 PB4 B

PWM PWM2 PC10 B

PWM PWM2 PC20 B

PWM PWM3 PA7 B

PWM PWM3 PA14 B

PWM PWM3 PB14 B

PWM PWM3 PC11 B

PWM PWM3 PC21 B
629
11011B–ATARM–21-Feb-12

32.5.3 Interrupt Sources
The PWM interrupt line is connected on one of the internal sources of the Interrupt Controller.
Using the PWM interrupt requires the Interrupt Controller to be programmed first. Note that it is
not recommended to use the PWM interrupt line in edge sensitive mode.

32.6 Functional Description
The PWM macrocell is primarily composed of a clock generator module and 4 channels.

– Clocked by the system clock, MCK, the clock generator module provides 13 clocks.

– Each channel can independently choose one of the clock generator outputs.

– Each channel generates an output waveform with attributes that can be defined
independently for each channel through the user interface registers.

32.6.1 PWM Clock Generator

Figure 32-2. Functional View of the Clock Generator Block Diagram

Table 32-3. Peripheral IDs

Instance ID

PWM 31

modulo n counter
MCK

MCK/2
MCK/4

MCK/16
MCK/32
MCK/64

MCK/8

Divider A clkA

DIVA

PWM_MR

MCK

MCK/128
MCK/256
MCK/512
MCK/1024

PREA

Divider B clkB

DIVB

PWM_MR

PREB
630
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Caution: Before using the PWM macrocell, the programmer must first enable the PWM clock in
the Power Management Controller (PMC).

The PWM macrocell master clock, MCK, is divided in the clock generator module to provide dif-
ferent clocks available for all channels. Each channel can independently select one of the
divided clocks.

The clock generator is divided in three blocks:

– a modulo n counter which provides 11 clocks: FMCK, FMCK/2, FMCK/4, FMCK/8,
FMCK/16, FMCK/32, FMCK/64, FMCK/128, FMCK/256, FMCK/512, FMCK/1024

– two linear dividers (1, 1/2, 1/3, ... 1/255) that provide two separate clocks: clkA and
clkB

Each linear divider can independently divide one of the clocks of the modulo n counter. The
selection of the clock to be divided is made according to the PREA (PREB) field of the PWM
Mode register (PWM_MR). The resulting clock clkA (clkB) is the clock selected divided by DIVA
(DIVB) field value in the PWM Mode register (PWM_MR).

After a reset of the PWM controller, DIVA (DIVB) and PREA (PREB) in the PWM Mode register
are set to 0. This implies that after reset clkA (clkB) are turned off.

At reset, all clocks provided by the modulo n counter are turned off except clock “clk”. This situa-
tion is also true when the PWM master clock is turned off through the Power Management
Controller.

32.6.2 PWM Channel

32.6.2.1 Block Diagram

Figure 32-3. Functional View of the Channel Block Diagram

Each of the 4 channels is composed of three blocks:

• A clock selector which selects one of the clocks provided by the clock generator described in
Section 32.6.1 “PWM Clock Generator” on page 630.

• An internal counter clocked by the output of the clock selector. This internal counter is
incremented or decremented according to the channel configuration and comparators events.
The size of the internal counter is 16 bits.

• A comparator used to generate events according to the internal counter value. It also
computes the PWMx output waveform according to the configuration.

Comparator PWMx
output waveform

Internal
Counter

Clock
Selector

inputs
from clock
generator

inputs from
APB bus

Channel
631
11011B–ATARM–21-Feb-12

32.6.2.2 Waveform Properties
The different properties of output waveforms are:

• the internal clock selection. The internal channel counter is clocked by one of the clocks
provided by the clock generator described in the previous section. This channel parameter is
defined in the CPRE field of the PWM_CMRx register. This field is reset at 0.

• the waveform period. This channel parameter is defined in the CPRD field of the
PWM_CPRDx register.
- If the waveform is left aligned, then the output waveform period depends on the counter
source clock and can be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value
(with X being 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024), the resulting period formula
will be:

By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes,
respectively:

 or

If the waveform is center aligned then the output waveform period depends on the counter
source clock and can be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value
(with X being 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula will
be:

By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes,
respectively:

 or

• the waveform duty cycle. This channel parameter is defined in the CDTY field of the
PWM_CDTYx register.
If the waveform is left aligned then:

If the waveform is center aligned, then:

• the waveform polarity. At the beginning of the period, the signal can be at high or low level.
This property is defined in the CPOL field of the PWM_CMRx register. By default the signal
starts by a low level.

X CPRD×()
MCK

X*CPRD*DIVA()
MCK

-- X*CPRD*DIVB()
MCK

--

2 X CPRD××()
MCK

2*X*CPRD*DIVA()
MCK

-- 2*X*CPRD*DIVB()
MCK

--

duty cycle period 1 fchannel_x_clock CDTY×⁄–()
period

--=

duty cycle period 2⁄() 1 fchannel_x_clock CDTY×⁄–())
period 2⁄()

--=
632
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
• the waveform alignment. The output waveform can be left or center aligned. Center aligned
waveforms can be used to generate non overlapped waveforms. This property is defined in
the CALG field of the PWM_CMRx register. The default mode is left aligned.

Figure 32-4. Non Overlapped Center Aligned Waveforms

Note: 1. See Figure 32-5 on page 634 for a detailed description of center aligned waveforms.

When center aligned, the internal channel counter increases up to CPRD and.decreases down
to 0. This ends the period.

When left aligned, the internal channel counter increases up to CPRD and is reset. This ends
the period.

Thus, for the same CPRD value, the period for a center aligned channel is twice the period for a
left aligned channel.

Waveforms are fixed at 0 when:

• CDTY = CPRD and CPOL = 0

• CDTY = 0 and CPOL = 1

Waveforms are fixed at 1 (once the channel is enabled) when:

• CDTY = 0 and CPOL = 0

• CDTY = CPRD and CPOL = 1

The waveform polarity must be set before enabling the channel. This immediately affects the
channel output level. Changes on channel polarity are not taken into account while the channel
is enabled.

PWM0

PWM1

Period

No overlap
633
11011B–ATARM–21-Feb-12

Figure 32-5. Waveform Properties

PWM_MCKx

CHIDx(PWM_SR)

Center Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

Output Waveform PWMx
CPOL(PWM_CMRx) = 0

Output Waveform PWMx
CPOL(PWM_CMRx) = 1

CHIDx(PWM_ISR)

Left Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

Output Waveform PWMx
CPOL(PWM_CMRx) = 0

 Output Waveform PWMx
CPOL(PWM_CMRx) = 1

CHIDx(PWM_ISR)

CALG(PWM_CMRx) = 0

CALG(PWM_CMRx) = 1

Period

Period

CHIDx(PWM_ENA)

CHIDx(PWM_DIS)
634
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
32.6.3 PWM Controller Operations

32.6.3.1 Initialization
Before enabling the output channel, this channel must have been configured by the software
application:

• Configuration of the clock generator if DIVA and DIVB are required

• Selection of the clock for each channel (CPRE field in the PWM_CMRx register)

• Configuration of the waveform alignment for each channel (CALG field in the PWM_CMRx
register)

• Configuration of the period for each channel (CPRD in the PWM_CPRDx register). Writing in
PWM_CPRDx Register is possible while the channel is disabled. After validation of the
channel, the user must use PWM_CUPDx Register to update PWM_CPRDx as explained
below.

• Configuration of the duty cycle for each channel (CDTY in the PWM_CDTYx register).
Writing in PWM_CDTYx Register is possible while the channel is disabled. After validation of
the channel, the user must use PWM_CUPDx Register to update PWM_CDTYx as explained
below.

• Configuration of the output waveform polarity for each channel (CPOL in the PWM_CMRx
register)

• Enable Interrupts (Writing CHIDx in the PWM_IER register)

• Enable the PWM channel (Writing CHIDx in the PWM_ENA register)

It is possible to synchronize different channels by enabling them at the same time by means of
writing simultaneously several CHIDx bits in the PWM_ENA register.

• In such a situation, all channels may have the same clock selector configuration and the
same period specified.

32.6.3.2 Source Clock Selection Criteria
The large number of source clocks can make selection difficult. The relationship between the
value in the Period Register (PWM_CPRDx) and the Duty Cycle Register (PWM_CDTYx) can
help the user in choosing. The event number written in the Period Register gives the PWM accu-
racy. The Duty Cycle quantum cannot be lower than 1/PWM_CPRDx value. The higher the value
of PWM_CPRDx, the greater the PWM accuracy.

For example, if the user sets 15 (in decimal) in PWM_CPRDx, the user is able to set a value
between 1 up to 14 in PWM_CDTYx Register. The resulting duty cycle quantum cannot be lower
than 1/15 of the PWM period.

32.6.3.3 Changing the Duty Cycle or the Period
It is possible to modulate the output waveform duty cycle or period.

To prevent unexpected output waveform, the user must use the update register (PWM_CUPDx)
to change waveform parameters while the channel is still enabled. The user can write a new
period value or duty cycle value in the update register (PWM_CUPDx). This register holds the
new value until the end of the current cycle and updates the value for the next cycle. Depending
on the CPD field in the PWM_CMRx register, PWM_CUPDx either updates PWM_CPRDx or
PWM_CDTYx. Note that even if the update register is used, the period must not be smaller than
the duty cycle.
635
11011B–ATARM–21-Feb-12

Figure 32-6. Synchronized Period or Duty Cycle Update

To prevent overwriting the PWM_CUPDx by software, the user can use status events in order to
synchronize his software. Two methods are possible. In both, the user must enable the dedi-
cated interrupt in PWM_IER at PWM Controller level.

The first method (polling method) consists of reading the relevant status bit in PWM_ISR Regis-
ter according to the enabled channel(s). See Figure 32-7.

The second method uses an Interrupt Service Routine associated with the PWM channel.

Note: Reading the PWM_ISR register automatically clears CHIDx flags.

Figure 32-7. Polling Method

Note: Polarity and alignment can be modified only when the channel is disabled.

PWM_CUPDx Value

PWM_CPRDx PWM_CDTYx

End of Cycle

PWM_CMRx. CPD

User's Writing

1 0

Writing in PWM_CUPDx
The last write has been taken into account

CHIDx = 1

Writing in CPD field
Update of the Period or Duty Cycle

PWM_ISR Read
Acknowledgement and clear previous register state

YES
636
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
32.6.3.4 Interrupts
Depending on the interrupt mask in the PWM_IMR register, an interrupt is generated at the end
of the corresponding channel period. The interrupt remains active until a read operation in the
PWM_ISR register occurs.

A channel interrupt is enabled by setting the corresponding bit in the PWM_IER register. A chan-
nel interrupt is disabled by setting the corresponding bit in the PWM_IDR register.
637
11011B–ATARM–21-Feb-12

32.7 Pulse Width Modulation Controller (PWM) User Interface

2. Some registers are indexed with “ch_num” index ranging from 0 to 3.

Table 32-4. Register Mapping(2)

Offset Register Name Access Reset

0x00 PWM Mode Register PWM_MR Read-write 0

0x04 PWM Enable Register PWM_ENA Write-only -

0x08 PWM Disable Register PWM_DIS Write-only -

0x0C PWM Status Register PWM_SR Read-only 0

0x10 PWM Interrupt Enable Register PWM_IER Write-only -

0x14 PWM Interrupt Disable Register PWM_IDR Write-only -

0x18 PWM Interrupt Mask Register PWM_IMR Read-only 0

0x1C PWM Interrupt Status Register PWM_ISR Read-only 0

0x20 - 0xFC Reserved – – –

0x100 - 0x1FC Reserved

0x200 + ch_num * 0x20 + 0x00 PWM Channel Mode Register PWM_CMR Read-write 0x0

0x200 + ch_num * 0x20 + 0x04 PWM Channel Duty Cycle Register PWM_CDTY Read-write 0x0

0x200 + ch_num * 0x20 + 0x08 PWM Channel Period Register PWM_CPRD Read-write 0x0

0x200 + ch_num * 0x20 + 0x0C PWM Channel Counter Register PWM_CCNT Read-only 0x0

0x200 + ch_num * 0x20 + 0x10 PWM Channel Update Register PWM_CUPD Write-only -
638
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
32.7.1 PWM Mode Register
Name: PWM_MR

Address: 0x40020000

Access: Read/Write

• DIVA, DIVB: CLKA, CLKB Divide Factor

• PREA, PREB

Values which are not listed in the table must be considered as “reserved”.

31 30 29 28 27 26 25 24

– – – – PREB

23 22 21 20 19 18 17 16
DIVB

15 14 13 12 11 10 9 8
– – – – PREA

7 6 5 4 3 2 1 0
DIVA

Value Name Description

0 CLK_OFF CLKA, CLKB clock is turned off

1 CLK_DIV1 CLKA, CLKB clock is clock selected by PREA, PREB

2-255 –
CLKA, CLKB clock is clock selected by PREA, PREB
divided by DIVA, DIVB factor.

Value Name Description

0000 MCK Master Clock

0001 MCKDIV2 Master Clock divided by 2

0010 MCKDIV4 Master Clock divided by 4

0011 MCKDIV8 Master Clock divided by 8

0100 MCKDIV16 Master Clock divided by 16

0101 MCKDIV32 Master Clock divided by 32

0110 MCKDIV64 Master Clock divided by 64

0111 MCKDIV128 Master Clock divided by 128

1000 MCKDIV256 Master Clock divided by 256

1001 MCKDIV512 Master Clock divided by 512

1010 MCKDIV1024 Master Clock divided by 1024
639
11011B–ATARM–21-Feb-12

32.7.2 PWM Enable Register
Name: PWM_ENA

Address: 0x40020004

Access: Write-only

• CHIDx: Channel ID
0 = No effect.

1 = Enable PWM output for channel x.

32.7.3 PWM Disable Register
Name: PWM_DIS

Address: 0x40020008

Access: Write-only

• CHIDx: Channel ID
0 = No effect.

1 = Disable PWM output for channel x.

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
 CHID3 CHID2 CHID1 CHID0

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
 CHID3 CHID2 CHID1 CHID0
640
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
32.7.4 PWM Status Register
Name: PWM_SR

Address: 0x4002000C

Access: Read-only

• CHIDx: Channel ID
0 = PWM output for channel x is disabled.

1 = PWM output for channel x is enabled.

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
 CHID3 CHID2 CHID1 CHID0
641
11011B–ATARM–21-Feb-12

32.7.5 PWM Interrupt Enable Register
Name: PWM_IER

Address: 0x40020010

Access: Write-only

• CHIDx: Channel ID.
0 = No effect.

1 = Enable interrupt for PWM channel x.

32.7.6 PWM Interrupt Disable Register
Name: PWM_IDR

Address: 0x40020014

Access: Write-only

• CHIDx: Channel ID.
0 = No effect.

1 = Disable interrupt for PWM channel x.

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
 CHID3 CHID2 CHID1 CHID0

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
 CHID3 CHID2 CHID1 CHID0
642
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
32.7.7 PWM Interrupt Mask Register
Name: PWM_IMR

Address: 0x40020018

Access: Read-only

• CHIDx: Channel ID.
0 = Interrupt for PWM channel x is disabled.

1 = Interrupt for PWM channel x is enabled.

32.7.8 PWM Interrupt Status Register
Name: PWM_ISR

Address: 0x4002001C

Access: Read-only

• CHIDx: Channel ID
0 = No new channel period has been achieved since the last read of the PWM_ISR register.

1 = At least one new channel period has been achieved since the last read of the PWM_ISR register.

Note: Reading PWM_ISR automatically clears CHIDx flags.

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
 CHID3 CHID2 CHID1 CHID0

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
 CHID3 CHID2 CHID1 CHID0
643
11011B–ATARM–21-Feb-12

32.7.9 PWM Channel Mode Register
Name: PWM_CMR[0..3]

Addresses: 0x40020200 [0], 0x40020220 [1], 0x40020240 [2], 0x40020260 [3]

Access: Read/Write

• CPRE: Channel Pre-scaler

Values which are not listed in the table must be considered as “reserved”.

• CALG: Channel Alignment
0 = The period is left aligned.

1 = The period is center aligned.

• CPOL: Channel Polarity
0 = The output waveform starts at a low level.

1 = The output waveform starts at a high level.

• CPD: Channel Update Period
0 = Writing to the PWM_CUPDx will modify the duty cycle at the next period start event.

1 = Writing to the PWM_CUPDx will modify the period at the next period start event.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – CPD CPOL CALG

7 6 5 4 3 2 1 0
– – – – CPRE

Value Name Description

0000 MCK Master Clock

0001 MCKDIV2 Master Clock divided by 2

0010 MCKDIV4 Master Clock divided by 4

0011 MCKDIV8 Master Clock divided by 8

0100 MCKDIV16 Master Clock divided by 16

0101 MCKDIV32 Master Clock divided by 32

0110 MCKDIV64 Master Clock divided by 64

0111 MCKDIV128 Master Clock divided by 128

1000 MCKDIV256 Master Clock divided by 256

1001 MCKDIV512 Master Clock divided by 512

1010 MCKDIV1024 Master Clock divided by 1024

1011 CLKA Clock A

1100 CLKB Clock B
644
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
32.7.10 PWM Channel Duty Cycle Register
Name: PWM_CDTY[0..3]

Addresses: 0x40020204 [0], 0x40020224 [1], 0x40020244 [2], 0x40020264 [3]

Access: Read/Write

Only the first 16 bits (internal channel counter size) are significant.

• CDTY: Channel Duty Cycle
Defines the waveform duty cycle. This value must be defined between 0 and CPRD (PWM_CPRx).

31 30 29 28 27 26 25 24

CDTY

23 22 21 20 19 18 17 16
CDTY

15 14 13 12 11 10 9 8
CDTY

7 6 5 4 3 2 1 0
CDTY
645
11011B–ATARM–21-Feb-12

32.7.11 PWM Channel Period Register
Name: PWM_CPRD[0..3]

Addresses: 0x40020208 [0], 0x40020228 [1], 0x40020248 [2], 0x40020268 [3]

Access: Read/Write

Only the first 16 bits (internal channel counter size) are significant.

• CPRD: Channel Period
If the waveform is left-aligned, then the output waveform period depends on the counter source clock and can be
calculated:

– By using the Master Clock (MCK) divided by an X given prescaler value (with X being 1, 2, 4, 8, 16, 32, 64, 128,
256, 512, or 1024). The resulting period formula will be:

– By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes, respectively:

 or

If the waveform is center-aligned, then the output waveform period depends on the counter source clock and can be
calculated:

– By using the Master Clock (MCK) divided by an X given prescaler value (with X being 1, 2, 4, 8, 16, 32, 64, 128,
256, 512, or 1024). The resulting period formula will be:

– By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes, respectively:

 or

31 30 29 28 27 26 25 24

CPRD

23 22 21 20 19 18 17 16
CPRD

15 14 13 12 11 10 9 8
CPRD

7 6 5 4 3 2 1 0
CPRD

X CPRD×()
MCK

CRPD DIVA×()
MCK

--- CRPD DIVAB×()
MCK

2 X CPRD××()
MCK

2 CPRD DIVA××()
MCK

-- 2 CPRD× DIVB×()
MCK

--
646
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
32.7.12 PWM Channel Counter Register
Name: PWM_CCNT[0..3]

Addresses: 0x4002020C [0], 0x4002022C [1], 0x4002024C [2], 0x4002026C [3]

Access: Read-only

• CNT: Channel Counter Register
Internal counter value. This register is reset when:

• the channel is enabled (writing CHIDx in the PWM_ENA register).

• the counter reaches CPRD value defined in the PWM_CPRDx register if the waveform is left aligned.

31 30 29 28 27 26 25 24

CNT

23 22 21 20 19 18 17 16
CNT

15 14 13 12 11 10 9 8
CNT

7 6 5 4 3 2 1 0
CNT
647
11011B–ATARM–21-Feb-12

32.7.13 PWM Channel Update Register
Name: PWM_CUPD[0..3]

Addresses: 0x40020210 [0], 0x40020230 [1], 0x40020250 [2], 0x40020270 [3]

Access: Write-only

CUPD: Channel Update Register

This register acts as a double buffer for the period or the duty cycle. This prevents an unexpected waveform when modify-
ing the waveform period or duty-cycle.

Only the first 16 bits (internal channel counter size) are significant.

When CPD field of PWM_CMRx register = 0, the duty-cycle (CDTY of PWM_CDTYx register) is updated with the CUPD
value at the beginning of the next period.

When CPD field of PWM_CMRx register = 1, the period (CPRD of PWM_CPRDx register) is updated with the CUPD value
at the beginning of the next period.

31 30 29 28 27 26 25 24

CUPD

23 22 21 20 19 18 17 16
CUPD

15 14 13 12 11 10 9 8
CUPD

7 6 5 4 3 2 1 0
CUPD
648
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33. Analog-to-digital Converter (ADC)

33.1 Description
The ADC is based on a 10-bit Analog-to-Digital Converter (ADC) managed by an ADC Control-
ler. Refer to the Block Diagram: Figure 33-1. It also integrates a 16-to-1 analog multiplexer,
making possible the analog-to-digital conversions of 16 analog lines. The conversions extend
from 0V to ADVREF. The ADC supports an 8-bit or 10-bit resolution mode, and conversion
results are reported in a common register for all channels, as well as in a channel-dedicated reg-
ister. Software trigger, external trigger on rising edge of the ADTRG pin or internal triggers from
Timer Counter output(s) are configurable.

The comparison circuitry allows automatic detection of values below a threshold, higher than a
threshold, in a given range or outside the range, thresholds and ranges being fully configurable.

The ADC also integrates a Sleep Mode and a conversion sequencer and connects with a PDC
channel. These features reduce both power consumption and processor intervention.

 A whole set of reference voltages is generated internally from a single external reference volt-
age node that may be equal to the analog supply voltage. An external decoupling capacitance is
required for noise filtering.

Finally, the user can configure ADC timings, such as Startup Time and Tracking Time.

33.2 Embedded Characteristics
• 10-bit Resolution

• 500 kHz Conversion Rate

• Wide Range Power Supply Operation

• Integrated Multiplexer Offering Up to 16 Independent Analog Inputs

• Individual Enable and Disable of Each Channel

• Hardware or Software Trigger

– External Trigger Pin

– Timer Counter Outputs (Corresponding TIOA Trigger)

• PDC Support

• Possibility of ADC Timings Configuration

• Two Sleep Modes and Conversion Sequencer

– Automatic Wakeup on Trigger and Back to Sleep Mode after Conversions of all
Enabled Channels

– Possibility of Customized Channel Sequence

• Standby Mode for Fast Wakeup Time Response

– Power Down Capability

• Automatic Window Comparison of Converted Values

• Write Protect Registers
649
11011B–ATARM–21-Feb-12

649
11011B–ATARM–21-Feb-12

33.3 Block Diagram

Figure 33-1. Analog-to-Digital Converter Block Diagram

33.4 Signal Description

Table 33-1. ADC Pin Description

Pin Name Description

ADVREF Reference voltage

AD0 - AD15 Analog input channels

ADTRG External trigger

ADC InterruptADTRG

ADVREF

GND

Trigger
Selection

Control
Logic

Successive
Approximation

Register
Analog-to-Digital

Converter

Timer
Counter

Channels

User
Interface

Interrupt
Controller

Peripheral Bridge

APB

PDC

System Bus

Analog Inputs
Multiplexed

with I/O lines

PIO
AD-

AD-

AD-

ADC Controller

PMC

MCK

ADC cell

CHx
650
11011B–ATARM–21-Feb-12

SAM3N650
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.5 Product Dependencies

33.5.1 Power Management
The ADC Controller is not continuously clocked. The programmer must first enable the ADC
Controller MCK in the Power Management Controller (PMC) before using the ADC Controller.
However, if the application does not require ADC operations, the ADC Controller clock can be
stopped when not needed and restarted when necessary. Configuring the ADC Controller does
not require the ADC Controller clock to be enabled.

33.5.2 Interrupt Sources
The ADC interrupt line is connected on one of the internal sources of the Interrupt Controller.
Using the ADC interrupt requires the NVIC to be programmed first.

33.5.3 Analog Inputs
The analog input pins can be multiplexed with PIO lines. In this case, the assignment of the ADC
input is automatically done as soon as the corresponding channel is enabled by writing the reg-
ister ADC_CHER. By default, after reset, the PIO line is configured as input with its pull-up
enabled and the ADC input is connected to the GND.

33.5.4 I/O Lines
The pin ADTRG may be shared with other peripheral functions through the PIO Controller. In
this case, the PIO Controller should be set accordingly to assign the pin ADTRG to the ADC
function.

Table 33-2. Peripheral IDs

Instance ID

ADC 29

Table 33-3. I/O Lines

Instance Signal I/O Line Peripheral

ADC ADTRG PA8 B

ADC AD0 PA17 X1

ADC AD1 PA18 X1

ADC AD2/WKUP9 PA19 X1

ADC AD3/WKUP10 PA20 X1

ADC AD4 PB0 X1

ADC AD5 PB1 X1

ADC AD6/WKUP12 PB2 X1

ADC AD7 PB3 X1

ADC AD8 PA21 X1

ADC AD9 PA22 X1

ADC AD10 PC13 X1

ADC AD11 PC15 X1

ADC AD12 PC12 X1
651
11011B–ATARM–21-Feb-12

651
11011B–ATARM–21-Feb-12

33.5.5 Timer Triggers
Timer Counters may or may not be used as hardware triggers depending on user requirements.
Thus, some or all of the timer counters may be unconnected.

33.5.6 Conversion Performances
For performance and electrical characteristics of the ADC, see the product DC Characteristics
section.

33.6 Functional Description

33.6.1 Analog-to-digital Conversion
The ADC uses the ADC Clock to perform conversions. Converting a single analog value to a 10-
bit digital data requires Tracking Clock cycles as defined in the field TRACKTIM of the “ADC
Mode Register” on page 661 and Transfer Clock cycles as defined in the field TRANSFER of the
same register. The ADC Clock frequency is selected in the PRESCAL field of the Mode Register
(ADC_MR). The tracking phase starts during the conversion of the previous channel. If the track-
ing time is longer than the conversion time, the tracking phase is extended to the end of the
previous conversion.

The ADC clock range is between MCK/2, if PRESCAL is 0, and MCK/512, if PRESCAL is set to
255 (0xFF). PRESCAL must be programmed in order to provide an ADC clock frequency
according to the parameters given in the product Electrical Characteristics section.

ADC AD13 PC29 X1

ADC AD14 PC30 X1

ADC AD15 PC31 X1

Table 33-3. I/O Lines
652
11011B–ATARM–21-Feb-12

SAM3N652
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 33-2. Sequence of ADC conversions

33.6.2 Conversion Reference
The conversion is performed on a full range between 0V and the reference voltage pin ADVREF.
Analog inputs between these voltages convert to values based on a linear conversion.

33.6.3 Conversion Resolution
The ADC supports 8-bit or 10-bit resolutions. The 8-bit selection is performed by setting the
LOWRES bit in the ADC Mode Register (ADC_MR). By default, after a reset, the resolution is
the highest and the DATA field in the data registers is fully used. By setting the LOWRES bit, the
ADC switches to the lowest resolution and the conversion results can be read in the lowest sig-
nificant bits of the data registers. The two highest bits of the DATA field in the corresponding
ADC_CDR register and of the LDATA field in the ADC_LCDR register read 0.

33.6.4 Conversion Results
When a conversion is completed, the resulting 10-bit digital value is stored in the Channel Data
Register (ADC_CDRx) of the current channel and in the ADC Last Converted Data Register
(ADC_LCDR). By setting the TAG option in the ADC_EMR, the ADC_LCDR presents the chan-
nel number associated to the last converted data in the CHNB field.

The channel EOC bit in the Status Register (ADC_SR) is set and the DRDY is set. In the case of
a connected PDC channel, DRDY rising triggers a data transfer request. In any case, either
EOC and DRDY can trigger an interrupt.

Reading one of the ADC_CDR registers clears the corresponding EOC bit. Reading ADC_LCDR
clears the DRDY bit and EOC bit corresponding to the last converted channel.

ADCClock

LCDR

ADC_ON

ADC_SEL

DRDY

ADC_Start

CH0 CH1

CH0

CH2

CH1

Start Up Time
(and tracking of CH0)

Conversion of CH0 Conversion of CH1Tracking of CH1 Tracking of CH2

ADC_eoc

Trigger event
(Hard or Soft)

A
na

lo
g

ce
ll

IO
s

653
11011B–ATARM–21-Feb-12

653
11011B–ATARM–21-Feb-12

Figure 33-3. EOCx and DRDY Flag Behavior

If the ADC_CDR is not read before further incoming data is converted, the corresponding Over-
run Error (OVREx) flag is set in the Overrun Status Register (ADC_OVER).

Likewise, new data converted when DRDY is high sets the GOVRE bit (General Overrun Error)
in ADC_SR.

The OVREx flag is automatically cleared when ADC_OVER is read, and GOVRE flag is auto-
matically cleared when ADC_SR is read.

Read the ADC_CDRx

EOCx

DRDY

Read the ADC_LCDR

CHx
(ADC_CHSR)

(ADC_SR)

(ADC_SR)

Write the ADC_CR
 with START = 1

Write the ADC_CR
 with START = 1
654
11011B–ATARM–21-Feb-12

SAM3N654
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

Figure 33-4. GOVRE and OVREx Flag Behavior

Warning: If the corresponding channel is disabled during a conversion or if it is disabled and
then reenabled during a conversion, its associated data and its corresponding EOC and OVRE
flags in ADC_SR are unpredictable.

EOC0

GOVRE

CH0
(ADC_CHSR)

(ADC_SR)

(ADC_SR)

Trigger event

EOC1

CH1
(ADC_CHSR)

(ADC_SR)

OVRE0
(ADC_OVER)

Undefined Data Data A Data BADC_LCDR

Undefined Data Data AADC_CDR0

Undefined Data Data BADC_CDR1

Data C

Data C

Conversion C
Conversion A

DRDY
(ADC_SR)

Read ADC_CDR1

Read ADC_CDR0

Conversion B

Read ADC_OVER

Read ADC_SR

OVRE1
(ADC_OVER)
655
11011B–ATARM–21-Feb-12

655
11011B–ATARM–21-Feb-12

33.6.5 Conversion Triggers
Conversions of the active analog channels are started with a software or hardware trigger. The
software trigger is provided by writing the Control Register (ADC_CR) with the START bit at 1.

The hardware trigger can be one of the TIOA outputs of the Timer Counter channels or the
external trigger input of the ADC (ADTRG). The hardware trigger is selected with the TRGSEL
field in the Mode Register (ADC_MR). The selected hardware trigger is enabled with the TRGEN
bit in the Mode Register (ADC_MR).

The minimum time between 2 consecutive trigger events must be strictly greater than the dura-
tion time of the longest conversion sequence according to configuration of registers ADC_MR,
ADC_CHSR, ADC_SEQR1, ADC_SEQR2.

If a hardware trigger is selected, the start of a conversion is triggered after a delay starting at
each rising edge of the selected signal. Due to asynchronous handling, the delay may vary in a
range of 2 MCK clock periods to 1 ADC clock period.

If one of the TIOA outputs is selected, the corresponding Timer Counter channel must be pro-
grammed in Waveform Mode.

Only one start command is necessary to initiate a conversion sequence on all the channels. The
ADC hardware logic automatically performs the conversions on the active channels, then waits
for a new request. The Channel Enable (ADC_CHER) and Channel Disable (ADC_CHDR) Reg-
isters permit the analog channels to be enabled or disabled independently.

If the ADC is used with a PDC, only the transfers of converted data from enabled channels are
performed and the resulting data buffers should be interpreted accordingly.

33.6.6 Sleep Mode and Conversion Sequencer
The ADC Sleep Mode maximizes power saving by automatically deactivating the ADC when it is
not being used for conversions. Sleep Mode is selected by setting the SLEEP bit in the Mode
Register ADC_MR.

The Sleep mode is automatically managed by a conversion sequencer, which can automatically
process the conversions of all channels at lowest power consumption.

This mode can be used when the minimum period of time between 2 successive trigger events
is greater than the startup period of Analog-Digital converter (See the product ADC Characteris-
tics section).

When a start conversion request occurs, the ADC is automatically activated. As the analog cell
requires a start-up time, the logic waits during this time and starts the conversion on the enabled
channels. When all conversions are complete, the ADC is deactivated until the next trigger. Trig-
gers occurring during the sequence are not taken into account.

A fast wake-up mode is available in the ADC Mode Register (ADC_MR) as a compromise
between power saving strategy and responsiveness. Setting the FWUP bit to ‘1’ enables the fast
wake-up mode. In fast wake-up mode the ADC cell is not fully deactivated while no conversion is
requested, thereby providing less power saving but faster wakeup.

The conversion sequencer allows automatic processing with minimum processor intervention
and optimized power consumption. Conversion sequences can be performed periodically using

trigger

start

delay
656
11011B–ATARM–21-Feb-12

SAM3N656
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

a Timer/Counter output. The periodic acquisition of several samples can be processed automat-
ically without any intervention of the processor thanks to the PDC.

The sequence can be customized by programming the Sequence Channel Registers,
ADC_SEQR1 and ADC_SEQR2 and setting to 1 the USEQ bit of the Mode Register (ADC_MR).
The user can choose a specific order of channels and can program up to 16 conversions by
sequence. The user is totally free to create a personal sequence, by writing channel numbers in
ADC_SEQR1 and ADC_SEQR2. Not only can channel numbers be written in any sequence,
channel numbers can be repeated several times. Only enabled sequence bitfields are con-
verted, consequently to program a 15-conversion sequence, the user can simply put a disable in
ADC_CHSR[15], thus disabling the 16THCH field of ADC_SEQR2.

If all ADC channels (i.e. 16) are used on an application board, there is no restriction of usage of
the user sequence. But as soon as some ADC channels are not enabled for conversion but
rather used as pure digital inputs, the respective indexes of these channels cannot be used in
the user sequence fields (ADC_SEQR1, ADC_SEQR2 bitfields). For example, if channel 4 is
disabled (ADC_CSR[4] = 0), ADC_SEQR1, ADC_SEQR2 register bitfields USCH1 up to
USCH16 must not contain the value 4. Thus the length of the user sequence may be limited by
this behavior.

As an example, if only 4 channels over 16 (CH0 up to CH3) are selected for ADC conversions,
the user sequence length cannot exceed 4 channels. Each trigger event may launch up to 4 suc-
cessive conversions of any combination of channels 0 up to 3 but no more (i.e. in this case the
sequence CH0, CH0, CH1, CH1, CH1 is impossible).

A sequence that repeats several times the same channel requires more enabled channels than
channels actually used for conversion. For example, a sequence like CH0, CH0, CH1, CH1
requires 4 enabled channels (4 free channels on application boards) whereas only CH0, CH1
are really converted.

Note: The reference voltage pins always remain connected in normal mode as in sleep mode.

33.6.7 Comparison Window
The ADC Controller features automatic comparison functions. It compares converted values to a
low threshold or a high threshold or both, according to the CMPMODE function chosen in the
Extended Mode Register (ADC_EMR). The comparison can be done on all channels or only on
the channel specified in CMPSEL field of ADC_EMR. To compare all channels the CMP_ALL
parameter of ADC_EMR should be set.

The flag can be read on the COMPE bit of the Interrupt Status Register (ADC_ISR) and can trig-
ger an interrupt.

The High Threshold and the Low Threshold can be read/write in the Comparison Window Regis-
ter (ADC_CWR).

33.6.8 ADC Timings
Each ADC has its own minimal Startup Time that is programmed through the field STARTUP in
the Mode Register, ADC_MR.

A minimal Tracking Time is necessary for the ADC to guarantee the best converted final value
between two channel selections. This time has to be programmed through the TRACKTIM bit
field in the Mode Register, ADC_MR.
657
11011B–ATARM–21-Feb-12

657
11011B–ATARM–21-Feb-12

Warning: No input buffer amplifier to isolate the source is included in the ADC. This must be
taken into consideration to program a precise value in the TRACKTIM field. See the product
ADC Characteristics section.

33.6.9 Buffer Structure
The PDC read channel is triggered each time new data is stored in ADC_LCDR register. The
same structure of data is repeatedly stored in ADC_LCDR register each time a trigger event
occurs. Depending on user mode of operation (ADC_MR, ADC_CHSR, ADC_SEQR1,
ADC_SEQR2) the structure differs. Each data transferred to PDC buffer, carried on a half-word
(16-bit), consists of last converted data right aligned and when TAG is set in ADC_EMR register,
the 4 most significant bits are carrying the channel number thus allowing an easier post-process-
ing in the PDC buffer or better checking the PDC buffer integrity.

33.6.10 Write Protection Registers
To prevent any single software error that may corrupt ADC behavior, certain address spaces
can be write-protected by setting the WPEN bit in the “ADC Write Protect Mode Register”
(ADC_WPMR).

If a write access to the protected registers is detected, then the WPVS flag in the ADC Write Pro-
tect Status Register (ADC_WPSR) is set and the field WPVSRC indicates in which register the
write access has been attempted.

The WPVS flag is reset by writing the ADC Write Protect Mode Register (ADC_WPMR) with the
appropriate access key, WPKEY.

The protected registers are:

“ADC Mode Register” on page 661

“ADC Channel Sequence 1 Register” on page 663

“ADC Channel Sequence 2 Register” on page 664

“ADC Channel Enable Register” on page 665

“ADC Channel Disable Register” on page 666

“ADC Extended Mode Register” on page 674

“ADC Compare Window Register” on page 675
658
11011B–ATARM–21-Feb-12

SAM3N658
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.7 Analog-to-Digital Converter (ADC) User Interface
Any offset not listed in Table 33-4 must be considered as “reserved”.

Note: If an offset is not listed in the table it must be considered as “reserved”.

Table 33-4. Register Mapping

Offset Register Name Access Reset

0x00 Control Register ADC_CR Write-only –

0x04 Mode Register ADC_MR Read-write 0x00000000

0x08 Channel Sequence Register 1 ADC_SEQR1 Read-write 0x00000000

0x0C Channel Sequence Register 2 ADC_SEQR2 Read-write 0x00000000

0x10 Channel Enable Register ADC_CHER Write-only –

0x14 Channel Disable Register ADC_CHDR Write-only –

0x18 Channel Status Register ADC_CHSR Read-only 0x00000000

0x1C Reserved – – –

0x20 Last Converted Data Register ADC_LCDR Read-only 0x00000000

0x24 Interrupt Enable Register ADC_IER Write-only –

0x28 Interrupt Disable Register ADC_IDR Write-only –

0x2C Interrupt Mask Register ADC_IMR Read-only 0x00000000

0x30 Interrupt Status Register ADC_ISR Read-only 0x00000000

0x34 Reserved – – –

0x38 Reserved – – –

0x3C Overrun Status Register ADC_OVER Read-only 0x00000000

0x40 Extended Mode Register ADC_EMR Read-write 0x00000000

0x44 Compare Window Register ADC_CWR Read-write 0x00000000

0x50 Channel Data Register 0 ADC_CDR0 Read-only 0x00000000

0x54 Channel Data Register 1 ADC_CDR1 Read-only 0x00000000

...

0x8C Channel Data Register 15 ADC_CDR15 Read-only 0x00000000

 - 0x90 Reserved – – –

0x98 - 0xAC Reserved – – –

0xC4 - 0xE0 Reserved – – –

0xE4 Write Protect Mode Register ADC_WPMR Read-write 0x00000000

0xE8 Write Protect Status Register ADC_WPSR Read-only 0x00000000

0xEC - 0xF8 Reserved – – –

 0xFC Reserved – – –
659
11011B–ATARM–21-Feb-12

659
11011B–ATARM–21-Feb-12

33.7.1 ADC Control Register
Name: ADC_CR

Address: 0x40038000

Access: Write-only

• SWRST: Software Reset
0 = No effect.

1 = Resets the ADC simulating a hardware reset.

• START: Start Conversion
0 = No effect.

1 = Begins analog-to-digital conversion.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – START SWRST
660
11011B–ATARM–21-Feb-12

SAM3N660
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.7.2 ADC Mode Register
Name: ADC_MR

Address: 0x40038004

Access: Read-write

This register can only be written if the WPEN bit is cleared in “ADC Write Protect Mode Register” on page 677.

• TRGEN: Trigger Enable

• TRGSEL: Trigger Selection

• LOWRES: Resolution

• SLEEP: Sleep Mode

31 30 29 28 27 26 25 24

USEQ – – – TRACKTIM

23 22 21 20 19 18 17 16

– – – – STARTUP

15 14 13 12 11 10 9 8

PRESCAL

7 6 5 4 3 2 1 0
FREERUN FWUP SLEEP LOWRES TRGSEL TRGEN

Value Name Description

0 DIS Hardware triggers are disabled. Starting a conversion is only possible by software.

1 EN Hardware trigger selected by TRGSEL field is enabled.

Value Name Description

0 ADC_TRIG0 External trigger

1 ADC_TRIG1 TIO Output of the Timer Counter Channel 0

2 ADC_TRIG2 TIO Output of the Timer Counter Channel 1

3 ADC_TRIG3 TIO Output of the Timer Counter Channel 2

4 ADC_TRIG4 Reserved

5 ADC_TRIG5 Reserved

6 ADC_TRIG6 Reserved

7 – Reserved

Value Name Description

0 BITS_10 10-bit resolution

1 BITS_8 8-bit resolution

Value Name Description

0 NORMAL Normal Mode: The ADC Core and reference voltage circuitry are kept ON between conversions

1 SLEEP Sleep Mode: The ADC Core and reference voltage circuitry are OFF between conversions
661
11011B–ATARM–21-Feb-12

661
11011B–ATARM–21-Feb-12

• FWUP: Fast Wake Up

• FREERUN: Free Run Mode

• PRESCAL: Prescaler Rate Selection
ADCClock = MCK / ((PRESCAL+1) * 2)

• STARTUP: Start Up Time

• TRACKTIM: Tracking Time
Tracking Time = (TRACKTIM + 1) * ADCClock periods.

• USEQ: Use Sequence Enable

Value Name Description

0 OFF Normal Sleep Mode: The sleep mode is defined by the SLEEP bit

1 ON Fast Wake Up Sleep Mode: The Voltage reference is ON between conversions and ADC Core is OFF

Value Name Description

0 OFF Normal Mode

1 ON Free Run Mode: Never wait for any trigger.

Value Name Description

0 SUT0 0 periods of ADCClock

1 SUT8 8 periods of ADCClock

2 SUT16 16 periods of ADCClock

3 SUT24 24 periods of ADCClock

4 SUT64 64 periods of ADCClock

5 SUT80 80 periods of ADCClock

6 SUT96 96 periods of ADCClock

7 SUT112 112 periods of ADCClock

8 SUT512 512 periods of ADCClock

9 SUT576 576 periods of ADCClock

10 SUT640 640 periods of ADCClock

11 SUT704 704 periods of ADCClock

12 SUT768 768 periods of ADCClock

13 SUT832 832 periods of ADCClock

14 SUT896 896 periods of ADCClock

15 SUT960 960 periods of ADCClock

Value Name Description

0 NUM_ORDER Normal Mode: The controller converts channels in a simple numeric order.

1 REG_ORDER
User Sequence Mode: The sequence respects what is defined in ADC_SEQR1 and ADC_SEQR2
registers.
662
11011B–ATARM–21-Feb-12

SAM3N662
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.7.3 ADC Channel Sequence 1 Register
Name: ADC_SEQR1

Address: 0x40038008

Access: Read-write

This register can only be written if the WPEN bit is cleared in “ADC Write Protect Mode Register” on page 677.

• USCHx: User Sequence Number x
The sequence number x (USCHx) can be programmed by the Channel number CHy where y is the value written in this
field. The allowed range is 0 up to 15. So it is only possible to use the sequencer from CH0 to CH15.

This register activates only if ADC_MR(USEQ) field is set to ‘1’.

Any USCHx field is taken into account only if ADC_CHSR(CHx) register field reads logical ‘1’ else any value written in
USCHx does not add the corresponding channel in the conversion sequence.

Configuring the same value in different fields leads to multiple samples of the same channel during the conversion
sequence. This can be done consecutively, or not, according to user needs.

31 30 29 28 27 26 25 24

USCH8 USCH7

23 22 21 20 19 18 17 16

USCH6 USCH5

15 14 13 12 11 10 9 8

USCH4 USCH3

7 6 5 4 3 2 1 0
USCH2 USCH1
663
11011B–ATARM–21-Feb-12

663
11011B–ATARM–21-Feb-12

33.7.4 ADC Channel Sequence 2 Register
Name: ADC_SEQR2

Address: 0x4003800C

Access: Read-write

This register can only be written if the WPEN bit is cleared in “ADC Write Protect Mode Register” on page 677.

• USCHx: User Sequence Number x
The sequence number x (USCHx) can be programmed by the Channel number CHy where y is the value written in this
field. The allowed range is 0 up to 15. So it is only possible to use the sequencer from CH0 to CH15.

This register activates only if ADC_MR(USEQ) field is set to ‘1’.

Any USCHx field is taken into account only if ADC_CHSR(CHx) register field reads logical ‘1’ else any value written in
USCHx does not add the corresponding channel in the conversion sequence.

Configuring the same value in different fields leads to multiple samples of the same channel during the conversion
sequence. This can be done consecutively, or not, according to user needs.

31 30 29 28 27 26 25 24

USCH16 USCH15

23 22 21 20 19 18 17 16

USCH14 USCH13

15 14 13 12 11 10 9 8

USCH12 USCH11

7 6 5 4 3 2 1 0
USCH10 USCH9
664
11011B–ATARM–21-Feb-12

SAM3N664
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.7.5 ADC Channel Enable Register
Name: ADC_CHER

Address: 0x40038010

Access: Write-only

This register can only be written if the WPEN bit is cleared in “ADC Write Protect Mode Register” on page 677.

• CHx: Channel x Enable
0 = No effect.

1 = Enables the corresponding channel.

Note: if USEQ = 1 in ADC_MR register, CHx corresponds to the xth channel of the sequence described in ADC_SEQR1
and ADC_SEQR2.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8

7 6 5 4 3 2 1 0
CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0
665
11011B–ATARM–21-Feb-12

665
11011B–ATARM–21-Feb-12

33.7.6 ADC Channel Disable Register
Name: ADC_CHDR

Address: 0x40038014

Access: Write-only

This register can only be written if the WPEN bit is cleared in “ADC Write Protect Mode Register” on page 677.

• CHx: Channel x Disable
0 = No effect.

1 = Disables the corresponding channel.

Warning: If the corresponding channel is disabled during a conversion or if it is disabled then reenabled during a conver-
sion, its associated data and its corresponding EOC and OVRE flags in ADC_SR are unpredictable.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8

7 6 5 4 3 2 1 0
CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0
666
11011B–ATARM–21-Feb-12

SAM3N666
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.7.7 ADC Channel Status Register
Name: ADC_CHSR

Address: 0x40038018

Access: Read-only

• CHx: Channel x Status
0 = Corresponding channel is disabled.

1 = Corresponding channel is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8

7 6 5 4 3 2 1 0
CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0
667
11011B–ATARM–21-Feb-12

667
11011B–ATARM–21-Feb-12

33.7.8 ADC Last Converted Data Register
Name: ADC_LCDR

Address: 0x40038020

Access: Read-only

• LDATA: Last Data Converted
The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conver-
sion is completed.

• CHNB: Channel Number
Indicates the last converted channel when the TAG option is set to 1 in ADC_EMR register. If TAG option is not set,
CHNB = 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CHNB LDATA

7 6 5 4 3 2 1 0
LDATA
668
11011B–ATARM–21-Feb-12

SAM3N668
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.7.9 ADC Interrupt Enable Register
Name: ADC_IER

Address: 0x40038024

Access: Write-only

• EOCx: End of Conversion Interrupt Enable x

• DRDY: Data Ready Interrupt Enable

• GOVRE: General Overrun Error Interrupt Enable

• COMPE: Comparison Event Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

EOC15 EOC14 EOC13 EOC12 EOC11 EOC10 EOC9 EOC8

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0
669
11011B–ATARM–21-Feb-12

669
11011B–ATARM–21-Feb-12

33.7.10 ADC Interrupt Disable Register
Name: ADC_IDR

Address: 0x40038028

Access: Write-only

• EOCx: End of Conversion Interrupt Disable x

• DRDY: Data Ready Interrupt Disable

• GOVRE: General Overrun Error Interrupt Disable

• COMPE: Comparison Event Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

EOC15 EOC14 EOC13 EOC12 EOC11 EOC10 EOC9 EOC8

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0
670
11011B–ATARM–21-Feb-12

SAM3N670
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.7.11 ADC Interrupt Mask Register
Name: ADC_IMR

Address: 0x4003802C

Access: Read-only

• EOCx: End of Conversion Interrupt Mask x

• DRDY: Data Ready Interrupt Mask

• GOVRE: General Overrun Error Interrupt Mask

• COMPE: Comparison Event Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

EOC15 EOC14 EOC13 EOC12 EOC11 EOC10 EOC9 EOC8

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0
671
11011B–ATARM–21-Feb-12

671
11011B–ATARM–21-Feb-12

33.7.12 ADC Interrupt Status Register
Name: ADC_ISR

Address: 0x40038030

Access: Read-only

• EOCx: End of Conversion x
0 = Corresponding analog channel is disabled, or the conversion is not finished. This flag is cleared when reading the cor-
responding ADC_CDRx registers.

1 = Corresponding analog channel is enabled and conversion is complete.

• DRDY: Data Ready
0 = No data has been converted since the last read of ADC_LCDR.

1 = At least one data has been converted and is available in ADC_LCDR.

• GOVRE: General Overrun Error
0 = No General Overrun Error occurred since the last read of ADC_ISR.

1 = At least one General Overrun Error has occurred since the last read of ADC_ISR.

• COMPE: Comparison Error
0 = No Comparison Error since the last read of ADC_ISR.

1 = At least one Comparison Error has occurred since the last read of ADC_ISR.

• ENDRX: End of RX Buffer
0 = The Receive Counter Register has not reached 0 since the last write in ADC_RCR or ADC_RNCR.

1 = The Receive Counter Register has reached 0 since the last write in ADC_RCR or ADC_RNCR.

• RXBUFF: RX Buffer Full
0 = ADC_RCR or ADC_RNCR have a value other than 0.

1 = Both ADC_RCR and ADC_RNCR have a value of 0.

31 30 29 28 27 26 25 24

– – – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

EOC15 EOC14 EOC13 EOC12 EOC11 EOC10 EOC9 EOC8

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0
672
11011B–ATARM–21-Feb-12

SAM3N672
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.7.13 ADC Overrun Status Register
Name: ADC_OVER

Address: 0x4003803C

Access: Read-only

• OVREx: Overrun Error x
0 = No overrun error on the corresponding channel since the last read of ADC_OVER.

1 = There has been an overrun error on the corresponding channel since the last read of ADC_OVER.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

OVRE15 OVRE14 OVRE13 OVRE12 OVRE11 OVRE10 OVRE9 OVRE8

7 6 5 4 3 2 1 0
OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0
673
11011B–ATARM–21-Feb-12

673
11011B–ATARM–21-Feb-12

33.7.14 ADC Extended Mode Register
Name: ADC_EMR

Address: 0x40038040

Access: Read-write

This register can only be written if the WPEN bit is cleared in “ADC Write Protect Mode Register” on page 677.

• CMPMODE: Comparison Mode

• CMPSEL: Comparison Selected Channel
If CMPALL = 0: CMPSEL indicates which channel has to be compared.

If CMPALL = 1: No effect.

• CMPALL: Compare All Channels
0 = Only channel indicated in CMPSEL field is compared.

1 = All channels are compared.

• TAG: TAG of ADC_LDCR register
0 = set CHNB to zero in ADC_LDCR.

1 = append the channel number to the conversion result in ADC_LDCR register.

31 30 29 28 27 26 25 24

– – – – – – – TAG

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – CMPALL –

7 6 5 4 3 2 1 0
CMPSEL – – CMPMODE

Value Name Description

0 LOW Generates an event when the converted data is lower than the low threshold of the window.

1 HIGH Generates an event when the converted data is higher than the high threshold of the window.

2 IN Generates an event when the converted data is in the comparison window.

3 OUT Generates an event when the converted data is out of the comparison window.
674
11011B–ATARM–21-Feb-12

SAM3N674
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.7.15 ADC Compare Window Register
Name: ADC_CWR

Address: 0x40038044

Access: Read-write

This register can only be written if the WPEN bit is cleared in “ADC Write Protect Mode Register” on page 677.

• LOWTHRES: Low Threshold
Low threshold associated to compare settings of ADC_EMR register.

• HIGHTHRES: High Threshold
High threshold associated to compare settings of ADC_EMR register.

31 30 29 28 27 26 25 24

– – – – HIGHTHRES

23 22 21 20 19 18 17 16

HIGHTHRES

15 14 13 12 11 10 9 8

– – – – LOWTHRES

7 6 5 4 3 2 1 0
LOWTHRES
675
11011B–ATARM–21-Feb-12

675
11011B–ATARM–21-Feb-12

33.7.16 ADC Channel Data Register
Name: ADC_CDRx [x=0..15]

Address: 0x40038050

Access: Read-only

• DATA: Converted Data
The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conver-
sion is completed. The Convert Data Register (CDR) is only loaded if the corresponding analog channel is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – DATA

7 6 5 4 3 2 1 0
DATA
676
11011B–ATARM–21-Feb-12

SAM3N676
11011B–ATARM–21-Feb-12

SAM3N

SAM3NSAM3N

33.7.17 ADC Write Protect Mode Register
Name: ADC_WPMR

Address: 0x400380E4

Access: Read-write

• WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x414443 (“ADC” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x414443 (“ADC” in ASCII).

Protects the registers:

“ADC Mode Register” on page 661

“ADC Channel Sequence 1 Register” on page 663

“ADC Channel Sequence 2 Register” on page 664

“ADC Channel Enable Register” on page 665

“ADC Channel Disable Register” on page 666

“ADC Extended Mode Register” on page 674

“ADC Compare Window Register” on page 675

• WPKEY: Write Protect KEY
Should be written at value 0x414443 (“ADC” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

— — — — — — — WPEN
677
11011B–ATARM–21-Feb-12

677
11011B–ATARM–21-Feb-12

33.7.18 ADC Write Protect Status Register
Name: ADC_WPSR

Address: 0x400380E8

Access: Read-only

• WPVS: Write Protect Violation Status
0 = No Write Protect Violation has occurred since the last read of the ADC_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the ADC_WPSR register. If this violation is an unauthor-
ized attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protect Violation Source
When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write
access has been attempted.

Reading ADC_WPSR automatically clears all fields.

31 30 29 28 27 26 25 24

— — — — — — — —

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

— — — — — — — WPVS
678
11011B–ATARM–21-Feb-12

SAM3N678
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
34. Digital to Analog Converter Controller (DACC)

34.1 Description
The Digital-to-Analog Converter Controller (DACC) has one analog output, making it possible for
the digital-to-analog conversion to drive one analog line.

The DACC supports 10-bit resolution and data to be converted are sent in a common register.
External triggers, through the ext_trig pins, or internal triggers are configurable.

The DACC Controller connects with a PDC channel. This feature reduces processor
intervention.

Finally, the user can configure DACC timings such as Startup Time and the Internal Trigger
Period.

34.2 Embedded Characteristics
• 1 channel 10-bit DAC

• Up to 500 ksamples/s conversion rate

• Flexible conversion range

• Multiple trigger sources

• One PDC channel
679
11011B–ATARM–21-Feb-12

34.3 Block Diagram

Figure 34-1. Digital-to-Analog Converter Controller Block Diagram

DAC Controller

Trigger
Selection Control

Logic

User
Interface

DAC Cell

DAC Core

DAC0

DATRG
Interrupt

Controller

DACC Interrupt

PDC

AHB

APB

Peripheral Bridge
680
11011B–ATARM–21-Feb-12

SAM3N

34.4 Signal Description

34.5 Product Dependencies

34.5.1 Power Management
The DAC can be enabled and disabled through the DACEN bit of the DACC Mode Register.

34.5.2 Interrupt Sources
The DACC interrupt line is connected on one of the internal sources of the Interrupt Controller.
Using the DACC interrupt requires the Interrupt Controller to be programmed first.

34.5.3 Conversion Performances
For performance and electrical characteristics of the DAC, see the product DC Characteristics
section.

Table 34-1. DAC Pin Description

Pin Name Description

DAC0 Analog output channel

DATRG External triggers

Table 34-2. Peripheral IDs

Instance ID

DACC 30
681
11011B–ATARM–21-Feb-12

SAM3N

34.6 Functional Description

34.6.1 Digital-to-analog Conversion
The DAC uses the master clock (MCK) to perform conversions.

Once a conversion has started, the DAC will take a setup time to provide the analog result on
the analog output.

Refer to the product electrical characteristics for more information.

34.6.2 Conversion Results
When a conversion is completed, the resulting analog value is available at the DAC channel
output.

34.6.3 Conversion Triggers
In internal trigger mode, conversion starts as soon as the DACC is enabled, data is written in the
DACC Conversion Data Register and an internal trigger event occurs (see Figure 34-2). The
internal trigger frequency is configurable through the CLKDIV field of the DACC Mode Register
and must not be above the maximum frequency allowed by the DAC.

In external trigger mode, the conversion waits for a rising edge event on the selected trigger to
begin (see Figure 34-3).

Warning: Disabling the external trigger mode will automatically set the DACC in internal trigger
mode.

Figure 34-2. Internal trigger

Figure 34-3. External trigger

CLKDIV/2 CLKDIV CLKDIV CLKDIV

TXRDY

write
DACC_CDR

Internal
trigger

DACC
conversion

data1 data2 data3 data4

data1 data2 data3 data4

0 1 2 3 4 3 2 1 0
Number of

bytes in FIFO

TXRDY

write
DACC_CDR

External
trigger

DACC
conversion

data1 data2 data3 data4

data1 data2 data3 data4 data5

data5

0 1 2 3 2 3 4 3 2 1 0Number of
bytes in FIFO
682
11011B–ATARM–21-Feb-12

SAM3N

34.6.4 Conversion FIFO
To provide flexibility and high efficiency, a 4 half-word FIFO is used to handle the data to be
converted.

As long as the TXRDY flag in the DACC Interrupt Status Register is active the DAC Controller is
ready to accept conversion requests by writing data in the DACC Conversion Data Register
(DACC_CDR). Data which cannot be converted immediately are stored in the DACC FIFO.

When the FIFO is full or the DACC is not ready to accept conversion requests, the TXRDY flag
is inactive.

Warning: Writing in the DACC_CDR register while TXRDY flag is inactive will corrupt FIFO
data.

34.6.5 Conversion Width
The WORD field of the DACC Mode Register allows the user to switch between half-word and
word transfer.

In half-word transfer mode only one 10-bit data item is sampled (DACC_MR[9:0]) per
DACC_CDR register write.

In word transfer mode each time the DACC_CDR register is written 2 data items are sampled.
First data i tem sampled for conversion wi l l be DACC_CDR[9:0] and the second
DACC_CDR[25:16].

34.6.6 DAC Timings
The DAC startup time must be defined by the user in the STARTUP field of the DACC Mode
Register.

The DAC maximum clock frequency is 13 MHz, therefore the internal trigger period can be con-
figured through the CLKDIV field of the DACC Mode Register.

34.6.7 Write Protection Registers
In order to bring security to the DACC, a write protection system has been implemented.

The write protection mode prevents the write of the DACC Mode Register. When this mode is
enabled and the protected register is written an error is generated in the DACC Write Protect
Status Register and the register write request is canceled. When a write protection error occurs,
the WPROTERR flag is set and the address of the corresponding canceled register write is
available in the WPROTADRR field of the DACC Write Protect Status Register.

Due to the nature of the write protection feature, enabling and disabling the write protection
mode requires the use of a security code. Thus when enabling or disabling the write protection
mode, the WPKEY field of the DACC Write Protect Mode Register must be filled with the “DAC”
ASCII code (corresponding to 0x444143) otherwise the register write will be canceled.
683
11011B–ATARM–21-Feb-12

SAM3N

34.7 Digital-to-Analog Converter Controller (DACC) User Interface

Table 34-3. Register Mapping

Offset Register Name Access Reset

0x00 Control Register DACC_CR Write-only –

0x04 Mode Register DACC_MR Read-write 0x00000000

0x08 Conversion Data Register DACC_CDR Write-only 0x00000000

0x0C Interrupt Enable Register DACC_IER Write-only –

0x10 Interrupt Disable Register DACC_IDR Write-only –

0x14 Interrupt Mask Register DACC_IMR Read-only 0x00000000

0x18 Interrupt Status Register DACC_ISR Read-only 0x00000000

0xE4 Write Protect Mode Register DACC_WPMR Read-write 0x00000000

0xE8 Write Protect Status Register DACC_WPSR Read-only 0x00000000

...

0xEC - 0xFC Reserved – – –
684
11011B–ATARM–21-Feb-12

SAM3N

34.7.1 DACC Control Register
Name: DACC_CR

Address: 0x4003C000

Access: Write-only

• SWRST: Software Reset
0 = No effect.

1 = Resets the DACC simulating a hardware reset.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – SWRST
685
11011B–ATARM–21-Feb-12

SAM3N

34.7.2 DACC Mode Register
Name: DACC_MR

Address: 0x4003C004

Access: Read-write

• TRGEN: Trigger Enable

• TRGSEL: Trigger Selection

• DACEN: DAC enable
0 = DAC disabled.

1 = DAC enabled.

• WORD: Word Transfer

31 30 29 28 27 26 25 24

CLKDIV

23 22 21 20 19 18 17 16

CLKDIV

15 14 13 12 11 10 9 8

STARTUP

7 6 5 4 3 2 1 0
– – WORD DACEN TRGSEL TRGEN

TRGEN Selected Mode

0 External trigger mode disabled. DACC in free running mode.

1 External trigger mode enabled.

Value Name Description

0 TRGSEL0 External trigger

1
TRGSEL1

TIO Output of the Timer Counter
Channel 0

2
TRGSEL2

TIO Output of the Timer Counter
Channel 1

3
TRGSEL3

TIO Output of the Timer Counter
Channel 2

4 TRGSEL4 Reserved

5 TRGSEL5 Reserved

6 TRGSEL6 Reserved

7 Reserved

WORD Selected Resolution

0 Half-Word transfer

1 Word Transfer
686
11011B–ATARM–21-Feb-12

SAM3N

• STARTUP: Startup Time Selection
Startup Time = (STARTUP+1) * Clock period

• CLKDIV: DAC Clock Divider for Internal Trigger
Trigger Period = CLKDIV * Clock period
687
11011B–ATARM–21-Feb-12

SAM3N

34.7.3 DACC Conversion Data Register
Name: DACC_CDR

Address: 0x4003C008

Access: Write-only

• DATA: Data to Convert
Data to convert. Can be one half-word or two half-word s depending on WORD bit in DACC_MR register.

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0
DATA
688
11011B–ATARM–21-Feb-12

SAM3N

34.7.4 DACC Interrupt Enable Register
Name: DACC_IER

Address: 0x4003C00C

Access: Write-only

• TXRDY: Transmission Ready Interrupt Enable
Enables ready for transmission interrupt.

• ENDTX: End of PDC Interrupt Enable

• TXBUFE: Buffer Empty Interrupt Enable
Enables end of conversion IT.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – TXBUFE ENDTX TXRDY
689
11011B–ATARM–21-Feb-12

SAM3N

34.7.5 DACC Interrupt Disable Register
Name: DACC_IDR

Address: 0x4003C010

Access: Write-only

• TXRDY: Transmission Ready Interrupt Disable
Disables ready for transmission interrupt.

• ENDTX: End of PDC Interrupt Disable

• TXBUFE: Buffer Empty Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – TXBUFE ENDTX TXRDY
690
11011B–ATARM–21-Feb-12

SAM3N

34.7.6 DACC Interrupt Mask Register
Name: DACC_IMR

Address: 0x4003C014

Access: Read-only

• TXRDY: Transmission Ready Interrupt Mask

• ENDTX: End of PDC Interrupt Mask

• TXBUFE: Buffer Empty Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – TXBUFE ENDTX TXRDY
691
11011B–ATARM–21-Feb-12

SAM3N

34.7.7 DACC Interrupt Status Register
Name: DACC_ISR

Address: 0x4003C018

Access: Read-only

• TXRDY: Transmission Ready Interrupt Flag

• ENDTX: End of PDC Interrupt Flag

• TXBUFE: Buffer Empty Interrupt Flag

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – TXBUFE ENDTX TXRDY
692
11011B–ATARM–21-Feb-12

SAM3N

34.7.8 DACC Write Protect Mode Register
Name: DACC_WPMR

Address: 0x4003C0E4

Access: Read-write

• WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x444143 (“DAC” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x444143 (“DAC” in ASCII).

Protects the DACC Mode Register.

• WPKEY: Write Protect KEY
This security code is needed to set/reset the WPROT bit value (see Section 34.6.7 ”Write Protection Registers” for details).

Must be filled with “DAC” ASCII code.

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN
693
11011B–ATARM–21-Feb-12

SAM3N

34.7.9 DACC Write Protect Status Register
Name: DACC_WPSR

Address: 0x4003C0E8

Access: Read-only

• WPROTERR: Write protection error
Indicates a write protection error.

• WPROTADDR: Write protection error address
Indicates the address of the register write request which generated the error.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

WPROTADDR

7 6 5 4 3 2 1 0
– – – – – – – WPROTERR
694
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
35. Electrical Characteristics

35.1 Absolute Maximum Ratings

Table 35-1. Absolute Maximum Ratings*

Operating Temperature (Industrial)-40° C to + 85° C *NOTICE: Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the
device at these or other conditions beyond those indi-
cated in the operational sections of this specification is
not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

Storage Temperature.......-60°C to + 150°C

Voltage on Input Pins
with Respect to Ground......-0.3V to + 4.0V

Maximum Operating Voltage
(VDDCORE)....... ...2.0V

Maximum Operating Voltage
(VDDIO)..4.0V

Total DC Output Current on all I/O lines
100-lead LQFP...150 mA
100-ball TFBGA...150 mA
64-lead LQFP...100 mA
48-lead LQFP...100 mA
64-pad QFN...100 mA
48-pad QFN...100 mA
695
11011B–ATARM–21-Feb-12

35.2 DC Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to
85°C, unless otherwise specified

Table 35-2. DC Characteristics

Symbol Parameter Conditions Min Typ Max
Unit

s

VDDCORE DC Supply Core 1.62 1.8 1.95 V

VVDDIO DC Supply I/Os (2) (3) 1.62 3.3 3.6 V

VVDDPLL
PLL and Main Oscillator
Supply

1.62 1.95 V

VIL Input Low-level Voltage PA0-PA31, PB0-PB14, PC0-PC31 -0.3
0.3 x

VVDDIO
V

VIH Input High-level Voltage PA0-PA31, PB0-PB14, PC0-PC31 0.7 x VVDDIO
VVDDIO
+0.3V

V

VOH Output High-level Voltage
PA0-PA31, PB0-PB14, PC0-PC31
IOH ~ 0

IOH > 0 (See IOH details below)

0.2

0.4
V

VOL Output Low-level Voltage
PA0-PA31, PB0-PB14, PC0-PC31
IOH ~ 0
IOH > 0 (See IOL details below)

VVDDIO -0.2V

VVDDIO -0.4V

V

VHys Hysteresis Voltage

PA0-PA31, PB0-PB14, PC0-PC31
(Hysteresis mode enabled)

150 500 mV

ERASE, TST, JTAGSEL 230 700 mV
696
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Note: 1. PA[4-13], PA[15-28], PB[0-14], PC[0-31]
2. At power-up VDDIO needs to reach 0.6V before VDDIN reaches 1.0V

3. VDDIO voltage needs to be equal or below to (VDDIN voltage +0.5V)

IO

IOH (or ISOURCE)

1.62V < VDDIO < 1.95V; VOH = VVDDIO - 0.4

- PA14 (SPCK), pins

- PA0-PA3

- Other pins(1)

-6

-6

-3

mA

3.0V < VDDIO < 3.6V; VOH = VVDDIO - 0.4

- PA14 (SPCK), pins
- PA0-PA3

- Other pins(1)

-6
-6

-3

1.62V < VDDIO < 3.6V; VOH = VVDDIO - 0.4

- NRST
-2

Relaxed Mode:

3.0V < VDDIO < 3.6V; VOH = 2.2V

- PA14 (SPCK), pins
- PA0-PA3

- Other pins(1)

-14
-16

-8

IOL (or ISINK)

1.62V < VDDIO < 1.95V; VOL = 0.4V

- PA14 (SPCK), pins

- PA0-PA3
- Other pins(1)

8

8
4

mA

3.0V < VDDIO < 3.6V; VOL = 0.4V
- PA14 (SPCK), pins

- PA0-PA3

- Other pins(1)

9

12

6

1.62V < VDDIO < 3.6V; VOL = 0.4V

- NRST
2

Relaxed Mode:

3.0V < VDDIO < 3.6V; VOL = 0.6V
- PA14 (SPCK), pins

- PA0-PA3

- Other pins(1)

14

18

9

IIL
Input Low

Leakage Current
No pull-up or pull-down; VIN=GND; VDDIO Max.
(Typ: TA = 25°C, Max: TA = 85°C)

5 30 nA

IIH
Input High

Leakage Current
No pull-up or pull-down; VIN=VDD; VDDIO Max.
(Typ: TA = 25°C, Max: TA = 85°C)

2 18 nA

RPULLUP Pull-up Resistor
PA0-PA31, PB0-PB14, PC0-PC31 50 100 175 kΩ

NRST 50 100 175 kΩ

RPULLDOWN Pull-down Resistor
PA0-PA31, PB0-PB14, PC0-PC31
TST, JTAGSEL

50
10

100
175
20

kΩ

RODT
On-die Series Termination
Resistor

PA4-PA31, PB0-PB14,PC0-PC31

PA0-PA3

36

18
Ω

CIN Input Capacitance Digital Inputs TBD pF

Table 35-2. DC Characteristics (Continued)

Symbol Parameter Conditions Min Typ Max
Unit

s

697
11011B–ATARM–21-Feb-12

Notes: 1. A 10µF or higher ceramic capacitor must be connected between VDDIN and the closest GND pin of the device.
This large decoupling capacitor is mandatory to reduce startup current, improving transient response and noise rejection.

2. To ensure stability, an external 1µF output capacitor, CDOUT must be connected between the VDDOUT and the closest GND
pin of the device. The ESR (Equivalent Series Resistance) of the capacitor must be in the range 0.1 to 10 ohms.
Solid tantalum, and multilayer ceramic capacitors are all suitable as output capacitor.
A 100nF bypass capacitor between VDDOUT and the closest GND pin of the device helps decreasing output noise and
improves the load transient response.

3. At power-up VDDIO needs to reach 0.6V before VDDIN reaches 1.0V

4. VDDIO voltage needs to be equal or below to (VDDIN voltage +0.5V)

Table 35-3. 1.8V Voltage Regulator Characteristics

Symbol Parameter Conditions Min Typ Max Units

VVDDIN DC Input Voltage Range (3) (4) 1.8 3.3 3.6 V

VVDDOUT DC Output Voltage
Normal Mode

Standby Mode

1.8

0
V

VACCURACY Output Voltage Accuracy ILoad = 0.5 mA to 60 mA -3 3 %

ILOAD
Maximum DC Output
Current

VVDDIN > 2V

VVDDIN ≤ 2V

60

40
mA

DDROPOUT Dropout Voltage VVDDIN = 1.8V, ILoad = 40 mA 150 mV

VLINE

VLINE-TR

Line Regulation

Transient Line regulation

VVDDIN from 2.7V to 3.6V; ILoad MAX

VVDDIN from 2.7V to 3.6V; tr = tf = 5µs; ILoad
Max

CDOUT = 1µF

20

50

50

100
mV

VLOAD

VLOAD-TR

Load Regulation

Transient Load Regulation

VVDDIN ≥ 2.2V;

ILoad = 10% to 90% MAX
VVDDIN ≥ 2.2V;

ILoad = 10% to 90% MAX

tr = tf = 5 µs
CDOUT = 1 µF

20

50

50

100

mV

IQ Quiescent Current

Normal Mode;

@ ILoad = 0 mA

@ ILoad = 60 mA
Standby Mode;

7

700

10

1200
1

µA

CDIN Input Decoupling Capacitor Cf. External Capacitor Requirements (1) 10 µF

CDOUT
Output Decoupling
Capacitor

Cf. External Capacitor Requirements (2)

ESR

0.75

0.1

1

10

µF

Ohm

TON Turn on Time
CDOUT = 1µF, VVDDOUT reaches VTH+ (core
power brownout detector supply rising
threshold)

100 200 µs

TOFF Turn off Time CDOUT = 1µF 40 ms
698
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Note: 1. The product is guaranteed to be functional at VTH-

Figure 35-1. Core Brownout Output Waveform

Table 35-4. Core Power Supply Brownout Detector Characteristics

Symbol Parameter Conditions Min Typ Max Units

VTH- Supply Falling Threshold(1) 1.52 1.55 1.58 V

VHYST- Hysteresis VTH- 25 38 mV

VTH+ Supply Rising Threshold 1.35 1.50 1.62 V

VHYST+ Hysteresis VTH+ 100 170 250 mV

IDDON

IDDOFF

Current Consumption on
VDDCORE

Brownout Detector enabled

Brownout Detector disabled

18

200

µA

nA

Td-
VTH- detection propagation
time

VDDCORE = VTH+ to (VTH- - 100mV) 200 ns

TSTART Startup Time From disabled state to enabled state 100 200 µs

t

VDDCORE

Vth-

Vth+

BOD OUTPUT

t

td+td-
699
11011B–ATARM–21-Feb-12

Figure 35-2. VDDIO Supply Monitor

Figure 35-3. Zero-Power-on Reset Characteristics

Table 35-5. VDDIO Supply Monitor

Symbol Parameter Conditions Min Typ Max Units

VTH Supply Monitor Threshold 16 selectable steps of 100mV 1.9 3.4 V

TACCURACY Threshold Level Accuracy -1.5 +1.5 %

VHYST Hysteresis 20 30 mV

IDDON

IDDOFF

Current Consumption on
VDDCORE

enabled

disabled

18 28

1
µA

TSTART Startup Time From disabled state to enabled state 140 µs

Vth

Vhyst

VDDIO

Reset

Vth +

Table 35-6. Zero-Power-on Reset Characteristics

Symbol Parameter Conditions Min Typ Max Units

Vth+ Threshold voltage rising At Startup 1.46 1.55 1.60 V

Vth- Threshold voltage falling 1.36 1.45 1.54 V

Tres Reset Time-out Period 40 90 150 µs

Vth-

Vth+

VDDIO

Reset
700
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Table 35-7. DC Flash Characteristics

Symbol Parameter Conditions Typ Max Units

ISB Standby current

@25°C onto VDDCORE = 1.8V
@85°C onto VDDCORE = 1.8V

@25°C onto VDDCORE = 1.95V

@85°C onto VDDCORE = 1.95V

3.2
6

4

6.5

4
8

4.8

9

µA
µA

µA

µA

ICC Active current

128-Bit Mode Read Access:

Maximum Read Frequency onto VDDCORE = 1.8V @ 25 °C

Maximum Read Frequency onto VDDCORE = 1.95V @ 25 °C

64-Bit Mode Read Access:

Maximum Read Frequency onto VDDCORE = 1.8V @ 25 °C
Maximum Read Frequency onto VDDCORE = 1.95V @ 25 °C

19

25

TBD
TBD

22.5

30

TBD
TBD

mA

mA

mA
mA

Write onto VDDCORE = 1.8V @ 25 °C
Write onto VDDCORE = 1.95V @ 25 °C

7.5
5.5

9.5
6.0

mA
mA
701
11011B–ATARM–21-Feb-12

35.3 Power Consumption
• Power consumption of the device according to the different Low Power Mode Capabilities

(Backup, Wait, Sleep) and Active Mode.

• Power consumption on power supply in different modes: Backup, Wait, Sleep and Active.

• Power consumption by peripheral: calculated as the difference in current measurement after
having enabled then disabled the corresponding clock.

35.3.1 Backup Mode Current Consumption
The Backup Mode configuration and measurements are defined as follow.

Figure 35-4. Measurement Setup

35.3.1.1 Configuration A

• Supply Monitor on VDDIO is disabled

• RTT and RTC not used

• Embedded slow clock RC Oscillator used

• One WKUPx enabled

• Current measurement on AMP1 (See Figure 35-4)

35.3.1.2 Configuration B

• Supply Monitor on VDDIO is disabled

• RTT used

• One WKUPx enabled

• Current measurement on AMP1 (See Figure 35-4)

• 32 kHz Crystal Oscillator used

VDDIO

VDDOUT

VDDCORE

VDDIN

Voltage
Regulator

VDDPLL

3.3V

AMP1
702
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
35.3.2 Sleep and Wait Mode Current Consumption
The Wait Mode and Sleep Mode configuration and measurements are defined below.

Figure 35-5. Measurement Setup for Sleep Mode

35.3.2.1 Sleep Mode

• Core Clock OFF

• Master Clock (MCK) running at various frequencies with PLL or the fast RC oscillator.

• Fast start-up through WKUP0-15 pins

• Current measurement as shown in figure Figure 35-6

• All peripheral clocks deactivated

Table 35-8. Power Consumption for Backup Mode (SAM3N4/2/1 MRL A)

 Conditions
Total Consumption (AMP1)

Configuration A
Total Consumption (AMP1)

Configuration B Unit

VDDIO = 3.3V @25°C
VDDIO = 3.0V @25°C

VDDIO = 2.5V @25°C

VDDIO = 1.8V @25°C

2.85
2.55

2.1

1.56

3.25
2.96

2.50

1.89

µA

VDDIO = 3.3V @85°C

VDDIO = 3.0V @85°C

VDDIO = 2.5V @85°C
VDDIO = 1.8V @85°C

TBD

TBD

TBD
TBD

TBD

TBD

TBD
TBD

µA

Table 35-9. Power Consumption for Backup Mode (SAM3N1 MRL B and SAM3N0/00 MRLA)

 Conditions
Total Consumption (AMP1)

Configuration A
Total Consumption (AMP1)

Configuration B Unit

VDDIO = 3.3V @25°C
VDDIO = 3.0V @25°C

VDDIO = 2.5V @25°C

VDDIO = 1.8V @25°C

1.55
1.40

1.20

1.20

1.60
1.45

1.25

1.25

µA

VDDIO = 3.3V @85°C

VDDIO = 3.0V @85°C
VDDIO = 2.5V @85°C

VDDIO = 1.8V @85°C

5.50

5.25
4.75

4.45

5.80

5.50
4.90

4.60

µA

VDDIO

VDDOUT

VDDCORE

VDDIN

Voltage
Regulator

VDDPLL

3.3V

AMP1
703
11011B–ATARM–21-Feb-12

Table 35-10 gives current consumption in typical conditions.

Figure 35-6. Current Consumption in Sleep Mode (AMP1) versus Master Clock ranges
(Conditions from Table 35-10)

Table 35-10. Typical Current Consumption for Sleep Mode

Conditions

VDDCORE
Consumption

(AMP1)

Total
Consumption

(AMP2) Unit

Figure 35-6 @25°C
MCK = 48 MHz

There is no activity on the I/Os of the
device.

6.4 8.4 mA

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 10 20 30 40 50 60 70

Processor and Peripheral Clocks in MHz

ID
D

C
O

R
E

in
 m

A

704
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
35.3.2.2 Wait Mode

Figure 35-7. Measurement Setup for Wait Mode

• Core Clock and Master Clock Stopped

• Current measurement as shown in the above figure

• All Peripheral clocks deactivated

Table 35-12 gives current consumption in typical conditions.

Table 35-11. Sleep mode Current consumption versus Master Clock (MCK) variation

Core Clock/MCK (MHz)
VDDCORE Consumption

(AMP1)
Total Consumption

(AMP2)
Unit

62 8.16 10.7

mA

48 6.4 8.4

32 4.3 5.65

24 3.5 5.5

12 1.68 1.71

8 1.13 1.16

4 0.56 0.57

2 0.33 0.35

1 0.22 0.23

0.5 0.16 0.17

0.25 0.14 0.16

0.125 0.12 0.13

0.032 0.01 0.02

VDDIO

VDDOUT

VDDCORE

VDDIN

Voltage
Regulator

VDDPLL

3.3V

AMP1

AMP2
705
11011B–ATARM–21-Feb-12

35.3.3 Active Mode Power Consumption
The Active Mode configuration and measurements are defined as follows:

• VDDIO = VDDIN = 3.3V

• VDDCORE = 1.8V (Internal Voltage regulator used) and 1.62V (external supply)

• TA = 25° C

• Recursive Fibonacci Algorithm or division operation running from Flash memory

• All Peripheral clocks are deactivated.

• Master Clock (MCK) running at various frequencies with PLL or the fast RC oscillator

• Current measurement on AMP1 (VDDCORE)

Note: 1. Recursive Fibonacci is a high computation test whereas division operation is a low computa-
tion test.

Figure 35-8. Active Mode Measurement Setup

Table 35-12. Typical Current Consumption in Wait Mode

Conditions

VDDOUT
Consumption

(AMP1)

Total
Consumption

(AMP2) Unit

See Figure 35-7 on page 705 @25°C

There is no activity on the I/Os of the
device.

5.7 14.9 µA

VDDIO

VDDOUT

VDDCORE

VDDIN

Voltage
Regulator

VDDPLL

3.3V

AMP1
706
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
35.3.3.1 Active Power Consumption with VDDCORE @ 1.8V

Table 35-13. Master Clock (MCK) and Core Clock variation (SAM3N4/2/1 MRL A)

Core Clock
/MCK (MHz)

AMP1 (VDDOUT) Consumption Unit

Division Fibonacci

128-bit Flash access 64-bit Flash access 128-bit Flash access 64-bit Flash access

mA

62 30 25.3 31.4 28.55

48 24.45 20.6 26.2 23.15

32 15.6 14.3 20 17.7

24 11.4 10.5 15.6 15

12 6.45 5.7 9.2 8.5

8 4.9 4.2 7.1 6.4

4 4.3 2.9 4.5 2.9

2 2.2 1.5 2.4 1.7

1 1.1 0.84 1.2 0.9

Table 35-14. Master Clock (MCK) and Core Clock variation (SAM3N1 MRL B and SAM3N0/00 MRL B)

Core Clock
/MCK (MHz)

AMP1 (VDDOUT) Consumption Unit

Division Fibonacci

128-bit Flash access 64-bit Flash access 128-bit Flash access 64-bit Flash access

mA

62 18.5 17.7 21.28 23.4

48 14.43 13.76 16.68 18.1

32 9.87 9.32 11.26 12.26

24 8.91 8.44 9.84 10.64

12 3.34 3.07 3.74 4.17

8 2.25 2.07 2.52 2.81

4 1.07 0.98 1.19 1.32

2 0.59 0.55 0.65 0.72

1 0.35 0.33 0.38 0.41

0.5 0.23 0.22 0.24 0.26

0.25 0.17 0.16 0.18 0.18

0.125 0.14 0.13 0.14 0.15

0.032 0.013 0.012 0.014 0.015
707
11011B–ATARM–21-Feb-12

35.3.3.2 Active Power Consumption with VDDCORE @ 1.62V

Table 35-15. Master Clock (MCK) and Core Clock variation (SAM3N4/2/1 MRL A)

Core Clock
/ MCK (MHz)

AMP1 (VDDOUT) Consumption Unit

Division Fibonacci

128-bit Flash access 64-bit Flash access 128-bit Flash access 64-bit Flash access

mA

62 25.7 22.6 27.05 25.2

48 20.8 18 23.2 20.4

32 14.1 12.5 17.2 15.75

24 11.1 9.25 13.65 13.2

12 5.6 5 7.9 7.36

8 4.2 3.6 5.9 5.41

4 3.55 2.4 3.6 5.5

2 1.84 1.3 1.88 1.3

1 1 0.72 1.2 0.72

Table 35-16. Master Clock (MCK) and Core Clock variation (SAM3N1 MRL B and SAM3N0/00 MRL B)

Core Clock
/ MCK (MHz)

AMP1 (VDDOUT) Consumption Unit

Division Fibonacci

128-bit Flash access 64-bit Flash access 128-bit Flash access 64-bit Flash access

mA

62 16.72 16.17 19.31 20.99

48 12.97 12.38 14.95 16.14

32 8.81 8.38 10.12 10.91

24 8.02 7.69 8.96 9.59

12 2.92 2.71 3.30 3.65

8 1.96 1.82 2.22 2.45

4 0.93 0.87 1.05 1.16

2 0.52 0.48 0.58 0.63

1 0.31 0.29 0.34 0.37

0.5 0.21 0.20 0.22 0.23

0.25 0.15 0.15 0.16 0.17

0.125 0.13 0.12 0.13 0.13

0.032 0.011 0.010 0.012 0.013
708
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
35.3.4 Peripheral Power Consumption in Active Mode

Note: 1. Note: VDDIO = 3.3V, VDDCORE = 1.80V, TA = 25° C

Note: 1. Note: VDDIO = 3.3V, VDDCORE = 1.80V, TA = 25° C

Table 35-17. Power Consumption on VDDCORE
(1) (SAM3N4/2/1 MRL A)

Peripheral Consumption (Typ) Unit

PIO Controller A (PIOA) 10

µA/MHz

PIO Controller B (PIOB) 5.15

PIO Controller C (PIOC) 9.8

UART0 (PDC) 14

UART1 (no PDC) 3.8

USART0 (PDC) 21.2

USART1 (no PDC) 8.2

PWM 10.55

TWI0 (PDC) 15.25

TWI1 (no PDC) 4.6

SPI 12.5

TC0, TC3 9

TC1, TC2, TC4, TC5 5

ADC 17.6

DACC 7.75

Table 35-18. Power Consumption on VDDCORE
(1) (SAM3N1 MRL B, SAM3N0/00 MRLA)

Peripheral Consumption (Typ) Unit

PIO Controller A (PIOA) 11

µA/MHz

PIO Controller B (PIOB) 6.78

PIO Controller C (PIOC) 12.72

UART0 (PDC) 8.9

UART1 (no PDC) 3.02

USART0 (PDC) 15.58

USART1 (no PDC) 10.04

PWM 8.10

TWI0 (PDC) 9.54

TWI1 (no PDC) 3.61

SPI 8.17

TC0, TC3 7.1

TC1, TC2, TC4, TC5 4

ADC 10.4

DACC 4.54
709
11011B–ATARM–21-Feb-12

35.4 Crystal Oscillators Characteristics

35.4.1 32 kHz RC Oscillator Characteristics

35.4.2 4/8/12 MHz RC Oscillators Characteristics

Notes: 1. Frequency range can be configured in the Supply Controller Registers

2. Not trimmed from factory

3. After Trimming from factory

Table 35-19. 32 kHz RC Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

RC Oscillator Frequency 20 32 44 kHz

Frequency Supply Dependency -3 3 %/V

Frequency Temperature Dependency
Over temperature range (-40°C/
+85°C) versus 25°C

-11 11 %

Duty Duty Cycle 45 50 55 %

TON Startup Time 100 µs

IDDON Current Consumption

After Startup Time
Temp. Range = -40°C to +85°C

Typical Consumption at 2.2V
supply and Temp = 25°C

540 870 nA

Table 35-20. 4/8/12 MHz RC Oscillators Characteristics

Symbol Parameter Conditions Min Typ Max Unit

FRange RC Oscillator Frequency Range (1) 4 12 MHz

ACC4 4 MHz Total Accuracy
-40°C<Temp<+85°C
4 MHz output selected (1)(2) ±35 %

ACC8 8 MHz Total Accuracy

-40°C<Temp<+85°C
8 MHz output selected (1)(3) ±3.5 %

-20°C<Temp<+85°C
8 MHz output selected (1)(3) ±2.5 %

0°C<Temp<+70°C
8 MHz output selected (1)(3) ±2 %

ACC12 12 MHz Total Accuracy

-40°C<Temp<+85°C
12 MHz output selected (1)(3) ±3.5 %

-20°C<Temp<+85°C
12 MHz output selected (1)(3) ±2.7 %

0°C<Temp<+70°C
12 MHz output selected (1)(3) ±2 %

Frequency deviation versus
trimming code

8 MHz
12 MHz

49.2
37.5

kHz/trimming code

Duty Duty Cycle 45 50 55 %

TON Startup Time 10 µs

IDDON Active Current Consumption
4MHz
8MHz

12MHz

80
105
145

120
160
210

µA
710
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
The 4/8/12 MHz Fast RC oscillator is calibrated in production. This calibration can be read through the Get CALIB Bit com-
mand (see EEFC section) and the frequency can be trimmed by software through the PMC. Figure 35-9 and Figure 35-10
show the frequency versus trimming for 8 and 12 MHz.

Figure 35-9. RC 8 MHz trimming

Figure 35-10. RC 12 MHz trimming
711
11011B–ATARM–21-Feb-12

35.4.3 32.768 kHz Crystal Oscillator Characteristics

Note: 1. RS is the series resistor.

 CLEXT = 2x(CCRYSTAL – Cpara – CPCB)

Where CPCB is the capacitance of the printed circuit board (PCB) track layout from the crystal to the SAM3 pin.

35.4.4 32.768 kHz Crystal Characteristics

Table 35-21. 32.768 kHz Crystal Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

Freq Operating Frequency Normal mode with crystal 32.768 KHz

Supply Ripple Voltage (on VDDIO) Rms value, 10 KHz to 10 MHz 30 mV

Duty Cycle 40 50 60 %

Startup Time

Rs < 50KΩ

Rs < 100KΩ
(1)

Ccrystal = 12.5pF

Ccrystal = 6pF
Ccrystal = 12.5pF

Ccrystal = 6pF

900

300
1200

500

ms

Current consumption

Rs < 50KΩ

Rs < 100KΩ
(1)

Ccrystal = 12.5pF

Ccrystal = 6pF

Ccrystal = 12.5pF
Ccrystal = 6pF

650

450

900
650

1400

1200

1600
1400

nA

PON Drive level 0.1 µW

Rf Internal resistor between XIN32 and XOUT32 10 MΩ

CLEXT
Maximum external capacitor
on XIN32 and XOUT32

20 pF

Cpara Internal Parasitic Capacitance 0.8 1 1.2 pF

XIN32 XOUT32

CLEXTCLEXT

SAM3

Table 35-22. Crystal Characteristics

Symbol Parameter Conditions Min Typ Max Unit

ESR Equivalent Series Resistor (RS) Crystal @ 32.768 KHz 50 100 KΩ

CM Motional capacitance Crystal @ 32.768 KHz 0.6 3 fF

CSHUNT Shunt capacitance Crystal @ 32.768 KHz 0.6 2 pF
712
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
35.4.5 32.768 kHz XIN32 Clock Input Characteristics in Bypass Mode

Note: 1. These characteristics apply only when the 32768 kHz XTAL Oscillator is in bypass mode (i.e., when OSCBYPASS: = 1 in
SUPC_MR and XTALSEL = 1 in the SUPC_CR registers.

Table 35-23. XIN32 Clock Electrical Characteristics (In Bypass Mode)

Symbol Parameter Conditions Min Max Units

1/(tCPXIN32) XIN32 Clock Frequency (1) 44 kHz

tCPXIN32 XIN32 Clock Period (1) 22 µs

tCHXIN32 XIN32 Clock High Half-period (1) 11 µs

tCLXIN32 XIN32 Clock Low Half-period (1) 11 µs

CIN XIN32 Input Capacitance 6 pF

RIN XIN32 Pull-down Resistor 3 5 MΩ

VXIN32_IL VXIN32 Input Low-level Voltage -0.3 0.3 x VDDIO V

VXIN32_IH VXIN32 Input High-level Voltage 0.7 x VDDIO VDDIO+0.3 V

tCPXIN

tCPXIN

tCPXIN tCHXIN

VXIN_IL

VXIN_IH
713
11011B–ATARM–21-Feb-12

35.4.6 3 to 20 MHz Crystal Oscillator Characteristics

Notes: 1. RS is the series resistor

2. Rs = 100-200 Ohms; Cs = 2.0 - 2.5pF; Cm = 2 – 1.5 fF(typ, worst case) using 1 KΩ serial resistor on XOUT.

3. Rs = 50-100 Ohms; Cs = 2.0 - 2.5pF; Cm = 4 - 3 fF(typ, worst case).

4. Rs = 25-50 Ohms; Cs = 2.5 - 3.0pF; Cm = 7 - 5 fF (typ, worst case).

5. Rs = 20-50 Ohms; Cs = 3.2 - 4.0pF; Cm = 10 - 8 fF(typ, worst case).

 CLEXT = 2x(CCRYSTAL – CL – CPCB)

Where CPCB is the capacitance of the printed circuit board (PCB) track layout from the crystal to the SAM3 pin.

Table 35-24. 3 to 20 MHz Crystal Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

Freq Operating Frequency Normal mode with crystal 3 16 20 MHz

Freq_bypass Operating Frequency In Bypass Mode External Clock on XIN 50 MHz

Supply Ripple Voltage (on VDDPLL) Rms value, 10 KHz to 10 MHz 30 mV

Duty Cycle 40 50 60 %

TON Startup Time

3 MHz, CSHUNT = 3pF

8 MHz, CSHUNT = 7pF

12 to 16 MHz, CSHUNT = 7pF
20 MHz, CSHUNT = 7pF

14.5

4

1.4
1

ms

IDD_ON Current consumption

3 MHz(2)

8 MHz(3)

12 to 16 MHz(4)

20 MHz(5)

150
200

250

350

230
300

350

450

µA

PON Drive level

3 MHz

8 MHz
12 MHz, 16 MHz, 20 MHz

15

30
50

µW

Rf Internal resistor between XIN and XOUT 1 MΩ

CLEXT
Maximum external capacitor
on XIN and XOUT

12.5 17.5 pF

CL Internal Equivalent Load Capacitance
Integrated Load Capacitance
(XIN and XOUT in series)

7.5 9.5 11.5 pF

XIN XOUT

CLEXT

CL

CLEXT
CCrystal

SAM3

R=1K if Crystal Frequency
is lower than 8MHz
714
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
35.4.7 3 to 20 MHz Crystal Characteristics

35.4.8 3 to 20 MHz XIN Clock Input Characteristics in Bypass Mode

Note: 1. These characteristics apply only when the 3-20 MHz XTAL Oscillator is in bypass mode.

Table 35-25. Crystal Characteristics

Symbol Parameter Conditions Min Typ Max Unit

ESR Equivalent Series Resistor (Rs)

Fundamental @ 3MHz
Fundamental @ 8MHz

Fundamental @ 12MHz
Fundamental @ 16MHz

Fundamental @ 20MHz

200
100

80

80

50

Ω

CM Motional capacitance 8 fF

CSHUNT Shunt capacitance 7 pF

Table 35-26. XIN Clock Electrical Characteristics (In Bypass Mode)

Symbol Parameter Conditions Min Typ Max Units

1/(tCPXIN) XIN Clock Frequency (1) 50 MHz

tCPXIN XIN Clock Period (1) 20 ns

tCHXIN XIN Clock High Half-period (1) 8 ns

tCLXIN XIN Clock Low Half-period (1) 8 ns

VXIN_IL VXIN Input Low-level Voltage (1) -0.3
0.3 x

VVDDIO
V

VXIN_IH VXIN Input High-level Voltage (1) 0.7 x
VVDDIO

VVDDIO+
0.3

V

tCPXIN

tCPXIN

tCPXIN tCHXIN

VXIN_IL

VXIN_IH
715
11011B–ATARM–21-Feb-12

35.4.9 Crystal Oscillators Design Consideration Information

35.4.9.1 Choosing a Crystal
When choosing a crystal for the 32768 Hz Slow Clock Oscillator or for the 3-20 MHz Oscillator,
several parameters must be taken into account. Important parameters between crystal and
SAM3N specifications are as follows:

• Load Capacitance

– Ccrystal is the equivalent capacitor value the oscillator must “show” to the crystal in
order to oscillate at the target frequency. The crystal must be chosen according to
the internal load capacitance (CL) of the on-chip oscillator. Having a mismatch for the
load capacitance will result in a frequency drift.

• Drive Level

– Crystal drive level >= Oscillator Drive Level. Having a crystal drive level number
lower than the oscillator specification may damage the crystal.

• Equivalent Series Resistor (ESR)

– Crystal ESR <= Oscillator ESR Max. Having a crystal with ESR value higher than
the oscillator may cause the oscillator to not start.

• Shunt Capacitance

– Max. crystal Shunt capacitance <= Oscillator Shunt Capacitance (CSHUNT). Having a
crystal with ESR value higher than the oscillator may cause the oscillator to not start.

35.4.9.2 Printed Circuit Board (PCB)
SAM3N Oscillators are low power oscillators requiring particular attention when designing PCB
systems.
716
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
35.5 PLL Characteristics

Table 35-27. Supply Voltage Phase Lock Loop Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDPLL

Supply Voltage Range 1.6 1.8 1.95 V

Allowable Voltage Ripple
RMS Value 10 kHz to 10 MHz
RMS Value > 10 MHz

30
10

mV

Table 35-28. PLL Characteristics

Symbol Parameter Conditions Min Typ Max Unit

FIN Input Frequency 3.5 20 MHz

FOUT Output Frequency 60 130 MHz

IPLL Current Consumption

Active mode @ 60 MHz @1.8V

Active mode @ 96 MHz @1.8V

Active mode @ 130 MHz @1.8V

1.2

2

2.5

1.7

2.5

3

mA

TSTART Settling Time 150 µS
717
11011B–ATARM–21-Feb-12

35.6 10-Bit ADC Characteristics

Notes: 1. Corresponds to 13 clock cycles at 5 MHz: 3 clock cycles for track and hold acquisition time and 10 clock cycles for
conversion.

2. Corresponds to 15 clock cycles at 8 MHz: 5 clock cycles for track and hold acquisition time and 10 clock cycles for
conversion.

Table 35-29. Analog Power Supply Characteristics

Symbol Parameter Conditions Min Typ Max Units

VVDDIN ADC Analog Supply 3.0 3.6 V

IVDDIN
Active Current
Consumption

on VDDIN 0.55 1 mA

Table 35-30. Channel Conversion Time and ADC Clock

Parameter Conditions Min Typ Max Units

ADC Clock Frequency 10-bit resolution mode 5 MHz

ADC Clock Frequency 8-bit resolution mode 8 MHz

Startup Time Return from Idle Mode 20 µs

Track and Hold Acquisition Time
See Section 35.6.0.3 “Track and Hold
Time versus Source Output Impedance”
for more details

600 ns

Conversion Time ADC Clock = 5 MHz 2 µs

Conversion Time ADC Clock = 8 MHz 1.25 µs

Throughput Rate ADC Clock = 5 MHz 384(1) kSPS

Throughput Rate ADC Clock = 8 MHz 533(2) kSPS

Table 35-31. External Voltage Reference Input

Parameter Conditions Min Typ Max Units

ADVREF Input Voltage Range 2.6 VDDIN V

ADVREF Input Voltage Range 8-bit resolution mode 2.5 VDDIN V

ADVREF Average Current On 13 samples with ADC Clock = 5 MHz 200 250 µA

Table 35-32. Transfer Characteristics

Parameter Conditions Min Typ Max Units

Resolution 10 Bit

Integral Non-linearity ±2 LSB

Differential Non-linearity No missing code ±1 LSB

Offset Error ±2 LSB

Gain Error ±2 LSB

Absolute Accuracy ±4 LSB
718
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
.

Note: 1. Input Voltage range can be up to VDDIN without destruction or over-consumption.
If VDDIO < VADVREF, max input voltage is VDDIO.

35.6.0.3 Track and Hold Time versus Source Output Impedance
The following figure gives a simplified acquisition path.

Figure 35-11. Simplified Acquisition Path

The user can drive ADC input with impedance of Zsource up to:

• In 8-bit mode: TRACKTIM = 0.1 x Zsource + 470

• In 10-bit mode: TRACKTIM = 0.13 x Zsource + 589

with TRACKTIM (Track and Hold Time register) expressed in ns and Zsource expressed in
ohms.

Note: Csample and Ron are taken into account in the formulas

35.6.0.4 ADC Application Information
For more information on data converter terminology, please refer to the application note:

Data Converter Terminology, Atmel lit° 6022.

http://www.atmel.com/dyn/resources/prod_documents/doc6022.pdf

Table 35-33. External Voltage Reference Input

Parameter Conditions Min Typ Max Units

ADVREF Input Voltage Range 2.6 VDDIN V

ADVREF Input Voltage Range 8-bit resolution mode 2.5 VDDIN V

ADVREF Average Current On 13 samples with ADC Clock = 5 MHz 200 250 µA

Table 35-34. Analog Inputs

Parameter Min Typ Max Units

Input Voltage Range 0 VADVREF

Input Leakage Current ±1 µA

Input Capacitance 12 14 pF

Sample & HoldMux.

Zsource Ron

Csample

ADC
Input 10-bit

ADC
Core
719
11011B–ATARM–21-Feb-12

35.7 10-Bit DAC Characteristics

External voltage reference for DAC is ADVREF. See the ADC voltage reference characteristics
Table 35-33 on page 719.

Table 35-35. Analog Power Supply Characteristics

Symbol Parameter Conditions Min Typ Max Units

VVDDIN Analog Supply 2.4 3.6 V

IVDDIN
Active Current
Consumption

On VDDIN

On ADVREF

485

250

660

300

µA

µA

Table 35-36. Channel Conversion Time and DAC Clock

Symbol Parameter Conditions Min Typ Max Units

FDAC Clock Frequency 500 kHz

TSTART-UP Startup time 5 µs

TCONV Conversion Time 1 TCP_DAC

Table 35-37. Static Performance Characteristics

Parameter Conditions Min Typ Max Units

Resolution 10 Bit

Integral Non-linearity (INL)
Voltage output range between 0V
and (VADVREF-100 mV).

3.0V< VDDIN< 3.6V ±1 ±2 LSB

2.4V< VDDIN< 3.6V ±1 ±3 LSB

Differential Non-linearity (DNL)
Voltage output range between 0V and
(VADVREF-100 mV).

3.0V< VDDIN< 3.6V ±0.5 -0.9/+1 LSB

2.4V< VDDIN< 3.6V ±0.5 -3/+2 LSB

Offset Error 1 5 mV

Gain Error 5 10 mV

Table 35-38. Analog Outputs

Parameter Conditions Min Typ Max Units

Voltage Output Range 0 VADVREF V

Settling/Setup Time RLOAD = 5kΩ/ 0pF < CLOAD< 50pF, 2 µs

RLOAD Output Load Resistor 5 kΩ

CLOAD Output Load Capacitor 50 pF
720
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
35.8 AC Characteristics

35.8.1 Master Clock Characteristics

35.8.2 I/O Characteristics
Criteria used to define the maximum frequency of the I/Os:

– output duty cycle (40%-60%)

– minimum output swing: 100 mV to VDDIO - 100 mV

– minimum output swing: 100 mV to VDDIO - 100 mV

– Addition of rising and falling time inferior to 75% of the period

Notes: 1. Pin Group 1 = PA14

2. Pin Group 2 = PA[0-13], PA[15-31], PB[0-14], PC[0-31]

Table 35-39. Master Clock Waveform Parameters

Symbol Parameter Conditions Min Max Units

1/(tCPMCK) Master Clock Frequency VDDCORE @ 1.62V 48 MHz

1/(tCPMCK) Master Clock Frequency VDDCORE @ 1.80V 62 MHz

Table 35-40. I/O Characteristics

Symbol Parameter Conditions Min Max Units

FreqMax1 Pin Group 1 (1) Maximum output frequency

30 pF
VDDIO = 1.62V
VDDIO = 3.0V

45
62

MHz

45 pF
VDDIO = 1.62V

VDDIO = 3.0V

34

45

PulseminH1 Pin Group 1 (1) High Level Pulse Width

30 pF
VDDIO = 1.62V

VDDIO = 3.0V

11

7.7
ns

45 pF
VDDIO = 1.8V
VDDIO = 3.0V

14.7
11

PulseminL1 Pin Group 1 (1) Low Level Pulse Width

30 pF
VDDIO = 1.62V

VDDIO = 3.0V

11

7.7
ns

45 pF
VDDIO = 1.62V

VDDIO = 3.0V

14.7

11

FreqMax2 Pin Group 2 (2) Maximum output frequency
Load: 25 pF

1.62V < VDDIO < 3.6V
35 MHz

PulseminH2 Pin Group 2 (2) High Level Pulse Width
Load: 25pF

1.62V < VDDIO < 3.6V
14.5 ns

PulseminL2 Pin Group 2 (2) Low Level Pulse Width
Load: 25pF

1.62V < VDDIO < 3.6V
14.5 ns
721
11011B–ATARM–21-Feb-12

35.8.3 SPI Characteristics

Figure 35-12. SPI Master Mode with (CPOL= NCPHA = 0) or (CPOL= NCPHA= 1)

Figure 35-13. SPI Master Mode with (CPOL = 0 and NCPHA=1) or (CPOL=1 and NCPHA= 0)

Figure 35-14. SPI Slave Mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

SPCK

MISO

MOSI

SPI2

SPI0 SPI1

SPCK

MISO

MOSI

SPI5

SPI3 SPI4

SPCK

MISO

MOSI

SPI6

SPI7 SPI8

NPCSS

SPI12
SPI13
722
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 35-15. SPI Slave Mode with (CPOL = NCPHA = 0) or (CPOL = NCPHA = 1)

35.8.3.1 Maximum SPI Frequency
The following formulas give maximum SPI frequency in Master read and write modes and in
Slave read and write modes.

Master Write Mode

The SPI is only sending data to a slave device such as an LCD, for example. The limit is
given by SPI2 (or SPI5) timing. Since it gives a maximum frequency above the maximum pad
speed (see Section 35.8.2 “I/O Characteristics”), the max SPI frequency is the one from the
pad.

Master Read Mode

Tvalid is the slave time response to output data after deleting an SPCK edge. For Atmel SPI
DataFlash (AT45DB642D), Tvalid (or Tv) is 12 ns Max.

In the formula above, FSPCKMax = 38.0 MHz @ VDDIO = 3.3V.

Slave Read Mode

In slave mode, SPCK is the input clock for the SPI. The max SPCK frequency is given by
setup and hold timings SPI7/SPI8(or SPI10/SPI11). Since this gives a frequency well above
the pad limit, the limit in slave read mode is given by SPCK pad.

Slave Write Mode

For 3.3V I/O domain and SPI6, FSPCKMax = 32 MHz. Tsetup is the setup time from the master
before sampling data.

SPCK

MISO

MOSI

SPI9

SPI10 SPI11

NPCS0

SPI14

SPI15

fSPCKMax 1
SPI0 orSPI3() Tvalid+
--=

fSPCKMax 1
2x S(PI6 orSPI9() Tsetup)+
---=
723
11011B–ATARM–21-Feb-12

35.8.3.2 SPI Timings

Notes: 1. 3.3V domain: VVDDIO from 3.0V to 3.6V, maximum external capacitor = 30 pF.

2. 1.8V domain: VVDDIO from 1.65V to 1.95V, maximum external capacitor = 30 pF.

Note that in SPI master mode the SAM3N does not sample the data (MISO) on the opposite edge where data clocks out
(MOSI) but the same edge is used as shown in Figure 35-12 and Figure 35-13.

Table 35-41. SPI Timings

Symbol Parameter Conditions Min Max Units

SPI0 MISO Setup time before SPCK rises (master)
3.3V domain(1) 14.2 ns

1.8V domain(2) 17 ns

SPI1 MISO Hold time after SPCK rises (master)
3.3V domain(1) 0 ns

1.8V domain(2) 0 ns

SPI2 SPCK rising to MOSI Delay (master)
3.3V domain(1) -2.7 2.6 ns

1.8V domain(2) -3.6 3.4 ns

SPI3 MISO Setup time before SPCK falls (master)
3.3V domain(1) 14.4 ns

1.8V domain(2) 17 ns

SPI4 MISO Hold time after SPCK falls (master)
3.3V domain(1) 0 ns

1.8V domain(2) 0 ns

SPI5 SPCK falling to MOSI Delay (master)
3.3V domain(1) -2.4 2.8 ns

1.8V domain(2) -3.4 3.6 ns

SPI6 SPCK falling to MISO Delay (slave)
3.3V domain(1) 4.4 15.4 ns

1.8V domain(2) 4.6 18.5 ns

SPI7 MOSI Setup time before SPCK rises (slave)
3.3V domain(1) 0 ns

1.8V domain(2) 0 ns

SPI8 MOSI Hold time after SPCK rises (slave)
3.3V domain(1) 1.8 ns

1.8V domain(2) 1.6 ns

SPI9 SPCK rising to MISO Delay (slave)
3.3V domain(1) 4.9 15.4 ns

1.8V domain(2) 5.2 18.3 ns

SPI10 MOSI Setup time before SPCK falls (slave)
3.3V domain(1) 0 ns

1.8V domain(2) 0

SPI11 MOSI Hold time after SPCK falls (slave)
3.3V domain(1) 1.9 ns

1.8V domain(2) 2 ns

SPI12 NPCS setup to SPCK rising (slave)
3.3V domain(1) 6.3 ns

1.8V domain(2) 6.4 ns

SPI13 NPCS hold after SPCK falling (slave)
3.3V domain(1) 0 ns

1.8V domain(2) 0 ns

SPI14 NPCS setup to SPCK falling (slave)
3.3V domain(1) 6.4 ns

1.8V domain(2) 6.4 ns

SPI15 NPCS hold after SPCK falling (slave)
3.3V domain(1) 0 ns

1.8V domain(2) 0 ns
724
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
35.8.4 USART in SPI Mode Timings
Timings are given with the following conditions.

VDDIO = 1.62V and 3V

SCK/MISO/MOSI Load = 30 pF

Figure 35-16. USART SPI Master Mode

• the MOSI line is driven by the output pin TXD

• the MISO line drives the input pin RXD

• the SCK line is driven by the output pin SCK

• the NSS line is driven by the output pin RTS

Figure 35-17. USART SPI Slave mode: (Mode 1 or 2)

• the MOSI line drives the input pin RXD

• the MISO line is driven by the output pin TXD

• the SCK line drives the input pin SCK

• the NSS line drives the input pin CTS

NSS

SPI0

MSB LSB

SPI1

CPOL=1

CPOL=0

MISO

MOSI

SCK

SPI5

SPI2

SPI3

SPI4
SPI4

SCK

MISO

MOSI

SPI6

SPI7 SPI8

NSS

SPI12
SPI13
725
11011B–ATARM–21-Feb-12

Figure 35-18. USART SPI Slave mode: (Mode 0 or 3)

SCK

MISO

MOSI

SPI9

SPI10 SPI11

NSS

SPI14
SPI15

Table 35-42. USART SPI Timings

Symbol Parameter Conditions Min Max Units

Master Mode

SPI0 tCPSCK Period
1.8v domain
3.3v domain

tCPMCK /6 ns

SPI1 Input Data Setup Time
1.8v domain

3.3v domain

0.5 * tCPMCK + 2.6

0.5 * tCPMCK + 2.4
ns

SPI2 Input Data Hold Time
1.8v domain

3.3v domain

1.5 * tCPMCK -0.3

1.5 * tCPMCK -0.3
ns

SPI3 Chip Select Active to Serial Clock
1.8v domain
3.3v domain

1.5 * tCPSCK - 0.9
1.5 * tCPSCK - 0.6

ns

SPI4 Output Data Setup Time
1.8v domain

3.3v domain

-6

-4.7

3.8

3.6
ns

SPI5 Serial Clock to Chip Select Inactive
1.8v domain

3.3v domain

1 *tCPSCK - 6

1 *tCPSCK - 4.6
ns

Slave Mode

SPI6 tCPSCK falling to MISO
1.8V domain
3.3V domain

5.7
5.3

22.6
19.8

ns

SPI7 MOSI Setup time before tCPSCK rises
1.8V domain

3.3V domain

2 * tCPMCK + 1.9

2 * tCPMCK + 1.7
ns

SPI8 MOSI Hold time after tCPSCK rises
1.8v domain

3.3v domain

0

0
ns

SPI9 tCPSCK rising to MISO
1.8v domain
3.3v domain

5.9
5.6

22
19.4

ns
726
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Notes: 1. 1.8V domain: VDDIO from 1.65V to 1.95V, maximum external capacitor = 25pF

2. 3.3V domain: VDDIO from 3.0V to 3.6V, maximum external capacitor = 25pF.

SPI10 MOSI Setup time before tCPSCK falls
1.8v domain

3.3v domain

2 * tCPMCK + 1.8

2 * tCPMCK + 1.7
ns

SPI11 MOSI Hold time after tCPSCK falls
1.8v domain

3.3v domain

0.5

0.4
ns

SPI12 NPCS0 setup to tCPSCK rising
1.8v domain

3.3v domain

2.5 * tCPMCK -0.26

2.5 * tCPMCK -0.4
ns

SPI13 NPCS0 hold after tCPSCK falling
1.8v domain
3.3v domain

1.5 * tCPMCK + 2.2
1.5 * tCPMCK + 2

ns

SPI14 NPCS0 setup to tCPSCK falling
1.8v domain

3.3v domain

2.5 * tCPMCK -0.4

2.5 * tCPMCK -0.4
ns

SPI15 NPCS0 hold after tCPSCK rising
1.8v domain

3.3v domain

1.5 * tCPMCK + 1.8

1.5 * tCPMCK + 1.7
ns

Table 35-42. USART SPI Timings (Continued)

Symbol Parameter Conditions Min Max Units
727
11011B–ATARM–21-Feb-12

35.8.5 Two-wire Serial Interface Characteristics
Table 35-43 describes the requirements for devices connected to the Two-wire Serial Bus. For timing symbols refer to Fig-
ure 35-19.

Note: 1. Required only for fTWCK > 100 kHz.

2. Cb = capacitance of one bus line in pF. Per I2C Standard, Cb Max = 400pF

3. The TWCK low Period is defined as follows:

4. The TWCK high period is defined as follows:

5. TCP_MCK = MCK Bus Period.

Table 35-43. Two-wire Serial Bus Requirements

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.3 0.3 VVDDIO V

VIH Input High-voltage 0.7xVVDDIO VCC + 0.3 V

Vhys Hysteresis of Schmitt Trigger Inputs 0.150 – V

VOL Output Low-voltage 3 mA sink current - 0.4 V

tr Rise Time for both TWD and TWCK 20 + 0.1Cb
(1)(2) 300 ns

tof Output Fall Time from VIHmin to VILmax
10 pF < Cb < 400 pF

Figure 35-19
20 + 0.1Cb

(1)(2) 250 ns

Ci
(1) Capacitance for each I/O Pin – 10 pF

fTWCK TWCK Clock Frequency 0 400 kHz

Rp Value of Pull-up resistor

fTWCK ≤ 100 kHz

fTWCK > 100 kHz

tLOW Low Period of the TWCK clock
fTWCK ≤ 100 kHz (3) – µs

fTWCK > 100 kHz (3) – µs

tHIGH High period of the TWCK clock
fTWCK ≤ 100 kHz (4) – µs

fTWCK > 100 kHz (4) – µs

tHD;STA Hold Time (repeated) START Condition
fTWCK ≤ 100 kHz tHIGH – µs

fTWCK > 100 kHz tHIGH – µs

tSU;STA Set-up time for a repeated START condition
fTWCK ≤ 100 kHz tHIGH – µs

fTWCK > 100 kHz tHIGH – µs

tHD;DAT Data hold time
fTWCK ≤ 100 kHz 0 3 x TCP_MCK

(5) µs

fTWCK > 100 kHz 0 3 x TCP_MCK
(5) µs

tSU;DAT Data setup time

fTWCK ≤ 100 kHz
tLOW - 3 x

TCP_MCK
(5) – ns

fTWCK > 100 kHz
tLOW - 3 x

TCP_MCK
(5) – ns

tSU;STO Setup time for STOP condition
fTWCK ≤ 100 kHz tHIGH – µs

fTWCK > 100 kHz tHIGH – µs

tHD;STA Hold Time (repeated) START Condition
fTWCK ≤ 100 kHz tHIGH – µs

fTWCK > 100 kHz tHIGH – µs

VVDDIO 0,4V–

3mA
-------------------------------------- 1000ns

Cb
------------------- Ω

VVDDIO 0,4V–

3mA
-------------------------------------- 300ns

Cb
---------------- Ω

Tlow CLDIV(2CKDIV×() 4)+ TMCK×=

Thigh CHDIV(2CKDIV×() 4)+ TMCK×=
728
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 35-19. Two-wire Serial Bus Timing

35.8.6 Embedded Flash Characteristics
The maximum operating frequency is given in tables 35-44 and 35-45 below but is limited by the Embedded Flash access
time when the processor is fetching code out of it. The tables 35-44 and 35-45 below give the device maximum operating
frequency depending on the field FWS of the MC_FMR register. This field defines the number of wait states required to
access the Embedded Flash Memory

Note: The embedded flash is fully tested during production test, the flash contents is not set to a known state prior
to shipment. Therefore, the flash contents should be erased prior to programming an application.

Table 35-44. Embedded Flash Wait State VDDCORE set at 1.65V

FWS Read Operations Maximum Operating Frequency (MHz)

0 1 cycle 21

1 2 cycles 32

2 3 cycles 48

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

TWCK

TWD

tr

Table 35-45. Embedded Flash Wait State VDDCORE set at 1.80V

FWS Read Operations Maximum Operating Frequency (MHz)

0 1 cycle 24

1 2 cycles 42

2 3 cycles 62

Table 35-46. AC Flash Characteristics

Parameter Conditions Min Typ Max Units

Program Cycle Time
per page including auto-erase 4.6 ms

per page without auto-erase 2.3 ms

Full Chip Erase 10 11.5 ms

Data Retention Not Powered or Powered 10 Years

Endurance
Write/Erase cycles @ 25°C

Write/Erase cycles @ 85°C 10K

30K

cycles
729
11011B–ATARM–21-Feb-12

36. Mechanical Characteristics

Figure 36-1. 100-lead LQFP Package Mechanical Drawing

This package respects the recommendations of the NEMI User Group.

Table 36-1. Device and LQFP Package Maximum Weight

SAM3N4/2/1 800 mg

Table 36-2. Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification e3

Table 36-3. LQFP Package Characteristics

Moisture Sensitivity Level 3

Note : 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026 for additional information.
730
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 36-2. 100-ball TFBGA Package Drawing

Table 36-4. Soldering Information (Substrate Level)

Ball Land TBD

Soldering Mask Opening TBD

Table 36-5. Device Maximum Weight

TBD mg

Table 36-6. 100-ball Package Characteristics

Moisture Sensitivity Level 3

Table 36-7. Package Reference

JEDEC Drawing Reference TBD

JESD97 Classification e1
731
11011B–ATARM–21-Feb-12

Figure 36-3. 64- and 48-lead LQFP Package Drawing
732
11011B–ATARM–21-Feb-12

SAM3N

SAM3N

Table 36-8. 48-lead LQFP Package Dimensions (in mm)

Symbol
Millimeter Inch

Min Nom Max Min Nom Max

A – – 1.60 – – 0.063

A1 0.05 – 0.15 0.002 – 0.006

A2 1.35 1.40 1.45 0.053 0.055 0.057

D 9.00 BSC 0.354 BSC

D1 7.00 BSC 0.276 BSC

E 9.00 BSC 0.354 BSC

E1 7.00 BSC 0.276 BSC

R2 0.08 – 0.20 0.003 – 0.008

R1 0.08 – – 0.003 – –

q 0° 3.5° 7° 0° 3.5° 7°

θ1 0° – – 0° – –

θ2 11° 12° 13° 11° 12° 13°

θ3 11° 12° 13° 11° 12° 13°

c 0.09 – 0.20 0.004 – 0.008

L 0.45 0.60 0.75 0.018 0.024 0.030

L1 1.00 REF 0.039 REF

S 0.20 – – 0.008 – –

b 0.17 0.20 0.27 0.007 0.008 0.011

e 0.50 BSC. 0.020 BSC.

D2 5.50 0.217

E2 5.50 0.217

Tolerances of Form and Position

aaa 0.20 0.008

bbb 0.20 0.008

ccc 0.08 0.003

ddd 0.08 0.003
733
11011B–ATARM–21-Feb-12

This package respects the recommendations of the NEMI User Group.

Table 36-9. 64-lead LQFP Package Dimensions (in mm)

Symbol
Millimeter Inch

Min Nom Max Min Nom Max

A – – 1.60 – – 0.063

A1 0.05 – 0.15 0.002 – 0.006

A2 1.35 1.40 1.45 0.053 0.055 0.057

D 12.00 BSC 0.472 BSC

D1 10.00 BSC 0.383 BSC

E 12.00 BSC 0.472 BSC

E1 10.00 BSC 0.383 BSC

R2 0.08 – 0.20 0.003 – 0.008

R1 0.08 – – 0.003 – –

q 0° 3.5° 7° 0° 3.5° 7°

θ1 0° – – 0° – –

θ2 11° 12° 13° 11° 12° 13°

θ3 11° 12° 13° 11° 12° 13°

c 0.09 – 0.20 0.004 – 0.008

L 0.45 0.60 0.75 0.018 0.024 0.030

L1 1.00 REF 0.039 REF

S 0.20 – – 0.008 – –

b 0.17 0.20 0.27 0.007 0.008 0.011

e 0.50 BSC. 0.020 BSC.

D2 7.50 0.285

E2 7.50 0.285

Tolerances of Form and Position

aaa 0.20 0.008

bbb 0.20 0.008

ccc 0.08 0.003

ddd 0.08 0.003

Table 36-10. Device and LQFP Package Maximum Weight

SAM3N4/2/1 750 mg

Table 36-11. LQFP Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification e3

Table 36-12. LQFP and QFN Package Characteristics

Moisture Sensitivity Level 3
734
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 36-4. 48-pad QFN Package
735
11011B–ATARM–21-Feb-12

Table 36-13. 48-pad QFN Package Dimensions (in mm)

Symbol
Millimeter Inch

Min Nom Max Min Nom Max

A – – 090 – – 0.035

A1 – – 0.050 – – 0.002

A2 – 0.65 0.70 – 0.026 0.028

A3 0.20 REF 0.008 REF

b 0.18 0.20 0.23 0.007 0.008 0.009

D 7.00 bsc 0.276 bsc

D2 5.45 5.60 5.75 0.215 0.220 0.226

E 7.00 bsc 0.276 bsc

E2 5.45 5.60 5.75 0.215 0.220 0.226

L 0.35 0.40 0.45 0.014 0.016 0.018

e 0.50 bsc 0.020 bsc

R 0.09 – – 0.004 – –

Tolerances of Form and Position

aaa 0.10 0.004

bbb 0.10 0.004

ccc 0.05 0.002
736
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Figure 36-5. 64-pad QFN Package Drawing
737
11011B–ATARM–21-Feb-12

This package respects the recommendations of the NEMI User Group.

Table 36-14. 64-pad QFN Package Dimensions (in mm)

Symbol
Millimeter Inch

Min Nom Max Min Nom Max

A – – 090 – – 0.035

A1 – – 0.05 – – 0.001

A2 – 0.65 0.70 – 0.026 0.028

A3 0.20 REF 0.008 REF

b 0.23 0.25 0.28 0.009 0.010 0.011

D 9.00 bsc 0.354 bsc

D2 6.95 7.10 7.25 0.274 0.280 0.285

E 9.00 bsc 0.354 bsc

E2 6.95 7.10 7.25 0.274 0.280 0.285

L 0.35 0.40 0.45 0.014 0.016 0.018

e 0.50 bsc 0.020 bsc

R 0.125 – – 0.0005 – –

Tolerances of Form and Position

aaa 0.10 0.004

bbb 0.10 0.004

ccc 0.05 0.002

Table 36-15. Device and QFN Package Maximum Weight (Preliminary)

SAM3N4/2/1 280 mg

Table 36-16. QFN Package Reference

JEDEC Drawing Reference MO-220

JESD97 Classification e3

Table 36-17. QFN Package Characteristics

Moisture Sensitivity Level 3
738
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
36.1 Soldering Profile
Table 36-18 gives the recommended soldering profile from J-STD-020C.

Note: The package is certified to be backward compatible with Pb/Sn soldering profile.

A maximum of three reflow passes is allowed per component.

36.2 Packaging Resources
Land Pattern Definition.

Refer to the following IPC Standards:

• IPC-7351A and IPC-782 (Generic Requirements for Surface Mount Design and Land Pattern
Standards) http://landpatterns.ipc.org/default.asp

• Atmel Green and RoHS Policy and Package Material Declaration Data Sheet
http://www.atmel.com/green/

Table 36-18. Soldering Profile

Profile Feature Green Package

Average Ramp-up Rate (217°C to Peak) 3° C/sec. max.

Preheat Temperature 175°C ±25°C 180 sec. max.

Temperature Maintained Above 217°C 60 sec. to 150 sec.

Time within 5° C of Actual Peak Temperature 20 sec. to 40 sec.

Peak Temperature Range 260° C

Ramp-down Rate 6° C/sec. max.

Time 25° C to Peak Temperature 8 min. max.
739
11011B–ATARM–21-Feb-12

http://landpatterns.ipc.org/default.asp
http://www.atmel.com/green/

37. Ordering Information

Table 37-1.

Ordering Code MRL
Flash

(Kbytes) Package Package Type
Temperature

Operating Range

ATSAM3N4CA-AU A 256 LQFP100 Green
Industrial

-40°C to 85°C

ATSAM3N4CA-CU A 256 TFBGA100 Green
Industrial

-40°C to 85°C

ATSAM3N4BA-AU A 256 LQFP64 Green
Industrial

-40°C to 85°C

ATSAM3N4BA-MU A 256 QFN64 Green
Industrial

-40°C to 85°C

ATSAM3N4AA-AU A 256 LQFP48 Green
Industrial

-40°C to 85°C

ATSAM3N4AA-MU A 256 QFN48 Green
Industrial

-40°C to 85°C

ATSAM3N2CA-AU A 128 LQFP100 Green
Industrial

-40°C to 85°C

ATSAM3N2CA-CU A 128 TFBGA100 Green
Industrial

-40°C to 85°C

ATSAM3N2BA-AU A 128 LQFP64 Green
Industrial

-40°C to 85°C

ATSAM3N2BA-MU A 128 QFN64 Green
Industrial

-40°C to 85°C

ATSAM3N2AA-AU A 128 LQFP48 Green
Industrial

-40°C to 85°C

ATSAM3N2AA-MU A 128 QFN48 Green
Industrial

-40°C to 85°C

ATSAM3N1CA-AU A 64 LQFP100 Green
Industrial

-40°C to 85°C

ATSAM3N1CB-AU B 64 LQFP100 Green
Industrial

-40°C to 85°C

ATSAM3N1CA-CU A 64 TFBGA100 Green
Industrial

-40°C to 85°C

ATSAM3N1CB-CU B 64 TFBGA100 Green
Industrial

-40°C to 85°C

ATSAM3N1BA-AU A 64 LQFP64 Green
Industrial

-40°C to 85°C

ATSAM3N1BB-AU B 64 LQFP64 Green
Industrial

-40°C to 85°C

ATSAM3N1BA-MU A 64 QFN 64 Green
Industrial

-40°C to 85°C

ATSAM3N1BB-MU B 64 QFN 64 Green
Industrial

-40°C to 85°C
740
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
ATSAM3N1AA-AU A 64 LQFP48 Green
Industrial

-40°C to 85°C

ATSAM3N1AB-AU B 64 LQFP48 Green
Industrial

-40°C to 85°C

ATSAM3N1AA-MU A 64 QFN48 Green
Industrial

-40°C to 85°C

ATSAM3N1AB-MU B 64 QFN48 Green
Industrial

-40°C to 85°C

ATSAM3N0CA-AU A 32 LQFP100 Green
Industrial

-40°C to 85°C

ATSAM3N0CA-CU A 32 TFBGA100 Green
Industrial

-40°C to 85°C

ATSAM3N0BA-AU A 32 LQFP64 Green
Industrial

-40°C to 85°C

ATSAM3N0BA-MU A 32 QFN64 Green
Industrial

-40°C to 85°C

ATSAM3N0AA-AU A 32 LQFP48 Green
Industrial

-40°C to 85°C

ATSAM3N0AA-MU A 32 QFN48 Green
Industrial

-40°C to 85°C

ATSAM3N00BA-AU A 16 LQFP64 Green
Industrial

-40°C to 85°C

ATSAM3N00BA-MU A 16 QFN64 Green
Industrial

-40°C to 85°C

ATSAM3N00AA-AU A 16 LQFP48 Green
Industrial

-40°C to 85°C

ATSAM3N00AA-MU A 16 QFN48 Green
Industrial

-40°C to 85°C

Table 37-1.

Ordering Code MRL
Flash

(Kbytes) Package Package Type
Temperature

Operating Range
741
11011B–ATARM–21-Feb-12

742
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
38. SAM3N Series Errata

38.1 Marking
All devices are marked with the Atmel logo and the ordering code.

Additional marking may be in one of the following formats:

where

• “YY”: manufactory year

• “WW”: manufactory week

• “V”: revision

• “XXXXXXXXX”: lot number

38.2 SAM3N4/2/1 Errata - Rev. A Parts

Refer to Section 38.1 “Marking”.

Notes:

ATSAM3N4C Revision A chip ID is 0x29540960

ATSAM3N2C Revision A chip ID is 0x29590760

ATSAM3N1C Revision A chip ID is 0x29580560

ATSAM3N4B Revision A chip ID is 0x29440960

ATSAM3N2B Revision A chip ID is 0x29490760

ATSAM3N1B Revision A chip ID is 0x29480560

ATSAM3N4A Revision A chip ID is 0x29340960

ATSAM3N2A Revision A chip ID is 0x29390760

ATSAM3N1A Revision A chip ID is 0x29380560

YYWW V
XXXXXXXXX ARM
743
11011B–ATARM–21-Feb-12

38.3 Flash Memory

38.3.1 Flash: Flash Programming
When writing data into the Flash memory plane (either through the EEFC, using the IAP function
or FFPI), the data may not be correctly written (i.e the data written is not the one expected).

Problem Fix/Workaround
Set the number of Wait States (WS) at 6 (FWS = 6) during the programming.

38.3.2 Flash: Fetching Error after Reading the Unique Identifier
After reading the Unique Identifier (or using the STUI/SPUI command), the processor may fetch
wrong instructions. It depends on the code and on the region of the code.

Problem Fix/Workaround
In order to avoid this problem, follow the steps below:

1) Set bit 16 of EEFC Flash Mode Register to 1

2) Send the Start Read Unique Identifier command (STUI) by writing the Flash Command
Register with the STUI command

3) Wait for the FRDY bit to fall

4) Read the Unique ID (and next bits if required)

5) Send the Stop Read Unique Identifier command (SPUI) by writing the Flash Command
Register with the SPUI command

6) Wait for the FRDY bit to rise

7) Clear bit 16 of EEFC Flash Mode Register

Note: During the sequence, the software cannot run out of Flash (so it has to run out of SRAM).
744
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
38.4 SAM3N1 Errata - Rev. B Parts / SAM3N0/00 -Rev. A Parts

Refer to Section 38.1 “Marking”.

Notes:

ATSAM3N1C Revision B chip ID is 0x29580561

ATSAM3N1B Revision B chip ID is 0x29480561

ATSAM3N1A Revision B chip ID is 0x29380561

ATSAM3N0C Revision A chip ID is 0x295 80361

ATSAM3N0B Revision A chip ID is 0x294 80361

ATSAM3N0A Revision A chip ID is 0x293 80361

 ATSAM3N00B Revision A chip ID is 0x294 50261

 ATSAM3N00A Revision A chip ID is 0x293 50261

38.4.1 Flash: Fetching Error after Reading the Unique Identifier
After reading the Unique Identifier (or using the STUI/SPUI command), the processor may fetch
wrong instructions. It depends on the code and on the region of the code.

Problem Fix/Workaround
In order to avoid this problem, follow the steps below:

1) Set bit 16 of EEFC Flash Mode Register to 1

2) Send the Start Read Unique Identifier command (STUI) by writing the Flash Command
Register with the STUI command

3) Wait for the FRDY bit to fall

4) Read the Unique ID (and next bits if required)

5) Send the Stop Read Unique Identifier command (SPUI) by writing the Flash Command
Register with the SPUI command

6) Wait for the FRDY bit to rise

7) Clear bit 16 of EEFC Flash Mode Register

Note: During the sequence, the software cannot run out of Flash (so it has to run out of SRAM).
745
11011B–ATARM–21-Feb-12

746
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Revision History

Doc. Rev.
11011B Comments

Change
Request
Ref.

Overview:
All mentions of 100-ball LFBGA changed into 100-ball TFBGA

Numerous updates
Section 7. “Product Mapping”, Heading was ‘Memories’. Changed to ‘Product Mapping’

Several updates to clarify that only 1 USART has ISO7816 capability

Two typos corrected in chapter 12 and 32
Section 5. “Power Considerations”: Figure 5-5 “Fast Start-Up Sources”, Changed from Edge detection to Level
detection. Section 24.10 “Fast Startup”, Added ‘SM’ for Fast Startup detection
Section “Features”, extented range for Flash (now from 16Kbytes) and SRAM (now from 4Kbytes)

Section 1.1 “Configuration Summary”, table extended

Section 2. “SAM3N Block Diagram”: Figure 2-1 “SAM3N 100-pin version Block Diagram” and Figure 2-2
“SAM3N 64-pin version Block Diagram” and Figure 2-3 “SAM3N 48-pin version Block Diagram”, updated
FLASH and SRAM boxes

Figure 3-1 “Signal Description List”, added table note for ’Internal pull-up disabled’ under ’’Comments’ in ‘ICE
and JTAG’ secion

Whole doc.. Replaced ‘SAM3N4/2/1’ by ‘SAM3N4/2/1/0/00’

Section 7.2::
Figure 7.2 “Embedded Memories”, added SAM3N0 and SAM3N00 product information

Figure 7.2.3 “Embedded Flash”, added SAM3N0 and SAM3N00 Flash bank information

Section 7.2.3.5 “Lock Regions”, added lock bit information for SAM3N0 and SAM3N00
Section 4.1.4 “100-ball TFBGA Pinout”, whole pinout table updated

Updated package dimensions in ‘Features’

Section 35-2 “DC Characteristics”, Pull-down Resistor values updated
Section 35-7 “DC Flash Characteristics”, Max value for ‘25°C /VDDCORE = 1.95V’ updated

Section 35-37 “Static Performance Characteristics”, updated values for Integral and Differential Non-linearity
parameters

Section 35-3 “1.8V Voltage Regulator Characteristics”, updated values for ‘Dropout Voltage’

Section 23.2 “Embedded Characteristics”, changed sentence “Processor Clock (HCLK), must be switched off...”

8044

7634

7685

7857

7913

7922

8106

7201

7965

rfo

rfo

8189

8217

CHIPID:
Section 25. “Chip Identifier (CHIPID)”: Figure 25-1 “ATSAM3N Chip IDs Register”, table updated with new chip
names

8106

Debug and Test Features:
Section 11. “Debug and Test Features”:

Section 11.5.7 “IEEE® 1149.1 JTAG Boundary Scan”, Updated.
Section 11.4 “Debug and Test Pin Description”: Figure 11-1 “Debug and Test Signal List”, added table note for
TDO/TRACESWO

7489

8106
747
11011B–ATARM–21-Feb-12

ELEC:
Section 35.2 “DC Characteristics”:

PULLUP Pull-up Resistor NRST: New values added

PULLDOWN Pull-down Resistor: Changed signal names and added one line for signal names PB10-PB11
Section 35. “Electrical Characteristics”:

Table 35-19, “32 kHz RC Oscillator Characteristics,” , changed parameter ‘Frequency Temperature
Dependency’

Table 35-4, “Core Power Supply Brownout Detector Characteristics,” , changed MAX value of VTH+

Section 35.8.6 “Embedded Flash Characteristics”, added note regarding erasing Flash contents

8077

8174

8223

Errata:
Section 38. “SAM3N Series Errata”:

Added section: Section 38.2 “SAM3N4/2/1 Errata - Rev. A Parts”

Added section: Section 38.4 “SAM3N1 Errata - Rev. B Parts / SAM3N0/00 -Rev. A Parts”
Section 38.2 “SAM3N4/2/1 Errata - Rev. A Parts” and Section 38.4 “SAM3N1 Errata - Rev. B Parts /
SAM3N0/00 -Rev. A Parts”, Added errata ‘Flash: Fetching Error after Reading the Unique Identifier’

8106

7978

FFPI:
Section 19-1 “Signal Description List”, Text for ‘Function’ changed to ‘Main Clock Input’ 7851

Ordering Information:
Section 37. “Ordering Information”: Table 37-1:
Updated and added ordering codes

Corrected multiple instances of wrong Package types for 128 and 256Kbytes devices

8106

RFO

PMC:
Section 24.3 “Block Diagram”, figure updated with ‘PMC_PCKx’

Section 24.10 “Fast Startup”, SUPC_FSMR changed to PMC_FSMR and SUPC_FSPR changed to
PMC_FSPR

7915

8010

USART:
Table 35-42, “USART SPI Timings,” , Changed 'MCK' --> 'tCPMCK' and 'SCK' --> 'tCPSCK' 7651

Doc. Rev.
11011B Comments

Change
Request
Ref.

Doc. Rev.
11011A Comments

Change
Request
Ref.

First Issue
748
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
Table of Contents

Features ... 1

1 SAM3N Description .. 2

1.1 Configuration Summary ...3

2 SAM3N Block Diagram .. 4

3 Signal Description ... 7

4 Package and Pinout ... 10

4.1 SAM3N4/2/1/0/00C Package and Pinout ..10

4.2 SAM3N4/2/1/0/00B Package and Pinout ...13

4.3 SAM3N4/2/1/0/00A Package and Pinout ...15

5 Power Considerations ... 17

5.1 Power Supplies ..17

5.2 Voltage Regulator ..17

5.3 Typical Powering Schematics ..17

5.4 Active Mode ...19

5.5 Low Power Modes ...19

5.6 Wake-up Sources ..22

5.7 Fast Start-Up ...23

6 Input/Output Lines ... 24

6.1 General Purpose I/O Lines ..24

6.2 System I/O Lines ...24

6.3 Test Pin ...26

6.4 NRST Pin ...26

6.5 ERASE Pin ..26

7 Product Mapping .. 27

7.1 Product Mapping ...27

7.2 Embedded Memories ..28

8 System Controller .. 31

8.1 System Controller and Peripheral Mapping ...33

8.2 Power-on-Reset, Brownout and Supply Monitor ...33

9 Peripherals ... 34

9.1 Peripheral Identifiers ..34
i
11011B–ATARM–21-Feb-12

9.2 APB/AHB Bridge ..35

9.3 Peripheral Signal Multiplexing on I/O Lines ...35

10 ARM Cortex® M3 Processor .. 39

10.1 About this section ..39

10.2 Embedded Characteristics ..39

10.3 About the Cortex-M3 processor and core peripherals39

10.4 Programmers model ..42

10.5 Memory model ...55

10.6 Exception model ..63

10.7 Fault handling ..70

10.8 Power management ..72

10.9 Instruction set summary ..75

10.10 Intrinsic functions ...78

10.11 About the instruction descriptions ..79

10.12 Memory access instructions ..87

10.13 General data processing instructions ..103

10.14 Multiply and divide instructions ..119

10.15 Saturating instructions ...123

10.16 Bitfield instructions ...125

10.17 Branch and control instructions ...129

10.18 Miscellaneous instructions ...137

10.19 About the Cortex-M3 peripherals ...150

10.20 Nested Vectored Interrupt Controller ...151

10.21 System control block ...164

10.22 System timer, SysTick ...191

10.23 Glossary ..196

11 Debug and Test Features .. 201

11.1 Description ...201

11.2 Embedded Characteristics ..201

11.3 Application Examples ..202

11.4 Debug and Test Pin Description ..203

11.5 Functional Description ...204

12 Reset Controller (RSTC) .. 209

12.1 Description ...209

12.2 Embedded Characteristics ..209
ii
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
12.3 Block Diagram ...209

12.4 Functional Description ...210

12.5 Reset Controller (RSTC) User Interface ..217

13 Real-time Timer (RTT) .. 221

13.1 Description ...221

13.2 Embedded Characteristics ..221

13.3 Block Diagram ...221

13.4 Functional Description ...222

13.5 Real-time Timer (RTT) User Interface ...224

14 Real Time Clock (RTC) .. 229

14.1 Description ...229

14.2 Embedded Characteristics ..229

14.3 Block Diagram ...229

14.4 Product Dependencies ..230

14.5 Functional Description ...230

14.6 Real Time Clock (RTC) User Interface ..233

15 Watchdog Timer (WDT) ... 247

15.1 Description ...247

15.2 Embedded Characteristics ..247

15.3 Block Diagram ...247

15.4 Functional Description ...248

15.5 Watchdog Timer (WDT) User Interface ...250

16 Supply Controller (SUPC) ... 255

16.1 Description ...255

16.2 Embedded Characteristics ..255

16.3 Block Diagram ...256

16.4 Supply Controller Functional Description ..257

16.5 Supply Controller (SUPC) User Interface ..265

17 General Purpose Backup Registers (GPBR) 273

17.1 Description ...273

17.2 Embedded Characteristics ..273

17.3 General Purpose Backup Registers (GPBR) User Interface 273

18 Enhanced Embedded Flash Controller (EEFC) 275

18.1 Description ...275
iii
11011B–ATARM–21-Feb-12

18.2 Product Dependencies ..275

18.3 Functional Description ...275

18.4 Enhanced Embedded Flash Controller (EEFC) User Interface286

19 Fast Flash Programming Interface (FFPI) .. 291

19.1 Description ...291

19.2 Parallel Fast Flash Programming ..291

20 SAM3N Boot Program ... 303

20.1 Description ...303

20.2 Hardware and Software Constraints ..303

20.3 Flow Diagram ..303

20.4 Device Initialization ..303

20.5 SAM-BA Monitor ..304

21 Bus Matrix (MATRIX) ... 307

21.1 Description ...307

21.2 Embedded Characteristics ..307

21.3 Memory Mapping ...308

21.4 Special Bus Granting Techniques ...308

21.5 Arbitration ..309

21.6 System I/O Configuration ..311

21.7 Write Protect Registers ..311

21.8 Bus Matrix (MATRIX) User Interface ...312

22 Peripheral DMA Controller (PDC) ... 319

22.1 Description ...319

22.2 Embedded Characteristics ..319

22.3 Block Diagram ...320

22.4 Functional Description ...321

22.5 Peripheral DMA Controller (PDC) User Interface ..324

23 Clock Generator ... 333

23.1 Description ...333

23.2 Embedded Characteristics ..333

23.3 Block Diagram ...334

23.4 Slow Clock ...335

23.5 Main Clock ...336

23.6 Divider and PLL Block ...340
iv
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
24 Power Management Controller (PMC) .. 341

24.1 Description ...341

24.2 Embedded Characteristics ..341

24.3 Block Diagram ...342

24.4 Master Clock Controller ...342

24.5 Processor Clock Controller ..343

24.6 SysTick Clock ..343

24.7 Peripheral Clock Controller ..343

24.8 Free Running Processor Clock ..344

24.9 Programmable Clock Output Controller ...344

24.10 Fast Startup ...345

24.11 Clock Failure Detector ...346

24.12 Programming Sequence ..347

24.13 Clock Switching Details ...350

24.14 Write Protection Registers ...353

24.15 Power Management Controller (PMC) User Interface 354

25 Chip Identifier (CHIPID) ... 377

25.1 Description ...377

25.2 Chip Identifier (CHIPID) User Interface ..378

26 Parallel Input/Output (PIO) Controller .. 385

26.1 Description ...385

26.2 Embedded Characteristics ..385

26.3 Block Diagram ...386

26.4 Product Dependencies ..387

26.5 Functional Description ...388

26.6 I/O Lines Programming Example ...397

26.7 Parallel Input/Output Controller (PIO) User Interface398

27 Serial Peripheral Interface (SPI) ... 429

27.1 Description ...429

27.2 Embedded Characteristics ..429

27.3 Block Diagram ...430

27.4 Application Block Diagram ...430

27.5 Signal Description ...431

27.6 Product Dependencies ..431

27.7 Functional Description ...432
v
11011B–ATARM–21-Feb-12

27.8 Serial Peripheral Interface (SPI) User Interface ..447

28 Two-wire Interface (TWI) ... 463

28.1 Description ...463

28.2 Embedded Characteristics ..464

28.3 List of Abbreviations ..464

28.4 Block Diagram ...465

28.5 Application Block Diagram ...465

28.6 Product Dependencies ..466

28.7 Functional Description ...467

28.8 Master Mode ..468

28.9 Multi-master Mode ...480

28.10 Slave Mode ..483

28.11 Two-wire Interface (TWI) User Interface ...491

29 Universal Asynchronous Receiver Transceiver (UART) 505

29.1 Description ...505

29.2 Embedded Characteristics ..505

29.3 Block Diagram ...506

29.4 Product Dependencies ..506

29.5 UART Operations ..507

29.6 Universal Asynchronous Receiver Transmitter (UART) User Interface513

30 Universal Synchronous Asynchronous Receiver Transmitter (USART)
523

30.1 Description ...523

30.2 Embedded Characteristics ..523

30.3 Block Diagram ...524

30.4 Application Block Diagram ...525

30.5 I/O Lines Description ..526

30.6 Product Dependencies ..527

30.7 Functional Description ...528

30.8 Universal Synchronous Asynchronous Receiver Transmitter (USART) User In-
terface 557

31 Timer Counter (TC) .. 579

31.1 Description ...579

31.2 Embedded Characteristics ..579

31.3 Block Diagram ...581
vi
11011B–ATARM–21-Feb-12

SAM3N

SAM3N
31.4 Pin Name List ..582

31.5 Product Dependencies ..582

31.6 Functional Description ...583

31.7 Timer Counter (TC) User Interface ..603

32 Pulse Width Modulation Controller (PWM) .. 627

32.1 Description ...627

32.2 Embedded Characteristics ..627

32.3 Block Diagram ...628

32.4 I/O Lines Description ...628

32.5 Product Dependencies ..628

32.6 Functional Description ...630

32.7 Pulse Width Modulation Controller (PWM) User Interface638

33 Analog-to-digital Converter (ADC) ... 649

33.1 Description ...649

33.2 Embedded Characteristics ..649

33.3 Block Diagram ...650

33.4 Signal Description ..650

33.5 Product Dependencies ..651

33.6 Functional Description ...652

33.7 Analog-to-Digital Converter (ADC) User Interface ...659

34 Digital to Analog Converter Controller (DACC) 679

34.1 Description ...679

34.2 Embedded Characteristics ..679

34.3 Block Diagram ...680

34.4 Signal Description ..681

34.5 Product Dependencies ..681

34.6 Functional Description ...682

34.7 Digital-to-Analog Converter Controller (DACC) User Interface684

35 Electrical Characteristics .. 695

35.1 Absolute Maximum Ratings ...695

35.2 DC Characteristics ...696

35.3 Power Consumption ..702

35.4 Crystal Oscillators Characteristics ...710

35.5 PLL Characteristics ...717

35.6 10-Bit ADC Characteristics ..718
vii
11011B–ATARM–21-Feb-12

35.7 10-Bit DAC Characteristics ..720

35.8 AC Characteristics ...721

36 Mechanical Characteristics ... 730

36.1 Soldering Profile ..739

36.2 Packaging Resources ..739

37 Ordering Information ... 740

38 SAM3N Series Errata ... 743

38.1 Marking ..743

38.2 SAM3N4/2/1 Errata - Rev. A Parts ..743

38.3 Flash Memory ..744

38.4 SAM3N1 Errata - Rev. B Parts / SAM3N0/00 -Rev. A Parts745

Revision History.. 747

Table of Contents... i
viii
11011B–ATARM–21-Feb-12

SAM3N

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1) (408) 441-0311
Fax: (+1) (408) 487-2600

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com
www.atmel.com/AT91SAM

Technical Support
AT91SAM Support
Atmel technical support

Sales Contacts
www.atmel.com/contacts/

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, DataFlash®, SAM-BA® and others are registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM®, ARMPowered® logo, Cortex™, Thumb® -2 and others are registered
trademarks or trademarks of ARM Ltd. Windows® and others are registered trademarks or trademarks of Microsoft Corporation in the US and/or
other countries. Other terms and product names may be trademarks of others.

11011B–ATARM–21-Feb-12

http://support.atmel.no/bin/customer
mailto:info@dream.fr <info@dream.fr>
mailto:asic@atmel.com <asic@atmel.com>
mailto:asic@atmel.com <asic@atmel.com>
http://www.atmel.com/contacts/
http://www.atmel.com/contacts/
http://www.atmel.com/
www.atmel.com
http://www.atmel.com/products/AT91CAP/
http://www.atmel.com/products/AT91/
http://www.atmel.com/dyn/products/ip_blocks.asp?family_id=615
http://www.atmel.com/products/PowerManage/
http://www.atmel.com/products/Dream/
http://www.atmel.com/products/Dream/
http://www.atmel.com/dyn/products/support.asp

2
11011B–ATARM–21-Feb-12

SAM3N

	Features
	1. SAM3N Description
	1.1 Configuration Summary

	2. SAM3N Block Diagram
	3. Signal Description
	4. Package and Pinout
	4.1 SAM3N4/2/1/0/00C Package and Pinout
	4.1.1 100-lead LQFP Package Outline
	4.1.2 100-ball TFBGA Package Outline
	4.1.3 100-Lead LQFP Pinout
	4.1.4 100-ball TFBGA Pinout

	4.2 SAM3N4/2/1/0/00B Package and Pinout
	4.2.1 64-Lead LQFP and QFN Pinout

	4.3 SAM3N4/2/1/0/00A Package and Pinout
	4.3.1 48-Lead LQFP and QFN Pinout

	5. Power Considerations
	5.1 Power Supplies
	5.2 Voltage Regulator
	5.3 Typical Powering Schematics
	5.4 Active Mode
	5.5 Low Power Modes
	5.5.1 Backup Mode
	5.5.2 Wait Mode
	5.5.3 Sleep Mode
	5.5.4 Low Power Mode Summary Table

	5.6 Wake-up Sources
	5.7 Fast Start-Up

	6. Input/Output Lines
	6.1 General Purpose I/O Lines
	6.2 System I/O Lines
	6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

	6.3 Test Pin
	6.4 NRST Pin
	6.5 ERASE Pin

	7. Product Mapping
	7.1 Product Mapping
	7.2 Embedded Memories
	7.2.1 Internal SRAM
	7.2.2 Internal ROM
	7.2.3 Embedded Flash
	7.2.3.1 Flash Overview
	7.2.3.2 Flash Power Supply
	7.2.3.3 Enhanced Embedded Flash Controller
	7.2.3.4 Flash Speed
	7.2.3.5 Lock Regions
	7.2.3.6 Security Bit Feature
	7.2.3.7 Calibration Bits
	7.2.3.8 Unique Identifier
	7.2.3.9 Fast Flash Programming Interface
	7.2.3.10 SAM-BA Boot
	7.2.3.11 GPNVM Bits

	7.2.4 Boot Strategies

	8. System Controller
	8.1 System Controller and Peripheral Mapping
	8.2 Power-on-Reset, Brownout and Supply Monitor
	8.2.1 Power-on-Reset
	8.2.2 Brownout Detector on VDDCORE
	8.2.3 Supply Monitor on VDDIO

	9. Peripherals
	9.1 Peripheral Identifiers
	9.2 APB/AHB Bridge
	9.3 Peripheral Signal Multiplexing on I/O Lines
	9.3.1 PIO Controller A Multiplexing
	9.3.2 PIO Controller B Multiplexing
	9.3.3 PIO Controller C Multiplexing

	10. ARM Cortex® M3 Processor
	10.1 About this section
	10.2 Embedded Characteristics
	10.3 About the Cortex-M3 processor and core peripherals
	10.3.1 System level interface
	10.3.2 Integrated configurable debug
	10.3.3 Cortex-M3 processor features and benefits summary
	10.3.4 Cortex-M3 core peripherals
	10.3.4.1 Nested Vectored Interrupt Controller
	10.3.4.2 System control block
	10.3.4.3 System timer

	10.4 Programmers model
	10.4.1 Processor mode and privilege levels for software execution
	10.4.1.1 Thread mode
	10.4.1.2 Handler mode
	10.4.1.3 Unprivileged
	10.4.1.4 Privileged

	10.4.2 Stacks
	10.4.3 Core registers
	10.4.3.1 General-purpose registers
	10.4.3.2 Stack Pointer
	10.4.3.3 Link Register
	10.4.3.4 Program Counter
	10.4.3.5 Program Status Register
	10.4.3.6 Application Program Status Register
	10.4.3.7 Interrupt Program Status Register
	10.4.3.8 Execution Program Status Register
	10.4.3.9 Interruptible-continuable instructions
	10.4.3.10 If-Then block
	10.4.3.11 Exception mask registers
	10.4.3.12 Priority Mask Register
	10.4.3.13 Fault Mask Register
	10.4.3.14 Base Priority Mask Register
	10.4.3.15 CONTROL register

	10.4.4 Exceptions and interrupts
	10.4.5 Data types
	10.4.6 The Cortex Microcontroller Software Interface Standard

	10.5 Memory model
	10.5.1 Memory regions, types and attributes
	10.5.1.1 Normal
	10.5.1.2 Device
	10.5.1.3 Strongly-ordered
	10.5.1.4 Shareable
	10.5.1.5 Execute Never (XN)

	10.5.2 Memory system ordering of memory accesses
	10.5.3 Behavior of memory accesses
	10.5.3.1 Additional memory access constraints for shared memory

	10.5.4 Software ordering of memory accesses
	10.5.4.1 DMB
	10.5.4.2 DSB
	10.5.4.3 ISB

	10.5.5 Bit-banding
	10.5.5.1 Directly accessing an alias region
	10.5.5.2 Directly accessing a bit-band region

	10.5.6 Memory endianness
	10.5.6.1 Little-endian format

	10.5.7 Synchronization primitives
	10.5.7.1 A Load-Exclusive instruction
	10.5.7.2 A Store-Exclusive instruction

	10.5.8 Programming hints for the synchronization primitives

	10.6 Exception model
	10.6.1 Exception states
	10.6.1.1 Inactive
	10.6.1.2 Pending
	10.6.1.3 Active
	10.6.1.4 Active and pending

	10.6.2 Exception types
	10.6.2.1 Reset
	10.6.2.2 Non Maskable Interrupt (NMI)
	10.6.2.3 Hard fault
	10.6.2.4 Bus fault
	10.6.2.5 Usage fault
	10.6.2.6 SVCall
	10.6.2.7 PendSV
	10.6.2.8 SysTick
	10.6.2.9 Interrupt (IRQ)

	10.6.3 Exception handlers
	10.6.3.1 Interrupt Service Routines (ISRs)
	10.6.3.2 Fault handlers
	10.6.3.3 System handlers

	10.6.4 Vector table
	10.6.5 Exception priorities
	10.6.6 Interrupt priority grouping
	10.6.7 Exception entry and return
	10.6.7.1 Preemption
	10.6.7.2 Return
	10.6.7.3 Tail-chaining
	10.6.7.4 Late-arriving
	10.6.7.5 Exception entry
	10.6.7.6 Exception return

	10.7 Fault handling
	10.7.1 Fault types
	10.7.2 Fault escalation and hard faults
	10.7.3 Fault status registers and fault address registers
	10.7.4 Lockup

	10.8 Power management
	10.8.1 Entering sleep mode
	10.8.1.1 Wait for interrupt
	10.8.1.2 Wait for event
	10.8.1.3 Sleep-on-exit

	10.8.2 Wakeup from sleep mode
	10.8.2.1 Wakeup from WFI or sleep-on-exit
	10.8.2.2 Wakeup from WFE

	10.8.3 Power management programming hints

	10.9 Instruction set summary
	10.10 Intrinsic functions
	10.11 About the instruction descriptions
	10.11.1 Operands
	10.11.2 Restrictions when using PC or SP
	10.11.3 Flexible second operand
	10.11.3.1 Constant
	10.11.3.2 Instruction substitution
	10.11.3.3 Register with optional shift

	10.11.4 Shift Operations
	10.11.4.1 ASR
	10.11.4.2 LSR
	10.11.4.3 LSL
	10.11.4.4 ROR
	10.11.4.5 RRX

	10.11.5 Address alignment
	10.11.6 PC-relative expressions
	10.11.7 Conditional execution
	10.11.7.1 The condition flags
	10.11.7.2 Condition code suffixes
	10.11.7.3 Absolute value
	10.11.7.4 Compare and update value

	10.11.8 Instruction width selection
	10.11.8.1 Instruction width selection

	10.12 Memory access instructions
	10.12.1 ADR
	10.12.1.1 Syntax
	10.12.1.2 Operation
	10.12.1.3 Restrictions
	10.12.1.4 Condition flags
	10.12.1.5 Examples

	10.12.2 LDR and STR, immediate offset
	10.12.2.1 Syntax
	10.12.2.2 Operation
	10.12.2.3 Offset addressing
	10.12.2.4 Pre-indexed addressing
	10.12.2.5 Post-indexed addressing
	10.12.2.6 Restrictions
	10.12.2.7 Condition flags
	10.12.2.8 Examples

	10.12.3 LDR and STR, register offset
	10.12.3.1 Syntax
	10.12.3.2 Operation
	10.12.3.3 Restrictions
	10.12.3.4 Condition flags
	10.12.3.5 Examples

	10.12.4 LDR and STR, unprivileged
	10.12.4.1 Syntax
	10.12.4.2 Operation
	10.12.4.3 Restrictions
	10.12.4.4 Condition flags
	10.12.4.5 Examples

	10.12.5 LDR, PC-relative
	10.12.5.1 Syntax
	10.12.5.2 Operation
	10.12.5.3 Restrictions
	10.12.5.4 Condition flags
	10.12.5.5 Examples

	10.12.6 LDM and STM
	10.12.6.1 Syntax
	10.12.6.2 Operation
	10.12.6.3 Restrictions
	10.12.6.4 Condition flags
	10.12.6.5 Examples
	10.12.6.6 Incorrect examples

	10.12.7 PUSH and POP
	10.12.7.1 Syntax
	10.12.7.2 Operation
	10.12.7.3 Restrictions
	10.12.7.4 Condition flags
	10.12.7.5 Examples

	10.12.8 LDREX and STREX
	10.12.8.1 Syntax
	10.12.8.2 Operation
	10.12.8.3 Restrictions
	10.12.8.4 Condition flags
	10.12.8.5 Examples

	10.12.9 CLREX
	10.12.9.1 Syntax
	10.12.9.2 Operation
	10.12.9.3 Condition flags
	10.12.9.4 Examples

	10.13 General data processing instructions
	10.13.1 ADD, ADC, SUB, SBC, and RSB
	10.13.1.1 Syntax
	10.13.1.2 Operation
	10.13.1.3 Restrictions
	10.13.1.4 Condition flags
	10.13.1.5 Examples
	10.13.1.6 Multiword arithmetic examples
	10.13.1.7 64-bit addition
	10.13.1.8 96-bit subtraction

	10.13.2 AND, ORR, EOR, BIC, and ORN
	10.13.2.1 Syntax
	10.13.2.2 Operation
	10.13.2.3 Restrictions
	10.13.2.4 Condition flags
	10.13.2.5 Examples

	10.13.3 ASR, LSL, LSR, ROR, and RRX
	10.13.3.1 Syntax
	10.13.3.2 Operation
	10.13.3.3 Restrictions
	10.13.3.4 Condition flags
	10.13.3.5 Examples

	10.13.4 CLZ
	10.13.4.1 Syntax
	10.13.4.2 Operation
	10.13.4.3 Restrictions
	10.13.4.4 Condition flags
	10.13.4.5 Examples

	10.13.5 CMP and CMN
	10.13.5.1 Syntax
	10.13.5.2 Operation
	10.13.5.3 Restrictions
	10.13.5.4 Condition flags
	10.13.5.5 Examples

	10.13.6 MOV and MVN
	10.13.6.1 Syntax
	10.13.6.2 Operation
	10.13.6.3 Restrictions
	10.13.6.4 Condition flags
	10.13.6.5 Example

	10.13.7 MOVT
	10.13.7.1 Syntax
	10.13.7.2 Operation
	10.13.7.3 Restrictions
	10.13.7.4 Condition flags
	10.13.7.5 Examples

	10.13.8 REV, REV16, REVSH, and RBIT
	10.13.8.1 Syntax
	10.13.8.2 Operation
	10.13.8.3 Restrictions
	10.13.8.4 Condition flags
	10.13.8.5 Examples

	10.13.9 TST and TEQ
	10.13.9.1 Syntax
	10.13.9.2 Operation
	10.13.9.3 Restrictions
	10.13.9.4 Condition flags
	10.13.9.5 Examples

	10.14 Multiply and divide instructions
	10.14.1 MUL, MLA, and MLS
	10.14.1.1 Syntax
	10.14.1.2 Operation
	10.14.1.3 Restrictions
	10.14.1.4 Condition flags
	10.14.1.5 Examples

	10.14.2 UMULL, UMLAL, SMULL, and SMLAL
	10.14.2.1 Syntax
	10.14.2.2 Operation
	10.14.2.3 Restrictions
	10.14.2.4 Condition flags
	10.14.2.5 Examples

	10.14.3 SDIV and UDIV
	10.14.3.1 Syntax
	10.14.3.2 Operation
	10.14.3.3 Restrictions
	10.14.3.4 Condition flags
	10.14.3.5 Examples

	10.15 Saturating instructions
	10.15.1 SSAT and USAT
	10.15.1.1 Syntax
	10.15.1.2 Operation
	10.15.1.3 Restrictions
	10.15.1.4 Condition flags
	10.15.1.5 Examples

	10.16 Bitfield instructions
	10.16.1 BFC and BFI
	10.16.1.1 Syntax
	10.16.1.2 Operation
	10.16.1.3 Restrictions
	10.16.1.4 Condition flags
	10.16.1.5 Examples

	10.16.2 SBFX and UBFX
	10.16.2.1 Syntax
	10.16.2.2 Operation
	10.16.2.3 Restrictions
	10.16.2.4 Condition flags
	10.16.2.5 Examples

	10.16.3 SXT and UXT
	10.16.3.1 Syntax
	10.16.3.2 Operation
	10.16.3.3 Restrictions
	10.16.3.4 Condition flags
	10.16.3.5 Examples

	10.17 Branch and control instructions
	10.17.1 B, BL, BX, and BLX
	10.17.1.1 Syntax
	10.17.1.2 Operation
	10.17.1.3 Restrictions
	10.17.1.4 Condition flags
	10.17.1.5 Examples

	10.17.2 CBZ and CBNZ
	10.17.2.1 Syntax
	10.17.2.2 Operation
	10.17.2.3 Restrictions
	10.17.2.4 Condition flags
	10.17.2.5 Examples

	10.17.3 IT
	10.17.3.1 Syntax
	10.17.3.2 Operation
	10.17.3.3 Restrictions
	10.17.3.4 Condition flags
	10.17.3.5 Example

	10.17.4 TBB and TBH
	10.17.4.1 Syntax
	10.17.4.2 Operation
	10.17.4.3 Restrictions
	10.17.4.4 Condition flags
	10.17.4.5 Examples

	10.18 Miscellaneous instructions
	10.18.1 BKPT
	10.18.1.1 Syntax
	10.18.1.2 Operation
	10.18.1.3 Condition flags
	10.18.1.4 Examples

	10.18.2 CPS
	10.18.2.1 Syntax
	10.18.2.2 Operation
	10.18.2.3 Restrictions
	10.18.2.4 Condition flags
	10.18.2.5 Examples

	10.18.3 DMB
	10.18.3.1 Syntax
	10.18.3.2 Operation
	10.18.3.3 Condition flags
	10.18.3.4 Examples

	10.18.4 DSB
	10.18.4.1 Syntax
	10.18.4.2 Operation
	10.18.4.3 Condition flags
	10.18.4.4 Examples

	10.18.5 ISB
	10.18.5.1 Syntax
	10.18.5.2 Operation
	10.18.5.3 Condition flags
	10.18.5.4 Examples

	10.18.6 MRS
	10.18.6.1 Syntax
	10.18.6.2 Operation
	10.18.6.3 Restrictions
	10.18.6.4 Condition flags
	10.18.6.5 Examples

	10.18.7 MSR
	10.18.7.1 Syntax
	10.18.7.2 Operation
	10.18.7.3 Restrictions
	10.18.7.4 Condition flags
	10.18.7.5 Examples

	10.18.8 NOP
	10.18.8.1 Syntax
	10.18.8.2 Operation
	10.18.8.3 Condition flags
	10.18.8.4 Examples

	10.18.9 SEV
	10.18.9.1 Syntax
	10.18.9.2 Operation
	10.18.9.3 Condition flags
	10.18.9.4 Examples

	10.18.10 SVC
	10.18.10.1 Syntax
	10.18.10.2 Operation
	10.18.10.3 Condition flags
	10.18.10.4 Examples

	10.18.11 WFE
	10.18.11.1 Syntax
	10.18.11.2 Operation
	10.18.11.3 Condition flags
	10.18.11.4 Examples

	10.18.12 WFI
	10.18.12.1 Syntax
	10.18.12.2 Operation
	10.18.12.3 Condition flags
	10.18.12.4 Examples

	10.19 About the Cortex-M3 peripherals
	10.20 Nested Vectored Interrupt Controller
	10.20.1 The CMSIS mapping of the Cortex-M3 NVIC registers
	10.20.2 Interrupt Set-enable Registers
	10.20.3 Interrupt Clear-enable Registers
	10.20.4 Interrupt Set-pending Registers
	10.20.5 Interrupt Clear-pending Registers
	10.20.6 Interrupt Active Bit Registers
	10.20.7 Interrupt Priority Registers
	10.20.7.1 IPRm
	10.20.7.2 IPR4
	10.20.7.3 IPR3
	10.20.7.4 IPR2
	10.20.7.5 IPR1
	10.20.7.6 IPR0

	10.20.8 Software Trigger Interrupt Register
	10.20.9 Level-sensitive interrupts
	10.20.9.1 Hardware and software control of interrupts

	10.20.10 NVIC design hints and tips
	10.20.10.1 NVIC programming hints

	10.21 System control block
	10.21.1 The CMSIS mapping of the Cortex-M3 SCB registers
	10.21.2 Auxiliary Control Register
	10.21.2.1 About IT folding

	10.21.3 CPUID Base Register
	10.21.4 Interrupt Control and State Register
	10.21.5 Vector Table Offset Register
	10.21.6 Application Interrupt and Reset Control Register
	10.21.6.1 Binary point

	10.21.7 System Control Register
	10.21.8 Configuration and Control Register
	10.21.9 System Handler Priority Registers
	10.21.9.1 System Handler Priority Register 1
	10.21.9.2 System Handler Priority Register 2
	10.21.9.3 System Handler Priority Register 3

	10.21.10 System Handler Control and State Register
	10.21.11 Configurable Fault Status Register
	10.21.11.1 Memory Management Fault Status Register
	10.21.11.2 Bus Fault Status Register
	10.21.11.3 Usage Fault Status Register

	10.21.12 Hard Fault Status Register
	10.21.13 Memory Management Fault Address Register
	10.21.14 Bus Fault Address Register
	10.21.15 System control block design hints and tips

	10.22 System timer, SysTick
	10.22.1 SysTick Control and Status Register
	10.22.2 SysTick Reload Value Register
	10.22.2.1 Calculating the RELOAD value

	10.22.3 SysTick Current Value Register
	10.22.4 SysTick Calibration Value Register
	10.22.5 SysTick design hints and tips

	10.23 Glossary

	11. Debug and Test Features
	11.1 Description
	11.2 Embedded Characteristics
	11.3 Application Examples
	11.3.1 Debug Environment
	11.3.2 Test Environment

	11.4 Debug and Test Pin Description
	11.5 Functional Description
	11.5.1 Test Pin
	11.5.2 Debug Architecture
	11.5.3 Serial Wire/JTAG Debug Port (SWJ-DP)
	11.5.3.1 SW-DP and JTAG-DP Selection Mechanism

	11.5.4 FPB (Flash Patch Breakpoint)
	11.5.5 DWT (Data Watchpoint and Trace)
	11.5.6 ITM (Instrumentation Trace Macrocell)
	11.5.6.1 How to Configure the ITM
	11.5.6.2 Asynchronous Mode
	11.5.6.3 5.4.3. How to Configure the TPIU

	11.5.7 IEEE® 1149.1 JTAG Boundary Scan
	11.5.7.1 JTAG Boundary-scan Register

	11.5.8 ID Code Register

	12. Reset Controller (RSTC)
	12.1 Description
	12.2 Embedded Characteristics
	12.3 Block Diagram
	12.4 Functional Description
	12.4.1 Reset Controller Overview
	12.4.2 NRST Manager
	12.4.2.1 NRST Signal or Interrupt
	12.4.2.2 NRST External Reset Control

	12.4.3 Brownout Manager
	12.4.4 Reset States
	12.4.4.1 General Reset
	12.4.4.2 Backup Reset
	12.4.4.3 User Reset
	12.4.4.4 Software Reset
	12.4.4.5 Watchdog Reset

	12.4.5 Reset State Priorities
	12.4.6 Reset Controller Status Register

	12.5 Reset Controller (RSTC) User Interface
	12.5.1 Reset Controller Control Register
	12.5.2 Reset Controller Status Register
	12.5.3 Reset Controller Mode Register

	13. Real-time Timer (RTT)
	13.1 Description
	13.2 Embedded Characteristics
	13.3 Block Diagram
	13.4 Functional Description
	13.5 Real-time Timer (RTT) User Interface
	13.5.1 Real-time Timer Mode Register
	13.5.2 Real-time Timer Alarm Register
	13.5.3 Real-time Timer Value Register
	13.5.4 Real-time Timer Status Register

	14. Real Time Clock (RTC)
	14.1 Description
	14.2 Embedded Characteristics
	14.3 Block Diagram
	14.4 Product Dependencies
	14.4.1 Power Management
	14.4.2 Interrupt

	14.5 Functional Description
	14.5.1 Reference Clock
	14.5.2 Timing
	14.5.3 Alarm
	14.5.4 Error Checking
	14.5.5 Updating Time/Calendar

	14.6 Real Time Clock (RTC) User Interface
	14.6.1 RTC Control Register
	14.6.2 RTC Mode Register
	14.6.3 RTC Time Register
	14.6.4 RTC Calendar Register
	14.6.5 RTC Time Alarm Register
	14.6.6 RTC Calendar Alarm Register
	14.6.7 RTC Status Register
	14.6.8 RTC Status Clear Command Register
	14.6.9 RTC Interrupt Enable Register
	14.6.10 RTC Interrupt Disable Register
	14.6.11 RTC Interrupt Mask Register
	14.6.12 RTC Valid Entry Register
	14.6.13 RTC Write Protect Mode Register

	15. Watchdog Timer (WDT)
	15.1 Description
	15.2 Embedded Characteristics
	15.3 Block Diagram
	15.4 Functional Description
	15.5 Watchdog Timer (WDT) User Interface
	15.5.1 Watchdog Timer Control Register
	15.5.2 Watchdog Timer Mode Register
	15.5.3 Watchdog Timer Status Register

	16. Supply Controller (SUPC)
	16.1 Description
	16.2 Embedded Characteristics
	16.3 Block Diagram
	16.4 Supply Controller Functional Description
	16.4.1 Supply Controller Overview
	16.4.2 Slow Clock Generator
	16.4.3 Voltage Regulator Control/Backup Low Power Mode
	16.4.4 Supply Monitor
	16.4.5 Power Supply Reset
	16.4.5.1 Raising the Power Supply

	16.4.6 Core Reset
	16.4.6.1 Supply Monitor Reset
	16.4.6.2 Brownout Detector Reset

	16.4.7 Wake Up Sources
	16.4.7.1 Wake Up Inputs
	16.4.7.2 Clock Alarms
	16.4.7.3 Supply Monitor Detection

	16.5 Supply Controller (SUPC) User Interface
	16.5.1 System Controller (SYSC) User Interface
	16.5.2 Supply Controller (SUPC) User Interface
	16.5.3 Supply Controller Control Register
	16.5.4 Supply Controller Supply Monitor Mode Register
	16.5.5 Supply Controller Mode Register
	16.5.6 Supply Controller Wake Up Mode Register
	16.5.7 System Controller Wake Up Inputs Register
	16.5.8 Supply Controller Status Register

	17. General Purpose Backup Registers (GPBR)
	17.1 Description
	17.2 Embedded Characteristics
	17.3 General Purpose Backup Registers (GPBR) User Interface
	17.3.0.1 General Purpose Backup Register x

	18. Enhanced Embedded Flash Controller (EEFC)
	18.1 Description
	18.2 Product Dependencies
	18.2.1 Power Management
	18.2.2 Interrupt Sources

	18.3 Functional Description
	18.3.1 Embedded Flash Organization
	18.3.2 Read Operations
	18.3.2.1 128-bit or 64-bit Access Mode
	18.3.2.2 Code Read Optimization
	18.3.2.3 Data Read Optimization

	18.3.3 Flash Commands
	18.3.3.1 Getting Embedded Flash Descriptor
	18.3.3.2 Write Commands
	18.3.3.3 Erase Commands
	18.3.3.4 Lock Bit Protection
	18.3.3.5 GPNVM Bit
	18.3.3.6 Calibration Bit
	18.3.3.7 Security Bit Protection
	18.3.3.8 Unique Identifier

	18.4 Enhanced Embedded Flash Controller (EEFC) User Interface
	18.4.1 EEFC Flash Mode Register
	18.4.2 EEFC Flash Command Register
	18.4.3 EEFC Flash Status Register
	18.4.4 EEFC Flash Result Register

	19. Fast Flash Programming Interface (FFPI)
	19.1 Description
	19.2 Parallel Fast Flash Programming
	19.2.1 Device Configuration
	19.2.2 Signal Names
	19.2.3 Entering Programming Mode
	19.2.4 Programmer Handshaking
	19.2.4.1 Write Handshaking
	19.2.4.2 Read Handshaking

	19.2.5 Device Operations
	19.2.5.1 Flash Read Command
	19.2.5.2 Flash Write Command
	19.2.5.3 Flash Full Erase Command
	19.2.5.4 Flash Lock Commands
	19.2.5.5 Flash General-purpose NVM Commands
	19.2.5.6 Flash Security Bit Command
	19.2.5.7 Memory Write Command
	19.2.5.8 Get Version Command

	20. SAM3N Boot Program
	20.1 Description
	20.2 Hardware and Software Constraints
	20.3 Flow Diagram
	20.4 Device Initialization
	20.5 SAM-BA Monitor
	20.5.1 UART0 Serial Port
	20.5.2 Xmodem Protocol
	20.5.3 In Application Programming (IAP) Feature

	21. Bus Matrix (MATRIX)
	21.1 Description
	21.2 Embedded Characteristics
	21.2.1 Matrix Masters
	21.2.2 Matrix Slaves
	21.2.3 Master to Slave Access

	21.3 Memory Mapping
	21.4 Special Bus Granting Techniques
	21.4.1 No Default Master
	21.4.2 Last Access Master
	21.4.3 Fixed Default Master

	21.5 Arbitration
	21.5.1 Arbitration Rules
	21.5.1.1 Undefined Length Burst Arbitration
	21.5.1.2 Slot Cycle Limit Arbitration

	21.5.2 Round-Robin Arbitration
	21.5.2.1 Round-Robin arbitration without default master
	21.5.2.2 Round-Robin arbitration with last access master
	21.5.2.3 Round-Robin arbitration with fixed default master

	21.5.3 Fixed Priority Arbitration

	21.6 System I/O Configuration
	21.7 Write Protect Registers
	21.8 Bus Matrix (MATRIX) User Interface
	21.8.1 Bus Matrix Master Configuration Registers
	21.8.2 Bus Matrix Slave Configuration Registers
	21.8.3 Bus Matrix Priority Registers For Slaves
	21.8.4 System I/O Configuration Register
	21.8.5 Write Protect Mode Register
	21.8.6 Write Protect Status Register

	22. Peripheral DMA Controller (PDC)
	22.1 Description
	22.2 Embedded Characteristics
	22.3 Block Diagram
	22.4 Functional Description
	22.4.1 Configuration
	22.4.2 Memory Pointers
	22.4.3 Transfer Counters
	22.4.4 Data Transfers
	22.4.5 PDC Flags and Peripheral Status Register
	22.4.5.1 Receive Transfer End
	22.4.5.2 Transmit Transfer End
	22.4.5.3 Receive Buffer Full
	22.4.5.4 Transmit Buffer Empty

	22.5 Peripheral DMA Controller (PDC) User Interface
	22.5.1 Receive Pointer Register
	22.5.2 Receive Counter Register
	22.5.3 Transmit Pointer Register
	22.5.4 Transmit Counter Register
	22.5.5 Receive Next Pointer Register
	22.5.6 Receive Next Counter Register
	22.5.7 Transmit Next Pointer Register
	22.5.8 Transmit Next Counter Register
	22.5.9 Transfer Control Register
	22.5.10 Transfer Status Register

	23. Clock Generator
	23.1 Description
	23.2 Embedded Characteristics
	23.3 Block Diagram
	23.4 Slow Clock
	23.4.1 Slow Clock RC Oscillator
	23.4.2 Slow Clock Crystal Oscillator

	23.5 Main Clock
	23.5.1 4/8/12 MHz Fast RC Oscillator
	23.5.2 4/8/12 MHz Fast RC Oscillator Clock Frequency Adjustment
	23.5.3 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator
	23.5.4 Main Clock Oscillator Selection
	23.5.5 Main Clock Frequency Counter

	23.6 Divider and PLL Block
	23.6.1 Divider and Phase Lock Loop Programming

	24. Power Management Controller (PMC)
	24.1 Description
	24.2 Embedded Characteristics
	24.3 Block Diagram
	24.4 Master Clock Controller
	24.5 Processor Clock Controller
	24.6 SysTick Clock
	24.7 Peripheral Clock Controller
	24.8 Free Running Processor Clock
	24.9 Programmable Clock Output Controller
	24.10 Fast Startup
	24.11 Clock Failure Detector
	24.12 Programming Sequence
	24.13 Clock Switching Details
	24.13.1 Master Clock Switching Timings
	24.13.2 Clock Switching Waveforms

	24.14 Write Protection Registers
	24.15 Power Management Controller (PMC) User Interface
	24.15.1 PMC System Clock Enable Register
	24.15.2 PMC System Clock Disable Register
	24.15.3 PMC System Clock Status Register
	24.15.4 PMC Peripheral Clock Enable Register
	24.15.5 PMC Peripheral Clock Disable Register
	24.15.6 PMC Peripheral Clock Status Register
	24.15.7 PMC Clock Generator Main Oscillator Register
	24.15.8 PMC Clock Generator Main Clock Frequency Register
	24.15.9 PMC Clock Generator PLL Register
	24.15.10 PMC Master Clock Register
	24.15.11 PMC Programmable Clock Register
	24.15.12 PMC Interrupt Enable Register
	24.15.13 PMC Interrupt Disable Register
	24.15.14 PMC Status Register
	24.15.15 PMC Interrupt Mask Register
	24.15.16 PMC Fast Startup Mode Register
	24.15.17 PMC Fast Startup Polarity Register
	24.15.18 PMC Fault Output Clear Register
	24.15.19 PMC Write Protect Mode Register
	24.15.20 PMC Write Protect Status Register
	24.15.21 PMC Oscillator Calibration Register

	25. Chip Identifier (CHIPID)
	25.1 Description
	25.2 Chip Identifier (CHIPID) User Interface
	25.2.1 Chip ID Register
	25.2.2 Chip ID Extension Register

	26. Parallel Input/Output (PIO) Controller
	26.1 Description
	26.2 Embedded Characteristics
	26.3 Block Diagram
	26.4 Product Dependencies
	26.4.1 Pin Multiplexing
	26.4.2 Power Management
	26.4.3 Interrupt Generation

	26.5 Functional Description
	26.5.1 Pull-up and Pull-down Resistor Control
	26.5.2 I/O Line or Peripheral Function Selection
	26.5.3 Peripheral A or B or C or D Selection
	26.5.4 Output Control
	26.5.5 Synchronous Data Output
	26.5.6 Multi Drive Control (Open Drain)
	26.5.7 Output Line Timings
	26.5.8 Inputs
	26.5.9 Input Glitch and Debouncing Filters
	26.5.10 Input Edge/Level Interrupt
	26.5.10.1 Example
	26.5.10.2 Interrupt Mode Configuration
	26.5.10.3 Edge or Level Detection Configuration
	26.5.10.4 Falling/Rising Edge or Low/High Level Detection Configuration.

	26.5.11 I/O Lines Lock
	26.5.12 Programmable Schmitt Trigger
	26.5.13 Write Protection Registers

	26.6 I/O Lines Programming Example
	26.7 Parallel Input/Output Controller (PIO) User Interface
	26.7.1 PIO Enable Register
	26.7.2 PIO Disable Register
	26.7.3 PIO Status Register
	26.7.4 PIO Output Enable Register
	26.7.5 PIO Output Disable Register
	26.7.6 PIO Output Status Register
	26.7.7 PIO Input Filter Enable Register
	26.7.8 PIO Input Filter Disable Register
	26.7.9 PIO Input Filter Status Register
	26.7.10 PIO Set Output Data Register
	26.7.11 PIO Clear Output Data Register
	26.7.12 PIO Output Data Status Register
	26.7.13 PIO Pin Data Status Register
	26.7.14 PIO Interrupt Enable Register
	26.7.15 PIO Interrupt Disable Register
	26.7.16 PIO Interrupt Mask Register
	26.7.17 PIO Interrupt Status Register
	26.7.18 PIO Multi-driver Enable Register
	26.7.19 PIO Multi-driver Disable Register
	26.7.20 PIO Multi-driver Status Register
	26.7.21 PIO Pull Up Disable Register
	26.7.22 PIO Pull Up Enable Register
	26.7.23 PIO Pull Up Status Register
	26.7.24 PIO Peripheral ABCD Select Register 1
	26.7.25 PIO Peripheral ABCD Select Register 2
	26.7.26 PIO Input Filter Slow Clock Disable Register
	26.7.27 PIO Input Filter Slow Clock Enable Register
	26.7.28 PIO Input Filter Slow Clock Status Register
	26.7.29 PIO Slow Clock Divider Debouncing Register
	26.7.30 PIO Pad Pull Down Disable Register
	26.7.31 PIO Pad Pull Down Enable Register
	26.7.32 PIO Pad Pull Down Status Register
	26.7.33 PIO Output Write Enable Register
	26.7.34 PIO Output Write Disable Register
	26.7.35 PIO Output Write Status Register
	26.7.36 PIO Additional Interrupt Modes Enable Register
	26.7.37 PIO Additional Interrupt Modes Disable Register
	26.7.38 PIO Additional Interrupt Modes Mask Register
	26.7.39 PIO Edge Select Register
	26.7.40 PIO Level Select Register
	26.7.41 PIO Edge/Level Status Register
	26.7.42 PIO Falling Edge/Low Level Select Register
	26.7.43 PIO Rising Edge/High Level Select Register
	26.7.44 PIO Fall/Rise - Low/High Status Register
	26.7.45 PIO Lock Status Register
	26.7.46 PIO Write Protect Mode Register
	26.7.47 PIO Write Protect Status Register
	26.7.48 PIO Schmitt Trigger Register

	27. Serial Peripheral Interface (SPI)
	27.1 Description
	27.2 Embedded Characteristics
	27.3 Block Diagram
	27.4 Application Block Diagram
	27.5 Signal Description
	27.6 Product Dependencies
	27.6.1 I/O Lines
	27.6.2 Power Management
	27.6.3 Interrupt

	27.7 Functional Description
	27.7.1 Modes of Operation
	27.7.2 Data Transfer
	27.7.3 Master Mode Operations
	27.7.3.1 Master Mode Block Diagram
	27.7.3.2 Master Mode Flow Diagram
	27.7.3.3 Clock Generation
	27.7.3.4 Transfer Delays
	27.7.3.5 Peripheral Selection
	27.7.3.6 SPI Peripheral DMA Controller (PDC)
	27.7.3.7 Peripheral Chip Select Decoding
	27.7.3.8 Peripheral Deselection without PDC
	27.7.3.9 Peripheral Deselection with PDC
	27.7.3.10 Mode Fault Detection

	27.7.4 SPI Slave Mode
	27.7.5 Write Protected Registers

	27.8 Serial Peripheral Interface (SPI) User Interface
	27.8.1 SPI Control Register
	27.8.2 SPI Mode Register
	27.8.3 SPI Receive Data Register
	27.8.4 SPI Transmit Data Register
	27.8.5 SPI Status Register
	27.8.6 SPI Interrupt Enable Register
	27.8.7 SPI Interrupt Disable Register
	27.8.8 SPI Interrupt Mask Register
	27.8.9 SPI Chip Select Register
	27.8.10 SPI Write Protection Mode Register
	27.8.11 SPI Write Protection Status Register

	28. Two-wire Interface (TWI)
	28.1 Description
	28.2 Embedded Characteristics
	28.3 List of Abbreviations
	28.4 Block Diagram
	28.5 Application Block Diagram
	28.5.1 I/O Lines Description

	28.6 Product Dependencies
	28.6.1 I/O Lines
	28.6.2 Power Management
	28.6.3 Interrupt

	28.7 Functional Description
	28.7.1 Transfer Format
	28.7.2 Modes of Operation

	28.8 Master Mode
	28.8.1 Definition
	28.8.2 Application Block Diagram
	28.8.3 Programming Master Mode
	28.8.4 Master Transmitter Mode
	28.8.5 Master Receiver Mode
	28.8.6 Internal Address
	28.8.6.1 7-bit Slave Addressing
	28.8.6.2 10-bit Slave Addressing

	28.8.7 Using the Peripheral DMA Controller (PDC)
	28.8.7.1 Data Transmit with the PDC
	28.8.7.2 Data Receive with the PDC

	28.8.8 Using the DMA Controller (DMAC)
	28.8.9 SMBUS Quick Command (Master Mode Only)
	28.8.10 Read-write Flowcharts

	28.9 Multi-master Mode
	28.9.1 Definition
	28.9.2 Different Multi-master Modes
	28.9.2.1 TWI as Master Only
	28.9.2.2 TWI as Master or Slave

	28.10 Slave Mode
	28.10.1 Definition
	28.10.2 Application Block Diagram
	28.10.3 Programming Slave Mode
	28.10.4 Receiving Data
	28.10.4.1 Read Sequence
	28.10.4.2 Write Sequence
	28.10.4.3 Clock Synchronization Sequence
	28.10.4.4 General Call
	28.10.4.5 PDC
	28.10.4.6 DMAC

	28.10.5 Data Transfer
	28.10.5.1 Read Operation
	28.10.5.2 Write Operation
	28.10.5.3 General Call
	28.10.5.4 Clock Synchronization
	28.10.5.5 Reversal after a Repeated Start

	28.10.6 Read Write Flowcharts

	28.11 Two-wire Interface (TWI) User Interface
	28.11.1 TWI Control Register
	28.11.2 TWI Master Mode Register
	28.11.3 TWI Slave Mode Register
	28.11.4 TWI Internal Address Register
	28.11.5 TWI Clock Waveform Generator Register
	28.11.6 TWI Status Register
	28.11.7 TWI Interrupt Enable Register
	28.11.8 TWI Interrupt Disable Register
	28.11.9 TWI Interrupt Mask Register
	28.11.10 TWI Receive Holding Register
	28.11.11 TWI Transmit Holding Register

	29. Universal Asynchronous Receiver Transceiver (UART)
	29.1 Description
	29.2 Embedded Characteristics
	29.3 Block Diagram
	29.4 Product Dependencies
	29.4.1 I/O Lines
	29.4.2 Power Management
	29.4.3 Interrupt Source

	29.5 UART Operations
	29.5.1 Baud Rate Generator
	29.5.2 Receiver
	29.5.2.1 Receiver Reset, Enable and Disable
	29.5.2.2 Start Detection and Data Sampling
	29.5.2.3 Receiver Ready
	29.5.2.4 Receiver Overrun
	29.5.2.5 Parity Error
	29.5.2.6 Receiver Framing Error

	29.5.3 Transmitter
	29.5.3.1 Transmitter Reset, Enable and Disable
	29.5.3.2 Transmit Format
	29.5.3.3 Transmitter Control

	29.5.4 Peripheral DMA Controller
	29.5.5 Test Modes

	29.6 Universal Asynchronous Receiver Transmitter (UART) User Interface
	29.6.1 UART Control Register
	29.6.2 UART Mode Register
	29.6.3 UART Interrupt Enable Register
	29.6.4 UART Interrupt Disable Register
	29.6.5 UART Interrupt Mask Register
	29.6.6 UART Status Register
	29.6.7 UART Receiver Holding Register
	29.6.8 UART Transmit Holding Register
	29.6.9 UART Baud Rate Generator Register

	30. Universal Synchronous Asynchronous Receiver Transmitter (USART)
	30.1 Description
	30.2 Embedded Characteristics
	30.3 Block Diagram
	30.4 Application Block Diagram
	30.5 I/O Lines Description
	30.6 Product Dependencies
	30.6.1 I/O Lines
	30.6.2 Power Management
	30.6.3 Interrupt

	30.7 Functional Description
	30.7.1 Baud Rate Generator
	30.7.1.1 Baud Rate in Asynchronous Mode
	30.7.1.2 Fractional Baud Rate in Asynchronous Mode
	30.7.1.3 Baud Rate in Synchronous Mode or SPI Mode
	30.7.1.4 Baud Rate in ISO 7816 Mode

	30.7.2 Receiver and Transmitter Control
	30.7.3 Synchronous and Asynchronous Modes
	30.7.3.1 Transmitter Operations
	30.7.3.2 Asynchronous Receiver
	30.7.3.3 Synchronous Receiver
	30.7.3.4 Receiver Operations
	30.7.3.5 Parity
	30.7.3.6 Multidrop Mode
	30.7.3.7 Transmitter Timeguard
	30.7.3.8 Receiver Time-out
	30.7.3.9 Framing Error
	30.7.3.10 Transmit Break
	30.7.3.11 Receive Break
	30.7.3.12 Hardware Handshaking

	30.7.4 ISO7816 Mode
	30.7.4.1 ISO7816 Mode Overview
	30.7.4.2 Protocol T = 0
	30.7.4.3 Protocol T = 1

	30.7.5 IrDA Mode
	30.7.5.1 IrDA Modulation
	30.7.5.2 IrDA Baud Rate
	30.7.5.3 IrDA Demodulator

	30.7.6 RS485 Mode
	30.7.7 SPI Mode
	30.7.7.1 Modes of Operation
	30.7.7.2 Baud Rate
	30.7.7.3 Data Transfer
	30.7.7.4 Receiver and Transmitter Control
	30.7.7.5 Character Transmission
	30.7.7.6 Character Reception
	30.7.7.7 Receiver Timeout

	30.7.8 Test Modes
	30.7.8.1 Normal Mode
	30.7.8.2 Automatic Echo Mode
	30.7.8.3 Local Loopback Mode
	30.7.8.4 Remote Loopback Mode

	30.7.9 Write Protection Registers

	30.8 Universal Synchronous Asynchronous Receiver Transmitter (USART) User Interface
	30.8.1 USART Control Register
	30.8.2 USART Mode Register
	30.8.3 USART Interrupt Enable Register
	30.8.4 USART Interrupt Disable Register
	30.8.5 USART Interrupt Mask Register
	30.8.6 USART Channel Status Register
	30.8.7 USART Receive Holding Register
	30.8.8 USART Transmit Holding Register
	30.8.9 USART Baud Rate Generator Register
	30.8.10 USART Receiver Time-out Register
	30.8.11 USART Transmitter Timeguard Register
	30.8.12 USART FI DI RATIO Register
	30.8.13 USART Number of Errors Register
	30.8.14 USART IrDA FILTER Register
	30.8.15 USART Write Protect Mode Register
	30.8.16 USART Write Protect Status Register

	31. Timer Counter (TC)
	31.1 Description
	31.2 Embedded Characteristics
	31.3 Block Diagram
	31.4 Pin Name List
	31.5 Product Dependencies
	31.5.1 I/O Lines
	31.5.2 Power Management
	31.5.3 Interrupt

	31.6 Functional Description
	31.6.1 TC Description
	31.6.2 16-bit Counter
	31.6.3 Clock Selection
	31.6.4 Clock Control
	31.6.5 TC Operating Modes
	31.6.6 Trigger
	31.6.7 Capture Operating Mode
	31.6.8 Capture Registers A and B
	31.6.9 Trigger Conditions
	31.6.10 Waveform Operating Mode
	31.6.11 Waveform Selection
	31.6.11.1 WAVSEL = 00
	31.6.11.2 WAVSEL = 10
	31.6.11.3 WAVSEL = 01
	31.6.11.4 WAVSEL = 11

	31.6.12 External Event/Trigger Conditions
	31.6.13 Output Controller
	31.6.14 Quadrature Decoder Logic
	31.6.14.1 Description
	31.6.14.2 Input Pre-processing
	31.6.14.3 Direction Status and Change Detection
	31.6.14.4 Position and Rotation Measurement
	31.6.14.5 Speed Measurement

	31.6.15 2-bit Gray Up/Down Counter for Stepper Motor
	31.6.16 Write Protection System

	31.7 Timer Counter (TC) User Interface
	31.7.1 TC Block Control Register
	31.7.2 TC Block Mode Register
	31.7.3 TC Channel Control Register
	31.7.4 TC QDEC Interrupt Enable Register
	31.7.5 TC QDEC Interrupt Disable Register
	31.7.6 TC QDEC Interrupt Mask Register
	31.7.7 TC QDEC Interrupt Status Register
	31.7.8 TC Write Protect Mode Register
	31.7.9 TC Channel Mode Register: Capture Mode
	31.7.10 TC Channel Mode Register: Waveform Mode
	31.7.11 TC Stepper Motor Mode Register
	31.7.12 TC Counter Value Register
	31.7.13 TC Register A
	31.7.14 TC Register B
	31.7.15 TC Register C
	31.7.16 TC Status Register
	31.7.17 TC Interrupt Enable Register
	31.7.18 TC Interrupt Disable Register
	31.7.19 TC Interrupt Mask Register

	32. Pulse Width Modulation Controller (PWM)
	32.1 Description
	32.2 Embedded Characteristics
	32.3 Block Diagram
	32.4 I/O Lines Description
	32.5 Product Dependencies
	32.5.1 I/O Lines
	32.5.2 Power Management
	32.5.3 Interrupt Sources

	32.6 Functional Description
	32.6.1 PWM Clock Generator
	32.6.2 PWM Channel
	32.6.2.1 Block Diagram
	32.6.2.2 Waveform Properties

	32.6.3 PWM Controller Operations
	32.6.3.1 Initialization
	32.6.3.2 Source Clock Selection Criteria
	32.6.3.3 Changing the Duty Cycle or the Period
	32.6.3.4 Interrupts

	32.7 Pulse Width Modulation Controller (PWM) User Interface
	32.7.1 PWM Mode Register
	32.7.2 PWM Enable Register
	32.7.3 PWM Disable Register
	32.7.4 PWM Status Register
	32.7.5 PWM Interrupt Enable Register
	32.7.6 PWM Interrupt Disable Register
	32.7.7 PWM Interrupt Mask Register
	32.7.8 PWM Interrupt Status Register
	32.7.9 PWM Channel Mode Register
	32.7.10 PWM Channel Duty Cycle Register
	32.7.11 PWM Channel Period Register
	32.7.12 PWM Channel Counter Register
	32.7.13 PWM Channel Update Register

	33. Analog-to-digital Converter (ADC)
	33.1 Description
	33.2 Embedded Characteristics
	33.3 Block Diagram
	33.4 Signal Description
	33.5 Product Dependencies
	33.5.1 Power Management
	33.5.2 Interrupt Sources
	33.5.3 Analog Inputs
	33.5.4 I/O Lines
	33.5.5 Timer Triggers
	33.5.6 Conversion Performances

	33.6 Functional Description
	33.6.1 Analog-to-digital Conversion
	33.6.2 Conversion Reference
	33.6.3 Conversion Resolution
	33.6.4 Conversion Results
	33.6.5 Conversion Triggers
	33.6.6 Sleep Mode and Conversion Sequencer
	33.6.7 Comparison Window
	33.6.8 ADC Timings
	33.6.9 Buffer Structure
	33.6.10 Write Protection Registers

	33.7 Analog-to-Digital Converter (ADC) User Interface
	33.7.1 ADC Control Register
	33.7.2 ADC Mode Register
	33.7.3 ADC Channel Sequence 1 Register
	33.7.4 ADC Channel Sequence 2 Register
	33.7.5 ADC Channel Enable Register
	33.7.6 ADC Channel Disable Register
	33.7.7 ADC Channel Status Register
	33.7.8 ADC Last Converted Data Register
	33.7.9 ADC Interrupt Enable Register
	33.7.10 ADC Interrupt Disable Register
	33.7.11 ADC Interrupt Mask Register
	33.7.12 ADC Interrupt Status Register
	33.7.13 ADC Overrun Status Register
	33.7.14 ADC Extended Mode Register
	33.7.15 ADC Compare Window Register
	33.7.16 ADC Channel Data Register
	33.7.17 ADC Write Protect Mode Register
	33.7.18 ADC Write Protect Status Register

	34. Digital to Analog Converter Controller (DACC)
	34.1 Description
	34.2 Embedded Characteristics
	34.3 Block Diagram
	34.4 Signal Description
	34.5 Product Dependencies
	34.5.1 Power Management
	34.5.2 Interrupt Sources
	34.5.3 Conversion Performances

	34.6 Functional Description
	34.6.1 Digital-to-analog Conversion
	34.6.2 Conversion Results
	34.6.3 Conversion Triggers
	34.6.4 Conversion FIFO
	34.6.5 Conversion Width
	34.6.6 DAC Timings
	34.6.7 Write Protection Registers

	34.7 Digital-to-Analog Converter Controller (DACC) User Interface
	34.7.1 DACC Control Register
	34.7.2 DACC Mode Register
	34.7.3 DACC Conversion Data Register
	34.7.4 DACC Interrupt Enable Register
	34.7.5 DACC Interrupt Disable Register
	34.7.6 DACC Interrupt Mask Register
	34.7.7 DACC Interrupt Status Register
	34.7.8 DACC Write Protect Mode Register
	34.7.9 DACC Write Protect Status Register

	35. Electrical Characteristics
	35.1 Absolute Maximum Ratings
	35.2 DC Characteristics
	35.3 Power Consumption
	35.3.1 Backup Mode Current Consumption
	35.3.1.1 Configuration A
	35.3.1.2 Configuration B

	35.3.2 Sleep and Wait Mode Current Consumption
	35.3.2.1 Sleep Mode
	35.3.2.2 Wait Mode

	35.3.3 Active Mode Power Consumption
	35.3.3.1 Active Power Consumption with VDDCORE @ 1.8V
	35.3.3.2 Active Power Consumption with VDDCORE @ 1.62V

	35.3.4 Peripheral Power Consumption in Active Mode

	35.4 Crystal Oscillators Characteristics
	35.4.1 32 kHz RC Oscillator Characteristics
	35.4.2 4/8/12 MHz RC Oscillators Characteristics
	35.4.3 32.768 kHz Crystal Oscillator Characteristics
	35.4.4 32.768 kHz Crystal Characteristics
	35.4.5 32.768 kHz XIN32 Clock Input Characteristics in Bypass Mode
	35.4.6 3 to 20 MHz Crystal Oscillator Characteristics
	35.4.7 3 to 20 MHz Crystal Characteristics
	35.4.8 3 to 20 MHz XIN Clock Input Characteristics in Bypass Mode
	35.4.9 Crystal Oscillators Design Consideration Information
	35.4.9.1 Choosing a Crystal
	35.4.9.2 Printed Circuit Board (PCB)

	35.5 PLL Characteristics
	35.6 10-Bit ADC Characteristics
	35.6.0.3 Track and Hold Time versus Source Output Impedance
	35.6.0.4 ADC Application Information

	35.7 10-Bit DAC Characteristics
	35.8 AC Characteristics
	35.8.1 Master Clock Characteristics
	35.8.2 I/O Characteristics
	35.8.3 SPI Characteristics
	35.8.3.1 Maximum SPI Frequency
	35.8.3.2 SPI Timings

	35.8.4 USART in SPI Mode Timings
	35.8.5 Two-wire Serial Interface Characteristics
	35.8.6 Embedded Flash Characteristics

	36. Mechanical Characteristics
	36.1 Soldering Profile
	36.2 Packaging Resources

	37. Ordering Information
	38. SAM3N Series Errata
	38.1 Marking
	38.2 SAM3N4/2/1 Errata - Rev. A Parts
	38.3 Flash Memory
	38.3.1 Flash: Flash Programming
	38.3.2 Flash: Fetching Error after Reading the Unique Identifier

	38.4 SAM3N1 Errata - Rev. B Parts / SAM3N0/00 -Rev. A Parts
	38.4.1 Flash: Fetching Error after Reading the Unique Identifier

	Revision History
	Table of Contents

