
p1 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

expandIO-USB
TM

Driver-free USB I/O expander for software-controlled peripherals

Summary

expandIO-USB is an ultra-low cost USB I/O expander.
It allows a PIC microcontroller to be remotely controlled
via USB, significantly reducing time-to-market for simple
USB-based products.

expandIO-USB provides control of most microcontroller
functions and is available for PIC18F14K50, LF2455,
and LF4455 microcontrollers.

expandIO-USB uses the Human Interface Device (HID)
USB profile. It does not require USB drivers and so is
immediately plug-and-play compatible with present and
future Windows, Linux and Mac operating systems.

expandIO-USB is supplied as HexWax firmware, or pre-
programmed and pre-configured microcontroller is larger
volumes.

USB Features

 True HID plug and play - No drivers required

 Ultra-low cost, single chip solution

 Low speed version can use a low cost resonator,
200 commands per second

 Full speed version can process up to 32K
commands per second

 Product name, manufacturer name, serial
number, GUID & 122-byte EEPROM configurable
over USB

 No Vendor ID / Product ID registration required

 USB 2.0 compatible

 USB / Self Power inputs

 Optional Configured, Suspended and All-
Systems-Go, Tx / Rx indications

 DIL, SSOP, TSSOP and QFP packages

Peripheral Features

Table 1. Peripheral feature matrix
Base PIC18F
Microcontroller

14K50 2455 4455

I/O pins 12 21 32
Interrupt on edge 3 3 3
Interrupt on change 0 4 4
Count / Compare /
Pulse Width Modul’n

1 2 2

UART (not buffered) 1 1 1
SPI/I2C (as master) 1 1 1
UNI/O (as master) 12 21 32
Comparators 2 0 2
10-bit A to D 9 10 13
Timer 8-bit 1 1 1
Timer 16-bit 3 2 3
Product ID, low speed
(hex)

0120 0129 012A

Product ID, full speed
(hex)

012D 0132 0133

Available packages
DIL,

SSOP
DIL,SOIC DIL,TQFP

Figure 1: How
expandIO-USB

works

expandIO-USB
Crystal /

Resonator
USB Status
Indicators

PC

.

..

Commands
sent by USB

I/O under PC control
No microcontroller

programming required
A/D-I/O-SPI-I2C-UNI/O

I/O Expander Command Set

 Set/Get register byte/bit

 Set/Get digital I/O port/bit

 Get analog input

 Interrupt Event

 Matrix Scan (for matrix keyboards)

 SPI / I2C / UNI/O synchronous serial master

 Multiplex Output (for LED displays)

 Stream Data

 Wait

Applications

 PC peripheral control

 Embedded system peripheral control

 Rapid development of USB products

 PLCs for testing and automation

Firmware Factory USB Product Family

 USB-232 asynchronous serial interface

 TEAleaf-USB security and authentication dongle

 expandIO-USB I/O expander

 USB-SPI synchronous serial slave interface

 USB-I2C synchronous serial slave interface

 USB-DAQ data logger

 USB-FileSys USB embedded file system

Firmware Factory Ltd
2 Marshall St, 3rd Floor
London W1F 9BB, UK
sales@firmwarefactory.com
support@firmwarefactory.com

p2 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

Electrical Specifications
Table 2. Electrical Specifications

Operating voltage Vdd, 18LFx45x 2.7V – 5.5V
Operating voltage Vdd, 18F14K50 1.8V – 5.5V
Typical/max supply current, Vdd = 5.0 10mA / 21mA
Typical/max Sleep current, Vdd = 5.0 0.1μA / 2μA
Operating Temperature -40°C to +85°C
Refer to base microcontroller data sheet for further information

Part Numbering

expandIO-USB parts are numbered as follows:

expandIO-USB-XX-YY-ZZ

where XX is FS for full speed, LS for low speed; YY is
DIL for dual-in-line, PT for TQFP, or SS for SSOP; ZZ is
20, 28, 40 or 44 according to the number of pins. If XX
is not specified, FS should be assumed. ZZ is only
given only for DIL packages.

The following parts are widely stocked by distributors:

expandIO-USB-FS-DIL-28
expandIO-USB-PT-FS

expandIO-USB-SS

Contact us for information about availability of other
parts.

Basic Operation

To the PC (‘host’), expandIO-USB looks like a Human
Interface Device (HID) with which it may exchange
information using simple commands.

Commands are provided to control most of the I/O and
peripherals of the microcontroller, allowing all product
development to take place in the PC software
application. No microcontroller firmware development is
required.

expandIO-USB is available as a full speed device, which
can process up to 32K commands per second, or as a
low speed device which can process up to 200
commands per second.

Pin Functions

Dedicated pin functions are shown in table 3. Note that
some output pins are in a tri-state condition until ~20μs
after power-on. Pin-outs for the different packages are
shown in Appendix II.

Table 3. Dedicated pin functions

Name Description

NMCLR
Vpp

Reset (active low)
TEAclipper Vpp

Vusb USB supply filter
D- USB data -

PGC TEAclipper PGC
D+ USB data+

PGD TEAclipper PGD
Vss Power ground reference
Vdd Power positive input

OSC1 Oscillator output
OSC2 Oscillator input

These pin functions, and optional USB status indicator
pins, are described in detail below:

Vss, Vdd, Vusb

Vss is the power supply ground reference. Vdd and
Vusb should be connected to a regulated supply, for
example regulated from the USB bus power.

OSC1, OSC2

OSC1 and OSC2 should be connected to a 12MHz
parallel cut crystal circuit with 22pF capacitors. It may
be replaced with a 12MHz resonator with 0.25% total
tolerance. In low speed devices, it may be replaced with
a 12MHz resonator with 1.5% total tolerance, e.g.
Murata 81-CSTCE12M0G55-R0.

Vpp, PGC, PCD

TEAclipper programming pins. Refer to the Delivery
and Programming section for details. Note that the Vpp
pin may be subject to voltages as high as 12V during
programming.

Reset

This pin should normally be pulled high via a 22k
resistor. It may be pulled low to reset the device.

Tx Indication

Output for connecting to a transmit indication LED. It
turns on for approximately 100ms when data has been
transmitted to the host. This setting is available as
active high or low on any I/O pin.

Rx Indication

Optional output for connecting to a receive indication
LED. It turns on for approximately 100ms when data
has been received from the host. This setting is
available as active high or low on any I/O pin.

Tx / Rx Indication

Optional output for connecting to a transmit / receive
indication LED. It turns on for approximately 100ms
when data has been transmitted to or received from the
host. This setting is available as active high or low on
any I/O pin.

Configured Indication

Optional output that indicates when the USB interface
has completed configuration and the host has indicated
that the device may draw its full power setting. Prior to
configuration completing, the device should draw no
more than 100mA from the bus. Note that the
configured indication continues to stay high when in
suspend mode, even though the device must consume
no more than 100μA during suspend. This setting is
available as active high or low on any I/O pin.

Suspend Indication

Optional output that indicates when the host is entering
a sleep state (active low). In this state, the device
should draw no more than 100μA from the bus,
excluding the consumption of the expandIO-USB chip.
This setting is available as active high or low on any I/O
pin.

p3 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

All-Systems-Go Indication

Optional output that indicates when the expandIO-USB
is configured and not suspended, and full power may be
drawn.

General I/O pins

Any pin not configured as detailed above may be used
as a general I/O pin and manipulated using commands.
All such pins initialize as digital inputs. Refer to the
base controller data sheets for electrical specifications
of these pins.

Device Fuses

Fuses are non-volatile settings you may select to
customize your device. For information on how to
modify them, refer to the device configuration section.

USB Status Indicators

Each pin that can take a USB-status indication function
has a fuse to specify whether the port serves this
function, or is available as general I/O.

Write Lock

Once the write lock bit is set, all commands which
change the device strings and fuses will have no effect.
Unless otherwise configured, the default is unlocked.

Power Setting

The device can be configured to draw a maximum of up
to 500mA. If more than 100mA is specified, the Host
Ready and All Systems Go indicators will only assert if
the host has the full requested power available.

Custom VID / PID

Personalized Vendor and Product IDs are not required.
However, you may customize them if you wish. Unless
otherwise configured, the default IDs are given in table 1.

Device Strings

Device strings are non-volatile Unicode strings stored by
the expandIO-USB and which may be read by the host
PC and all its applications. For information on how to
modify them, refer to the customization section.

Product Name

The manufacturer name is a Unicode string of up to 61
characters plus zero terminator. The host application
can read this data using a Get Feature request for string
1. The host PC commonly displays this string while it is
installing the default HID driver when it is first inserted.
Unless otherwise configured, the default value is
“expandIO-USB”.

Manufacturer Name

The manufacturer name is a Unicode string of up to 61
characters plus zero terminator. The host application
can read this data using a Get Feature request for string
2. The host PC commonly displays this string while it is
installing the default HID driver when it is first inserted.
Unless otherwise configured, the default value is
“Firmware Factory Ltd”.

Serial Number

The Serial Number data is a Unicode string of up to 61
characters plus zero terminator. The host application
can read this data using a Get Feature request for string
3. The Serial Number is a unique string which you can
use to differentiate one physical device from other
devices with the same expandIO-USB Vendor ID /
Product ID / Product GUID combination. Unless
otherwise configured, the default value is a unique value.

Product GUID

The product GUID is a Unicode string of up to 61
characters plus zero terminator. The host application
can read this data using a Get Feature request for string
4. The product GUID is a string which you can use to
differentiate a product from other devices with the
expandIO-USB Vendor ID / Product ID combination. It
should be the same for all products of the same type.
Unless otherwise configured, the default value is “No
GUID”.

Config (EEPROM) String

The configuration data is a Unicode string of up to 61
characters plus zero terminator (i.e. 122 bytes). You
can use it as you wish to store configuration data on the
product which the host software can access. The host
application can read this data using a Get Feature
request for string 5. Unless otherwise configured, the
default value is “No Config”.

Application Circuits

The following circuits are typical implementations of the
expandIO-USB. Suggested component values are
shown in table 4.

Table 4. Suggested component values
Label Component
R1, R2 22k resistor

R6 1k resistor
R2x 470Ω resistor
T1 P-channel Mosfet, e.g. NDS352P

LED1x Light emitting diode
C1 10μF capacitor

C2, C3 22pF capacitor
C4, C6, C7 100nF capacitor

C8 470nF capacitor
X1 12MHz parallel cut crystal

Figure 2 is the suggested circuit for expandIO-USB.

p4 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

R
es

et
#

P
G

D

V
d

d

V
ss

TEAclipper
connector 1 5

OSC1

OSC2

D+

Vusb

Figure 2

expandIO-USB

USB

C2

C3

X1

2 3 4

Vdd Vss

P
G

C 1

2

3

4Vss

D-

Vss

C1C6C7

V
ss

C8

Suspend

AllSysGo

Vdd

Vss

Configured

Tx / Rx Ind
Tx Ind
Rx Ind

Vdd

R2

One LED circuit
for each indicator

(Active low shown)

General purpose I/O

R2x

Oscillator X1/C2/C3 may be replaced by a low-cost
resonator, provided its frequency tolerance is greater
than 0.25% (full speed devices) or 1.5% (low speed
devices). C1 and C6 should be placed close to the USB
connector. Capacitor(s) C7 should be placed near the
Vss and Vdd pin(s) of the expandIO-USB and are only
required if they would be some distance from C6. C8 is
a filter capacitor for an internal regulator and is required.

The TEAclipper connector is for in-circuit programming
of devices where the firmware has been purchased from
HexWax. It is strongly recommended to allow firmware
updates, even if the firmware is supplied pre-
programmed.

Power Take-Off

A device should only draw current from the USB line
once USB configuration is complete and the host PC is
not is sleep mode. The AllSysGo output (configured
active low) can provide such a switch using the sub-
circuit shown in figure 3. C4 / R6 provide a slow switch-
on to prevent inrush current exceeding USB power
limitations. 1μF and 100nF smoothing capacitors are
recommended on both sides of T1.

AllSysGo

Vdd Vout
T1

R1

R6
C4

Figure 3

Power considerations

If the device is electromagnetically noisy, a ferrite bead
is recommended on the USB Vdd supply in order to
suppress any transmission of noise to the rest of the
USB network.

Design note AN1149 from Microchip Technology, in the
development kit, discusses designs for recharging
batteries using USB bus power.

USB Connectors

Common USB connector and cable configurations are
shown in figure 4 and table 5. The shield on the

connector should be left unconnected. The ID pin on
the mini connector permits the distinction of A and B
plugs. The micro connector pin-out is the same as the
mini connector.

Figure 4 Common USB pin-outs for male connectors

Table 5. USB Connection Key
Pin

Std Mini
Name Cable

color
Description

1 1 Vcc Red +5V (can dip to 4.08V)
2 2 D– White Data –
3 3 D+ Green Data +

– 4 ID –
Type A: Connect to ground
Type B: Not connected

4 5 Gnd Black Signal ground

For ultra-low cost products, it is possible to form a USB
Type-A plug direct from a circuit board as shown in
figure 5. This connector is only suitable for a number of
insertions (~50 before cleaning is required). It is
unshielded and recommended only for ‘dongle’ type
products with no cables attached.

For further dimensional information, refer to figure 6-7 of
the USB 2.0 Specification, in the development kit.

Figure 5

4. Vss

11.75

1.00-2.00

1.00

1.00

0.50

3.00

12.00

Shoulder required to prevent over-insertion
Overall PCB width 16.00 or less

Contacts plated with hard
gold flash (0.25-1.27µm)
over nickel (2.6-5.0µm)

Overall PCB thickness
including tracks 2.00 - 2.20

3. D+

2. D-

1. Vdd

2.25
1.25

Dimensions in mm

Host-Side Interfacing

expandIO-USB uses the Human Interface Device (HID)
USB interface. It has the advantages that no device
drivers are required, and that a host application can
easily locate the expandIO-USB.

On full speed devices, all exchanges of data (‘reports’)
between the host and the expandIO-USB are 64 bytes
in length. In HID terms, all transfers are 1ms interrupt
reports of 64 bytes, to and from output ID 0 on EP1.

On low speed devices, all exchanges of data (‘reports’)
between the host and the expandIO-USB are 8 bytes in
length. In HID terms, all transfers are 10ms interrupt
reports of 8 bytes, to and from output ID 0 on EP1.

The host software has two perform two tasks. First it
has to locate the device. Then it has to communicate
with it. To locate the device, enumerate all devices with
Vendor ID 0x0B40 and Product ID (shown in table 1).
Then use a Get Feature request for the string 4, the

p5 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

Product GUID. If this matches the product GUID you
configured for the device, you have located it.

Once you have located the device, you need to open a
file to communicate with it. You can then send data and
receive data as 64-byte / 8-byte reports as appropriate.

Sample source code for Windows and a Windows
dynamic link library (DLL) are provided in the
development kit. For a detailed description, please refer
to the comments embedded in the source code and the
Visual Basic example in the Excel spreadsheet. Sample
source code for Mac OS and Linux is in preparation.

Commands

Commands are sent from the host and responses are
received from expandIO in the form of HID reports. With
the exception of the EXESPI, EXEI2C and EXEUNIO
commands, all commands and responses are 4 bytes
long. Full speed device reports contain 16 commands /
responses each. Low speed device reports contain 2
commands / responses each. If fewer commands are
sent in a report, the remainder of the report should be
padded out with nulls. Commands are processed in
order.

The first byte of a command (byte 0, the leftmost byte in
the examples below) is termed the identifier, and
indicates the type of command. The remaining three
bytes (bytes 1, 2 and 3) are termed the payload.

The EXESPI, EXEI2C and EXEUNIO commands are
slightly different. They may be longer than 4 bytes if
they are the first and only command in the report.

The response to a command will have the same
identifier as the command, (unless an error occurred).
Some events can also generate unprompted responses
at any time.

The response from expandIO-USB is buffered in the
same memory as the incoming commands. Provided no
unprompted responses are sent (e.g. from interrupts),
any unused bytes in the response packet will be
identical to the same byte location in the corresponding
command. This feature may be employed to append
information to allow commands and responses to be
matched.

Note: Accidentally sending a command in the range
0x80-0x8F can modify settings that may permanently
disable the device. During product development, it is
recommended that you work with a device that has been
write locked using HIDconfig.exe. Devices intended for
production should always be write locked.

Null

The identifier NULL (0x00) has no effect. The payload
bytes are ignored.

Example:

00 00 00 00 Null Command

 00 00 00 00 Null Response

Error

The identifier ERROR (0xFF) reports that a command
could not be processed because it had no meaning.

Bytes 1, 2 and 3 will be bytes 0, 1 and 2 of the original
command, respectively

Example:

12 34 56 78 Meaningless command

 FF 12 34 56 Error Response

Get Register

The identifier GETREG (0x98) retrieves value of a
microcontroller register. Byte 1 specifies the register as
detailed in appendix I. The response is the same as the
command, except the register value is given in byte 2.

Directly accessing registers requires in-depth knowledge
of the base microcontroller, but it provides greater
flexibility that the other commands. Refer to the base
microcontroller data sheet for details.

Example:

98 CC 00 00 Command – Get TMR2 register

 98 CC 5A 00 Response – Value is 0x5A

Set Register

The identifier SETREG (0x99) sets the value of a
microcontroller register. Byte 1 specifies the register as
detailed in appendix I. Byte 2 specifies the new value.
The response is the same as the command.

Directly accessing registers requires in-depth knowledge
of the base microcontroller, but it provides greater
flexibility that the other commands. Refer to the base
microcontroller data sheet for details.

Example:

99 CC 5A 00 Command – Set TMR2 reg to 0x5A

 99 CC 05 00 Response – Value set

Get Register Bit

The identifier GETBIT (0x9A) retrieves a single bit from
a microcontroller register. Byte 1 indicates the register
as detailed in appendix I and byte 2 indicates the bit (0-
7). In the response, byte 3 is 0 for clear and 1 for set.

Directly accessing registers requires in-depth knowledge
of the base microcontroller, but it provides greater
flexibility that the other commands. Refer to the base
microcontroller data sheet for details.

Example:

9A F0 06 00 Command – Get INTCON3 bit 6

 9A F0 06 01 Response – Value is 0x01

Set Register Bit

The identifier SETBIT (0x9B) sets or clears a single bit
of a microcontroller register. Byte 1 indicates the
register as detailed in appendix I and byte 2 indicates
the bit (0-7). Byte 3 is 0 for clear and 1 for set. The
response is the same as the command.

Directly accessing registers requires in-depth knowledge
of the base microcontroller, but it provides greater
flexibility that the other commands. Refer to the base
microcontroller data sheet for details.

9B F0 06 01 Command – Set INTCON3 bit 6 to 1

p6 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

 9B F0 06 01 Response – Bit set

Get Port

The identifier GETPORT (0x9C) retrieves value of a port.
Byte 1 indicates the port (A=1, B=2…). Byte 3 specifies
which bits should be set as outputs (‘0’) and which bits
should be set as inputs (‘1’). The response is the same
as the command, except the port value is given in byte 2.

Example:

9C 02 00 FF Command – Get Port B, all inputs

 9C 02 54 FF Response – Value is 0x54

Set Port

The identifier SETPORT (0x9D) sets the value of a port
output latch. Byte 1 indicates the port (A=1, B=2…).
Byte 2 specifies the new value. Byte 3 specifies which
bits should be set as outputs (‘0’) and which bits should
be set as inputs (‘1’). The response is the same as the
command.

Example:

9D 02 54 00 Command – Set Port B to 0x54
all outputs

 9D 02 54 00 Response – Value set

Get Port Bit

The identifier GETPORTBIT (0x9E) retrieves a single bit
from a port. Byte 1 indicates the port (A=1, B=2…) and
byte 2 indicates the bit (0-7). Byte 3 is 0 if the bit should
be configured as an output and 1 if it should be
configured as an input. In the response, byte 3 is 0 for
clear and 1 for set.

Example:

9E 02 03 01 Command – Get Port input bit B3

 9E 02 03 01 Response – Value is 0x01

Set Port Bit

The identifier SETPORTBIT (0x9F) sets or clears a
single bit of a port output latch. Byte 1 indicates the port
(A=1, B=2…) and byte 2 indicates the bit (0-7). Byte 3
bit 0 is 0 for clear and 1 for set. Byte 3 bit 1 is 0 if the bit
should be configured as an output and 1 if it should be
configured as an input. The response is the same as
the command.

9F 02 03 01 Command – Set Port bit B3 to output
0x01

 9F 02 03 01 Response – Bit set

Get Analog

The identifier GETANALOG (0x96) retrieves the voltage
of an analog pin. Byte 1 bits 0-3 indicate which analog
pin (AN0 = 0, etc). Byte 1 bit 4 is 1 if AN3 should be
used as a positive voltage reference (Vref+), or Vdd /
AVdd otherwise. Byte 1 bit 5 is 1 if AN2 should be used
as a negative voltage reference (Vref-) or Vss / AVss
otherwise. In the response the analog value is in bytes
2 (MSB) and 3 (LSB). The value ranges from 0x000
(Vss / AVss / Vref-) to 0x3FF (Vdd / AVdd / Vref+).

While making the analog measurement on an analog pin,
any analog pins with index lower than the pin being
measured will temporarily enter a high-impedance state.

Example:

96 16 00 00 Command: Get AN6 using Vref+

 96 16 02 36 Response: V = Vref+ * (0x236/0x3FF)

SetSerial

(18F2450, 18F4450 support UNI/O only, not SPI / I2C.)

The identifier SETSERIAL (0x93) initializes the
synchronous serial SPI/I2C port or, from rev 0008, a
UNI/O bus.

Only one of SPI port or one I2C port can be configured.
The MSSP resource is used.

In the equations below Fo = 24MHz for expandIO-USB
and 48MHz for USB-XP.

SPI: If byte 1, bits 1 and 0 are 00, the MSSP port is
configured for SPI operation. The SDO pin shown in the
pin diagrams becomes the master output (MOSI), SDI
pin becomes the master input (MISO), and SCLK
becomes the synchronous clock. Slave select lines
must be implemented separately using Set Port Bit
commands. Any slave select lines must be
implemented separately using the Set Port Bit command.

The data bytes are defined as follows:

Byte 1 specifies the settings for the SSPSTAT register
as follows:

Bit 7: Sample data at end (1) or middle (0) of the
clock cycle.

Bit 6: Transmit on active to idle (1) or idle to active
(0) clock transition (‘CKE’)

Other bits: Must be set to zero

Byte 2 specifies the settings for the SSPCON1 register
as follows:

Bit 5: Enable (1) or disable (0) SPI port.

Bit 4: Clock polarity: idle state is at high (1) or low
(0) level (‘CKP’)

Bits 1, 0: Clock speed is TMR22 (11), Fo64 (10),
Fo16 (01) or Fo4 (00).

Other bits: Must be set to zero

Examples:

93 80 30 Init fast Mode A (CPOL=1, CPHA = 1)

93 80 20 Init fast Mode B (CPOL=0, CPHA = 1)

93 C0 30 Init fast Mode C (CPOL=1, CPHA = 0)

93 C0 20 Init fast Mode D (CPOL=0, CPHA = 0)

In all cases the response is a repeat of the command.

UNI/O: (From rev 8) If byte 1, bits 1 and 0 are 10, the
port is configured for UNI/O operation.

Byte 2 indicates the desired bus frequency as specified
as follows:

(Bus Freq) = 3 / 2 / (Byte2)

p7 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

i.e.

(Byte2) = 3 / 2 / (Bus Freq)

The lowest permitted value is 0x0F, giving a maximum
bus frequency of 93.75kHz for expandIO-USB and
125kHz for USB-XP.

Byte 3 bits 7-4 indicate the port (A=0001, B=0010…)
and byte 2 bits 2-0 indicate the bit (0-7) to be used as
the SCIO pin.

Multiple UNI/O buses can be implemented on separate
I/O buses. This is useful for avoiding address conflicts,
is subject to the restriction that the frequency of all
buses will be equal to that specified by the most recent
Set Serial command. The TMR1 and CCP1 resources
are used.

I2C: If byte 1 bit 0 is one, the MSSP port is configured
for I2C operation. The SCL pin in the pin diagrams
becomes the master clock and the SDA pin becomes
the bidirectional data line. Both should be pulled up by
4k7 resistors to Vdd.

Byte 1 bit 1 specifies whether the slew rate control is
disabled (1, for 100kHz and 1MHz operation) or enabled
(0, for 400kHz operation).

Byte 2 specifies the clock baud rate, as given by the
following formula:

FO/(4 * (Byte2 + 1))

Example using expandIO-USB:

93 01 3B 00 Command: I2C on, no slew, 100kHz

 93 01 3B 00 Response: OK

Execute SPI

The identifier EXESPI (0xAF) cycles data through the
SPI port. In the command, byte 1 is the number of bytes
to be exchanged and bytes 2 onwards are the data to
send to the slave device. In the response, byte 1 is the
number of bytes that were exchanged and bytes 2
onwards are the data received from the slave device.

The EXESPI command and response are not limited to
4 bytes in length. They may use as many bytes in the
report as required. If the total length of the command is
greater than 4 bytes, they must be the first and only
command/response in the report.

Example:

AF 03 45 67 00 Command: Send 45 67 00 to slave

 AF 03 00 00 89 Response: Slave sent 00 00 89

(From rev 0009 only.) If byte 1 bit 7 is set, two bytes are
appended to the end of the command. These are
appended to the end of the response, allowing the PC to
easily match command / response pairs.

Execute UNI/O

(From revision 0008 only.)

The identifier EXEUNIO (0xB0) engages in UNI/O
communication with a slave device connected to the
SCIO pin indicated by byte 1. (Bits 7-4 indicate the port
(A=0001, B=0010…) and bits 2-0 indicate the bit (0-7) to

be used as the SCIO pin. The other bits should be set
to zero.) ‘Hold mode’ is not required of slave devices.

Bytes 2 and 3 are the slave device address. For 8-bit
addresses, byte 2 should be zero and byte 3 should be
the entire slave address. For 12-bit addresses, byte 2
bits 0:3 should be the device high address (i.e. device
family), byte 2 bits 4..7 should all be set to ‘1’, and byte
3 should be the device code.

If byte 5 bit 7 is set, no UNI/O command is sent and only
a device poll is performed. If byte 5 bit 7 is clear, Byte 4
is the UNI/O command.

Byte 5 bits 5-0 are the number of bytes to write
immediately after the UNI/O command. The actual data
bytes are given in bytes 7 onwards. Byte 5 bit 6 is 1 if a
600μs standby pulse is not required prior to sending the
UNI/O command. This bit should only be set if this
command immediately follows another to be transmitted
to the same device.

Byte 6 bits 5-0 are the number of bytes to read after the
data bytes have been written. If byte 6 bit 7 is non-zero,
the device will enter a 250-bus-clock-cycle device hold
state prior to all Master Acknowledge bits, e.g. approx
25ms for 10kHz clock.

In the response, byte 1 is a status value as shown in
table 6, and bytes 2 onwards are the data received from
the slave device. expandIO-USB will acknowledge all
but the last data byte received.

Interrupts are disabled during the execution of
EXEUNIO commands. If byte 6 bit 6 is non-zero then all
interrupt-on-change flags (INTxIF / RBIF / RABIF) flags
are cleared immediately prior to re-enabling interrupts,
and the SCIO line operates as an input when
transmission of the command is complete.

In order to accommodate interrupt pulses the master will
always ensure the SCIO line has been high for at least
600μs before starting transmission, and the initial pulse
of the start header THDR will be a minimum of15μs. If
byte 1 bit 3 is non-zero, the start header initial pulse is
extended to 100ms.

Slaves generate interrupts by pulsing SCIO low. To
detect these interrupt pulses:

1. Select an SCIO I/O pin that has interrupt capability.

2. Ensure SCIO has a weak pull-up resistor (e.g. 22k).

3. Ensure byte 6 bit 6 was set in the preceding
EXEUNIO command

4. Clear the interrupt flag and enable the interrupt.

5. When an INTERRUPT (0x95) message is received,
poll all devices that could have generated the
interrupt to identify which device generated the
interrupt.

6. Repeat from step 2.

Table 6. UNI/O status values
Value Meaning

00 Success
03 No slave acknowledge received

p8 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

The EXEUNIO command and response are not limited
to 4 bytes in length. They may use as many bytes in the
report as required. They must be the first and only
command/response in the report.

General example:

B0 15 00 A0 01 02 02 94 64

Command: Send command 01 and then

bytes 94 64 to 8-bit slave A0 on SCIO

pin RA5, then read two bytes

 B0 00 12 34 Response: Success, read 12 34

UNI/O serial memory examples:

B0 15 00 A0 96 00 00

Write enable command.

 B0 00 Response: Success

B0 15 00 A0 6C 04 00 00 00 56 78

Write 12 34 to address 00 00

 B0 00 Response: Success

B0 15 00 A0 03 02 02 00 00

Read address 00 00, 2 bytes

 B0 56 78 Response: Success, read 56 78

HexWax has developed a multicast extension to the
UNI/O protocol that allows the same message to be sent
to several devices at once, provided the slaves do not
respond. For this reason, expandIO-USB will send the
entire UNI/O command, even if no slave acknowledges.

(From rev 0009 only.) If byte 1 bit 7 is set, two bytes are
appended to the end of the command. These are
appended to the end of the response, allowing the PC to
easily match command / response pairs.

Execute I2C

(Not implemented in 18F2450, 18F4450.)

The identifier EXEI2C (0xA0) engages in I2C
communication with a slave device connected to SCL /
SDA. In the command, byte 1 is 00 for a standard write
operation, 01 for a standard read operation and, from
rev 0006, 02 for a register read operation. Other values
are reserved. Byte 2 is the slave address, which will
usually have bit 0 clear for write operations and set for
read operations.

In a standard write operation, byte 3 is number of bytes
to be sent and bytes 4 onwards are the data to send to
the slave device. In the response, byte 1 is a status
value as shown in table 7. A standard write consists of
a start condition, transmission of the slave address
followed by the data, then a stop condition. All bytes
transmitted should be acknowledged by the slave.

In a standard read operation, byte 3 is number of bytes
to be read. In the response, byte 1 is a status value as
shown in table 7, and bytes 2 onwards are the data
received from the slave device. A standard read
consists of a start condition, transmission of the slave
address followed by reception of the data from the slave,
then a stop condition. expandIO-USB will acknowledge
all but the last data bytes received.

(From rev 0006 only.) In a register read operation, the
write address is sent and then one or more bytes are
written; a restart condition then follows, followed by the
slave read address; finally one or more bytes are read.
Byte 2 is the write address. Byte 3 is number of bytes to
be sent and byte 4 is the number of bytes to then be
read. Bytes 5 onwards are the data to write to the slave
device. In the response, byte 1 is a status value as
shown in table 7, and bytes 2 onwards are the data
received from the slave device. A register read consists
of a start condition, transmission of the slave address
followed by the write data, then reception of the data
from the slave, then a stop condition. expandIO-USB
will acknowledge all but the last data bytes received.

Table 7. I2C status values
Value Meaning

00 Success
01 Bus collision occurred
02 Write collision occurred
03 No acknowledge received

Many variations on standard I2C communication exist.
Contact us if standard write and read operations are not
sufficient for your needs.

The EXEI2C command and response are not limited to
4 bytes in length. They may use as many bytes in the
report as required. They must be the first and only
command/response in the report.

Examples:

A0 00 A2 02 00 00

 Command: Write 00 00 to slave A2

 A0 00 Response: Success

A0 01 A3 02 Command: Read 2 bytes from slave A3

 A0 00 12 34 Response: Success, data is 12 34

A0 02 A2 01 02 55

Command: Write byte ‘55’ to slave A3
then read 2 bytes

 A0 00 12 34 Response: Success, data is 12 34

(From rev 0009 only.) If byte 1 bit 7 is set, two bytes are
appended to the end of the command. These are
appended to the end of the response, allowing the PC to
easily match command / response pairs.

Interrupt Event

The identifier INTERRUPT (0x95) reports an interrupt
event. It has no payload and is sent unprompted when
one or more interrupt events have occurred.

Interrupts occur when an interrupt is enabled (xxxIE = 1)
and flagged (xxxIF = 1). In this event, expandIO-USB
disables the interrupt (xxxIE = 0) and generates an
INTERRUPT report. It is the responsibility of the host
application to determine the cause of the interrupt by
inspecting the interrupt flags, clearing the flag and re-
setting the interrupt enable bit.

To set up an interrupt, clear the interrupt flag and set the
interrupt enable using the Set Register Bit commands.

p9 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

The interrupts should be configured as high priority, as
they are by default.

Example using interrupt-on-change:

98 81 00 00 Command: Read Port B (Clears any
mismatch condition – refer to base
microcontroller data sheet)

 98 81 3F 00 Response: Port B is 0x3F

9B F2 00 00 Command: Clear RBIF

 9B F2 00 00 Response: Cleared RBIF

9B F2 03 01 Command: Set RBIE

 9B F2 03 01 Response: Set RBIE

 95 00 00 00 Response – An interrupt occurred

9B F2 00 00 Command: Clear RBIF

 9B F2 00 00 Response: Cleared RBIF

9B F2 03 01 Command: Re-Set RBIE

 9B F2 03 01 Response: Re-Set RBIE

 95 00 00 00 Response – An interrupt occurred

Wait

The identifier WAIT (0xA9) waits until a register bit
changes or a timeout occurs. Byte 1 indicates the
register and byte 2 bits 0-2 indicates the bit (0-7). Byte
2 bit 7 is 0 for wait until clear or 1 for wait until set. Byte
3 is the timeout in milliseconds. Actual timeout might
take slightly more time than specified, but never less.

In the response, byte 3 will be the number of
milliseconds remaining before the timeout would have
occurred, or 0 if it did occur. The timeout is required, as
USB commands are not processed during wait periods.

Example:

A9 81 83 FF Command – wait for Port B bit 3 to set
or 255ms to elapse

 A9 81 83 00 Response – timed out

Matrix Scan

The identifier SCANMATRIX (0xAA) configures a
keyboard matrix scan on two ports. Byte 1 bits 4-7
indicates the scan port and byte 1 bits 0-3 indicate the
data port (Disable=0000, A=0001, B=0010… for both).
Byte 2 is a mask which indicates which bits to enable on
the scan port. Byte 3 is a mask which indicates which
bits to enable on the data port. Only one scan operation
be in progress at any one time.

Once this command is sent, all enabled pins on the first
port are tri-stated. When expandIO-USB is idle, it will
scan these outputs by setting them one by one to a high
output state and observing the state of the input port. If
the state of the input port (for a given scan line on the
output port) has changed since the last scan, a
SCANMATRIX response will be generated unprompted.
Byte 1 will indicate the output port bit and byte 2 will
indicate the input port value.

AA 23 07 FF Command – Set Port B bits 0-3 out,
all of Port C in

 AA 23 07 FF Response – Confirm command

 AA 03 7B 00 Response – Port C changed to 7B
when Port B bit 3 high

 AA 03 73 00 Response – Port C changed to 73
when Port B bit 3 high

AA 00 00 00 Command – Stop scanning

 AA 00 00 00 Response – Confirm command

A typical matrix scan circuit is shown in figure 6. If it is
necessary to correctly detect if more than one key is
pressed at a time, line isolation diodes as shown in
figure 7 will be required. To avoid the need for switch
de-bouncing, scans are only made every 25 ms.

Figure 6

Scan lines

. .

. .
. .

. .
Input
lines

22k

Vss

.

.

Figure 7

Scan lines

Input
lines

..

..
. .

. .
22k

Vss

.

.

Multiplex Output

The identifier CAMULTIPLEX (0xAB) and
CCMULTIPLEX (0xAE) configure a display multiplex on
two ports. Byte 1 bits 4-7 indicates the scan port and
byte 1 bits 0-3 indicate the data port (Disable=0000,
A=0001, B=0010… for both). Byte 2 is a mask which
indicates which bits to enable on the scan port. Byte 3
is a mask which indicates which bits to enable on the
data port.

The identifier MPXDATA (0xAC) specifies the data to
output on the data port for each scan state. Byte 1
indicates which scan bit (0-7) the data is for and byte 2
indicates the value to output on the data port when that
scan bit is active. Inactive bits on both ports are tri-state.
Byte 3 is the brightness, expressed as a duty cycle from
00 (off) to 255 (fully on). When setting brightness levels,
bear in mind that perceived brightness is logarithmic.

If the CAMULTIPLEX command is specified, the scan bit
is active high and the data bits are active low, suitable
for common anode displays. If the CCMULTIPLEX
command is specified, the scan bit is active low and the
data bits are active high, suitable for common cathode
displays. Only one multiplex operation be in progress at
any one time.

Once this command is sent, the scan port pins will be
activated for exactly equal periods (~1ms) and at the
same time the data output port will output the data
specified by the MPXDATA commands. Timer0 is used
to implement the multiplex function

AC 02 45 FF Command – When scan bit 2 high,
Output 45 on Port C’s
data pits, full brightness

p10 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

 AC 02 45 FF Response – Command acknowledge

AC 03 46 FF Command – When scan bit 3 high,
Output 46 on Port C’s
data pits, full brightness

 AC 03 46 FF Response – Command acknowledge

AC 04 47 80 Command – When scan bit 4 high,
Output 47 on Port C’s
data pits, half brightness

 AC 94 47 80 Response – Command acknowledge

AB 23 1C FF Command – Set Port B bits 2-4 scan,
Port C all bits data

 AB 08 7B 00 Response – Command acknowledge

(Scans bits 2, 3 and 4 of Port B while
 outputting 45-46-47 on Port C. Send

further MPXDATA commands
to change displayed data)

AB 00 00 00 Command – Stop scanning

 AB 00 00 00 Response – Confirm command

A typical display multiplex scan circuit is shown in figure
8. The value of the resistors on the data lines should be
selected as recommended by the display manufacturer,
bearing in mind that if there are n scan lines then each
LED will have a maximum on-time duty cycle of 1/n.

..

Figure 8

COM

Scan lines

.

Segments
a-g, DP

Data
lines

100R COM COM

Stream Data

The identifier STREAM (0xAD) repeatedly executes the
commands sent in the previous report. The stream
command must be the first command in the report.
Bytes 1 and 2 indicate repeat interval as shown in table
8. The Timer2 is used for triggering the stream. To stop
streaming, send a stream command with Byte 1 equal to
zero.

Each time the stream is triggered by the timer,
expandIO-USB sends a STREAM (0xB4) response.
Bytes 1 (MSB) and 2 (LSB) will contain a sequence
number which will increment by one each time a stream
response is sent (and rolling over from 0xFFFF to
0x0000). The requested commands will then be
executed and responses relating to those commands
will be sent.

Table 8. Stream repeat interval
Byte 1,
bits 1-0

Byte 1,
bits 6-3

Byte 2 Repeat Interval

01 x y 2·y·(x+1) / 3 μs
10 x y 8·y·(x+1) / 3 μs

Example:
Byte 1 = 01011010, Byte 2 = 11000100, low speed device
Formula is 8·y·(x+1) / 3 μs, x is 11 decimal, y is 196 decimal
Repeat interval is 6.272ms (Slowest possible is 10.88ms)

The stream rate will only be achieved if the commands
requested can be executed at the rate requested.
Otherwise, the rate will be the maximum achievable rate.

expandIO-USB will never be so busy streaming data
that it will not be able to respond to new commands.

Example:

96 16 00 00* Command – Get AN6 using Vref+

 96 16 01 23 Response: AN6 = 0x123

96 15 00 00* Command – Get AN5 using Vref+

 96 15 02 4A Response: AN5 = 0x24A

AD 5A C3 00 Command – repeat the report every
~6.27ms (see table 8)

 AD 5A C3 00 Response: Acknowledge command

 AD 00 01 00 Response: Sequence number 0x0001

 96 16 01 22 Response: AN6 = 0x122

 96 15 02 C3 Response: AN5 = 0x2C3

 AD 00 02 00 Response: Sequence number 0x0002

 96 16 01 21 Response: AN6 = 0x121

 96 15 02 C4 Response: AN5 = 0x2C4

AD 00 00 00 Command – Stop streaming

* These commands must be in the
same report.

Note: The previous report is only stored if streaming is
not in process. To change the stream commands, stop
streaming first, then send the new report to be streamed,
then start streaming again.

Get Firmware ID

The identifier GETFWID (0x94) retrieves the firmware
version number. In the response the device is in byte 1
(0x14 for 14K50, 0x25 for 2455, etc) and a version
number is in bytes 2 (MSB) and 3 (LSB).

Example:

94 00 00 00 Command – Get Firmware ID

 94 14 00 01 Response – 14K50 v0001

Customization

The product can be customized in one of three ways:

1. Using the HIDconfig.exe application (figure 9)
in the development kit. This application makes
it very easy to copy the configuration from an
existing product to a new product and is
suitable for in-factory use. (It cannot be used if
you change the Vendor ID and / Product ID.)

2. By requesting the custom settings to be
supplied pre-programmed when buying pre-
programmed chips (5K units minimum).

3. Using customization commands.
Documentation on these commands is
available on request.

p11 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

Figure 9. HIDconfig.exe application

Delivery and Programming

In high volumes (5K+), expandIO-USB is available
reeled with your custom settings preloaded. The
devices listed in table 9 are commonly stocked by
distributors.

Table 9. Commonly stocked part numbers
Part number MCU USB Speed Package
USB-expandIO-DIL 18LF2455 Full DIL-28
USB-expandIO-PT 18LF4455 Full TQFP-44
USB-expandIO-SS 18F14K50 Full SSOP-20

USB-expandIO-SS may be supplied with an ID label, or
it may be identified with a red mark on the package.

Programming expandIO-USB

expandIO-USB may be programmed in-circuit provided
the programming signals PGC, PGD and Vpp are
protected against contention. In particular, note that the
Vpp line is subject to a voltage of up to 13V during
programming. Nothing else should be connected to this
input except via a 22k pull-up resistor.

Since the programming time is fast, no programming
socket is required for the TEAclipper. It may be leaned
against five plate-through holes as described in figure
10. In-circuit programming connections of some form
should always be provided, even if the device is
supplied pre-loaded, in order to facilitate firmware
upgrades.

1mm hole dia

2.54mm spacingPin 1 indicated
by square pad

P
G

D

P
G

C

V
pp

V
ss

V
dd

Figure 10. Recommended TEAclipper PCB connector

Evaluation Board

expandIO-USB may be evaluated with the Firmware
Factory USB Products Eval Board (figure 11). The
components which must be fitted are shown in table 10.

In addition, the prototyping area on the left may be used
to add components to which the expandIO-USB will
interface.

The printed circuit board integrates an edge connector
of USB Type A format. This may be plugged into a USB
extension cable.

The HIDconfig.exe application can be used to discover
and test the evaluation circuit prior to writing a software
application to do the task.

Table 10. Evaluation Board minimum bill of materials
Label Component

U2 expandIO-USB-28-FS-DIL
D2 Wire link
C4 100nF capacitor
C7 10uF capacitor
C8 470nF capacitor
X1 12MHz parallel cut crystal

C2, C3 22pF capacitor
R2 22k resistor

LED1, LED2 Light emitting diode 5mm
Additional components may be added for a more complete evaluation

Figure 11. USB Products Eval Board
(Additional components added compared to table 8.)

Licensing

This firmware is copyright Firmware Factory Ltd and
may only be used with permission. Licenses may be
purchased from HexWax Ltd. For preprogrammed reels,
contact Firmware Factory Ltd.

Development Kit

A firmware development kit is available for download
from www.hexwax.com containing the following files:

 Base controller data sheets (© Microchip
Technology Inc)

 USB 2.0 Specification (© HP / Intel / Lucent /
Microsoft / NEC / Philips 2000)

 UNI/O™ Bus Specification DS22076
(© Microchip Technology Inc)

 HIDconfig.exe for in-factory customization of
expandIO-USB devices via the USB port.

p12 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

 AN1149 Designing a Li-Ion charger system…
for design examples on charging batteries from
USB power (© Microchip Technology Inc 2006)

 usb-win.c and usb-win.h, sample HID code for
Windows. Additionally the files setupapi.h,
hidsdi.h, hidpi.h, setupapi.lib and hid.lib are
provided, which must be included in the
application.

 FwFhid.dll dynamic link library and Visual Basic
example FwFhidDLLExample.xls.

Warranty
The warranty and liability provisions for this pre-loaded software product

follow software industry conventions. Please refer to www.hexwax.com

for a complete warranty statement.

Firmware Factory Ltd
2 Marshall St, 3rd Floor
London W1F 9BB, UK
sales@firmwarefactory.com
support@firmwarefactory.com

p13 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

Appendix A: Register Maps

This table is provided as a quick reference. Directly accessing registers requires in-depth knowledge of the base
microcontroller. Refer to the base microcontroller data sheet for details.

The following registers are not accessible: TOSU, TOSH, TOSL, STKPTR, PCLATU, PCLATH, PCLATL, TBLPTRU,
TBLPTRH, TBLPTRL, TABLAT, PRODH, PRODL, INDF0, POSTINC0, POSTDEC0, PREINC0, PLUSW0, FSR0H,
FSR0L, WREG, INDF1, POSTINC1, POSTDEC1, PREINC1, PLUSW1, FSR1H, FSR1L, INDF2, POSTINC2, POSTDEC2,
PREINC2, PLUSW2, FSR2H, FSR2L, BSR, OSCCON, OSCCON2, OSCTUNE, WDTCON, EECON1, EECON2, EEADR,
EEDATA, OSCTUNE, USB registers and general-purpose file registers.

ECCP registers are listed as CCP.

PIC18F14K50

Description / Bitmap**
Register

Command
Byte1

7 6 5 4 3 2 1 0
ADCON0 0xC2 – – CHS3 CHS2 CHS1 CHS0 GO/DONE# ADON
ADCON1 0xC1 – – PVCFG1 PVCFG0 NVCFG1 NVCFG0
ADCON2 0XC0 ADFM – ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0
ADRESH 0xC4
ADRESL 0xC3

A/D result

ANSEL 0x7E ANS11 ANS10 ANS9 ANS8
ANSELH 0x7F ANS7 ANS6 ANS5 ANS4 ANS3

BAUDCON 0xB8 ABDOVF RCIDL DTRXP SCKP BRG16 – WUE ABDEN
CCP1CON 0xBD P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0
CCPR1H 0xBF
CCPR1L 0xBE

Capture / compare PWM 1 registers

CM1CON0 0x6D C1ON C1OUT C1OE C1POL C1SP C1R C1CH1 C1CH0
CM2CON1 0x6B MC1OUT MC2OUT C1RSEL C2RSEL C1HYS C2HYS C1SYNC C2CYNC
CM2CON0 0x6C C2ON C2OUT C2OE C2POL C2SP C2R C2CH1 C2CH0
ECCP1AS 0xB6 ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0
INTCON 0xF2 GIE(H) PEIE TMR0IE INT0IE RABIE TMR0F INT0IF RABIF

INTCON2 0xF1 RABPU# INTEDG0 INTEDG1 INTEDG2 – TMR0IP – RABIP
INTCON3 0xF0 INT2IP INT1IP – INT2IE INT1IE – INT2IF INT1IF

IOCA 0x79 IOCB7 IOCB6 IOCB5 IOCB4
IOCB 0x7A IOCA5 IOCA4 IOCA3 IOCA1 IOCA0
IPR1 0x9F ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP
IPR2 0xA2 OSCFIP C1IP C2IP EEIP BCLIP USBIP TMR3IP
LATA 0x89 – – LATA5 LATA4 – – – –
LATB 0x8A LATB7 LATB6 LATB5 LATB4 – – – –
LATC 0x8B LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0
PIE1 0x9D ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE
PIE2 0xA0 OSCFIE C1IE C2IE EEIE BCLIE USBIE TMR3IE
PIR1 0x9E ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF
PIR2 0xA1 OSCFIF C1IF C2IF EEIF BCLIF USBIF TMR3IF

PORTA 0x80 – – PORTA5 PORTA4 – – – –
PORTB 0x81 PORTB7 PORTB6 PORTB5 PORTB4 – – – –
PORTC 0x82 PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0

PR2 0xCB Timer2 period
PSTRCON 0xB9 STRSYNC STRD STRC STRB STRA
PWM1CON 0xB7 PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0

RCON 0xD0 IPEN SBOREN– RI# TO# PD# POR# BOR#
RCREG 0xAE UART receive register

REFCON0 0xBA FVR1EN FVR1ST FVR1S1 FVR1S0 TSEN TSRS
REFCON1 0xBB D1EN D1LPS DAC1OE D1PSS1 D1PSS0 D1NSS
REFCON2 0xBC DAC1R4 DAC1R3 DAC1R2 DAC1R1 DAC1R0

RCSTA 0xAB SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
SLRCON 0x76 SLRC SLRB SLRA
SPBRG 0xAF UART baud rate generator low byte

SPBRGH 0xB0 UART baud rate generator high byte
SRCON0 0x68 SREN SRCLK2 SRCLK1 SRCLK0 SRQEN SRNQEN SRPS SRPR
SRCON1 0x69 SRSPE SRSCKE SRSC2E SRSC1E SRRCKE SRRC2E SRRC1E
SSPADD 0xC8 Synchronous serial port address / baud / mask
SSPBUF 0xC9 Synchronous serial port receive / transmit buffer

SSPCON1 0xC6 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

p14 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

Description / Bitmap**
Register

Command
Byte1

7 6 5 4 3 2 1 0
SSPCON2 0xC5 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN
SSPMASK 0x6F MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0
SSPSTAT 0xC7 SMP CKE D/A# P S R/W# UA BF
STATUS 0xD8 – – – N OV Z DC C
T0CON 0xD5 TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0
T1CON 0xCD RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC# TMR1CS TMR1ON
T2CON 0xCA – T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0
T3CON 0xB1 RD16 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC# TMR3CS TMR3ON
TMR0H 0xD7
TMR0L 0xD6

Timer0 registers

TMR1H 0xCF
TMR1L 0xCE

Timer1 registers

TMR2 0xCC Timer2 register
TMR3H 0xB3
TMR3L 0xB2

Timer3 registers

TRISA 0x92 – – TRISA5 TRISA4
TRISB 0x93 TRISB7 TRISB6 TRISB5 TRISB4
TRISC 0x94 TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0
TXREG 0xAD UART transmit register
TXSTA 0xAC CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D
WPUA 0x77 WPUA5 WPUA4 WPUA3
WPUB 0x78 WPUB7 WPUB6 WPUB5 WPUB4

**Refer to base microcontroller data sheet for details

PIC18F2450 / PIC18F2455 / PIC18F4450 / PIC18F4455

Description / Bitmap**
Register

Com-
mand
Byte1 24

50
*

44
50

*

24
55

*

44
55

*

7 6 5 4 3 2 1 0
ADCON0 0xC2     – – CHS3 CHS2 CHS1 CHS0 GO/DONE# ADON
ADCON1 0xC1     – – VCFG1 VCFG0 PCGF3 PCGF2 PCGF1 PCGF0
ADCON2 0XC0     ADFM – ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0
ADRESH 0xC4    
ADRESL 0xC3    

A/D result

BAUDCON 0xB8     ABDOVF RCIDL DTRXP SCKP BRG16 – WUE ABDEN
CCP1AS 0xB7     CCP1ASE CCP1AS2 CCP1AS1 CCP1AS0 PSS1AC1 PSS1AC0 PSS1BD1 PSS1BD0

CCP1CON 0xBD     P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0
CCP1DEL 0xB6     P1RSEN P1DC6 P1DC5 P1DC4 P1DC3 P1DC2 P1DC1 P1DC0
CCP2CON 0xBA     P2M1 P2M0 DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0
CCPR1H 0xBF    
CCPR1L 0xBE    

Capture / compare PWM 1 registers

CCPR2H 0xBC    
CCPR2L 0xBB    

Capture / compare PWM 2 registers

CMCON 0xB4     C2OUT C1OUT C2INV C1INV CIS CM2 CM1 CM0
CVRCON 0xB5     CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0

HLVDCON 0xD2     VDIRMAG – IRVST HLVDEN HLVDL3 HLVDL2 HLVDL1 HLVDL0
INTCON 0xF2     GIE(H) PEIE TMR0IE INT0IE RBIE TMR0F INT0IF RBIF
INTCON2 0xF1     RBPU# INTEDG0 INTEDG1 INTEDG2 – TMR0IP – RBIP
INTCON3 0xF0     INT2IP INT1IP – INT2IE INT1IE – INT2IF INT1IF

IPR1 0x9F     SPPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP
IPR2 0xA2     OSCFIP CMIP USBIP EEIP BCLIP HLVDIP TMR3IP CCP2IP
LATA 0x89     – – LATA5 LATA4 LATA3 LATA2 LATA1 LATA0
LATB 0x8A     LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0
LATC 0x8B     LATC7 LATC6 – – LATC3 LATC2 LATC1 LATC0
LATD 0x8C     LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0
LATE 0x8D     – – – – – LATE2 LATE1 LATE0
PIE1 0x9D     PMPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE
PIE2 0xA0     OSCFIE CM2IE USBIE EEIE BCLIE HLVDIE TMR3IE CCP2IE
PIR1 0x9E     SPPIP ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF
PIR2 0xA1     OSCFIF CMIF USBIF EEIF BCLIF HLVDIF TMR3IF CCP2IF

PORTA 0x80     – – PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0
PORTB 0x81     PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

p15 22-Nov-10 expandIO-USB HW148-18 www.firmwarefactory.com

Description / Bitmap**
Register

Com-
mand
Byte1 24

50
*

44
50

*

24
55

*

44
55

*

7 6 5 4 3 2 1 0
PORTC 0x82     PORTC7 PORTC6 – – PORTC3 PORTC2 PORTC1 PORTC0
PORTD 0x83     PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0
PORTE 0x84     – – – – – PORTE2 PORTE1 PORTE0

PR2 0xCB     Timer2 period
RCON 0xD0     IPEN – CM# RI# TO# PD# POR# BOR#

RCREG 0xAE     UART receive register
RCSTA 0xAB     SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
SPBRG 0xAF     UART baud rate generator low byte

SPBRGH 0xB0     UART baud rate generator high byte
SPPCFG 0x63     CLKCFG1 CLKCFG0 CSEN CLK1EN WS3 WS2 WS1 WS0
SPPCON 0x65     – – – – – – SPPOWN SPPEN
SPPDATA 0x62     DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0
SPPEPS 0x64     RDSPP WRSPP – SPPBUSY ADDR3 ADDR2 ADDR1 ADDR0
SSPADD 0xC8     Synchronous serial port address / baud / mask
SSPBUF 0xC9     Synchronous serial port receive / transmit buffer

SSPCON1 0xC6     WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0
SSPCON2 0xC5     GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN
SSPSTAT 0xC7     SMP CKE D/A# P S R/W# UA BF
STATUS 0xD8     – – – N OV Z DC C
T0CON 0xD5     TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0
T1CON 0xCD     RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC# TMR1CS TMR1ON
T2CON 0xCA     – T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0
T3CON 0xB1     RD16 T3RUN T3CKPS1 T3CKPS0 T3OSCEN T3SYNC# TMR3CS TMR3ON
TMR0H 0xD7    
TMR0L 0xD6    

Timer0 registers

TMR1H 0xCF    
TMR1L 0xCE    

Timer1 registers

TMR2 0xCC     Timer2 register
TMR3H 0xB3    
TMR3L 0xB2    

Timer3 registers

TRISA 0x92     – – TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0
TRISB 0x93     TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0
TRISC 0x94     TRISC7 TRISC6 – – TRISC3 TRISC2 TRISC1 TRISC0
TRISD 0x95     TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0
TRISE 0x96     – – – – – TRISE2 TRISE1 TRISE0
TXREG 0xAD     UART transmit register
TXSTA 0xAC     CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D

* =Implemented, =Not implemented
**Refer to base microcontroller data sheet for details

Appendix B: Device Pin-Outs

Device pin-outs are shown in the accompanying PDF file “expandIO-USB Pinouts HW148B”. These pages are coped
from the base controller data sheets and are copyright Microchip Technology Ltd.

