

HEXFRED® Ultrafast Soft Recovery Diode, 8 A

PRODUCT SUMMARY						
Package	TO-263AB (D ² PAK)					
I _{F(AV)}	8 A					
V_{R}	600 V					
V _F at I _F	1.7 V					
t _{rr} (typ.)	18 ns					
T _J max.	150 °C					
Diode variation	Single die					

FEATURES

- Ultrafast and ultrasoft recovery
- Very low I_{RRM} and Q_{rr}
- · Specified at operating conditions
- AEC-Q101 qualified
- Material categorization:
 For definitions of compliance please see www.vishay.com/doc?99912

ROHS COMPLIANT HALOGEN

HALOGEN FREE

BENEFITS

- · Reduced RFI and EMI
- Reduced power loss in diode and switching transistor
- Higher frequency operation
- · Reduced snubbing
- · Reduced parts count

DESCRIPTION

VS-HFA08TB60S is a state of the art ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 V and 8 A continuous current, the VS-HFA08TB60S is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the HEXFRED® product line features extremely low values of peak recovery current (I_{RRM}) and does not exhibit any tendency to "snap-off" during the tb portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA08TB60S is ideally suited for applications in power supplies (PFC boost diode) and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Cathode to anode voltage	V_R		600	V		
Maximum continuous forward current	I _F	T _C = 100 °C	8			
Single pulse forward current	I _{FSM}		60	Α		
Maximum repetitive forward current	I _{FRM}		24			
Maximum navar discination	P _D	T _C = 25 °C	36	w		
Maximum power dissipation		T _C = 100 °C	14			
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C		

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA	600	-	-			
	I _F = 8.0 A			See fig. 1 -	-	1.4	1.7	V
Maximum forward voltage	V_{FM}	I _F = 16 A	-		1.7	2.1		
		I _F = 8.0 A, T _J = 125 °C		-	1.4	1.7		
Maximum reverse		$V_R = V_R \text{ rated}$ $T_J = 125 ^{\circ}\text{C}, V_R = 0.8 \text{x} V_R \text{rated}$ See fig. 2 —		-	0.3	5.0	μA	
leakage current	I _{RM}			-	100	500	μΑ	
Junction capacitance	C _T	V _R = 200 V See fig. 3		=	10	25	pF	
Series inductance	L _S	Measured lead to lead 5 mm from pa	ackage body	=	8.0	=	nH	

DYNAMIC RECOVERY CHARACTERISTICS (TJ = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS			TYP.	MAX.	UNITS	
	t _{rr}	$I_F = 1.0 \text{ A}, dI_F/dt = 2$	$200 \text{ A/}\mu\text{s}, V_{\text{R}} = 30 \text{ V}$	-	18	-		
Reverse recovery time See fig. 5, 6	t _{rr1}	T _J = 25 °C	I _F = 8.0 A dI _F /dt = 200 A/µs V _R = 200 V	-	37	55	ns	
occ lig. 5, 6	t _{rr2}	T _J = 125 °C		-	55	90		
Peak recovery current	I _{RRM1}	$T_J = 25 ^{\circ}C$		-	3.5	5.0	A nC	
r ear recovery current	I _{RRM2}	T _J = 125 °C		-	4.5	8.0		
Reverse recovery charge	Q _{rr1}	$T_J = 25 ^{\circ}C$		-	65	138		
See fig. 7	Q _{rr2}	T _J = 125 °C		-	124	360	110	
Peak rate of fall of recovery current during t _b See fig. 8	dI _{(rec)M} /dt1	T _J = 25 °C		-	240	-	- A/μs	
	dI _{(rec)M} /dt2	T _J = 125 °C		-	210	-		

THERMAL - MECHANICAL SPECIFICATIONS								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS		
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-	-	300	°C		
Thermal resistance, junction to case	R _{thJC}		-	-	3.5	K/W		
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	80	- r./vv		
Woight			-	2.0	-	g		
Weight			-	0.07	-	OZ.		
Marking device		Case style D ² PAK		HFA08	TB60S			

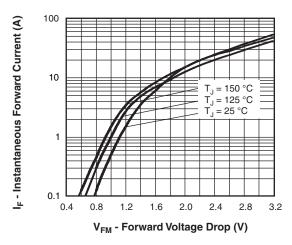


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

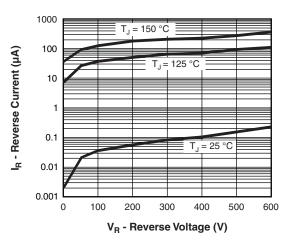


Fig. 2 - Typical Reverse Current vs. Reverse Voltage

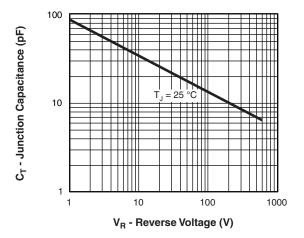


Fig. 1 - Typical Junction Capacitance vs. Reverse Voltage

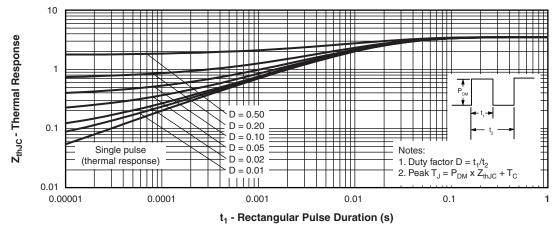


Fig. 2 - Maximum Thermal Impedance Z_{thJC} Characteristics

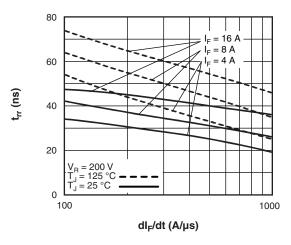


Fig. 3 - Typical Reverse Recovery Time vs. dI_F/dt

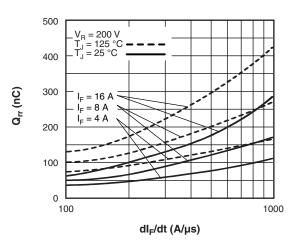


Fig. 5 - Typical Stored Charge vs. dl_F/dt

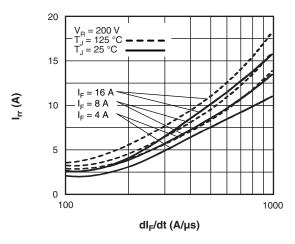


Fig. 4 - Typical Recovery Current vs. dl_F/dt

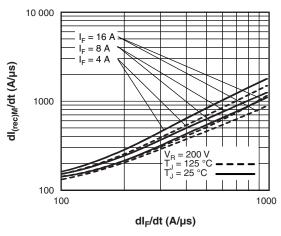


Fig. 6 - Typical $dI_{(rec)M}/dt$ vs. dI_F/dt

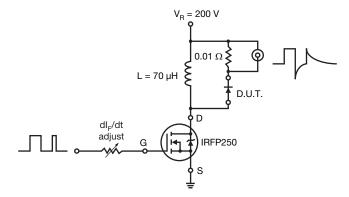
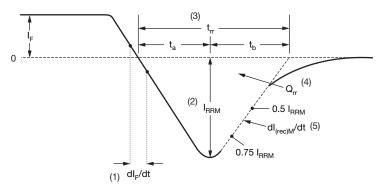



Fig. 7 - Reverse Recovery Parameter Test Circuit

- (1) dl_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) $t_{\rm rr}$ reverse recovery time measured from zero crossing point of negative going $I_{\rm F}$ to point where a line passing through 0.75 $I_{\rm RRM}$ and 0.50 $I_{\rm RRM}$ extrapolated to zero current.
- (4) \mathbf{Q}_{rr} area under curve defined by \mathbf{t}_{rr} and \mathbf{I}_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

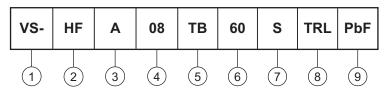

(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 3 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - HEXFRED® family

Process designator: A = Electron irradiated

Current rating (08 = 8 A)

Package outline (TB = TO-220, 2 leads)

Voltage rating (60 = 600 V)

7 - $S = D^2PAK$

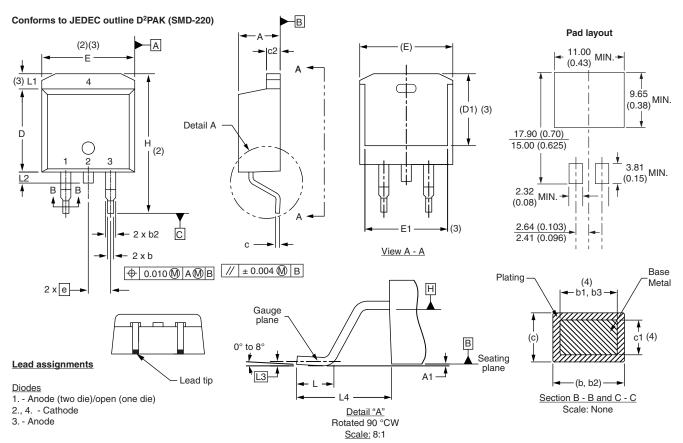
8 - • None = Tube

• TRL = Tape and reel (left oriented)

• TRR = Tape and reel (right oriented)

9 - • PbF = Lead (Pb)-free

• P = Lead (Pb)-free (for D²PAK TRR and TRL)


LINKS TO RELATED DOCUMENTS					
Dimensions <u>www.vishay.com/doc?95046</u>					
Part marking information	www.vishay.com/doc?95054				
Packaging information	www.vishay.com/doc?95032				

ORDERING INFORMATION (Example)							
PREFERRED P/N	QUANTITY PER TUBE	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION				
VS-HFA08TB60SPBF	50	1000	Antistatic plastic tube				
VS-HFA08TB60STRRP	800	800	13" diameter reel				
VS-HFA08TB60STRLP	800	800	13" diameter reel				

D²PAK

DIMENSIONS in millimeters and inches

SYMBOL	MILLIN	MILLIMETERS		INCHES		
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	4.06	4.83	0.160	0.190		
A1	0.00	0.254	0.000	0.010		
b	0.51	0.99	0.020	0.039		
b1	0.51	0.89	0.020	0.035	4	
b2	1.14	1.78	0.045	0.070		
b3	1.14	1.73	0.045	0.068	4	
С	0.38	0.74	0.015	0.029		
c1	0.38	0.58	0.015	0.023	4	
c2	1.14	1.65	0.045	0.065		
D	8.51	9.65	0.335	0.380	2	

SYMBOL	MILLIM	MILLIMETERS INCHES		INCHES	
STWIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100 BSC		
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	1	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25	BSC	0.010 BSC		
L4	4.78	5.28	0.188	0.208	

Notes

- $^{(1)}$ Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch
- (7) Outline conforms to JEDEC outline TO-263AB

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000