www.ti.com

LM8262 Dual RRIO, High Output Current & Unlimited Cap Load Op Amp in VSSOP

Check for Samples: LM8262

FEATURES

 $(V_S = 5V, T_A = 25^{\circ}C, Typical Values Unless)$ Specified).

- **GBWP 21MHz**
- Wide Supply Voltage Range 2.5V to 22V
- Slew Rate 12V/us
- Supply Current/channel 1.15 mA
- Cap Load Limit Unlimited
- Output Short Circuit Current +53mA/-75mA
- +/-5% Settling Time 400ns (500pF, 100mV_{PP}
- Input Common Mode Voltage 0.3V Beyond
- Input Voltage Noise 15nV/√Hz
- Input Current Noise 1pA/√Hz
- THD+N < 0.05%

APPLICATIONS

- TFT-LCD Flat Panel V_{COM} driver
- A/D Converter Buffer
- High Side/low Side Sensing
- **Headphone Amplifier**

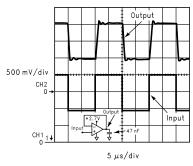


Figure 1. Output Response with Heavy Capacitive

DESCRIPTION

The LM8262 is a Rail-to-Rail input and output Op Amp which can operate with a wide supply voltage range. This device has high output current drive, greater than Rail-to-Rail input common mode voltage range, unlimited capacitive load drive capability, and provides tested and guaranteed high speed and slew rate. It is specifically designed to handle the requirements of flat panel TFT panel V_{COM} driver applications as well as being suitable for other low power, and medium speed applications which require ease of use and enhanced performance over existing devices.

Greater than Rail-to-Rail input common mode voltage range with 50dB of Common Mode Rejection, allows high side and low side sensing, among many applications, without having any concerns over exceeding the range and no compromise in accuracy. In addition, most device parameters are insensitive to power supply variations; this design enhancement is yet another step in simplifying its usage. The output stage has low distortion (0.05% THD+N) and can supply a respectable amount of current (15mA) with minimal headroom from either rail (300mV).

The LM8262 is offered in the space saving VSSOP package.

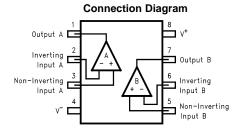


Figure 2. 8-Pin VSSOP (Top View)

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Absolute Maximum Ratings (1)(2)

ESD Tolerance	ESD Tolerance				
V _{IN} Differential		+/-10V			
Output Short Circuit Duration	See (5) (6)				
Supply Voltage (V ⁺ - V ⁻)	24V				
Voltage at Input/Output pins		V+ +0.8V, V− −0.8V			
Storage Temperature Range		−65°C to +150°C			
Junction Temperature (7)		+150°C			
Soldering Information:	Infrared or Convection (20 sec.)	235°C			
	Wave Soldering (10 sec.)	260°C			

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Rating indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
- (2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
- (3) Human body model, 1.5kΩ in series with 100pF.
- (4) Machine Model, 0Ω is series with 200pF.
- (5) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.
- (6) Output short circuit duration is infinite for $V_S \le 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5ms.
- (7) The maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

Operating Ratings

Supply Voltage (V ⁺ - V ⁻)		2.5V to 22V
Junction Temperature Range ⁽¹⁾		-40°C to +85°C
Package Thermal Resistance, θ _{JA} , ⁽¹⁾	8-Pin VSSOP	235°C/W

⁽¹⁾ The maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}\text{C}$, $V^+ = 2.7\text{V}$, $V^- = 0\text{V}$, $V_{CM} = 0.5\text{V}$, $V_O = V^+/2$, and $R_L > 1M\Omega$ to V^- . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (1)	Typ	Max (1)	Units	
Vos	Input Offset Voltage	$V_{CM} = 0.5V \& V_{CM} = 2.2V$	-	+/-0.7	+/-5 +/-7	mV	
TC V _{OS}	Input Offset Average Drift	$V_{CM} = 0.5V \& V_{CM} = 2.2V$	_	+/-2	_	μV/C	
I _B	Input Bias Current	V _{CM} = 0.5V	_	-1.20	-2.00 -2.70		
		V _{CM} = 2.2V	_	+0.49	+1.00 +1.60	μΑ	
I _{OS}	Input Offset Current	$V_{CM} = 0.5V \& V_{CM} = 2.2V$	_	20	250 400	nA	
CMRR	Common Mode Rejection Ratio	V _{CM} stepped from 0V to 1.0V	76 60	100	_		
		V _{CM} stepped from 1.7V to 2.7V	_	100	-	dB	
		V _{CM} stepped from 0V to 2.7V	58 50	70	_		
+PSRR	Positive Power Supply Rejection Ratio	V ⁺ = 2.7V to 5V	78 74	104	_	dB	

- (1) All limits are guaranteed by testing or statistical analysis.
- (2) Typical Values represent the most likely parametric norm.
- (3) Offset voltage average drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.

(4) Positive current corresponds to current flowing into the device.

Submit Documentation Feedback

2.7V Electrical Characteristics (continued)

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = 0.5V$, $V_O = V^+/2$, and $R_L > 1M\Omega$ to V⁻. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (1)	Typ	Max (1)	Units
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	_	-0.3	-0.1 0.0	V
			2.8 2.7	3.0	_	V
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 0.5 \text{ to } 2.2V,$ $R_{L} = 10 \text{k to } V^{-}$	70 67	78	_	dB
		$V_O = 0.5$ to 2.2V, $R_L = 2k$ to V^-	67 63	73	_	dB
Output Swing High		$R_L = 10k \text{ to } V^-$	2.49 2.46	2.59	-	V
		$R_L = 2k \text{ to } V^-$	2.45 2.41	2.53	_	V
	Output Swing Low	R _L = 10k to V ⁻	-	90	100 120	mV
I _{SC}	Output Short Circuit Current	Sourcing to V ⁻ V _{ID} = 200mV ⁽⁵⁾⁽⁶⁾	30 20	48	_	
		Sinking to V ⁺ $V_{ID} = -200 \text{mV}^{(5)(6)}$	50 30	65	_	mA
I _S	Supply Current (both amps)	No load, V _{CM} = 0.5V	-	2.0	2.5 3.0	mA
SR	Slew Rate (7)	$A_V = +1, V_I = 2V_{PP}$	_	9	_	V/µs
f _u	Unity Gain-Frequency	$V_I = 10 \text{mV}$, $R_L = 2 \text{k}\Omega$ to $V^+/2$	_	10	-	MHz
GBWP	Gain Bandwidth Product	f = 50KHz	15.5 14	21	-	MHz
Phi _m	Phase Margin	V _I = 10mV	_	50	_	Deg
en	Input-Referred Voltage Noise	$f = 2KHz$, $R_S = 50\Omega$	_	15	_	nV/ √ Hz
i _n	Input-Referred Current Noise	f = 2KHz	_	1	_	pA/ √ Hz
f _{max}	Full Power Bandwidth	$Z_{L} = (20pF 10k\Omega) \text{ to V}^{+}/2$	_	1	_	MHz

Product Folder Links: LM8262

Short circuit test is a momentary test. See Note 6. Output short circuit duration is infinite for $V_S \le 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5ms. Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.

5V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for T_J = 25°C, V^+ = 5V, V^- = 0V, V_{CM} = 1V, V_O = $V^+/2$, and R_L > 1M Ω to V^- . Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (1)	Typ	Max (1)	Units	
V _{OS}	Input Offset Voltage	V _{CM} = 1V & V _{CM} = 4.5V	-	+/-0.7	+/-5 +/- 7	mV	
TC V _{OS}	Input Offset Average Drift	V _{CM} = 1V & V _{CM} = 4.5V	-	+/-2	_	μV/°C	
I _B	Input Bias Current	V _{CM} = 1V	-	-1.18	-2.00 - 2.70		
		V _{CM} = 4.5V	_	+0.49	+1.00 + 1.60	μΑ	
l _{OS}	Input Offset Current	V _{CM} = 1V & V _{CM} = 4.5V	_	20	250 400	nA	
CMRR Common Mode Rejection Ratio		V _{CM} stepped from 0V to 3.3V	84 72	110	_		
		V _{CM} stepped from 4V to 5V	_	100	_	dB	
		V _{CM} stepped from 0V to 5V	64 61	80	_		
+PSRR	Positive Power Supply Rejection Ratio	$V^{+} = 2.7V$ to 5V, $V_{CM} = 0.5V$	78 74	104	_	dB	
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB		-0.3	-0.1 0.0	V	
			5.1 5.0	5.3	_	V	
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 0.5 \text{ to } 4.5V,$ $R_{L} = 10 \text{k to } V^{-}$	74 70	84	_	٩D	
		$V_{O} = 0.5 \text{ to } 4.5 \text{V},$ $R_{L} = 2 \text{k to V}^{-}$	70 66	80	_	dB	
Vo	Output Swing High	R _L = 10k to V ⁻	4.75 4.72	4.87	_	- V	
		$R_L = 2k \text{ to } V^-$	4.70 4.66	4.81	_	V	
	Output Swing Low	R _L = 10k to V ⁻	_	86	125 135	mV	
I _{SC}	Output Short Circuit Current	Sourcing to V ⁻ V _{ID} = 200mV ⁽⁵⁾⁽⁶⁾	35 20	53	_	4	
		Sinking to V ⁺ $V_{ID} = -200 \text{mV}^{(5)(6)}$	60 50	75	_	mA	
I _S	Supply Current (both amps)	No load, V _{CM} = 1V	_	2.3	2.8 3.5	mA	
SR	Slew Rate ⁽⁷⁾	$A_V = +1, V_I = 5V_{PP}$	10 7	12	_	V/µs	
fu	Unity Gain Frequency	$V_I = 10 \text{mV},$ $R_L = 2k\Omega \text{ to V}^+/2$	_	10.5	_	MHz	
GBWP	Gain-Bandwidth Product	f = 50KHz	16 15	21	_	MHz	
Phi _m	Phase Margin	V _I = 10mV	-	53	_	Deg	
e _n	Input-Referred Voltage Noise	$f = 2KHz, R_S = 50\Omega$	-	15	_	nV/ √Hz	
i _n	Input-Referred Current Noise	f = 2KHz	_	1	_	pA/ √ Hz	

⁽¹⁾ All limits are guaranteed by testing or statistical analysis.

Submit Documentation Feedback

Copyright © 2001-2013, Texas Instruments Incorporated

Typical Values represent the most likely parametric norm.

Offset voltage average drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.

Positive current corresponds to current flowing into the device.

Short circuit test is a momentary test. See Note 6. (5)

Output short circuit duration is infinite for $V_S \le 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5ms.

Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower. (7)

5V Electrical Characteristics (continued)

Unless otherwise specified, all limited guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 1V$, $V_O = V^+/2$, and $R_L > 1M\Omega$ to V^- . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Parameter Condition		Typ (2)	Max (1)	Units
f _{max}	Full Power Bandwidth	$Z_L = (20pF 10k\Omega) \text{ to } V^+/2$	_	900	_	KHz
t _S	Settling Time (+/-5%)	100mV _{PP} Step, 500pF load	_	400	_	ns
THD+N	Total Harmonic Distortion + Noise	$R_L = 1k\Omega$ to V ⁺ /2 f = 10KHz to $A_V = +2$, $4V_{PP}$ swing	_	0.05	_	%

+/-11V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for $T_J = 25^{\circ}C$, $V^+ = 11V$, $V^- = -11V$, $V_{CM} = 0V$, $V_O = 0V$, and $R_L > 1M\Omega$ to 0V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (1)	Тур (2)	Max (1)	Units	
V _{OS}	Input Offset Voltage	V _{CM} = −10.5V & V _{CM} = 10.5V	_	+/-0.7	+/-7 + /- 9	mV	
TC V _{OS}	Input Offset Average Drift	$V_{CM} = -10.5V \& V_{CM} = 10.5V$ (3)	_	+/-2		μV/°C	
В	Input Bias Current	V _{CM} = −10.5V	_	-1.05	-2.00 -2.80		
		V _{CM} = 10.5V	_	+0.49	+1.00 +1.50	μΑ	
los	Input Offset Current	$V_{CM} = -10.5V \& V_{CM} = 10.5V$		30	275 550	nA	
CMRR	Common Mode Rejection Ratio	V _{CM} stepped from -11V to 9V	84 80	100	_		
		V _{CM} stepped from 10V to 11V	_	100	_	dB	
		V _{CM} stepped from -11V to 11V	74 72	88			
+PSRR	Positive Power Supply Rejection Ratio	V ⁺ = 9V to 11V	70 66	100	_	dB	
-PSRR	Negative Power Supply Rejection Ratio	$V^- = -9V$ to $-11V$	70 66	100	_	dB	
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	_	-11.3	-11.1 - 11.0	V	
			11.1 11.0	11.3	-	V	
A _{VOL}	Large Signal Voltage Gain	$V_O = 0V \text{ to } +/-9V,$ $R_L = 10k\Omega$	78 74	85	_	40	
		$V_O = 0V$ to +/-9V, R _L = 2k Ω	72 66	79	_	dB	
Vo	Output Swing High	$R_L = 10k\Omega$	10.65 10.61	10.77	_		
1		$R_L = 2k\Omega$	10.6 10.55	10.69	_	V	
	Output Swing Low	$R_L = 10k\Omega$	_	-10.98	-10.75 - 10.65		
		$R_L = 2k\Omega$	-	-10.91	-10.65 -10.6	V	

Copyright © 2001–2013, Texas Instruments Incorporated

⁽¹⁾ All limits are guaranteed by testing or statistical analysis.

⁽²⁾ Typical Values represent the most likely parametric norm.

⁽³⁾ Offset voltage average drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.

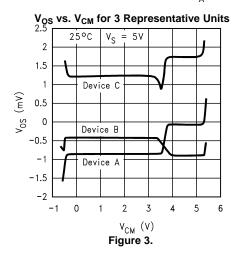
⁽⁴⁾ Positive current corresponds to current flowing into the device.

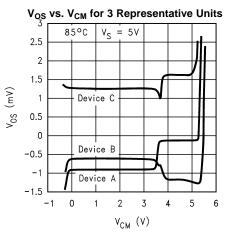
+/-11V Electrical Characteristics (continued)

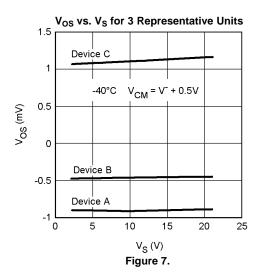
Unless otherwise specified, all limited guaranteed for $T_J = 25^{\circ}C$, $V^+ = 11V$, $V^- = -11V$, $V_{CM} = 0V$, $V_O = 0V$, and $R_L > 1M\Omega$ to 0V. Boldface limits apply at the temperature extremes.

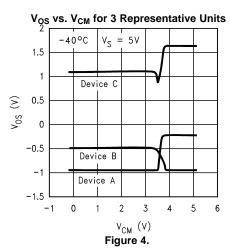
Symbol	Parameter	Condition	Min (1)	Typ (2)	Max (1)	Units	
I _{SC}	Output Short Circuit Current	Sourcing to ground V _{ID} = 200mV ⁽⁵⁾⁽⁶⁾	40 25	60	-	0	
		Sinking to ground V _{ID} = 200mV ⁽⁵⁾⁽⁶⁾	65 55	100	-	mA mA	
I _S	Supply Current	No load, V _{CM} = 0V	-	2.5	4 5	mA	
SR	Slew Rate	$A_V = +1, V_I = 16V_{PP}$	10 8	15	-	V/µs	
f _U	Unity Gain Frequency	$V_I = 10 \text{mV}, R_L = 2 \text{k}\Omega$	_	13	_	MHz	
GBWP	Gain-Bandwidth Product	f = 50KHz	18 16	24	-	MHz	
Phi _m	Phase Margin	V _I = 10mV	_	58	_	Deg	
e _n	Input-Referred Voltage Noise	$f = 2KHz, R_S = 50\Omega$	_	15	_	nV/ √ Hz	
i _n	Input-Referred Current Noise	f = 2KHz	_	1	_	pA/ √ Hz	
t _S	Settling Time (+/ -1% , A _V = +1)	Positive Step, 5V _{PP}	_	320	_		
		Negative Step, 5V _{PP}	_	600	-	ns	
THD+N	Total Harmonic Distortion +Noise	$R_L = 1k\Omega$, $f = 10KHz$, $A_V = +2$, $15V_{PP}$ swing	-	0.01	-	%	
CT _{REJ}	Cross-Talk Rejection	f = 5MHz, Driver $R_1 = 10k\Omega$	_	68	-	dB	

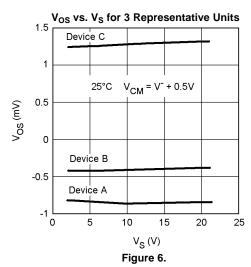
Short circuit test is a momentary test. See Note 6.


Submit Documentation Feedback


Output short circuit duration is infinite for $V_S \le 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5ms. Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.


Typical Performance Characteristics


T_A = 25°C, Unless Otherwise Noted





Typical Performance Characteristics (continued)

T_A = 25°C, Unless Otherwise Noted

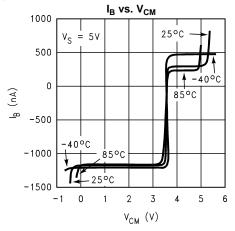
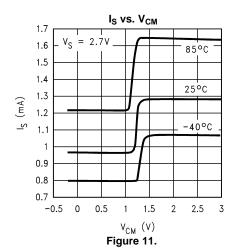
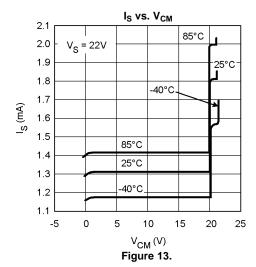




Figure 9.

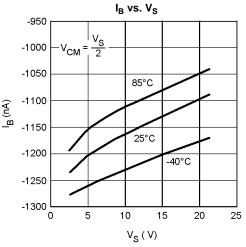
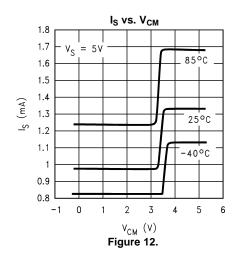



Figure 10.

I_S vs. V_S (PNP side) 1.5 $V_{CM} = V^{-} + 0.5V$ 1.4 1.3 85°C 1.2 1.1 25°C 0.9 -40°C 8.0 0.7 10 15 20 25 $V_{S}(V)$ Figure 14.

Submit Documentation Feedback

Typical Performance Characteristics (continued)

 $T_A = 25$ °C, Unless Otherwise Noted

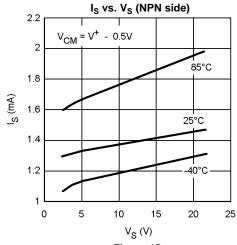


Figure 15.

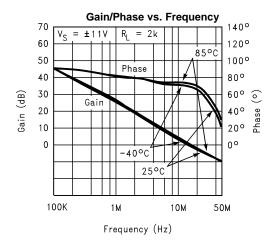


Figure 16.

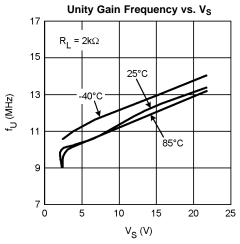


Figure 17.

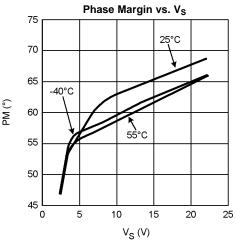


Figure 18.

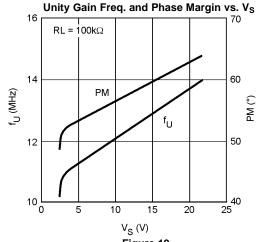


Figure 19.

SNOS975E-MAY 2001-REVISED APRIL 2013

REVISION HISTORY

Ch	nanges from Revision D (April 2013) to Revision E	Page
•	Changed layout of National Data Sheet to TI format	9

PACKAGE OPTION ADDENDUM

1-Nov-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM8262MM	NRND	VSSOP	DGK	8	1000	TBD	Call TI	Call TI	-40 to 85	A46	
LM8262MM/NOPB	ACTIVE	VSSOP	DGK	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	A46	Samples
LM8262MMX/NOPB	ACTIVE	VSSOP	DGK	8	3500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	A46	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

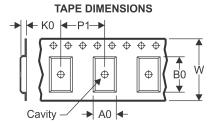
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

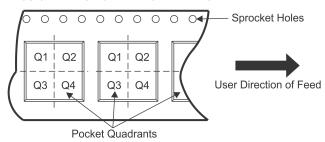
1-Nov-2013

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

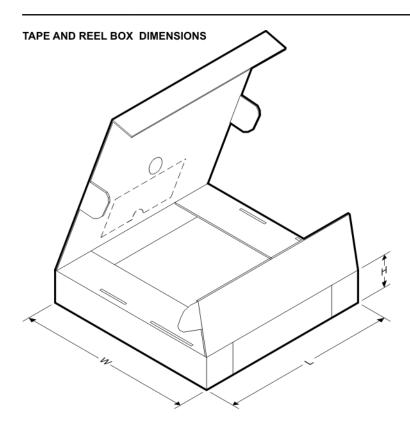

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Sep-2013


TAPE AND REEL INFORMATION

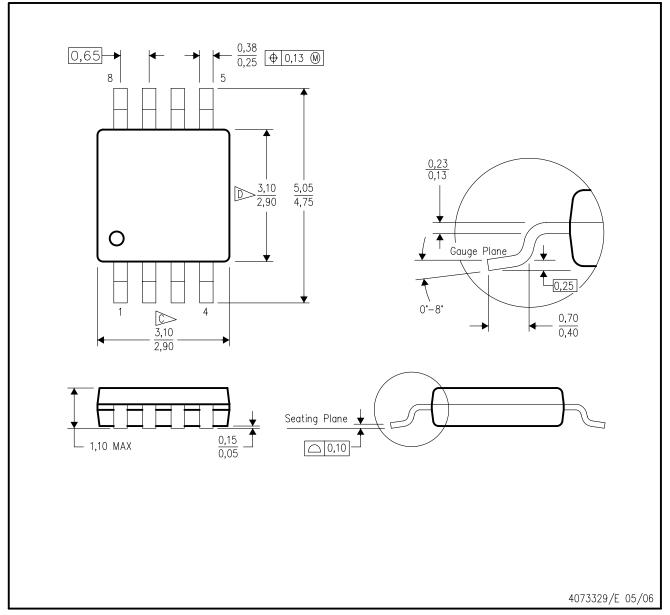
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM8262MM	VSSOP	DGK	8	1000	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM8262MM/NOPB	VSSOP	DGK	8	1000	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM8262MMX/NOPB	VSSOP	DGK	8	3500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 23-Sep-2013



*All dimensions are nominal

7 til diritoriororio di o mominar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM8262MM	VSSOP	DGK	8	1000	210.0	185.0	35.0
LM8262MM/NOPB	VSSOP	DGK	8	1000	210.0	185.0	35.0
LM8262MMX/NOPB	VSSOP	DGK	8	3500	367.0	367.0	35.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>