

DEM-DAI1608 PCI1608 Evaluation Board

User's Guide

April 2002

DAV Digital Audio/Imaging Japan (DAL)

SLEU013

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

EVM IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation kit being sold by TI is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not considered by TI to be fit for commercial use. As such, the goods being provided may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product incorporating the goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.

Should this evaluation kit not meet the specifications indicated in the EVM User's Guide, the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user **is not exclusive**.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the EVM User's Guide and, specifically, the EVM Warnings and Restrictions notice in the EVM User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact the TI application engineer.

Persons handling the product must have electronics training and observe good laboratory practice standards.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of ± 15 V and the output voltage range of ± 15 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 55°C. The EVM is designed to operate properly with certain components above 55°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This user's guide describes the construction and circuitry of the DEM-DAI1608 demonstration board. It also contains instructions for connecting and setting up the DEM-DAI1608 for operation, and for installation and use of the software that controls the demonstration board.

How to Use This Manual

This document contains the following chapters: Chapter 1 – *Description*

Chapter 2 – Demonstration Software

Chapter 3 - Schematics and Printed-Circuit Boards

Related Documentation From Texas Instruments

PCM1608 24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma Digital-to-Analog Converter – Literature No. SBAS164

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

Trademarks

Windows is a trademark of Microsoft Corporation.

Contents

1	Desc	ription		1-1
	1.1	Block	Diagram	1-2
	1.2	DEM-I	DAI1608 Basic Connection and Operation	
		1.2.1	Configuration Controls	
	1.3	Jumpe	ers	
		1.3.1	JP001	
		1.3.2	JP101–JP106 (Six Pieces)	1-4
2	Demo	onstrati	on Software	2-1
	2.1	Installa	ation	
	2.2	Using	the Demonstration Software	2-3
		2.2.1	HOLD and PASS	
		2.2.2	Function Control	2-6
3	Sche	matics	and Printed-Circuit Boards	3-1
	3.1	DEM-I	DAI/MDAC Printed-Circuit Board	
	3.2	DEM-I	PCM1608 Printed-Circuit Board	
	3.3	DEM-I	DAI/MDAC Schematics	
	3.4	DEM-I	PCM1608 Schematic	3-10

Figures

1–1	DEM-DAI1608 Block Diagram	1-2
2–1	Demonstration Software Window	2-3
2–2	Attenuation Control	2-4
2–3	Operation Control	2-4
2–4	Function Control	2-5
3–1	DEM-DAI/MDAC Silkscreen	3-2
3–2	DEM-DAI/MDAC Top View	3-3
3–3	DEM-DAI/MDAC Bottom View	3-4
3–4	DEM-PCM1608 Silkscreen	3-5
3–5	DEM-PCM1608 Top View	3-5
3–6	DEM-PCM1608 Bottom View	3-6
3–7	DEM-DAI/MDAC Low-Pass Filter Schematic	3-7
3–8	Daughter Board Sockets, Connectors, and Regulator Schematic	3-8
3–9	Digital Audio Interface Schematic	3-9
3–10	PCM1608 Schematic	3-10

Tables

1–1	SW006 for PCM1608: Data Format Selection	1-2
1–2	SW006 for PCM1608: De-Emphasis Selection	1-3
1–3	SW001/002/003: For CS8414 (Digital Audio I/F Receiver)	1-3
2–1		2-6

Chapter 1

Description

The DEM-DAI1608 is an evaluation board for the PCM1608, a 24-bit, 192-kHz, 8-channel audio DAC with digital audio receiver, mode controls switch, and 8-channel second-order post filter.

The DEM-DAI1608 operates from 5-V and ± 15 -V analog power supplies with an S/PDIF input signal.

Ιορι	c Pag	je
1.1	Block Diagram 1-	2
1.2	DEM-DAI1608 Basic Connection and Operation1-	2
1.3	Jumpers1-	3

1.1 Block Diagram

Figure 1–1. DEM-DAI1608 Block Diagram

1.2 DEM-DAI1608 Basic Connection and Operation

- $\hfill\square$ Connect the 5-V and ±15-V power supplies to V_CC, AV_CC, –AV_CC, and GND on connectors CN051–CN055.
- Connect the S/PDIF signal into CN001 (COAX) or U001 (OPT).
- Set jumper to provide the system clock and other digital signals from the digital audio receiver to the PCM1608.
- □ Set the input data format using SW001–SW003 and the demonstration software.

1.2.1 Configuration Controls

	Table 1-	1.SW006	for PCN	/1608:	Data	Format	Selection
--	----------	---------	---------	--------	------	--------	-----------

FMT1 (as MDI)	FMT0 (as RST)	Data Format Selection
L	L	24-bit I ² S
L	н	TDM
Н	L	16-bit standard, right-justified
Н	н	24-bit left-justified, MSB-first

FMT1 (as ML)	FMT0 (as MC)	De-Emphasis Selection
L	L	OFF
L	н	48 kHz
Н	L	44.1 kHz
Н	н	32 kHz

Table 1–2. SW006 for PCM1608: De-Emphasis Selection

Table 1–3. SW001/002/003: For CS8414 (Digital Audio I/F Receiver)

SW001 (M0)	SW002 (M1)	SW003 (M2)	Data Format Selection
L	L	L	16-/24-bit left-justified, MSB-first
L	н	L	I ² S
Н	L	Н	16-bit standard, right-justified
L	н	н	24-bit standard, right-justified

SW004: Manual reset

SW005: Digital audio interface selection Internal – CS8414 External – (CN004)

JP001: BCK selection

When using left-justified MSB-first data format, move the jumper from BCK to BCK (L/J).

1.3 Jumpers

The following jumpers are onboard:

JP001	For digital signal
CN057	For 3.3-V power supply
JP101–JP106	For fc of second-order post filter

1.3.1 JP001

The digital signal generated by the digital audio receiver is input to this jumper. For each shorted pin, the corresponding digital signal is input to the PCM1608.

1.3.2 JP101–JP106 (Six Pieces)

These jumpers determine $f_{\mbox{\scriptsize C}}$ of the second-order post filter.

For JP101–JP106 shorted, $f_c = 54$ kHz For JP101–JP106 open, $f_c = 108$ kHz

Chapter 2

Demonstration Software

Software provided with the DEM-DAI1608 allows programming of the PCM1608 internal registers. The software operates on computers running Microsoft Windows[™] 3.1, 95, or 98.

The demonstration software requires connection of the PC printer port to CN-2 of the DEM-DAI1608 using a standard printer cable.

Торі	c Page
2.1	Installation
2.2	Using the Demonstration Software 2-3

2.1 Installation

The demonstration software is distributed on a 3.5-inch floppy disk.

To install the software on your PC computer, first create a new folder on your hard drive with an appropriate name (such as *DEM1608*). Then open the *Dem1608* folder on the installation floppy disk and copy all its files to your new folder.

Open the configuration setting file named # *Dem1608* using a text editor, such as Notepad. After the file opens, search for the following line:

PCMIFADR = &h378

The &h378 indicates the printer port address that the demonstration software uses to communicate with the DEM-DAI1608.

This address must be set to &h378, &h278, or &h3BC. Most PCs use &h378 as the default printer port address. If your printer port is not located at &h378, edit the address to match your computer's port address.

2.2 Using the Demonstration Software

Double-click on the application file named DEM1608. A window appears on your screen, as shown in Figure 2–1. There are two menu selections (Execute and Window) near the top of the window.

The Execute menu includes three selections: Initialize, Reset, and Exit. Selecting Initialize instructs the program to write all of the PCM1608 internal registers with the default values.

Reset instructs the program to rewrite the PCM1608 internal registers with the data currently elected in the application windows. Exit closes the application.

The Window menu includes four selections: Attenuation control (Figure 2–2), Operation control (Figure 2–3), Function control (Figure 2–4), and Register read. The following sections provide an explanation of each window.

Figure 2–1. Demonstration Software Window

PCM1608 ver1.0	
Execute (E) Window	* 040
-Mode Regist	er — — —
Register 1	FFh
Register2	FFh
Register3	FFh
Register 4	FFh
Register5	FFh
Register 6	FFh
Register7	00h
Register8	00h
Register9	00h
Register 10	00h
Register 11	01h
Register 12	00h
Register 16	FFh
Register 17	FFh
Register 18	0h
Register 19	00h

Figure 2–2. Attenuation Control

POM1608 Attenuation			_ 🗆 🗙
Control Data	HC	DLD	
-AΠ		-Step:L	evel –
DAC1 I	۲	255:	OdB
DAC2	ŀ	255:	OdB
DAC3	•	255:	OdB
DAC4	۲	255:	OdB
DAC5 4	ŀ	255:	OdB
DAC6 •	١	255:	DdB
DAC7 4	۲	255:	OdB
DAC8	١	255:	DdB
		CL	OSE

Figure 2–3. Operation Control

Figure 2–4. Function Control

FCM1608 Function	
Control Data	HOLD
-FUNCTION	
Enable Normal	-
Sharp 44.1kHz	
I/F format	Output Phase
24bit Right Justified 💽	Normal 🗾
Oversampling	Z-Flag Phase
64fs (32fs for 192kHz) -	Active High 💌
	CLOSE

2.2.1 HOLD and PASS

Each window has a button near the top which is labeled either HOLD or PASS. The current setting is toggled by clicking on this button. When set to HOLD, the settings in a window can be changed, but are not written to the register(s) until the OK button (which appears at the bottom of the window) is pressed.

When set to PASS, any setting changes made in a window are immediately written to the corresponding register(s).

2.2.2 Function Control

The various functions of the DEM-DAI1608 and the registers and bits that control each function are shown in Table 2-1.

Table 2–1. Function Control

FUNCTION	DEFAULT	REGISTER	BIT
Digital attenuation control, 0 dB to –63 dB in 0.5 dB steps	0 dB, No attenuation	Register 1 through 6, 16, 17	AT1[7:0] AT2[7:0] AT3[7:0] AT4[7:0] AT5[7:0] AT6[7:0] AT7[7:0] AT8[7:0]
Soft mute control	Mute disabled	Register 7, 18	MUT[8:1]
DAC 1-8 operation control	DAC 1–6 enabled	Register 8,19	DAC[8:1]
Audio data format control	24-bit standard format	Register 9	FMT[2:0]
Digital filter rolloff control	Sharp rolloff	Register 9	FLT
SCKO frequency selection	Full rate (= f _{SCKI})	Register 9	CLKD
SCKO output enable	SCKO Enabled	Register 9	CLKE
De-emphasis all channel function control	De-emphasis all channel disabled	Register 10	DMC
De-emphasis all channel sample rate selection	44.1kHz	Register 10	DMF[1:0]
Output phase select	Normal phase	Register 10	DREV
Zero flag polarity select	High	Register 10	ZREV
Read register index control	REG[6:0] = 01 _H	Register 11	REG[6:0]
Read auto-increment control	Auto-increment disabled	Register 11	INC
General purpose output enable	Zeroflagenabled	Register 12	GPOE
General purpose output bits (GPO1-GPO6)	Disabled	Register 12	GPO[6:1]
Oversampling rate control	64x	Register 12	OVER

Chapter 3

Schematics and Printed-Circuit Boards

This chapter presents the DEM-DAI/MDAC and the DEM-PCM1608 printed-circuit boards and schematics.

TopicPage2.1DEM-DAI/MDAC Printed-Circuit Board3-22.2DEM-PCM1608 Printed-Circuit Board3-52.3DEM-DAI/MDAC Schematics3-73.4DEM-PCM1608 Schematic3-10

3.1 DEM-DAI/MDAC Printed-Circuit Board

3-2

Figure 3–2. DEM-DAI/MDAC Top View

3.2 DEM-PCM1608 Printed-Circuit Board

Figure 3–5. DEM-PCM1608 Top Vlew

Figure 3–6. DEM-PCM1608 Bottom Vlew

3.3 DEM-DAI/MDAC Schematics

Figure 3–7. DEM-DAI/MDAC Low-Pass Filter Schematic

Figure 3–8. Daughter Board Sockets, Connectors, and Regulator Schematic

3.4 DEM-PCM1608 Schematic

Figure 3–10. PCM1608 Schematic

