

CC1100/CC1150DK & CC2500/CC2550DK
Development Kit

Examples and Libraries

User Manual

Rev. 1.3

 SWRU109A

Table of contents

1. Introduction ... 3
2. Definitions ... 3
3. General Notes about the Software ... 3
4. Running the Examples.. 3
5. MCU Examples... 4

5.1 Audio ... 4
5.2 Joystick.. 4
5.3 Potmeter.. 4
5.4 Spi ... 4
5.5 Timer01 ... 5
5.6 Timer23 ... 5

6. Radio Examples.. 5
6.1 Link.. 5
6.2 Link1.. 5
6.3 SerialLink .. 9
6.4 Link2.. 9
6.5 InfiniteLink ... 14

7. Libraries .. 21
7.1 Library Structure.. 21
7.2 EB Library Reference.. 24
7.3 HAL Library Reference.. 24
7.4 CUL Library Reference ... 26

8. Document history.. 28

 SWRU109A

1. Introduction
This User Manual covers the software examples and libraries used with the CC2500/CC2550DK
Development Kit and CC1100/CC1150DK Development Kit.

2. Definitions
SmartRF®04DK A collective term used for all development kits for the

SmartRF®04 platform, i.e. CC2500/CC2550DK and
CC1100/CC1150 DK

USB MCU The Silicon Labs C8051F320 MCU used to provide a USB
interface on the SmartRF®04EB

Factory firmware The firmware that is programmed into the USB MCU from the
factory. This firmware supports SmartRF® Studio operation as
well as a stand-alone PER tester.

PER Packet Error Rate. Measures the percentage of packets that
contain errors or are lost.

3. General Notes about the Software
Both the examples and libraries are written for the Keil C51 C complier for the 8051 platform. You
may have to modify the source code somewhat if you intend to compile the code using another
8051 C compiler. The examples are supplied in both source code and .hex file form. There are
several .hex files supplied for each example. For every frequency band (315, 433, 868 etc.) there
are two .hex files; one for stand-alone use (requires that you have access to Silicon Labs’ EC2
programming tool) and one for use with the bootloader. Even if you do not have access to an 8051
C compiler, you can program the filename_bootloader.hex files into the USB MCU using SmartRF®
Studio (as long as you have not overwritten the bootloader that come programmed into the EB from
the factory).

4. Running the Examples
It is easy to run the examples Chipcon provide for this platform. SmartRF® Studio can be used to
load different .hex files into the USB MCU. Note that the examples have to be linked with the
bootloader libraries to work (all examples provided from Chipcon have been linked with these
libraries).

Connect the Evaluation Board to a PC using the USB interface. Start SmartRF® Studio and select
the SmartRF® 04 tab. Select the Evaluation Board (do not choose the “Calculation Windows”) and
click on the “Load USB Firmware” button. You are then presented with a file selection dialog box
where you can select the file to download (filename_bootloader.hex).

If you have overwritten the bootloader, you must program the bootloader into the USB MCU using
Silicon Labs’ EC2 serial programmer before you can program the examples by the aforementioned
method. The bootloader .hex file and programming software that uses the EC2 are included in the
SmartRF® Studio installation. These files are installed into the SmartRF® Studio folder, but the
installer does not generate desktop shortcut or start menu shortcuts for this program.

If you have loaded one of the examples and then attempt to run SmartRF® Studio, SmartRF® Studio
will detect that the factory firmware has been overwritten and prompt you that it will attempt to write
the factory firmware to the USB MCU.

 SWRU039a Page 3

5. MCU Examples
The examples should be installed into the C:\Keil\C51\Examples\Chipcon\srf04 directory.

5.1 Audio
This example runs a loop-back test from the audio input to the audio output. The USB MCU
samples the incoming audio using the built-in ADC, and sends it right back out again using the
PWM functionality of the MCU. Copying from the ADC to the PWM is done in an interrupt routine
triggered by the timer 1 interrupt.

To test the example, connect a headset (the headset should have separate mini-jacks for
microphone and headphones) to the microphone input and the headphone output on the Evaulation
Board. You should now be able to hear your own voice in the headphones. Make sure that the
volume control is not turned all the way down.

Note that the audio quality of this example can be improved by performing processing of the raw
data. Sampling at a higher rate and then performing averaging to implement digital filtering would
help in reducing noise caused by aliasing.

5.2 Joystick
This example demonstrates reading the joystick and writing to the LCD. This program runs in an
infinite loop reading the status of the joystick and reporting this status on the LCD. To save pins, the
joystick position is coded as an analogue value on the Evaluation Board, and is read using the ADC
of the USB MCU. The ebGetJoystickPosition() function uses the ADC to read the status and
decodes this to a direction.

To test the example, simply move the joystick and see the status change on the LCD display. The
LCD display will also indicate if you have pressed down the integrated joystick button.

5.3 Potmeter
This example demonstrates reading the potmeter position using the ADC and reports the value on
the LCD display.

The program runs in an infinite loop waiting for the push button (S1) on the EB to be pushed. When
this happens, it reads the potmeter postion and sends this information to the LCD display.

To test this example, press S1 and the current potmeter value will be displayed on the LCD. Turn
the potmeter knob and press S1 again.

5.4 Spi
This example demonstrates writing and reading CCxx00/CCxx50 registers and communication with
a PC using the RS-232 interface.

The program first displays a menu, and then runs in an infinite loop waiting for input from the RS-
232 port. Depending on the option selected by the user, the program will either read or write
CCxx00/CCxx50 registers and report the results back via RS-232.

To test this example, connect the Evaluation Board to a PC using a male-to-female one-to-one RS-
232 cable. Start HyperTerminal or another terminal program, setting it up to 115200 baud, 8 data
bits, 1 stop bit and no hardware handshaking. In HyperTerminal, make sure to choose “Connect” or
press a key on the PC keyboard to connect. The program will display a menu on the screen, and
you can access registers by pressing the appropriate character. Make sure you have inserted an
EM before running this example.

 SWRU039a Page 4

5.5 Timer01
This example demonstrates use of timer 0/1 and the LEDs on the Evaluation Board.

The program runs in an infinite loop reading the status of the potmeter, writing this value into a
global variable. An interrupt routine is triggered by Timer 1. This routine reads the global variable
that contains the status of the potmeter, and updates the timing of Timer 1. The LEDs are controlled
by the interrupt routine so that they each show one bit of a 4-bit counter that is incremented every
time the interrupt routine is executed.

To test this example, simply turn the potmeter. This will adjust the speed at which the LEDs blink.

5.6 Timer23
This example demonstrates use of timer 2/3 and the LEDs on the Evaluation Board.

The program runs in an infinite loop after setting up an interrupt routine triggered by timer 2. Timer 2
is configured to function as two 8-bit timers with different periods. The interrupt routine is triggered
by the two timers. Every 10000’th time the timer overflows, a LED is toggled. One 8-bit timer
triggers the green LED, the other triggers the red LED.

When the program is run, the red LED will blink at a different rate from the green LED.

6. Radio Examples
The examples should be installed into the C:\Keil\C51\Examples\Chipcon\srf04\CCxx00 directory.

6.1 Link
This program demonstrates how to set up a simple RF link between two units.

By moving the joystick right or left, the user can set up one unit as transmitter (left) and one unit as
receiver (right). After selecting correct mode, the joystick button should be pushed. Now the
transmitter will send one packet every time the S1 button is being pushed. The number of packets
transmitted and received is displayed on the LCD display on the TX and RX unit, respectively. On
the receiver, the CRC is checked before the display is updated (i.e. received packets containing bit
errors are not counted).

6.2 Link1
This example demonstrates how to set up a simple link between two CCxx00EMs run from
SmartRF04EB. Packet transmission and packet reception is implemented by polling the chip status
byte every time a timer interrupt occurs (every 200 us). On the transmitter, this is done to see if
there are more available/free bytes in the TX FIFO in case the TX FIFO needs to be re-filled. On the
receiver it is done to see of more bytes have been received. This method is useful in cases where
the packet size is greater than the FIFO size. The joystick is used to navigate through a menu,
setting different parameters.

Parameter Settings
Packet Length 10, 30, 50, ………., 230, 250
Number of Packets 100, 200, 300, ……, 900, 1000
Whitening Enabled, Disabled
Radio Mode Rx, Tx

The following steps must be done to start the link test:

Rx Unit:

• Enable/disable Whitening
• Set radio mode to RX.
• Move joystick down until the message "Press S1 to start" is showed on the LCD display
• Press S1

 SWRU039a Page 5

The LCD display will show number of packets received with CRC OK.

Tx Unit:

• Set packet length and number of packets to transmit
• Enable/disable Whitening (set to the same as on the RX unit)
• Set radio mode to TX
• Press S1 to Start

The LCD will show number of packets transmitted. After all the packets have been transmitted, S1
can be pressed to run the test once more or the joystick can be used to change packet length and
number of packets before running a new test.

The main loop is implemented as a state machine and the state diagram is showed in Figure 1.

SETUP

TX_START

RX_WAIT TX_WAIT

RX_START

index == START
&&
ebButtonPushed
&&
menuData.radiomode == TX

index == START
&&
ebButtonPushed
&&
menuData.radiomode == RX

 pktData.rxTimeoutReached

!pktData.rxTimeoutReached
&&
pktData.pktReceived pktData.pktTransmitted

&&
!pktData.txInProgress

packetsSent >=
menuData.numberOfPackets

packetsSent <
menuData.numberOfPackets

Figure 1. Main loop state diagram (Link1)

 SWRU039a Page 6

pktRxHandler

Is rx timeout
active?

Decrement timeout
counter

Has RX FIFO overflowed
or is rx timeout reached?

rxBytesleft = 0
Flush RX FIFO

Are there bytes
available in the RX

FIFO?

Done

Is length byte received?

Read packet length
rxBytesLeft = packetLength + 2

byteInFifo --
rxPosition = 1

lengthByteRead = TRUE

Is the remaining
payload in the FIFO?

bytesInFifo --

Update how many bytes
are left to be received

Read from RX FIFO and
store the data in rxBuffer

Are all bytes in the
packet received?

YES

NO

YES

Time to
terminate rx

mode?

NO

Strobe IDLE
txTimeoutActive = FALSE

rxTimeoutReached = TRUE

YES

NO YES

NO

NO

pktReceived = TRUE
lengthByteRead = FALSE

YES

NO

YES

YES

Is there more than 1 byte
 in the FIFO?

NO

NO

YES

Figure 2. Flow chart for pktRxHandler (Link1)

 SWRU039a Page 7

pktTxHandler

Is startup timeout
active?

Time to enter tx mode?

txStartupTimeoutActive = FALSE
txInProgress = TRUE

Strobe TX
Write the length byte to the TX FIFO

Done

Decrementt timeout
counter

Chip state?

YES

NO

YES

txInProgress?

Are there bytes left
to write to TX FIFO?

txInProgress = FALSE

Flush the TX FIFOTX_FIFO_UNDERFLOW

Other

Done

NO

NO

YES

NO

Calculate minimum of:
-16
- The number of bytes
left in the packet
- the number of free
bytes in the TX FIFO

Write data to TX FIFO

Have all bytes been
written to the FIFO?

pktTransmitted = TRUE

Done

TX

Yes

No

Update # of bytes left to
write to TX FIFO

YES

Figure 3. Flow chart for pktTxHandler (Link1)

 SWRU039a Page 8

6.3 SerialLink
This program demonstrates how to set up a simple RF link between two units using serial
synchronous mode.

By moving the joystick right or left, the user can set up one unit as transmitter (left) and one unit as
receiver (right). After selecting correct mode, the joystick button should be pushed. Now the
transmitter will send one packet every time the S1 button is being pushed. The number of packets
transmitted and received is displayed on the LCD display on the TX and RX unit, respectively. On
the receiver, the CRC is checked before the display is updated (i.e. received packets containing bit
errors are not counted).

6.4 Link2
This program demonstrates how it is possible to transmit and receive packets that are longer than
the size of the FIFO (64 bytes) without doing any SPI polling of the status registers (see the
CC1100/CC1150 and the CC2500/CC2550 Errata Notes). Packet transmission and packet
reception is implemented using two external interrupts. The joystick is used to navigate through a
menu, setting different parameters.

Parameter Settings
Packet Length 10, 30, 50, ………., 230, 250
Number of Packets 100, 200, 300, ……, 900, 1000
Radio Mode Rx, Tx

The following steps must be done to start the link test:

Rx Unit:

• Set radio mode to RX.
• Move joystick down until the message "Press S1 to start" is showed on the LCD display
• Press S1

The LCD display will show number of packets received with CRC OK.

Tx Unit:

• Set packet length and number of packets to transmit
• Set radio mode to TX
• Press S1 to Start

The LCD will show number of packets transmitted. After all the packets have been transmitted, S1
can be pressed to run the test once more or the joystick can be used to change packet length and
number of packets before running a new test.

The main loop is implemented as a state machine and the state diagram is showed in Figure 4.

 SWRU039a Page 9

SETUP

TX_START

RX_WAIT

TX_WAIT

RX_START

(index == START)
&&
(ebButtonPushed())
&&
 state == TX_START

txData.packetSentFlag
==
TRUE
&&
xData.packetsSent <
menuData.numberOfPackets

txData.packetSentFlag
==
TRUE
&&
txData.packetsSent <
menuData.numberOfPackets

(index == START)
&&
(ebButtonPushed())
&&
 state == RX_START

rxData.packetReceivedFlag
==
TRUE

Figure 4. Main loop state diagram (Link2)

 SWRU039a Page 10

TX_START

Write packet to FIFO
Strobe STX

Disable threshold
interrupt

Done refilling the FIFO to its limit?
(txData.iterations == 0)

Create data packet

Is it room for the packet in the
FIFO?

(menuData.packetLength <
FIFO_SIZE)

Fill up the FIFO with FIFO_SIZE number of bytes
StrobeTX

Updata txData
(txData.bytesLeft = menuData.packetLength + 1 - FIFO_SIZE;

 txData.pBufferIndex = txBuffer + FIFO_SIZE;
 txData.iterations =

(txData.bytesLeft / AVAILABLE_BYTES_IN_TX_FIFO);)

txData.writeRemainingDataFlag = TRUE

Clear and
Enable threshold interrupt

Packet transmitted?
(txData.packetSentFlag ==

TRUE)

txData.packetSentFlag = FALSE
txData.packetSent++;
Update LCD display

More packets left to transmit?
(txData.packetsSent <

menuData.numberOfPackets)

TX_START

SETUP

Threshold ISR
(Only showed for TX)

Write the remaining data to the FIFO?
(txData.writeRemainingDataFlag == TRUE)

Write remaing data to
FIFO (txData.bytesLeft)

Disable threshold
interrupt

Fill up the FIFO with AVAILABLE_BYTES_IN_TX_FIFO number of bytes
Updata txData

(txData.pBufferIndex += AVAILABLE_BYTES_IN_TX_FIFO;
 txData.bytesLeft -= AVAILABLE_BYTES_IN_TX_FIFO;

txData.iterations--;)

Done refilling the FIFO to its limit?
(txData.iterations == 0)

txData.writeRemainingDataFlag = TRUE

DONE

Clear the interrupt flag

YES

NO

TX_WAIT

NO

txData.packetSent = 0

YES

YES

YES

NO

NO

Packet ISR
(Only showed for TX)

 Update txData
(txData.writeRemainingDataFlag = FALSE;

 txData.packetSentFlag = TRUE;)

DONE

YES NO

Figure 5. Flowchart for TX (Link2)

 SWRU039a Page 11

RX_START

Strobe SRX

Packet received?
(rxData.packetReceivedFlag ==

TRUE)

rxData.packetsReceived++
Update LCD display

YES

NO

RX_WAIT

Update rxData
(rxData.packetReceivedFlag = FALSE;

rxData.pBufferIndex = rxBuffer;)

CRC OK?
(rxData.crcOK == TRUE)

Clear and enable threshold
interrupt

Clear the packet interrupt and
enable for packet interrupt on rising

edge (sync received)

RX_START

YES

NO

Threshold ISR
(Only showed for RX)

Read (BYTES_IN_RX_FIFO - 1) number of bytes from the FIFO
Update rxData

 (rxData.bytesLeft -= (BYTES_IN_RX_FIFO - 1);
 rxData.pBufferIndex += (BYTES_IN_RX_FIFO - 1);)

Clear the interrupt flag

Done

Packet ISR
(Only showed for RX)

Sync received or
end-of-packet?

(rxData.syncOrEndOfPacket ==
SYNC)

Read the length byte
Update rxData

 (rxData.bytesLeft = rxData.lengthByte + 2;
 rxData.pBufferIndex++;

 rxData.syncOrEndOfPacket = END_OF_PACKET;)

Less than 64 bytes left to receive?
(rxData.bytesLeft < FIFO_SIZE)

Disable threshold interrupt

Clear the packet interrupt and
enable for packet interrupt on
falling edge (end-of-packet)

Read remaining data from FIFO (rxData.bytesLeft)
Update rxData

(rxData.syncOrEndOfPacket = SYNC;
 rxData.packetReceivedFlag = TRUE;

 rxData.crcOK = ((rxBuffer[rxData.lengthByte + 2]) & CRC_OK);)

Done

END_OF_PACKET

SYNC

NO

YES

Are there somthing in the FIFO?
(PACKET_INT is still high)

YES

NO

Wait for data to be
put in the FIFO

Figure 6. Flowchart for RX (Link2)

 SWRU039a Page 12

Example to demonstrate the program flow:

Both GDO0 and GDO2 are connected to inputs pins on the MCU configured to generate external
interrupts. The interrupt related to the GDO2 pin is referred to as the threshold interrupt, while the
other interrupt is referred to as the packet interrupt. In TX, the MCU is configured to give an
interrupt on falling edges for both interrupts, while in RX, there will be interrupt on both rising and
falling edge of GDO0 and on rising edge on GDO2.

Threshold interrupt
FIFO_THR = 14: 5 bytes in the TX FIFO and 60 bytes in the RX FIFO.

RX mode
IOCFG2 = 0x00: Associated to the RX FIFO: Asserts when RX FIFO is filled above

RXFIFO_THR. De-asserts when RX FIFO is drained below RXFIFO_THR.
In RX mode there will be an interrupt on the rising edge
(BYTES_IN_RX_FIFO = 60)

TX mode
IOCFG2 = 0x02: Associated to the TX FIFO: Asserts when the TX FIFO is filled above

TXFIFO_THR. De-asserts when the TX FIFO is below TXFIFO_THR.
 In TX mode there will be an interrupt on the falling edge
 (AVAILABLE_BYTES_IN_TX_FIFO = 60)

57 58 59 60 61 60 59 58 57

Bytes in RX FIFO

GDO2

2 3 4 5 6 5 4 3 2

Bytes in TX FIFO

GDO2

Packet interrupt

IOCFG0 = 0x06: Asserts when sync word has been sent / received, and de-asserts at the

end of the packet. In RX, the pin will de-assert when the optional address
check fails or the RX FIFO overflows. In TX the pin will de-assert if the TX
FIFO underflows.

Assume a packet with packet length 150 (menuData.packetLength = 150). In this case, 151 bytes
should be written to the TX FIFO.

 1 2 3 4 5 6

Figure 7. Writing to TX FIFO (Link2)

1: Start by writing 64 bytes to the TX FIFO and strobe STX. After writing byte number 5 to the

TX FIFO, GDO2 is asserted (No interrupt on rising edge).

txData.bytesLeft = menuData.packetLength + 1 - FIFO_SIZE = 87 bytes left to write
txData.iterations = (txData.bytesLeft / AVAILABLE_BYTES_IN_TX_FIFO)

 = 87 / 60 = 1 (number of times one can fill the TX FIFO all the way up)
txData.writeRemainingDataFlag = FALSE

2: Sync word has been transmitted (No interrupt on rising edge)

 SWRU039a Page 13

3: Threshold interrupt on falling edge. Write 60 bytes to the TX FIFO.

txData.bytesLeft -= AVAILABLE_BYTES_IN_TX_FIFO = 87 – 60
 = 27 bytes left to write
txData.iterations = 0, which means that one should not write 60 bytes to the TX FIFO
 on the next threshold interrupt (only 27 bytes are left to be
 written)
txData.writeRemainingDataFlag = TRUE;

4: Threshold interrupt on falling edge. Write remaining 27 bytes to the TX FIFO and disable

threshold interrupt.

5: No interrupt since interrupt has been disabled.

6: Packet interrupt on falling edge indicating that the packet has been sent.

 1 2 3 4 5

Figure 8. Reading from RX FIFO (Link2)

1: Packet interrupt on rising edge (sync received). Wait for 2 bytes to be put in the
RX FIFO.

2: Read the length byte.

rxData.bytesLeft = rxData.lengthByte + 2 status bytes = 150 + 2 = 152 bytes left to read
 Enable for interrupt on falling edge (packet received).

3: Threshold interrupt on rising edge (60 or more bytes in the RX FIFO).
 Read 59 bytes from the RX FIFO (the RX FIFO should not be emptied)
 rxData.bytesLeft -= (BYTES_IN_RX_FIFO - 1) = 152 – 59 = 93 bytes left to read

4: Threshold interrupt on rising edge (60 or more bytes in the RX FIFO).
 Read 59 bytes from the RX FIFO (the RX FIFO should not be emptied)
 rxData.bytesLeft -= (BYTES_IN_RX_FIFO - 1) = 93 – 59 = 34 bytes left to read

5: Packet interrupt on falling edge (packet received).
 Read the remaining bytes from the RX FIFO.

6.5 InfiniteLink
This program demonstrates how it is possible to transmit and receive packets that are longer than
256 bytes. The example does not use any SPI polling of the status registers (see the
CC1100/CC1150 and the CC2500/CC2550 Errata Notes). Packet transmission and packet
reception is implemented using two external interrupts. The joystick is used to navigate through a
menu, setting different parameters.

Parameter Settings
Packet Length 270, 290, ………., 430, 450
Number of Packets 100, 200, 300, ……, 900, 1000
Radio Mode Rx, Tx

The following steps must be done to start the link test:

 SWRU039a Page 14

Rx Unit:
• Set radio mode to RX.
• Move joystick down until the message "Press S1 to start" is showed on the LCD display
• Press S1

The LCD display will show number of packets received with CRC OK.

Tx Unit:

• Set packet length and number of packets to transmit
• Set radio mode to TX
• Press S1 to Start

The LCD will show number of packets transmitted. After all the packets have been transmitted, S1
can be pressed to run the test once more or the joystick can be used to change packet length and
number of packets before running a new test.

The main loop is implemented as a state machine and the state diagram is showed in Figure 9.

SETUP

TX_START

RX_WAIT

TX_WAIT

RX_START

(index == START)
&&
(ebButtonPushed())
&&
 state == TX_START

txData.packetSentFlag
==
TRUE
&&
xData.packetsSent <
menuData.numberOfPackets

txData.packetSentFlag
==
TRUE
&&
xData.packetsSent <
menuData.numberOfPackets

(index == START)
&&
(ebButtonPushed())
&&
 state == RX_START

rxData.packetReceivedFlag
==
TRUE

((rxData.lengthByte >
MAX_VARIABLE_LENGTH)
&&
(rxData.lengthByte <=
menuTable[PACKET_LENGTH].max))

Figure 9. Main loop state diagram (InfiniteLink)

 SWRU039a Page 15

TX_START

Create data packet
Set Infinite Packet Length Mode

txData.bytesLeft = menuData.packetLength + 2;
Calulate (# of bytes to transmit mod 256)

and write this value to PKTLEN
Fill up the TX FIFO and strobe STX

Update txData
(txData.bytesLeft -= FIFO_SIZE;

txData.pBufferIndex = txBuffer + FIFO_SIZE;
txData.iterations = (txData.bytesLeft / AVAILABLE_BYTES_IN_TX_FIFO);)

Clear and enable threshold interrupt

Packet transmitted?
(txData.packetSentFlag ==

TRUE)

txData.packetSentFlag = FALSE
txData.packetSent++;
Update LCD display

More packets left to transmit?
(txData.packetsSent <

menuData.numberOfPackets)

TX_START

SETUP

Threshold ISR
(Only showed for TX)

Write the remaining data to the FIFO?
(txData.writeRemainingDataFlag == TRUE)

Write remaing data to
FIFO (txData.bytesLeft)

Disable threshold
interrupt

Fill up the FIFO with
AVAILABLE_BYTES_IN_TX_FIFO number of bytes

Done refilling the FIFO to its limit?
(txData.iterations == 0)

txData.writeRemainingDataFlag = TRUE

DONE

Clear the interrupt flag

YES

NO

TX_WAIT

NO

txData.packetSent = 0

YES

YES

YES

NO

Packet ISR
(Only showed for TX)

Set Infinite Packet Length Mode
Update txData

(txData.writeRemainingDataFlag = FALSE;
 txData.packetSentFlag = TRUE;)

DONE

Updata txData
(txData.pBufferIndex += AVAILABLE_BYTES_IN_TX_FIFO;

 txData.bytesLeft -= AVAILABLE_BYTES_IN_TX_FIFO;
txData.iterations--;)

NO

Change to fixed packet length mode?
(((txData.bytesLeft < (MAX_VARIABLE_LENGTH + 1 -

BYTES_IN_TX_FIFO))
&& (txData.pktFormat == INFINITE)))

NO
Change to fixed packet

length mode

YES

Figure 10. Flowchart for TX (InfiniteLink)

 SWRU039a Page 16

Figure 11. Flowchart for RX (InfiniteLink)

Example to demonstrate the program flow:

Please see the Link2 example above to understand how the packet interrupt (IOCFG0 = 0x06) and
the threshold interrupt (IOCFG2 = 0x00 (RX) and IOCFG2 = 0x02 (TX)) are used when writing to
the TX FIFO or reading from the RX FIFO. The threshold is the same as in that example.

Assume a packet with packet length 450 (menuData.packetLength = 450). In this case, 452 bytes
should be written to the TX FIFO (2 bytes are needed for the length).

Set PKTCTRL0.LENGTH_CONFIG = 2 (10).

Pre-program the PKTLEN register to mod(452,256) = 196.

Transmit at least 197 bytes (less than 256 bytes left to transmit)

Set PKTCTRL0.LENGTH_CONFIG = 0 (00).

The transmission ends when the packet counter reaches 196. A total of 452 bytes are transmitted.

 SWRU039a Page 17

 1 2 3 4 5 6 7 8 9 10 11

Figure 12. Writing to TX FIFO (InfiniteLink)

1: LENGTH_CONFIG = 2 (Infinite packet length)

txData.bytesLeft = menuData.packetLength + 2 length bytes = 450 + 2 = 452
 fixedPacketLength = txData.bytesLeft % (MAX_VARIABLE_LENGTH + 1)
 = mod(452, 256) = 196

Start by writing 64 bytes to the TX FIFO and strobe STX. After writing byte number 5 to the
TX FIFO, GDO2 is asserted (No interrupt on rising edge).

txData.bytesLeft -= FIFO_SIZE = 452 – 64 = 388
txData.iterations = (txData.bytesLeft / AVAILABLE_BYTES_IN_TX_FIFO)
 = 388 / 60 = 6 (number of times one can fill the TX FIFO all the way
 up)
Set PKTLEN = mod(452, 256) = 196

2: Sync word has been transmitted (No interrupt on rising edge)

3: LENGTH_CONFIG = 2 (Infinite packet length)

Threshold interrupt on falling edge. Write 60 bytes to the TX FIFO.

txData.bytesLeft -= AVAILABLE_BYTES_IN_TX_FIFO = 388 – 60
 = 328 bytes left to write
txData.iterations = 5

Check if there is less than 256 bytes left to transmit and if Infinite packet length mode is set:
(bytes left to transmit is the bytes left to write to the TX FIFO (txData.bytesLeft) +
the bytes that are in the TX FIFO when this interrupt occurs (BYTES_IN_TX_FIFO))

((txData.bytesLeft < (MAX_VARIABLE_LENGTH + 1 - BYTES_IN_TX_FIFO))
&&
(txData.pktFormat == INFINITE)) ?

((328 < (255 + 1 - 4))
&&
(txData.pktFormat == INFINITE)) ? NO

4: LENGTH_CONFIG = 2 (Infinite packet length)

Threshold interrupt on falling edge. Write 60 bytes to the TX FIFO.

 SWRU039a Page 18

txData.bytesLeft -= AVAILABLE_BYTES_IN_TX_FIFO = 328 – 60
 = 268 bytes left to write
txData.iterations = 4

Check if there is less than 256 bytes left to transmit and if Infinite packet length mode is set:

((268 < (255 + 1 - 4))
&&
(txData.pktFormat == INFINITE)) ? NO

5: LENGTH_CONFIG = 2 (Infinite packet length)

Threshold interrupt on falling edge. Write 60 bytes to the TX FIFO.

txData.bytesLeft -= AVAILABLE_BYTES_IN_TX_FIFO = 268 – 60
 = 208 bytes left to write
txData.iterations = 3

Check if there is less than 256 bytes left to transmit and if Infinite packet length mode is set:

((208 < (255 + 1 - 4))
&&
(txData.pktFormat == INFINITE)) ? YES → LENGTH_CONFIG = 0 (Fixed
 packet length)

6: LENGTH_CONFIG = 0 (Fixed packet length)

Threshold interrupt on falling edge. Write 60 bytes to the TX FIFO.

txData.bytesLeft -= AVAILABLE_BYTES_IN_TX_FIFO = 208 – 60
 = 148 bytes left to write
txData.iterations = 2

Check if there is less than 256 bytes left to transmit and if Infinite packet length mode is set:

((148 < (255 + 1 - 4))
&&
(txData.pktFormat == INFINITE)) ? NO

7,8: 60 bytes are written to the TX FIFO each time

txData.bytesLeft = 28 bytes left to write
txData.iterations = 0, which means that one should not write 60 bytes to the TX FIFO
 on the next threshold interrupt (only 28 bytes are left to be
 written)
txData.writeRemainingDataFlag = TRUE;

9: Threshold interrupt on falling edge. Write remaining 28 bytes to the TX FIFO and disable

threshold interrupt.

10: No interrupt since interrupt has been disabled.

11: Packet interrupt on falling edge indicating that the packet has been sent.

 SWRU039a Page 19

 1 2 3 4 5 6 7 8 9 10

Figure 13. Reading from RX FIFO (InfiniteLink)

1: Packet interrupt on rising edge (sync received). Wait for 3 bytes to be put in the

RX FIFO.

2: Read the length bytes (2 bytes).

rxData.bytesLeft = rxData.lengthByte + 2 status bytes = 450 + 2 = 452 bytes left to read

 fixedPacketLength = txData.bytesLeft % (MAX_VARIABLE_LENGTH + 1)
 = mod(452, 256) = 196

Set PKTLEN = mod(452, 256) = 196

 Enable for interrupt on falling edge (packet received).

3: LENGTH_CONFIG = 2 (Infinite packet length)

Threshold interrupt on rising edge (60 or more bytes in the RX FIFO).

Check if there is less than 256 bytes left to receive and if Infinite packet length mode is set:
(bytes left to receive is the bytes left to read from the RX FIFO (txData.bytesLeft) -
the bytes that are in the RX FIFO when this interrupt occurs (BYTES_IN_RX_FIFO))

(((rxData.bytesLeft - BYTES_IN_RX_FIFO) < (MAX_VARIABLE_LENGTH + 1))
&&
(rxData.pktFormat == INFINITE)) ?

(((452 - 60) < (255 + 1))
&&
(rxData.pktFormat == INFINITE)) ? NO

 Read 59 bytes from the RX FIFO (the RX FIFO should not be emptied)
 rxData.bytesLeft -= (BYTES_IN_RX_FIFO - 1) = 452 – 59 = 393 bytes left to read

4: LENGTH_CONFIG = 2 (Infinite packet length)

Threshold interrupt on rising edge (60 or more bytes in the RX FIFO).

Check if there is less than 256 bytes left to receive and if Infinite packet length mode is set:

(((393 - 60) < (255 + 1))
&&
(rxData.pktFormat == INFINITE)) ? NO

 Read 59 bytes from the RX FIFO (the RX FIFO should not be emptied)
 rxData.bytesLeft -= (BYTES_IN_RX_FIFO - 1) = 393 – 59 = 334 bytes left to read

5: LENGTH_CONFIG = 2 (Infinite packet length)

Threshold interrupt on rising edge (60 or more bytes in the RX FIFO).

 SWRU039a Page 20

Check if there is less than 256 bytes left to receive and if Infinite packet length mode is set:

(((334 - 60) < (255 + 1))
&&
(rxData.pktFormat == INFINITE)) ? NO

 Read 59 bytes from the RX FIFO (the RX FIFO should not be emptied)
 rxData.bytesLeft -= (BYTES_IN_RX_FIFO - 1) = 334 – 59 = 275 bytes left to read

6: LENGTH_CONFIG = 2 (Infinite packet length)

Threshold interrupt on rising edge (60 or more bytes in the RX FIFO).

Check if there is less than 256 bytes left to receive and if Infinite packet length mode is set:

(((275 - 60) < (255 + 1))
&&
(rxData.pktFormat == INFINITE)) ? YES → LENGTH_CONFIG = 0 (Fixed
 packet length)

 Read 59 bytes from the RX FIFO (the RX FIFO should not be emptied)
 rxData.bytesLeft -= (BYTES_IN_RX_FIFO - 1) = 275 – 59 = 216 bytes left to read

7: LENGTH_CONFIG = 0 (Fixed packet length)

Threshold interrupt on rising edge (60 or more bytes in the RX FIFO).

Check if there is less than 256 bytes left to receive and if Infinite packet length mode is set:

(((216 - 60) < (255 + 1))
&&
(rxData.pktFormat == INFINITE)) ? NO

 Read 59 bytes from the RX FIFO (the RX FIFO should not be emptied)
 rxData.bytesLeft -= (BYTES_IN_RX_FIFO - 1) = 216 – 59 = 157 bytes left to read

8,9: 59 bytes are read from the RX FIFO on each interrupt.
 rxData.bytesLeft = 39

10: Packet interrupt on falling edge (packet received). Read the remaining bytes from the RX
 FIFO.

7. Libraries
Chipcon supplies several libraries to make it as easy as possible to develop custom software on the
SmartRF®04DK platform. The libraries are divided into 2 main groups: the files concerning the
Evaluation Board (EB), and the Hardware Abstraction Library (HAL).

The EB files consists of header files and functions that enable you to easily access the circuitry on
the SmartRF® 04EB board. This includes reading the joystick direction, writing to the LCD display
and so on. It also contains register definitions for both the USB MCU and the CCxx00/CCxx50
radio.

The HAL consists of header files and functions to access the different peripherals of the USB MCU.
It also contains functions to access registers on the CCxx00/CCxx50 and functions for transmitting
and receiving packets.

7.1 Library Structure
The libraries are structured in the file structure shown in Figure 14.

 SWRU039a Page 21

Figure 14. Library file structure

In the ex_audio folder, the audio.c and audio.Uv2 files are found, together with the
audio_bootloader.Uv2 and the STARTUP.A51. The audio.hex and audio_bootloader.hex files are
found in the objects folder under ex_audio. audio.hex is the .hex file that is created when building
the audio.Uv2 project and is a stand-alone application. The audio_bootloader.hex file is the hex file
that should be used if SmartRF® Studio is used to download a .hex file into the USB MCU. The
table below shows what the other folders in the library contain.

 SWRU039a Page 22

Folder File
..\NC\Chipcon\srf04 common.h
 ebsrf04.h
 halsrf04.h
 regssrf04.h
 culsrf04.h
 app_descriptor.h
 app_descriptor.a51
 bl_structs.h

..\LIB\Chipcon\srf04 ebsrf04.LIB
 halsrf04.LIB
 culsrf04.LIB
 ebsrf04_bootloader.LIB
 halsrf04_bootloader.LIB
 culsrf04_bootloader.LIB

..\LIB\Chipcon\srf04\Eb\CCxx00 AdcInit.c
 ButtonPushed.c
 GetJoystickPosition.c
 JoyPushed.c
 Lcd.c
 ReadPotentiometer.c

..\LIB\Chipcon\srf04\Hal\CCxx00 RfReceivePacket.c
 RfSendPacket.c
 RfWriteRfSettings.c
 SetupTimer01.c
 SetupTimer23.c
 SpiReadBurstReg.c
 SpiReadReg.c
 SpiReadStatus.c
 SpiStrobe.c
 SpiWriteReg.c
 SpiWriteBurstReg.c
 UartSetup.c
 Wait.c
 RfReceivePacketSerial.c
 RfSendPacketSerial.c
 RfReceivePacketLockDetect.c
 RfSendPacketLockDetect.c

..\LIB\Chipcon\srf04\bootloader_reservation Bootloader_reservations.c

..\LIB\Chipcon\srf04\Cul\CCxx00 CalcCRC.c
 SyncSearch.c

Table 1. Contents of library directories

 SWRU039a Page 23

7.2 EB Library Reference
Table 3 is showing all the functions and macros found in the EB library. For more details on how to
use these functions/macros, please see the ebsrf04.h file, found in the ..\INC\Chipcon\srf04 folder.

Functions Description
BOOL ebButtonPushed(void) This function detects if the S1 button is being

pushed.
BOOL ebJoyPushed(void) This function detects if the joystick button is

being pushed.
void ebAdcInit(UINT8 adcInput) Function used to initialize the ADC.
UINT8 ebGetJoystickPosition(void) This function will read the ADC to determine

the current joystick position.
UINT8 ebReadPotentiometer(void) This function reads the potmeter located at

the SmartRF04EB using the ADC. The
function only reads the 8 MSBs from the
ADC.

void ebLcdInit(void) Function used to initialize the LCD display.
ebLcdUpdate
(UINT8 *pLine1, UINT8 *pLine2)

This function takes two ASCII strings (max 16
characters each) and outputs them on the
LCD display.

Macros Description
IO_PORT_INIT() Macro to set up the USB MCU crossbar and

I/O ports to communicate with the
SmartRF®04EB peripherals

SET_GLED(x)
SET_RLED(x)
SET_YLED(x)
SET_BLED(x)

Macros to turn the 4 LEDs on the
SmartRF®04EB on and off

BUTTON_PUSHED()
JOY_PUSHED()

Macros used to check if the push button (S1)
or joystick button is pushed.

RS_232_FORCE_ON()
RS_232_FORCE_OFF()

Macro for turning on/off the RS-232 on-board
power supply

HARDWARE_FLOW_CONTROL_ENABLE() Enable Hardware Flow Control. CTS is set as
an output. It is no longer possible to use the
joystick push button

HARDWARE_FLOW_CONTROL_DISABLE()

Disable Hardware Flow Control. CTS is set
as an input. It is now possible to use the
joystick push button (it shares the same pin
as CTS)

UART_CTS_FLOW_ENABLE()
UART_CTS_FLOW_DISABLE()

Set/Clear CTS (Clear to Send)

Table 2. EB functions and macros

7.3 HAL Library Reference
Table 3 is showing all the functions and macros found in the HAL library. For more details on how to
use these functions/macros, please see the halsrf04.h file, found in the ..\INC\Chipcon\srf04 folder.

Functions Description
void halUartSetup
(UINT16 baudRate, UINT8 options)

Function which implements all the initialization
necessary to establish a simple serial link.

void halSpiStrobe(BYTE strobe)

Function for writing a strobe command to the
CCxx00/CCxx50.

BYTE halSpiReadStatus(BYTE addr) Function for reading a CCxx00/CCxx50 status
register.

void halSpiWriteReg
(BYTE addr, BYTE value)

Function for writing to a single CCxx00/CCxx50
register

BYTE halSpiReadReg(BYTE addr) Function for reading a single CCxx00/CCxx50

 SWRU039a Page 24

register.
void halSpiWriteBurstReg
(BYTE addr, BYTE *buffer, BYTE count)

Function for writing to multiple CCxx00/CCxx50
 register, using SPI burst access.

void halSpiReadBurstReg
(BYTE addr, BYTE *buffer, BYTE count)

Function for reading multiple CCxx00/CCxx50
register, using SPI burst access

void halSetupTimer01
(UINT8 timer01, UINT8 clkSource,
UINT8 mode, BOOL timerInt)

Function for initializing timer 0 or timer 1. This
function only supports mode 0, 1,
and 2.

void halSetupTimer23
(UINT8 timerOption, clkSourceH, UINT8
clkSourceL, UINT8 mode, BOOL
timerInt)

Function for initializing timer 2 or timer 3. This
function only supports mode 0 and mode 1.

void RfWriteRfSettings
(RF_SETTINGS *pRfSettings)

This function is used to configure the
CCxx00/CCxx50 based on a given RF setting

void halRfSendPacket
(BYTE *txBuffer, UINT8 size)

This function can be used to transmit a packet
with packet length up to 63 bytes. The function
implements polling of GDO0.

BOOL halRfReceivePacket
(BYTE *rxBuffer, UINT8 *length)

This function can be used to receive a packet of
variable packet length (first byte in the packet
must be the length byte). The packet length
should not exceed the RX FIFO size. The function
implements polling of GDO0.

void halWait(UINT16 timeout)

Runs an idle loop for [timeout] microseconds.

void halRfSendPacketSerial
(BYTE *txBuffer, UINT8 size,
UINT8 startOfPayload,
BOOL crcEnable)

This function can be used to send a packet using
synchronous serial mode. Length byte and CRC is
optional. 4 sync bytes must be used

BOOL halRfReceivePacketSerial
(BYTE *rxBuffer, UINT8 sync3,
UINT8 sync2, UINT8 sync1,
UINT8 sync0, UINT8 fixedLength,
BOOL crcEnable)

This function can be used to receive a packet
using synchronous serial mode. Length byte and
CRC is optional. 4 sync bytes must be used

Macros Description
ENABLE_GLOBAL_INT(on) Macros used to enable/disable global interrupts.
INT_ENABLE(inum, on) Macro used together with the

INUM_* constants defined in regssrf04.h to
enable or disable certain interrupts.

INT_PRIORITY(inum, p) Macro used together with the
INUM_* constants defined in regsrf04.h to set the
priority of certain interrupts.

INT_GETFLAG(inum) Macro used together with the
INUM_* constants defined in regsrf04.h to read
the interrupt flags.

INT_SETFLAG(inum, f) Macro used together with the
INUM_* constants defined in regsrf04.h to set or
clear certain interrupt flags.

SETUP_GDO0_INT(trigger, polarity) This macro is setting up the GDO0 interrupt from
CCxx00. The interrupt is on P0.6 and is assign to
external interrupt0. The macro enables external
interrupt0.

SETUP_GDO2_INT(trigger, polarity) This macro is setting up the GDO2 interrupt from
CCxx00. The interrupt is on P0.7 and is assigned
to external interrupt1. The macro enables external
interrupt1.

UART_TX_ENABLE()
UART_RX_ENABLE()
UART_TX_WAIT()
UART_RX_WAIT()
UART_TX(x)

Macros which are helpful when transmitting and
receiving data over the serial interface.

 SWRU039a Page 25

UART_RX(x)
UART_WAIT_AND_SEND(x)
UART_WAIT_AND_RECEIVE(x)
SPI_ENABLE()
SPI_DISABLE()

Macros used to enable/disable the SPI

SPI_INIT(freq) Enble SPI (4-wire Single Master Mode, data
centered on first edge of SCK period. SCK is low
in the Idle State)

SPI_WAIT() Macro used for communication data polling and
wait on the SPI bus.

RESET_CCxxx0() Macro to reset the CCxxx0 and wait for it to be
ready.

POWER_UP_RESET_CCxxx0() Macro to reset the CCxxx0 after power_on and
wait for it to be ready.

TIMER0_RUN(x)
TIMER1_RUN(x)
TIMER2_RUN(x)
TIMER3_RUN(x)

Macros for stopping and starting the timers.

SET_RELOAD_VALUE_TIMER0
(period_us, clock_kHz)
SET_RELOAD_VALUE_TIMER1
(period_us, clock_kHz)

Macros used to calculate the reload value and
update the reload registers.

SET_RELOAD_VALUE_TIMER2_8BIT
(periodH_us, periodL_us, clock_kHzH,
clock_kHzL)
SET_RELOAD_VALUE_TIMER3_8BIT
(periodH_us, periodL_us, clock_kHzH,
clock_kHzL)

Macros used to calculate the reload value and
update the reload registers.

SET_RELOAD_VALUE_TIMER2_16BIT
(period_us, clock_kHz)
SET_RELOAD_VALUE_TIMER3_16BIT
(period_us, clock_kHz)

Macros used to calculate the reload value and
update the reload registers.

ADC_ENABLE()

ADC_DISABLE()

Macros used to enable/disable the ADC.

ADC_SAMPLE()

This macro clears the ADC0 Conversion
Complete Interrupt Flag, initiates ADC0
conversion and waits for the conversion to
complete

CLOCK_INIT() This section contains a macro for initializing the
internal oscillator, the system clock and the 4x
Clock Multiplier

CLOCK_INIT() Select the Internal Oscillator as Multiplier input
source and disable the watchdog timer SYSCLK =
4X Clock Multiplier / 2

Table 3. HAL functions and macros

7.4 CUL Library Reference
Table 4 is showing all the functions and macros found in the CUL library. For more details on how
to use these functions/macros, please see the culsrf04.h file, found in the ..\INC\Chipcon\srf04
folder.

 SWRU039a Page 26

Functions Description
UINT16 culCalcCRC
(BYTE crcData, UINT16 crcReg)

A CRC-16/CCITT implementation.

void culSyncSearch
(UINT8 sync3, UINT8 sync2, UINT8 sync1,
UINT8 sync0)

Function for searching for a 4 bytes sync
word.

Table 4. CUL functions and macros

 SWRU039a Page 27

8. Document history

Revision Date Description/Changes
1.3 2007-01-12 Cosmetic changes. Removed WOR examples as

they are not up-to-date with AN047. Removed the
FEC option in the Link1 example as this option has
been removed from the code example.

1.2 2006-05-02 Added more examples
1.1 2005-11-09 Added more examples
1.0 2005-02-11 Initial release.

 SWRU039a Page 28

	Introduction
	Definitions
	General Notes about the Software
	Running the Examples
	MCU Examples
	Audio
	Joystick
	Potmeter
	Spi
	Timer01
	Timer23

	Radio Examples
	Link
	Link1
	SerialLink
	Link2
	InfiniteLink

	Libraries
	Library Structure
	EB Library Reference
	HAL Library Reference
	CUL Library Reference

	Document history

