
User’s Manual
V4.04

μC/ FSTM

The Embedded File System

Micriμm

1290 Weston Road, Suite 306

Weston, FL 33326

USA

www.micrium.com

Designations used by companies to distinguish their products are often claimed as

trademarks. In all instances where Micriμm Press is aware of a trademark claim, the product

name appears in initial capital letters, in all capital letters, or in accordance with the

vendor’s capatilization preference. Readers should contact the appropriate companies for

more complete information on trademarks and trademark registrations. All trademarks and

registerd trademarks in this book are the property of their respective holders.

Copyright © 2010 by Micriμm except where noted otherwise. All rights reserved. Printed in

the United States of America. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior

written permission of the publisher; with the exception that the program listings may be

entered, stored, and executed in a computer system, but they may not be reproduced for

publication.

The programs and code examples in this book are presented for instructional value. The

programs and examples have been carefully tested, but are not guaranteed to any particular

purpose. The publisher does not offer any warranties and does not guarantee the accuracy,

adequacy, or completeness of any information herein and is not responsible for any errors

and ommissions. The publisher assumes no liability for damages resulting from the use of

the information in this book or for any infringement of the intellectual property rights of

third parties that would result from the use of this information.

600-uC-FS-001

3

Table of Contents

Chapter 1 Introduction .. 15
1-1 What Is a File System? .. 15
1-2 μC/FS .. 16
1-3 Typical Usages ... 17
1-4 Why FAT? ... 18
1-5 Chapter Contents ... 18

Chapter 2 μC/FS Architecture .. 22
2-1 Architecture Components ... 24
2-1-1 Your Application ... 24
2-1-2 LIB (Libraries) ... 24
2-1-3 POSIX API Layer .. 24
2-1-4 FS Layer ... 24
2-1-5 File System Driver Layer .. 26
2-1-6 Device Driver Layer .. 26
2-1-7 CPU Layer .. 26
2-1-8 RTOS Layer .. 27

Chapter 3 Directories and Files .. 28
3-1 Application Code ... 31
3-2 CPU ... 33
3-3 Board Support Package (BSP) .. 34
3-4 μC/CPU, CPU Specific Source Code .. 35
3-5 μC/LIB, Portable Library Functions ... 37
3-6 μC/Clk, Time/Calendar Management .. 38
3-7 μC/CRC, Checksums and Error Correction Codes 40
3-8 μC/FS Platform-Independent Source Code .. 42
3-9 μC/FS FAT Filesystem Source Code ... 45
3-10 μC/FS Memory Device Drivers .. 46

4

3-11 μC/FS Platform-Specific Source Code ... 50
3-12 μC/FS OS Abstraction Layer ... 51
3-13 Summary .. 52

Chapter 4 Miscellaneous .. 59
4-1 Nomenclature ... 59
4-2 μC/FS Device and Volume Names .. 61
4-3 μC/FS File and Directory Names and Paths 62
4-4 μC/FS Name Lengths ... 63
4-5 Resource Usage ... 65

Chapter 5 Devices and Volumes .. 67
5-1 Device Operations ... 68
5-2 Using Devices .. 69
5-3 Using Removable Devices ... 71
5-4 Partitions .. 72
5-5 Volume Operations .. 76
5-6 Using Volumes ... 77
5-7 Using Volume Cache .. 79
5-7-1 Choosing Cache Parameters ... 80
5-7-2 Other Caching & Buffering Mechanisms ... 82

Chapter 6 POSIX API ... 83
6-1 Supported Functions ... 84
6-2 Working Directory Functions ... 85
6-3 File Access Functions .. 86
6-3-1 Opening, Reading & Writing Files ... 87
6-3-2 Getting or Setting the File Position ... 90
6-3-3 Configuring a File Buffer .. 91
6-3-4 Diagnosing a File Error .. 93
6-3-5 Atomic File Operations Using File Lock .. 93
6-4 Directory Access Functions .. 94
6-5 Entry Access Functions ... 96

Chapter 7 Files .. 97
7-1 File Access Functions .. 98
7-1-1 Opening Files ... 99

5

7-1-2 Getting Information About a File ... 100
7-1-3 Configuring a File Buffer .. 101
7-1-4 File Error Functions .. 102
7-1-5 Atomic File Operations Using File Lock .. 102
7-2 Entry Access Functions ... 103
7-2-1 File and Directory Attributes .. 104
7-2-2 Creating New Files and Directories ... 105
7-2-3 Deleting Files and Directories ... 106

Chapter 8 Directories .. 107
8-1 Directory Access Functions .. 108

Chapter 9 File Systems: FAT .. 109
9-1 FAT Architecture .. 110
9-1-1 FAT12 / FAT16 / FAT32 .. 111
9-1-2 Short and Long File Names ... 111
9-1-3 Directories and Directory Entries .. 112
9-1-4 FAT System Driver Architecture .. 114
9-2 Operations .. 115
9-2-1 Formatting .. 115
9-2-2 Disk Check ... 116
9-2-3 Journaling ... 117

Chapter 10 Device Drivers .. 119
10-1 Provided Device Drivers .. 120
10-1-1 Driver Characterization .. 121

Chapter 11 IDE/CF Driver ... 124
11-1 Files and Directories .. 124
11-2 Using the IDE/CF Driver ... 125
11-2-1 ATA (True IDE) Communication ... 128
11-2-2 IDE BSP Overview .. 131

Chapter 12 Logical Device Driver ... 133

Chapter 13 MSC Driver ... 134

6

13-1 Files and Directories .. 134
13-2 Using the MSC Driver .. 135

Chapter 14 NAND Flash Driver ... 137
14-1 Files and Directories .. 138
14-2 Driver & Device Characteristics ... 139
14-3 Using a NAND Device (Software ECC) .. 140
14-3-1 Driver Architecture ... 146
14-3-2 Hardware .. 146
14-3-3 NAND BSP Overview ... 148
14-4 Physical-Layer Drivers ... 148
14-4-1 FSDev_NAND_0512x08 .. 149
14-4-2 FSDev_NAND_2048x08, FSDev_NAND_2048x16 149
14-4-3 FSDev_NAND_AT45 ... 150

Chapter 15 NOR Flash Driver ... 151
15-1 Files and Directories .. 152
15-2 Driver & Device Characteristics ... 154
15-3 Using a Parallel NOR Device ... 156
15-3-1 Driver Architecture ... 160
15-3-2 Hardware .. 160
15-3-3 NOR BSP Overview .. 162
15-4 Using a Serial NOR Device .. 163
15-4-1 Hardware .. 164
15-4-2 NOR SPI BSP Overview ... 165
15-5 Physical-Layer Drivers ... 166
15-5-1 FSDev_NOR_AMD_1x08, FSDev_NOR_AMD_1x16 167
15-5-2 FSDev_NOR_Intel_1x16 ... 167
15-5-3 FSDev_NOR_SST39 ... 168
15-5-4 FSDev_NOR_STM25 .. 168
15-5-5 FSDev_NOR_SST25 ... 169

Chapter 16 RAM Disk Driver ... 170
16-1 Files and Directories .. 170
16-2 Using the RAM Disk Driver .. 171

Chapter 17 SD/MMC Drivers .. 174

7

17-1 Files and Directories .. 176
17-2 Using the SD/MMC CardMode Driver ... 177
17-2-1 SD/MMC CardMode Communication ... 180
17-2-2 SD/MMC CardMode Communication Debugging 182
17-2-3 SD/MMC CardMode BSP Overview .. 187
17-3 Using the SD/MMC SPI Driver ... 189
17-3-1 SD/MMC SPI Communication ... 193
17-3-2 SD/MMC SPI Communication Debugging .. 194
17-3-3 SD/MMC SPI BSP Overview .. 197

Appendix A μC/FS API Reference Manual .. 198
A-1 General File System Functions .. 200
A-1-1 FS_DevDrvAdd() ... 201
A-1-2 FS_Init() ... 203
A-1-3 FS_VersionGet() .. 204
A-1-4 FS_WorkingDirGet() ... 205
A-1-5 FS_WorkingDirSet() .. 206
A-2 Posix API Functions ... 207
A-2-1 fs_asctime_r() ... 210
A-2-2 fs_chdir() ... 211
A-2-3 fs_clearerr() ... 212
A-2-4 fs_closedir() .. 213
A-2-5 fs_ctime_r() ... 214
A-2-6 fs_fclose() ... 215
A-2-7 fs_feof() ... 216
A-2-8 fs_ferror() .. 217
A-2-9 fs_fflush() .. 218
A-2-10 fs_fgetpos() ... 219
A-2-11 fs_flockfile() .. 220
A-2-12 fs_fopen() .. 221
A-2-13 fs_fread() ... 222
A-2-14 fs_fseek() .. 223
A-2-15 fs_fsetpos() ... 225
A-2-16 fs_ftell() ... 226
A-2-17 fs_ftruncate() .. 227
A-2-18 fs_ftrylockfile() .. 228
A-2-19 fs_funlockfile() .. 229
A-2-20 fs_fwrite() .. 230

8

A-2-21 fs_getcwd() ... 231
A-2-22 fs_localtime_r() ... 232
A-2-23 fs_mkdir() .. 233
A-2-24 fs_mktime() ... 234
A-2-25 fs_opendir() ... 235
A-2-26 fs_readdir_r() .. 236
A-2-27 fs_remove() ... 237
A-2-28 fs_rename() ... 239
A-2-29 fs_rewind() .. 241
A-2-30 fs_rmdir() ... 242
A-2-31 fs_setbuf() ... 244
A-2-32 fs_setvbuf() ... 245
A-3 Device Functions ... 247
A-3-1 FSDev_Close() .. 249
A-3-2 FSDev_GetDevName() ... 250
A-3-3 FSDev_GetDevCnt() ... 251
A-3-4 FSDev_GetDevCntMax() .. 252
A-3-5 FSDev_GetNbrPartitions() .. 253
A-3-6 FSDev_Open() .. 254
A-3-7 FSDev_PartitionAdd() ... 256
A-3-8 FSDev_PartitionFind() .. 257
A-3-9 FSDev_PartitionInit() .. 259
A-3-10 FSDev_Query() ... 261
A-3-11 FSDev_Rd() ... 262
A-3-12 FSDev_Refresh() ... 264
A-3-13 FSDev_Wr() ... 266
A-4 Directory Access Functions .. 267
A-4-1 FSDir_Close() .. 268
A-4-2 FSDir_IsOpen() ... 269
A-4-3 FSDir_Open() .. 270
A-4-4 FSDir_Rd() .. 272
A-5 Entry Access Functions ... 273
A-5-1 FSEntry_AttribSet() ... 274
A-5-2 FSEntry_Copy() .. 276
A-5-3 FSEntry_Create() .. 278
A-5-4 FSEntry_Del() .. 280
A-5-5 FSEntry_Query() ... 282
A-5-6 FSEntry_Rename() .. 284

9

A-5-7 FSEntry_TimeSet() .. 286
A-6 File Functions ... 288
A-6-1 FSFile_BufAssign() ... 290
A-6-2 FSFile_BufFlush() ... 292
A-6-3 FSFile_Close() ... 293
A-6-4 FSFile_ClrErr() .. 294
A-6-5 FSFile_IsEOF() .. 295
A-6-6 FSFile_IsErr() .. 296
A-6-7 FSFile_IsOpen() .. 297
A-6-8 FSFile_LockAccept() .. 299
A-6-9 FSFile_LockGet() .. 300
A-6-10 FSFile_LockSet() .. 301
A-6-11 FSFile_Open() ... 302
A-6-12 FSFile_PosGet() .. 305
A-6-13 FSFile_PosSet() .. 306
A-6-14 FSFile_Query() .. 308
A-6-15 FSFile_Rd() ... 309
A-6-16 FSFile_Truncate() ... 311
A-6-17 FSFile_Wr() ... 312
A-7 Volume Functions .. 314
A-7-1 FSVol_Close() ... 316
A-7-2 FSVol_Fmt() .. 317
A-7-3 FSVol_GetDfltVolName() .. 319
A-7-4 FSVol_GetVolCnt() .. 320
A-7-5 FSVol_GetVolCntMax() ... 321
A-7-6 FSVol_GetVolName() .. 322
A-7-7 FSVol_IsDflt() .. 323
A-7-8 FSVol_IsMounted() ... 324
A-7-9 FSVol_LabelGet() .. 325
A-7-10 FSVol_LabelSet() .. 327
A-7-11 FSVol_Open() .. 329
A-7-12 FSVol_Query() ... 331
A-7-13 FSVol_Rd() .. 332
A-7-14 FSVol_Wr() .. 334
A-8 Volume Cache Functions ... 335
A-8-1 FSVol_CacheAssign () .. 336
A-8-2 FSVol_CacheInvalidate () ... 338
A-8-3 FSVol_CacheFlush () .. 339

10

A-9 NAND Driver Functions .. 340
A-9-1 FSDev_NAND_LowFmt() .. 341
A-9-2 FSDev_NAND_LowMount() .. 342
A-9-3 FSDev_NAND_LowUnmount() ... 343
A-9-4 FSDev_NAND_PhyRdSec() .. 344
A-9-5 FSDev_NAND_PhyWrSec() .. 346
A-9-6 FSDev_NAND_PhyEraseBlk() .. 348
A-10 NOR Driver Functions .. 350
A-10-1 FSDev_NOR_LowFmt() .. 352
A-10-2 FSDev_NOR_LowMount() .. 353
A-10-3 FSDev_NOR_LowUnmount() .. 354
A-10-4 FSDev_NOR_LowCompact() .. 355
A-10-5 FSDev_NOR_LowDefrag() .. 356
A-10-6 FSDev_NOR_PhyRd() ... 357
A-10-7 FSDev_NOR_PhyWr() ... 359
A-10-8 FSDev_NOR_PhyEraseBlk() ... 361
A-10-9 FSDev_NOR_PhyEraseChip() .. 363
A-11 SD/MMC Driver Functions ... 364
A-11-1 FSDev_SD_xxx_QuerySD() .. 365
A-11-2 FSDev_SD_xxx_RdCID() .. 367
A-11-3 FSDev_SD_xxx_RdCSD() ... 369
A-12 FAT System Driver Functions .. 370
A-12-1 FS_FAT_JournalOpen() .. 371
A-12-2 FS_FAT_JournalClose() .. 372
A-12-3 FS_FAT_JournalStart() ... 373
A-12-4 FS_FAT_JournalStop() ... 374
A-12-5 FS_FAT_VolChk() .. 375

Appendix B μC/FS Error Codes ... 376
B-1 System Error Codes ... 376
B-2 Buffer Error Codes ... 376
B-3 Cache Error Codes .. 377
B-4 Device Error Codes .. 377
B-5 Device Driver Error Codes ... 378
B-6 Directory Error Codes .. 378
B-7 ECC Error Codes .. 378
B-8 Entry Error Codes .. 378
B-9 File Error Codes ... 379

11

B-10 Name Error Codes ... 379
B-11 Partition Error Codes ... 380
B-12 Pools Error Codes .. 380
B-13 File System Error Codes .. 380
B-14 Volume Error Codes ... 381
B-15 OS Layer Error Codes .. 382

Appendix C μC/FS Porting Manual .. 383
C-1 Date/Time management .. 385
C-2 CPU Port ... 386
C-3 OS Kernel ... 386
C-4 Device Driver .. 394
C-4-1 NameGet() .. 396
C-4-2 Init() ... 397
C-4-3 Open() ... 398
C-4-4 Close() ... 400
C-4-5 Rd() ... 401
C-4-6 Wr() ... 402
C-4-7 Query() .. 404
C-4-8 IO_Ctrl() ... 406
C-5 IDE/CF Device BSP .. 408
C-5-1 FSDev_IDE_BSP_Open() .. 410
C-5-2 FSDev_IDE_BSP_Close() ... 411
C-5-3 FSDev_IDE_BSP_Lock() / FSDev_IDE_BSP_Unlock() 412
C-5-4 FSDev_IDE_BSP_Reset() ... 413
C-5-5 FSDev_IDE_BSP_RegRd() ... 414
C-5-6 FSDev_IDE_BSP_RegWr() ... 415
C-5-7 FSDev_IDE_BSP_CmdWr() .. 416
C-5-8 FSDev_IDE_BSP_DataRd() .. 417
C-5-9 FSDev_IDE_BSP_DataWr() .. 418
C-5-10 FSDev_IDE_BSP_DMA_Start() ... 419
C-5-11 FSDev_IDE_BSP_DMA_End() .. 420
C-5-12 FSDev_IDE_BSP_GetDrvNbr() ... 422
C-5-13 FSDev_IDE_BSP_GetModesSupported() .. 423
C-5-14 FSDev_IDE_BSP_SetMode() .. 424
C-5-15 FSDev_IDE_BSP_Dly400_ns() .. 425
C-6 NAND Flash Physical-Layer Driver .. 426
C-6-1 Open() ... 429

12

C-6-2 Close() ... 431
C-6-3 RdPage() ... 432
C-6-4 RdSpare() .. 434
C-6-5 WrPage() ... 435
C-6-6 WrSpare() .. 436
C-6-7 CopyBack() ... 437
C-6-8 EraseBlk() ... 438
C-6-9 IO_Ctrl() ... 439
C-7 NAND Flash BSP .. 440
C-7-1 FSDev_NAND_BSP_Open() ... 441
C-7-2 FSDev_NAND_BSP_Close() ... 442
C-7-3 FSDev_NAND_BSP_ChipSelEn() ... 443
C-7-4 FSDev_NAND_BSP_ChipSelDis() .. 444
C-7-5 FSDev_NAND_BSP_RdData() .. 445
C-7-6 FSDev_NAND_BSP_WrAddr() .. 446
C-7-7 FSDev_NAND_BSP_WrCmd() .. 447
C-7-8 FSDev_NAND_BSP_WrData() .. 448
C-7-9 FSDev_NAND_BSP_WaitWhileBusy() ... 449
C-8 NAND Flash SPI BSP ... 450
C-9 NOR Flash Physical-Layer Driver .. 450
C-9-1 Open() ... 453
C-9-2 Close() ... 454
C-9-3 Rd() ... 455
C-9-4 Wr() ... 456
C-9-5 EraseBlk() ... 457
C-9-6 IO_Ctrl() ... 458
C-10 NOR Flash BSP .. 459
C-10-1 FSDev_NOR_BSP_Open() .. 460
C-10-2 FSDev_NOR_BSP_Close() ... 461
C-10-3 FSDev_NOR_BSP_Rd_XX() .. 462
C-10-4 FSDev_NOR_BSP_RdWord_XX() ... 463
C-10-5 FSDev_NOR_BSP_WrWord_XX() ... 464
C-10-6 FSDev_NOR_BSP_WaitWhileBusy() .. 465
C-11 NOR Flash SPI BSP ... 466
C-12 SD/MMC Cardmode BSP .. 467
C-12-1 FSDev_SD_Card_BSP_Open() ... 470
C-12-2 FSDev_SD_Card_BSP_Lock() .. 471
C-12-3 FSDev_SD_Card_BSP_CmdStart() .. 472

13

C-12-4 FSDev_SD_Card_BSP_CmdWaitEnd() .. 477
C-12-5 FSDev_SD_Card_BSP_CmdDataRd() ... 481
C-12-6 FSDev_SD_Card_BSP_CmdDataWr() ... 484
C-12-7 FSDev_SD_Card_BSP_GetBlkCntMax() .. 487
C-12-8 FSDev_SD_Card_BSP_GetBusWidthMax() 488
C-12-9 FSDev_SD_Card_BSP_SetBusWidth() .. 489
C-12-10 FSDev_SD_Card_BSP_SetClkFreq() ... 491
C-12-11 FSDev_SD_Card_BSP_SetTimeoutData() ... 492
C-12-12 FSDev_SD_Card_BSP_SetTimeoutResp() .. 493
C-13 SD/MMC SPI mode BSP .. 493
C-14 SPI BSP .. 494
C-14-1 Open() ... 499
C-14-2 Close() ... 501
C-14-3 Lock() / Unlock() ... 502
C-14-4 Rd() ... 503
C-14-5 Wr() ... 504
C-14-6 ChipSelEn() /ChipSelDis() .. 505
C-14-7 SetClkFreq() .. 506

Appendix D μC/FS Types and Structures ... 507
D-1 FS_CFG .. 508
D-2 FS_DEV_INFO ... 510
D-3 FS_DEV_NAND_CFG .. 511
D-4 FS_DEV_NOR_CFG .. 513
D-5 FS_DEV_RAM_CFG .. 516
D-6 FS_DIR_ENTRY (struct fs_dirent) .. 517
D-7 FS_ENTRY_INFO .. 518
D-8 FS_FAT_SYS_CFG ... 520
D-9 FS_PARTITION_ENTRY ... 522
D-10 FS_VOL_INFO ... 523

Appendix E μC/FS Configuration .. 525
E-1 File System Configuration ... 526
E-2 Feature Inclusion Configuration .. 527
E-3 Name Restriction Configuration .. 530
E-4 Debug Configuration .. 531
E-5 Argument Checking Configuration .. 531

14

E-6 File System Counter Configuration ... 532
E-7 Fat Configuration ... 532
E-8 SD/MMC SPI Configuration ... 533
E-9 Trace Configuration ... 534

Appendix F Shell Commands .. 535
F-1 Files and Directories .. 536
F-2 Using the Shell Commands ... 537
F-3 Commands ... 540
F-3-1 fs_cat .. 541
F-3-2 fs_cd ... 542
F-3-3 fs_cp ... 544
F-3-4 fs_date .. 545
F-3-5 fs_df .. 546
F-3-6 fs_ls ... 547
F-3-7 fs_mkdir .. 548
F-3-8 fs_mkfs ... 549
F-3-9 fs_mount ... 550
F-3-10 fs_mv .. 551
F-3-11 fs_od ... 552
F-3-12 fs_pwd .. 553
F-3-13 fs_rm ... 554
F-3-14 fs_rmdir ... 555
F-3-15 fs_touch .. 556
F-3-16 fs_umount ... 557
F-3-17 fs_wc ... 558
F-4 Configuration .. 559

Appendix G Bibliography ... 561

Appendix H μC/FS Licensing Policy .. 563
H-1 μC/FS Licensing ... 563
H-1-1 μC/FS Source Code ... 563
H-1-2 μC/FS Maintenance Renewal .. 564
H-1-3 μC/FS Source Code Updates .. 564
H-1-4 μC/FS Support ... 564

15

Chapter

1
Introduction

Files and directories are common abstractions, which we encounter daily when sending an

e-mail attachment, downloading a new application or archiving old information. Those

same abstractions may be leveraged in an embedded system for similar tasks or for unique

ones. A device may serve web pages, play or record media (images, video or music) or log

data. The file system software which performs such actions must meet the general

expectations of an embedded environment—a limited code footprint, for instance—which

still delivering good performance.

1-1 WHAT IS A FILE SYSTEM?

A file system is a collection of files and directories; since directories are containers of files, a

hierarchical organization results. A PC operating system such as Windows or Linux presents

its file systems through a visual interface (e.g, “Windows Explorer”), with a tree-like

structure of entries that can be moved, renamed or deleted with menus or actions like

“dragging and dropping”. Alternatively, a headless system like DOS (or any other command

line) integrates utilities to accomplish the same operations.

Above, we stated that a system “presents its file systems”—file systems plural—because

each drive is a separate file system, a separate collection of files. Each of these is anchored

by some unique drive letter (Windows) or mount point (Linux) within the larger context of

a “virtual” file system wherein every entry has a unique identifier. (Within the “everything is

a file” mentality of Linux, this is taken further, but that is beyond this discussion.) Being

separate, each file system may have a different format—one may be FAT, the next NTFS—

and will be located on different physical devices or on separate partitions of the same

device.

If files are to be read from a volume, file system software is required, with three basic

elements. First, a device driver must be able to read and write to the device. Next, a file

system driver must be able to parse the device’s on-disk structures to read the names,

16

Introduction

properties and data of files and to format those structures to modify existing entries and

create new ones. Finally, an application-level interface must provide for the exigencies of

file and directory access.

1-2 μC/FS

μC/FS is a compact, reliable, high-performance file system. It offers full-featured file and

directory access with flexible device and volume management including support for

partitions.

Source Code: μC/FS is provided in ANSI-C source to licensees. The source code is written

to an exacting coding standard that emphasizes cleanness and readability. Moreover,

extensive comments pepper the code to elucidate its logic and describe global variables and

functions. Where appropriate, the code directly references standards and supporting

documents.

Device Drivers: Device drivers are available for most common media including SD/MMC

cards, NAND flash, NOR flash and IDE/CF. Each of these is written with a clear, layered

structure so that it can easily be ported to your hardware. The device driver structure is

simple—basically just initialization, read and write functions—so that μC/FS can easily be

ported to a new medium.

Devices and Volumes: Multiple media can be accessed simultaneously, including multiple

instances of the same type of medium (since all drivers are re-entrant). DOS partitions are

supported, so more than one volume can be located on a device. In addition, the logical

device driver allows a single volume to span several (typically identical) devices, such as a

bank of flash chips.

FAT: All standard FAT variants and features are supported including FAT12/FAT16/FAT32

and long file names, which encompasses Unicode file names. Files can be up to 4-GB and

volumes up to 8-TB (the standard maximum). An optional journaling module provides total

power fail-safety to the FAT system driver.

Application Programming Interface (API): μC/FS provides two APIs for file and

directory access. A standard POSIX-compatible API is provided, including functions like

fs_fwrite(), fs_fread() and fs_fsetpos() that have the same arguments and return values as

17

Introduction

the POSIX functions fwrite(), fread() and fsetpos(). Another API with parallel argument

placement and meaningful return error codes is provided as an alternate, with functions like

FSFile_Wr(), FSFile_Rd() and FSFile_PosSet().

Scalable: The memory footprint of μC/FS can be adjusted at compile-time based on the

features you need and the desired level of run-time argument checking. For applications

with limited RAM, features such as cache and read/write buffering can be disabled; for

applications with sufficient RAM, these features can be enabled in order to gain better

performance.

Portable: μC/FS was designed for resource-constrained embedded applications. Although

μC/FS can work on 8- and 16-bit processors, it will work best with 32- or 64-bit CPUs.

RTOS: μC/FS does not assume the presence of a RTOS kernel. However, if you are using a

RTOS, a simple port layer is required (consisting of a few semaphores), in order to prevent

simultaneous access to core structures from different tasks. If you are not using a RTOS, this

port layer may consist of empty functions.

1-3 TYPICAL USAGES

Applications have sundry reasons for non-volatile storage. A subset require (or benefit from)

organizing data into named files within a directory hierarchy on a volume—basically, from

having a file system. Perhaps the most obvious expose the structure of information to the

user, like products that store images, video or music that are transferred to or from a PC. A

web interface poses a similar opportunity, since the URLs of pages and images fetched by

the remote browser would resolve neatly to locations on a volume.

Another typical use is data logging. A primary purpose of a device may be to collect data

from its environment for later retrieval. If the information must persist across device reset

events or will exceed the capacity of its RAM, some non-volatile memory is necessary. The

benefit of a file system is the ability to organize that information logically, with a fitting

directory structure, through a familiar API.

A file system can also store programs. In a simple embedded CPU, the program is stored at

a fixed location in a non-volatile memory (usually flash). If an application must support

firmware updates, a file system may be a more convenient place, since the software handles

the details of storing the program. The boot-loader, of course, would need to be able to

18

Introduction

load the application, but since that requires only read-only access, no imposing program is

required. The ROM boot-loaders in some CPUs can check the root directory of a SD card for

a binary in addition to the more usual locations such as external NAND or NOR flash.

1-4 WHY FAT?

File Allocation Table (FAT) is a simple file system, widely supported across major OSs.

While it has been supplanted as the format of hard drives in Windows PCs, removable

media still use FAT because of its wide support. That is suitable for embedded systems,

which would often be challenged to muster the resources for the modern file systems

developed principally for large fixed disks.

μC/FS supports FAT because of the interoperability requirements of removable media,

allowing that a storage medium be removed from an embedded device and connected to a

PC. All variants and extensions are supported to specification.

A notorious weakness of FAT (exacerbated by early Windows system drivers) is its non-fail

safe architecture. Certain operations leave the file system in an inconsistent state, albeit

briefly, which may corrupt the disk or force a disk check upon unexpected power failure.

μC/FS minimizes the problem by ordering modifications wisely. The problem is completely

solved in an optional journaling module which logs information about pending changes so

those can be resumed on start-up after a power failure.

1-5 CHAPTER CONTENTS

Figure 1-1 shows the layout and flow of the book. This diagram should be useful to

understand the relationship between chapters. The first (leftmost) column lists chapters that

should be read in order to understand μC/FS’s structure. The chapters in the second column

give greater detail about the application of μC/FS. Each of the chapters in the third column

examines a storage technology and its device driver. Finally, the fourth column lists the

appendices, the topmost being the μC/FS reference, configuration and porting manuals.

Reference these sections regularly when designing a product using μC/FS.

19

Introduction

Figure 1-1 μC/FS Book Layout

Chapter 1, Introduction. This chapter.

Chapter 2, μC/FS Architecture. This chapter contains a simplified block diagram of the

various different μC/FS modules and their relationships. The relationships are then

explained.

Chapter 3, Directories and Files. This chapter explains the directory structure and files

needed to build a μC/FS-based application. Learn about the files that are needed, where

they should be placed, which module does what, and more.

Chapter 4, Miscellaneous. In this chapter, you will learn the nomenclature used in μC/FS

to access files and folders and the ressources needed to use μC/FS in your application.

Chapter 5, Devices and Volumes. Every file and directory accessed with μC/FS is a

constituent of a volume (a collection of files and directories) on a device (a physical or

logical sector-addressed entity). This chapter explains how devices and volumes are

managed.

�������	�
��

��
��
��	�
��	����

�
��	���
���
����
�
���

�
�	���������

���
	��
���

�������

�����
���

�
���

�
��	���
��

�����
���
� ����

���
	��
��
����

!�"
	��
���
	��
��
���

����������"��
������#���$�

��
���

%�%��
�����
��
���

%�&�
�����
��
���

&����
�'
��
���

��
����
��
���

��
��
����
�"
������

��
��
� (������
����	�����

��
��
���)
"����
��

������

��
���
������

��������

*
+�
�"��(�

���

���

���

���

���

��	�

�
�

���

����

����

����

��
�

����

����

�
�

���

���

���

������

���

��,
��
��
���

����

��
������
&�)����	�
������

��
��
,����
�����

���

���

���)�	�

!
	���
�"
���
	

���

20

Introduction

Chapter 6, POSIX API. The best-known API for accessing and managing files and

directories is specified within the POSIX standard (IEEE Std 1003.1), which is based in part

in the ISO C standard (ISO/IEC 9899). This chapter explains how to use this API and

examines some of its pitfalls and shortcomings.

Chapter 7, Files. μC/FS complements the POSIX API with its own file access API. This

chapter explains this API.

Chapter 8, Directories. μC/FS complements the POSIX API with its own directory access

API. This chapter explains this API.

Chapter 9, FAT File System. This chapter details the low-level architecture of the FAT file

system. Though the API of μC/FS is file system agnostic, the file system type does affect

performance, reliability and security, as explained here as well.

Chapter 10, Device Drivers. All hardware accesses are eventually performed by a device

driver. This chapter describes the drivers available with μC/FS and broadly profiles

supported media types in terms of cost, performance and complexity.

Chapter 11, IDE Devices. The IDE driver supports compact flash (CF) cards and ATA IDE

hard drives.

Chapter 12, Logical Devices Driver. This feature is not available yet.

Chapter 13, Mass Storage Class (MSC) Driver. The now-common USB drive implements

the Mass Storage Class (MSC) protocol, and a CPU with a USB host interface can access

these devices with appropriate software. The MSC driver, discussed in this chapter, with

μC/USB-Host is just such appropriate software.

Chapter 14, NAND Flash. NAND flash is the first category of flash media. Write speeds

are fast (compared to NOR flash), at the expense of slower read speeds and complexities

such as bit-errors and page program limitations. This chapter describes the functions of

these devices and the architecture of the supporting driver.

Chapter 15, NOR Flash. NOR flash is the second category of flash media. They suffer

slow write speeds, balanced with blazingly-fast read speeds. Importantly, they are not

plagued by the complications of NAND flash, which simplifies interfacing with them. This

chapter describes the function of these devices and the architecture of the supporting driver.

21

Introduction

Chapter 16, RAM Disk. This chapter demonstrates the use of the simplest storage

medium, the RAM disk.

Chapter 17, SD/MMC Devices. SD and MMC cards are flash-based removable storage

devices commonly used in consumer electronics. For embedded CPUs, a SD/MMC card is

an appealing medium because of its simple and widely-supported physical interfaces (one

choice is SPI). This chapter describes the interface and function of these devices.

Appendix A, μC/FS API Reference Manual. The reference manual describes every API

function. The arguments and return value of each function are given, supplemented by

notes about its use and an example code listing.

Appendix B, μC/FS Error Codes. This appendix provides a brief explanation of μC/FS

error codes defined in fs_err.h.

Appendix C, μC/FS Porting Manual. The portability of μC/FS relies upon ports to

interface between its modules and the platform or environment. Most of the ports constitute

the board support package (BSP), which is interposed between the file system suite (or

driver) and hardware. The OS port adapts the software to a particularly OS kernel. The

porting manual describes each port function.

Appendix D, μC/FS Types and Structures. This appendix provides a reference to the

μC/FS types and structures.

Appendix E, μC/FS API Configuration Manual. μC/FS is configured via defines in a

single configuration file, fs_cfg.h. The configuration manual specifies each define and the

meaning of possible values.

Appendix F, μC/FS Shell Commands. A familiar method of accessing a file system, at

least to engineers and computer scientists, is the command line. In an embedded system, a

UART is a port over which commands can be executed easily, even for debug purposes. A

set of shell commands have been developed for μC/FS that mirror the syntax of UNIX

utilities, as described in this chapter.

Appendix G, Bibliographhy.

Appendix H, Licensing Policy.

22

Chapter

2
μC/FS Architecture

μC/FS was written from the ground up to be modular and easy to adapt to different CPUs

(Central Processing Units), RTOSs (Real-Time Operating Systems), file system media and

compilers. Figure 2-1 shows a simplified block diagram of the different μC/FS modules and

their relationships.

Notice that all of the μC/FS files start with ‘fs_’. This convention allows you to quickly

identify which files belong to μC/FS. Also note that all functions and global variables start

with ‘FS’, and all macros and #defines start with ‘FS_’.

23

μC/FS Architecture

Figure 2-1 μC/FS architecture.

!�*-�����((�
	��
��
��������

����������!� ��
���	
���

���
	����
����!� ��

��,
���
����
���

%�%�
���
����	�
��

%�&
���
��������

&����
�'
���
����	���

��
���

���
����
��
���
���
����
��	�
��

���
	����
����*��
���
����
���������
��

����	������
����
����

���������
���������

���!� ��
����
��������
����	�����
�����������
��������
���
����

���
����

����������
��������
���������
���
	���������

��������

� �������
����!� ��
����	���
����	��
����
����	���������
����	��������

&����!� ��
���������

&���

��.�!� ��
�
��	�	��
�
���
�
��
����

��. ���
	�

��������

�����
���
��������
���

���
�����

���������

���
����

����	���	�����
����	���	�����
����	���	�����
����	�������

����	�������
����	����
���
����	�� ����	���

�&�
�
�������
�����	�������
���������

��'�!� ��
��!�

�
���
����"�����

�����

���
����
��

24

μC/FS Architecture

2-1 ARCHITECTURE COMPONENTS

μC/FS consists of a set of modular software components. It also requires a few external

components (provided with the release) be compiled into the application and a few

configuration and BSP files be adapted to the application.

2-1-1 YOUR APPLICATION

Your application needs to provide configuration information to μC/FS in the form of one C

header file named fs_cfg.h.

Some of the configuration data in fs_cfg.h consist of specifying whether certain features

will be present. For example, LFN support, volume cache and file buffering are all enabled

or disabled in this file. In all, there are about 30 #define to set. However, most of these can

be set to their default values.

2-1-2 LIB (LIBRARIES)

Because μC/FS is designed to be used in safety critical applications, all ‘standard’ library

functions like strcpy(), memset(), etc., have been re-written to follow the same quality as

the rest of the file system software.

2-1-3 POSIX API LAYER

Your application interfaces to μC/FS using the well-known stdio.h API (Application

Programming Interface). Alternately, you can use μC/FS’s own file and directory interface

functions. Basically, POSIX API layer is a layer of software that converts POSIX file access

calls to μC/FS file access calls.

2-1-4 FS LAYER

This layer contains most of the CPU-, RTOS- and compiler-independent code for μC/FS.

There are three categories of files in this section:

1 File system object-specific files:

■ Devices (fs_dev.*)

25

μC/FS Architecture

■ Directories (fs_dir.*)

■ Entries (fs_entry.*)

■ Files (fs_file.*)

■ Partitions (fs_partition.*)

■ Volumes (fs_vol.*)

2 Support files:

■ Buffer management (fs_buf.*)

■ Cache management (fs_cache.*)

■ Counter management (fs_ctr.h)

■ Pool management (fs_pool.*)

■ File system driver (fs_sys.*)

■ Unicode encoding support (fs_unicode.*)

■ Utility functions (fs_util.*)

3 Miscellaneous header files:

■ Master μC/FS header file (fs.h)

■ Error codes (fs_err.h)

■ Miscellaneous data types (fs_type.h)

■ Miscellaneous definitions (fs_def.h)

■ Configuration definitions (fs_cfg_fs.h)

26

μC/FS Architecture

2-1-5 FILE SYSTEM DRIVER LAYER

The file system driver layer understands the organization of a particular file system type,

such as FAT. The current version of μC/FS only supports FAT file systems. fs_fat*.*

contains the file system driver which should be used for FAT12/FAT16/FAT32 disks with or

without Long File Name (LFN) support.

2-1-6 DEVICE DRIVER LAYER

The device driver layer understands about types of file system media (SD/MMC card, NOR

flash, etc.). In order for the device drivers to be independent of your CPU, we use additional

files to encapsulate such details as the access of registers, reading and writing to a data bus

and setting clock rates.

Each device driver is named according to the pattern

fs_dev_<dev drv name>.c

where <dev drv name> is the an identifier for the device driver. For example, the driver for

SD/MMC cards using SPI mode is called fs_dev_sd_spi.c. Most device drivers require a

BSP layer, with code for accessing registers, reading from or writing to a data bus, etc. This

file is named according to the pattern

fs_dev_<dev drv name>_bsp.c

For example, fs_dev_sd_spi_bsp.c contains the BSP functions for the driver SD/MMC

cards using SPI mode.

2-1-7 CPU LAYER

μC/FS can work with either an 8, 16, 32 or even 64-bit CPU, but needs to have information

about the CPU you are using. The CPU layer defines such things as the C data type

corresponding to 16-bit and 32-bit variables, whether the CPU is little- or big-endian and,

how interrupts are disabled and enabled on the CPU, etc.

27

μC/FS Architecture

CPU specific files are found in the …\uC-CPU directory and, in order to adapt μC/FS to a

different CPU, you would need to either modify the cpu*.* files or, create new ones based

on the ones supplied in the uC-CPU directory. In general, it’s much easier to modify existing

files because you have a better chance of not forgetting anything.

2-1-8 RTOS LAYER

μC/FS does not require an RTOS. However, if μC/FS is used with an RTOS, a set of functions

must be implemented to prevent simultaneous access of devices and core μC/FS structures

by multiple tasks.

μC/FS is provided with a no-RTOS (which contains just empty functions), a μC/OS-II and a

μC/OS-III interface. If you use a different RTOS, you can use the fs_os.* for μC/OS-II as a

template to interface to the RTOS of your choice.

28

Chapter

3
Directories and Files

μC/FS is fairly easy to use once you understand which source files are needed to make up a

μC/FS-based application. This chapter will discuss the modules available for μC/FS and how

everything fits together.

Figure 1-01 shows the μC/FS architecture and its relationship with the hardware. Memory

devices may include actual media both removable (SD/MMC, CF cards) and fixed (NAND

flash, NOR flash) as well as any controllers for such devices. Of course, your hardware

would most likely contain other devices such as UARTs (Universal Asynchronous Receiver

Transmitters), ADCs (Analog to Digital Converters) and Ethernet controller(s). Moreover,

your application may include other middleware components like an OS kernel, networking

(TCP/IP) stack or USB stack that may integrate with μC/FS.

A Windows™-based development platform is assumed. The directories and files make

references to typical Windows-type directory structures. However, since μC/FS is available

in source form then it can certainly be used on Unix, Linux or other development platforms.

This, of course, assumes that you are a valid μC/FS licensee in order to obtain the source

code.

The names of the files are shown in upper case to make them ‘stand out’. The file names,

however, are actually lower case.

29

Directories and Files

Figure 3-1 μC/FS Architecture

�������
�	
�������

�������	
��
����
���

�������	
��������

�	
��

�
�	���

��� ��������

�����
���
���	�

���
��������

����

�������
�������

�	�����

�	
�����

���������

���
�	�������
���
�����

���
��������
���
�������
���
	������

���
���

�	
�������
�	
��������

�	
�������������
�	
��������
�	
	�	����
�	
������

�	
�����������
�	
��������
�	

������

�	����
�	
�������
�	
�������

�	
���������
�	
���
�	��
�	
�����

�	
��
����
�	
�������

�	
���������

���������	 ������
�	
���
��������

�	
���
�����������
�	
���
�������
�	
���
	������
�	
���
������

�	
�������
�	
���
�������

�	
���
���������
�	
���
���������
�	
���
���������
�	
���
���������

������
�������

�	
��

�����

�����
���
�������

���
�����������

�������
���
�	����

 �
��������

�	
�	����

30

Directories and Files

F3-1(1) The application code consist of project or product files. For convenience, we

simply called these app.c and app.h but your application can contain any

number of files and they do not have to be called app.*. The application code

is typically where you would find main().

F3-1(2) Quite often, semiconductor manufacturers provide library functions in source

form for accessing the peripherals on their CPU (Central Processing Unit) or

MCU (Micro Controller Unit). These libraries are quite useful and often save

valuable time. Since there is no naming convention for these files, *.c and *.h

are assumed.

F3-1(3) The Board Support Package (BSP) is code that you would typically write to

interface to peripherals on your target board. For example you can have code

to turn on and off LEDs (light emitting diodes), functions to turn on and off

relays, and code to read switches and temperature sensors.

F3-1(4) At Micriμm, we like to encapsulate CPU functionality. These files define

functions to disable and enable interrupts, data types (e.g., CPU_INT08U,

CPU_FP32) independent of the CPU and compiler and many more functions.

F3-1(5) μC/LIB consists of a group of source files to provide common functions for

memory copy, string manipulation and character mapping. Some of the

functions replace stdlib functions provided by the compiler. These are provided

to ensure that they are fully portable from application to application and (most

importantly) from compiler to compiler.

F3-1(6) μC/Clk is an independant clock/calendar management module, with source

code for easily managing date and time in a product. μC/FS uses the date and

time information from μC/Clk to update files and directories with the proper

creation/modification/access time.

F3-1(7) μC/CRC is a stand-alone module for calculating checksums and error correction

codes. This module is used by some of μC/FS device drivers.

F3-1(8) This is the μC/FS platform-independent code, free of dependencies on CPU

and memory device. This code is written in highly-portable ANSI C code. This

code is only available to μC/FS licensees.

31

Directories and Files

F3-1(9) This is the μC/FS system driver for FAT file systems. This code is only available

to μC/FS licensees.

F3-1(10) This is the collection of device drivers for μC/FS. Each driver supports a certain

device type, such as SD/MMC cards, NAND flash or NOR flash. Drivers are only

available to μC/FS licensees.

F3-1(11) This is the μC/FS code that is adapted to a specific platform. It consists of small

code modules written for specific drivers called ports that must be adapted to

the memory device controllers or peripherals integrated into or attached to the

CPU. The requirements for these ports are described in Appendix C, Porting

Manual.

F3-1(12) μC/FS does not require an RTOS. However, if μC/FS is used with an RTOS, a

set of functions must be implemented to prevent simultaneous access of

devices and core μC/FS structures by multiple tasks.

F3-1(13) This μC/FS configuration file defines which μC/FS features (fs_cfg.h) are

included in the application.

3-1 APPLICATION CODE

When Micriμm provides you with example projects, we typically place those in a directory

structure as shown below. Of course, you can use whatever directory structure suits your

project/product.

\Micrium

\Software

\EvalBoards

\<manufacturer>

\<board name>

\<compiler>

\<project name>

.

32

Directories and Files

\Micrium

This is where we place all software components and projects provided by Micriμm. This

directory generally starts from the root directory of your computer.

\Software

This sub-directory contains all the software components and projects.

\EvalBoards

This sub-directory contains all the projects related to the evaluation boards supported by

Micriμm.

\<manufacturer>

Is the name of the manufacturer of the evaluation board. The ‘<’ and ‘>’ are not part of the

actual name.

\<board name>

This is the name of the evaluation board. A board from Micriμm will typically be called

uC-Eval-xxxx where ‘xxxx’ will represent the CPU or MCU used on the evaluation board.

The ‘<’ and ‘>’ are not part of the actual name.

\<compiler>

This is the name of the compiler or compiler manufacturer used to build the code for the

evaluation board. The ‘<’ and ‘>’ are not part of the actual name.

\<project name>

This is the name of the project that will be demonstrated. For example a simple μC/FS

project might have a project name of ‘FS-Ex1’. The ‘-Ex1’ represents a project containing

only μC/FS. A project name of FS-Probe-Ex1 would represent a project containing μC/FS as

well as μC/Probe. The ‘<’ and ‘>’ are not part of the actual name.

.

These are the source files for the project/product. You are certainly welcomed to call the

main files APP*.* for your own projects but you don’t have to. This directory also contains

the configuration file FS_CFG.H and other files as needed by the project.

33

Directories and Files

3-2 CPU

As shown below is the directory where we place semiconductor manufacturer peripheral

interface source files. Of course, you can use whatever directory structure suits your

project/product.

\Micrium

\Software

\CPU

\<manufacturer>

\<architecture>

.

\Micrium

This is where we place all software components and projects provided by Micriμm.

\Software

This sub-directory contains all the software components and projects.

\CPU

This sub-directory is always called CPU.

\<manufacturer>

Is the name of the semiconductor manufacturer who provided the peripheral library. The ‘<’

and ‘>’ are not part of the actual name.

\<architecture>

This is the name of the specific library and is generally associated with a CPU name or an

architecture.

.

These are the library source files. The names of the files are determined by the

semiconductor manufacturer.

34

Directories and Files

3-3 BOARD SUPPORT PACKAGE (BSP)

The BSP is generally found with the evaluation or target board because the BSP is specific

to that board. In fact, if well written, the BSP should be used for multiple projects.

\Micrium

\Software

\EvalBoards

\<manufacturer>

\<board name>

\<compiler>

\BSP

.

\Micrium

This is where we place all software components and projects provided by Micriμm.

\Software

This sub-directory contains all the software components and projects.

\EvalBoards

This sub-directory contains all the projects related to evaluation boards.

\<manufacturer>

Is the name of the manufacturer of the evaluation board. The ‘<’ and ‘>’ are not part of the

actual name.

\<board name>

This is the name of the evaluation board. A board from Micriμm will typically be called uC

Eval xxxx where ‘xxxx’ will be the name of the CPU or MCU used on the evaluation board.

The ‘<’ and ‘>’ are not part of the actual name.

\<compiler>

This is the name of the compiler or compiler manufacturer used to build the code for the

evaluation board. The ‘<’ and ‘>’ are not part of the actual name.

\BSP

This directory is always called BSP.

35

Directories and Files

.

These are the source files of the BSP. Typically all the file names start with BSP_ but they

don’t have to. It’s thus typical to find bsp.c and bsp.h in this directory. Again, the BSP code

should contain functions such as LED control functions, initialization of timers, interface to

Ethernet controllers and more.

3-4 μC/CPU, CPU SPECIFIC SOURCE CODE

μC/CPU consists of files that encapsulate common CPU-specific functionality as well as

CPU- and compiler-specific data types.

\Micrium

\Software

\uC-CPU

\cpu_core.c

\cpu_core.h

\cpu_def.h

\Cfg\Template

\cpu_cfg.h

\<architecture>

\<compiler>

\cpu.h

\cpu_a.asm

\cpu_c.c

\Micrium

This directory contains all software components and projects provided by Micriμm.

\Software

This sub-directory contains all the software components and projects.

\uC-CPU

This is the main μC/CPU directory.

36

Directories and Files

cpu_core.c contains C code that is common to all CPU architectures. Specifically, this

file contains functions to measure the interrupt disable time of the

CPU_CRITICAL_ENTER() and CPU_CRITICAL_EXIT() macros, a function that emulates a

count leading zeros instruction and a few other functions.

cpu_core.h contains the function prototypes of the functions provided in cpu_core.c

as well as allocation of the variables used by this module to measure interrupt disable

time.

cpu_def.h contains miscellaneous #define constants used by the μC/CPU module.

\Cfg\Template

This directory contains a configuration template file (cpu_cfg.h) that you will need to copy

to your application directory in order to configure the μC/CPU module based on your

application requirements.

cpu_cfg.h determines whether you will enable measurement of the interrupt disable

time, whether your CPU implements a count leading zeros instruction in assembly

language or whether it will need to be emulated in C and more.

\<architecture>

This is the name of the CPU architecture for which μC/CPU was ported to. The ‘<’ and ‘>’

are not part of the actual name.

\<compiler>

This is the name of the compiler or compiler manufacturer used to build the code for the

μC/CPU port. The ‘<’ and ‘>’ are not part of the actual name.

The files in this directory contain the μC/CPU port.

cpu.h contains type definitions to make μC/FS and other modules independent of the

CPU and compiler word sizes. Specifically, you will find the declaration of the

CPU_INT16U, CPU_INT32U, CPU_FP32 and many other data types. Also, this file specifies

whether the CPU is a big- or little-endian machine and contains function prototypes for

functions that are specific to the CPU architecture and more.

37

Directories and Files

cpu_a.asm contains the assembly language functions to implement the code to disable

and enable CPU interrupts, count leading zeros (if the CPU supports that instruction)

and other CPU specific functions that can only be written in assembly language. This

file could also contain code to enable caches, setup MPUs and MMU and more. The

functions provided in this file are accessible from C.

cpu_c.c contains C code of functions that are specific to the specific CPU architecture

but written in C for portability. As a general rule, if a function can be written in C then

it should, unless there are significant performance benefits by writing it in assembly

language.

3-5 μC/LIB, PORTABLE LIBRARY FUNCTIONS

μC/LIB consists of library functions that are meant to be highly portable and not tied to any

specific compiler. This was done to facilitate third party certification of Micriμm products.

\Micrium

\Software

\uC-LIB

\lib_ascii.c

\lib_ascii.h

\lib_def.h

\lib_math.c

\lib_math.h

\lib_mem.c

\lib_mem.h

\lib_str.c

\lib_str.h

\Cfg\Template

\lib_cfg.h

\Ports

\<architecture>

\<compiler>

\lib_mem_a.asm

\Micrium

This directory contains all software components and projects provided by Micriμm.

38

Directories and Files

\Software

This sub-directory contains all the software components and projects.

\uC-LIB

This is the main μC/LIB directory.

\Cfg\Template

This directory contains a configuration template file (lib_cfg.h) that must be copied to the

application directory to configure the μC/LIB module based on application requirements.

lib_cfg.h determines whether to enable assembly-language optimization (assuming

there is an assembly-language file for the processor, i.e. lib_mem_a.asm) and a few

other #defines.

3-6 μC/CLK, TIME/CALENDAR MANAGEMENT

μC/Clk consists of functions that are meant to centralize time management in one

independant module. This way, the same time info can be easily shared across all Micrium

products.

\Micrium

\Software

\uC-Clk

\Cfg

\Template

\clk_cfg.h

\OS

\<rtos_name>

\clk_os.c

\Source

\clk.c

\clk.h

\Micrium

This directory contains all software components and projects provided by Micriμm.

39

Directories and Files

\Software

This sub-directory contains all the software components and projects.

\uC-Clk

This is the main μC/Clk directory.

\Cfg\Template

This directory contains a configuration template file (clk_cfg.h) that must be copied to the

application directory to configure the μC/Clk module based on application requirements.

clk_cfg.h determines whether clock will be managed by the RTOS or in your

application. A few other #defines are used to enable/disable some features of μC/Clk

and to configure some parameteres, like the clock frequency.

\OS

This is the main OS directory.

\<rtos_name>

This is the directory that contains the file to perform RTOS abstraction. Note that the file for

the selected RTOS abstraction layer must always be named clk_os.c.

μC/Clk has been tested with μC/OS-II, μC/OS-III and the RTOS layer files for these RTOS

are found in the following directories:

\Micrium\Software\uC-Clk\OS\uCOS-II\clk_os.c

\Micrium\Software\uC-Clk\OS\uCOS-III\clk_os.c

\Source

This directory contains the CPU-independant source code for μC/Clk. All file in this

directory should be included in the build (assuming the presence of the source code).

Features that are not required will be compiled out based on the value of #define constants

in clk_cfg.h.

40

Directories and Files

3-7 μC/CRC, CHECKSUMS AND ERROR CORRECTION CODES

μC/CRC consists of functions to compute different error detection and correction codes. The

functions are speed-optimized to avoid the important impact on performances that these

CPU-intensive calcutions may present.

\Micrium

\Software

\uC-CRC

\Cfg

\Template

\crc_cfg.h

\Ports

\<architecture>

\<compiler>

\ecc_bch_4bit_a.asm

\ecc_bch_8bit_a.asm

\ecc_hamming_a.asm

\edc_crc_a.asm

\Source

\edc_crc.h

\edc_crc.c

\ecc_hamming.h

\ecc_hamming.c

\ecc_bch_8bit.h

\ecc_bch_8bit.c

\ecc_bch_4bit.h

\ecc_bch_4bit.c

\ecc_bch.h

\ecc_bch.c

\ecc.h

\Micrium

This directory contains all software components and projects provided by Micriμm.

\Software

This sub-directory contains all the software components and projects.

41

Directories and Files

\uC-CRC

This is the main μC/CRC directory.

\Cfg\Template

This directory contains a configuration template file (crc_cfg.h) that must be copied to the

application directory to configure the μC/CRC module based on application requirements.

crc_cfg.h determines whether to enable assembly-language optimization

(assuming there is an assembly-language file for the processor) and a few other

#defines.

\<architecture>

The name of the CPU architecture that μC/CRC was ported to. The ‘<’ and ‘>’ are not part of

the actual name.

\<compiler>

The name of the compiler or compiler manufacturer used to build code for the μC/CRC

port. The ‘<’ and ‘>’ are not part of the actual name.

ecc_bch_4bit_a.asm contains the assembly language functions to optimize the

calculation speed of 4-bit correction BCH (Bos, Ray-Chaudhuri, Hocquenghem) code.

ecc_bch_8bit_a.asm contains the assembly language functions to optimize the

calculation speed of 8-bit correction BCH (Bos, Ray-Chaudhuri, Hocquenghem) code.

ecc_hamming_a.asm contains the assembly language functions to optimize the

calculation speed of Hamming code.

edc_crc_a.asm contains the assembly language functions to optimize the calculation

speed of CRC (cyclic redundancy checks).

\Source

This is the directory that contains all the CPU independent source code files. of μC/CRC.

42

Directories and Files

3-8 μC/FS PLATFORM-INDEPENDENT SOURCE CODE

The files in these directories are available to μC/FS licensees (see Appendix H, Licensing

Policy).

\Micrium

\Software

\uC-FS

 \APP\Template

\fs_app.c

\fs_app.h

 \Cfg\Template

\fs_cfg.h

\OS\Template

\fs_os.c

\fs_os.h

\Source

\fs_c

\fs.h

\fs_api.c

\fs_api.h

\fs_buf.c

\fs_buf.h

\fs_cache.c

\fs_cache.h

\fs_cfg_fs.h

\fs_ctr.h

\fs_def.h

\fs_dev.c

\fs_dev.h

\fs_dir.c

\fs_dir.h

\fs_entry.c

\fs_entry.h

\fs_err.c

\fs_err.h

\fs_file.c

\fs_file.h

43

Directories and Files

\fs_partition.c

\fs_partition.h

\fs_pool.c

\fs_pool.h

\fs_sys.c

\fs_sys.h

\fs_type.h

\fs_unicode.c

\fs_unicode.h

\fs_util.c

\fs_util.h

\fs_vol.c

\fs_vol.h

\Micrium

This is where we place all software components and projects provided by Micriμm.

\Software

This sub-directory contains all the software components and projects.

\uC-FS

This is the main μC/FS directory.

\APP\Template

This directory contains a template of the code for initializing the file system.

\Cfg\Template

This directory contains a configuration template file (lib_cfg.h) that is required to be copied

to the application directory to configure the μC/FS module based on application

requirements.

fs_cfg.h specifies which features of μC/FS you want in your application. If μC/FS is

provided in linkable object code format then this file will be provided to show you

what features are available in the object file. See Appendix B, μC/FS Configuration

Manual.

44

Directories and Files

\Source

This directory contains the platform-independent source code for μC/FS. All the files in this

directory should be included in your build (assuming you have the source code). Features

that you don’t want will be compiled out based on the value of #define constants in

fs_cfg.h.

fs.c/h contain core functionality for μC/FS including FS_Init() (called to initialize

μC/FS) and FS_WorkingDirSet()/FS_WorkingDirGet() (used to get and set the

working directory). fs.h is the ONLY core header file that should be #included by the

application.

fs_api.c/h contains the code for the POSIX-compatible API. See Chapter x, API for

details about the POSIX-compatible API.

fs_buf.c/h contains the code for the buffer management (used internally by μC/FS).

fs_dev.c/h contains code for device management. See Chapter x, Devices for details

about devices.

fs_dir.c/h contains code for directory access. See Chapter x, Directories for details

about directory access.

fs_entry.c/h contains code for entry access. See Chapter x, Entries for details about

entry access.

fs_file.c/h contains code for file access. See Chapter x, Files for details about file

access.

fs_pool.c/h contains the code for pool management (used internally by μC/FS).

fs_sys.c/h contains the code for system driver management (used internally by

μC/FS).

fs_unicode.c/h contains the code for handling Unicode strings (used internally by

μC/FS).

45

Directories and Files

3-9 μC/FS FAT FILESYSTEM SOURCE CODE

The files in these directories are available to μC/FS licensees (see Appendix H, Licensing

Policy).

\Micrium

\Software

\uC-FS

\FAT

\fs_fat.c

\fs_fat.h

\fs_fat_dir.c

\fs_fat_dir.h

\fs_fat_entry.c

\fs_fat_entry.h

\fs_fat_fat12.c

\fs_fat_fat12.h

\fs_fat_fat16.c

\fs_fat_fat16.h

\fs_fat_fat32.c

\fs_fat_fat32.h

\fs_fat_file.c

\fs_fat_file.h

\fs_fat_journal.c

\fs_fat_journal.h

\fs_fat_lfn.c

\fs_fat_lfn.h

\fs_fat_sfn.c

\fs_fat_sfn.h

\fs_fat_type.h

\Micrium

This is where we place all software components and projects provided by Micriμm.

\Software

This sub-directory contains all the software components and projects.

46

Directories and Files

\uC-FS

This is the main μC/FS directory.

\FAT

This directory contains the FAT system driver for μC/FS. All the files in this directory should

be included in your build (assuming you have the source code).

3-10 μC/FS MEMORY DEVICE DRIVERS

These files are generic drivers to use with differenty memory devices.

\Micrium

\Software

\uC-FS

\Dev

\IDE

\fs_dev_ide.c

\fs_dev_ide.h

\BSP\Template

\fs_dev_ide_bsp.c

\MSC

\fs_dev_msc.c

\fs_dev_msc.h

\NAND

\fs_dev_nand.c

\fs_dev_nand.h

\PHY

\fs_dev_nand_0512_x08.c

\fs_dev_nand_0512_x08.h

\fs_dev_nand_0512_x08.c

\fs_dev_nand_0512_x08.h

\fs_dev_nand_0512_x08.c

\fs_dev_nand_0512_x08.h

\fs_dev_nand_0512_x08.c

\fs_dev_nand_0512_x08.h

\Template

\fs_dev_nand_template.c

47

Directories and Files

\fs_dev_nand_template.h

\BSP\Template

\fs_dev_nand_bsp.c

\BSP\Template (GPIO)

\fs_dev_nand_bsp.c

\BSP\Template (SPI GPIO)

\fs_dev_nand_bsp.c

\BSP\Template (SPI)

\fs_dev_nand_bsp.c

\NOR

\fs_dev_nor.c

\fs_dev_nor.h

\PHY

\fs_dev_nor_amd_1x08.c

\fs_dev_nor_amd_1x08.h

\fs_dev_nor_amd_1x16.c

\fs_dev_nor_amd_1x16.h

\fs_dev_nor_intel.c

\fs_dev_nor_intel.h

\fs_dev_nor_sst25.c

\fs_dev_nor_sst25.h

\fs_dev_nor_sst39.c

\fs_dev_nor_sst39.h

\fs_dev_nor_stm25.c

\fs_dev_nor_stm25.h

\fs_dev_nor_stm29_1x08.c

\fs_dev_nor_stm29_1x08.h

\fs_dev_nor_stm29_1x16.c

\fs_dev_nor_stm29_1x16.h

\Template

\fs_dev_nor_template.c

\fs_dev_nor_template.h

\BSP\Template

\fs_dev_nor_bsp.c

\BSP\Template (SPI GPIO)

\fs_dev_nor_bsp.c

\BSP\Template (SPI)

\fs_dev_nor_bsp.c

48

Directories and Files

\RAMDisk

\fs_dev_ram.c

\fs_dev_ram.h

\SD

\fs_dev_sd.c

\fs_dev_sd.h

\Card

\fs_dev_sd_card.c

\fs_dev_sd_card.h

\BSP\Template

\fs_dev_sd_card_bsp.c

\SPI

\fs_dev_sd_spi.c

\fs_dev_sd_spi.h

\BSP\Template

\fs_dev_sd_spi.bsp.c

\Template

\fs_dev_template.c

\fs_dev_template.h

\Micrium

This directory contains all software components and projects provided by Micriμm.

\Software

This sub-directory contains all the software components and projects.

\uC-FS

This is the main μC/FS directory.

\Dev

This is where you will find the device driver files for the storage devices you are planning

on using.

\IDE

This directory contains the IDE/CF driver files.

49

Directories and Files

fs_dev_ide.* are device driver for IDE devices. These files require a set of BSP

functions to be defined in a file named fs_dev_ide_bsp.c to work with a particular

hardware setup.

For more details on this driver, please refer to Chapter 11, “IDE/CF Driver” on page 124.

\MSC

This directory contains the MSC (Mass Storage Class - USB drives) driver files.

fs_dev_msc.* are device driver for MSC devices. This driver is designed to work with

μC/USB host stack.

For more details on this driver, please refer to Chapter 13, “MSC Driver” on page 134.

\NAND

This directory contains the NAND driver files.

fs_dev_nand.* are the device driver for NAND devices. These files require a set of

physical-layer functions (defined in a file name fs_dev_nand_<physical type>.*) as

well as BSP functions (to be defined in a file named fs_dev_nand_bsp.c) to work with

a particular hardware setup.

For more details on this driver, please refer to Chapter 14, “NAND Flash Driver” on

page 137.

\NOR

This directory contains the NOR driver files.

fs_dev_nor.* are the device driver for NOR devices. These files require a set of

physical-layer functions (defined in a file name fs_dev_nor_<physical type>.*) as

well as BSP functions (to be defined in a file named fs_dev_nor_bsp.c) to work with

a particular hardware setup.

For more details on this driver, please refer to Chapter 15, “NOR Flash Driver” on page 151.

\RAMDisk

This directory contains the RAM disk driver files.

50

Directories and Files

fs_dev_ramdisk.* constitue the RAM disk driver.

For more details on this driver, please refer to Chapter 16, “RAM Disk Driver” on page 170.

\SD

This directory contains the SD/MMC driver files.

fs_dev_sd.* are device driver for SD devices. Theses files require to be used with

either the fs_dev_sd_spi.* (for SPI/one-wire mode) or fs_dev_sd_card.* (for

Card/4-wires mode) files. These files require a set of BSP functions to be defined in a

file named either fs_dev_sd_spi_bsp.c or fs_dev_sd_card_bsp.c to work with a

particular hardware setup.

For more details on this driver, please refer to Chapter 17, “SD/MMC Drivers” on page 174.

3-11 μC/FS PLATFORM-SPECIFIC SOURCE CODE

These files are provided by the μC/FS device driver developer. See Chapter 17, Porting

μC/FS. However, the μC/FS source code is delivered with port examples.

\Micrium

\Software

\uC-FS

\Examples

\BSP

\Dev

<memory type>

<manufacturer>

<board name>

\fs_dev_<memory type>_bsp.c

\Micrium

This directory contains all software components and projects provided by Micriμm.

\Software

This sub-directory contains all the software components and projects.

51

Directories and Files

\uC-FS

This is the main μC/FS directory.

\Examples

This is where you will find the device driver BSP example files.

\Dev\<memory type>

This is where you will find the examples BSP for one memory type. The ‘<’ and ‘>’ are not

part of the actual name. The memory types supported by μC/FS are the following: IDE,

NAND, NOR, SD\CARD, SD\SPI.

\<manufacturer>

The name of the manufacturer of the evaluation board. The ‘<’ and ‘>’ are not part of the

actual name.

3-12 μC/FS OS ABSTRACTION LAYER

This directory contains the RTOS abstraction layer which allows the use of μC/FS with

nearly any commercial of in-house RTOS, or without any RTOS at all. The abstraction layer

for the selected RTOS is placed in a sub-directory under OS as follows:

\Micrium

\Software

\uC-FS

\OS

\<rtos_name>

\fs_os.c

\fs_os.h

\Micrium

This directory contains all software components and projects provided by Micriμm.

\Software

This sub-directory contains all the software components and projects.

\uC-FS

This is the main μC/FS directory.

52

Directories and Files

\OS

This is the main OS directory.

\<rtos_name>

This is the directory that contains the files to perform RTOS abstraction. Note that files for

the selected RTOS abstraction layer must always be named fs_os.*.

μC/FS has been tested with μC/OS-II, μC/OS-III and without an RTOS. The RTOS layer files

are found in the following directories:

\Micrium\Software\uC-Clk\OS\None\fs_os.*

\Micrium\Software\uC-Clk\OS\Template\fs_os.*

\Micrium\Software\uC-Clk\OS\uCOS-II\fs_os.*

\Micrium\Software\uC-Clk\OS\uCOS-III\fs_os.*

3-13 SUMMARY

Below is a summary of all the directories and files involved in a μC/FS-based project. The

‘<-Cfg’ on the far right indicates that these files are typically copied into the application

(i.e., project) directory and edited based on project requirements.

\Micrium

\Software

\EvalBoards

\<manufacturer>

\<board name>

\<compiler>

\<project name>

\app.c

\app.h

\other

\BSP

\bsp.c

\bsp.h

53

Directories and Files

\other

\CPU

\<manufacturer>

\<architecture>

.

\uC-FS

\APP\Template

\fs_app.c <-Cfg

\fs_app.h <-Cfg

\CFG\Template

\fs_cfg.h <-Cfg

\Dev

\IDE

\fs_dev_ide.c

\fs_dev_ide.h

\BSP\Template

\fs_dev_ide_bsp.c <-Cfg

\MSC

\fs_dev_msc.c

\fs_dev_msc.h

\NAND

\fs_dev_nand.c

\fs_dev_nand.h

\PHY

\fs_dev_nand_0512_x08.c

\fs_dev_nand_0512_x08.h

\fs_dev_nand_0512_x08.c

\fs_dev_nand_0512_x08.h

\fs_dev_nand_0512_x08.c

\fs_dev_nand_0512_x08.h

\fs_dev_nand_0512_x08.c

\fs_dev_nand_0512_x08.h

\Template

\fs_dev_nand_template.c

\fs_dev_nand_template.h

\BSP\<template>

\fs_dev_nand_bsp.c <-Cfg

\NOR

54

Directories and Files

\fs_dev_nor.c

\fs_dev_nor.h

\PHY

\fs_dev_nor_amd_1x08.c

\fs_dev_nor_amd_1x08.h

\fs_dev_nor_amd_1x16.c

\fs_dev_nor_amd_1x16.h

\fs_dev_nor_intel.c

\fs_dev_nor_intel.h

\fs_dev_nor_sst25.c

\fs_dev_nor_sst25.h

\fs_dev_nor_sst39.c

\fs_dev_nor_sst39.h

\fs_dev_nor_stm25.c

\fs_dev_nor_stm25.h

\fs_dev_nor_stm29_1x08.c

\fs_dev_nor_stm29_1x08.h

\fs_dev_nor_stm29_1x16.c

\fs_dev_nor_stm29_1x16.h

\Template

\fs_dev_nor_template.c <-Cfg

\fs_dev_nor_template.h <-Cfg

\BSP\<template>

\fs_dev_nor_bsp.c <-Cfg

\RAMDisk

\fs_dev_ram.c

\fs_dev_ram.h

\SD

\fs_dev_sd.c

\fs_dev_sd.h

\Card

\fs_dev_sd_card.c

\fs_dev_sd_card.h

\BSP\Template

\fs_dev_sd_card_bsp.c <-Cfg

\SPI

\fs_dev_sd_spi.c

\fs_dev_sd_spi.h

55

Directories and Files

\BSP\Template

\fs_dev_sd_spi.bsp.c <-Cfg

\Template

\fs_dev_template.c <-Cfg

\fs_dev_template.h <-Cfg

\FAT

\fs_fat.c

\fs_fat.h

\fs_fat_dir.c

\fs_fat_dir.h

\fs_fat_entry.c

\fs_fat_entry.h

\fs_fat_fat12.c

\fs_fat_fat12.h

\fs_fat_fat16.c

\fs_fat_fat16.h

\fs_fat_fat32.c

\fs_fat_fat32.h

\fs_fat_file.c

\fs_fat_file.h

\fs_fat_journal.c

\fs_fat_journal.h

\fs_fat_lfn.c

\fs_fat_lfn.h

\fs_fat_sfn.c

\fs_fat_sfn.h

\fs_fat_type.h

\OS

\<template>

\fs_os.c <-Cfg

\fs_os.h <-Cfg

\<rtos_name>

\fs_os.c

\fs_os.h

\Source

\fs_c

\fs.h

\fs_api.c

56

Directories and Files

\fs_api.h

\fs_buf.c

\fs_buf.h

\fs_cache.c

\fs_cache.h

\fs_cfg_fs.h

\fs_ctr.h

\fs_def.h

\fs_dev.c

\fs_dev.h

\fs_dir.c

\fs_dir.h

\fs_entry.c

\fs_entry.h

\fs_err.c

\fs_err.h

\fs_file.c

\fs_file.h

\fs_partition.c

\fs_partition.h

\fs_pool.c

\fs_pool.h

\fs_sys.c

\fs_sys.h

\fs_type.h

\fs_unicode.c

\fs_unicode.h

\fs_util.c

\fs_util.h

\fs_vol.c

\fs_vol.h

\OS

\<architecture>

\<compiler>

\os_cpu.h

\os_cpu_a.asm

\os_cpu_c.c

\uC-CPU

57

Directories and Files

\cpu_core.c

\cpu_core.h

\cpu_def.h

\Cfg\Template

\cpu_cfg.h <-Cfg

\<architecture>

\<compiler>

\cpu.h

\cpu_a.asm

\cpu_c.c

\uC-Clk

\Cfg

\Template

\clk_cfg.h <-Cfg

\OS

\<rtos_name>

\clk_os.c

\Source

\clk.c

\clk.h

\uC-CRC

\Cfg

\Template

\crc_cfg.h <-Cfg

\Ports

\<architecture>

\<compiler>

\ecc_bch_4bit_a.asm

\ecc_bch_8bit_a.asm

\ecc_hamming_a.asm

\edc_crc_a.asm

\Source

\edc_crc.h

\edc_crc.c

\ecc_hamming.h

\ecc_hamming.c

\ecc_bch_8bit.h

\ecc_bch_8bit.c

58

Directories and Files

\ecc_bch_4bit.h

\ecc_bch_4bit.c

\ecc_bch.h

\ecc_bch.c

\ecc.h

\uC-LIB

\lib_ascii.c

\lib_ascii.h

\lib_def.h

\lib_math.c

\lib_math.h

\lib_mem.c

\lib_mem.h

\lib_str.c

\lib_str.h

\Cfg\Template

\lib_cfg.h <-Cfg

59

Chapter

4
Miscellaneous

This chapter provides information on various concepts used in μC/FS. We decided to

include this chapter early in the μC/FS manual so that you can start using μC/FS as soon as

possible. In fact, we assume you know little about μC/FS and file systems. Concepts will be

introduced as needed.

4-1 NOMENCLATURE

This manual uses a set of terms to consistently describe operation of μC/FS and its hardware

and software environment. The following is a small list of these terms, with definitions.

A file system suite is software which can find and access files and directories. Using “file

system suite” rather than “file system” eliminates any need for disambiguation among the

second term’s several meanings, which include “a system for organizing directories and

files”, “a collection of files and directories stored on a drive” and (commonly) the software

which will be referred to as a file system suite. The term file system will always mean a

collection of files and directories stored on a drive (or, in this document, volume).

A device driver (or just driver) is a code module which allows the general-purpose file

system suite to access a specific type of device. A device driver is registered with the file

system suite.

A device is an instance of a device type that is accessed using a device driver. An

addressable area (typically of 512 bytes) on a device is a sector. A sector is the smallest area

that (from the file system suite’s point of view) can be atomically read or written.

Several devices can use the same device driver. These are distinguished by each having a

unique unit number. Consequently, <DEVICE NAME>:<UNIT NUMBER>: is a unique device

identifier if all devices are required to have unique names. That requirement is enforced in

this file system suite.

60

Miscellaneous

A logical device is the combination of two or more separate devices. To form a logical

device, the sector address spaces of the constituent devices are concatenated to form a

single continuous address space.

A device can be partitioned, or subdivided into one or more regions (called partitions)
each consisting of a number of consecutive sectors. Typically, structures are written to the

device instructing software as to the location and size of these partitions. This file system

suite supports DOS partitions.

A volume is a device or device partition with a file system. A device or device partition

must go through a process called mounting to become a volume, which includes finding

the file system and making it ready for use. The name by which a volume is addressed may

also be called the volume’s mount point.

A device or volume may be formatted to create a new file system on the device. For

disambiguation purposes, this process is also referred to as high-level formatting. The

volume or device will automatically be mounted once formatting completes.

For certain devices, it is either necessary or desirable to perform low-level formatting.

This is the process of associating logical sector numbers with areas of the device.

A file system driver is a code module which allows the general-purpose file system suite

to access a specific type of file system. For example, this file system suite includes a FAT file

system driver.

FAT (File Allocation Table) is a common file system type, prevalent in removable media

that must work with various OSs. It is named after its primary data structure, a large table

that records what clusters of the disk are allocated. A cluster, or group of sectors, is the

minimum data allocation unit of the FAT file system.

61

Miscellaneous

4-2 μC/FS DEVICE AND VOLUME NAMES

Devices are specified by name. For example, a device can be opened:

FSDev_Open(“sd:0:”, (void *)0, &err);

In this case, “sd:0:” is the device name. It is a concatenation of:

sd The name of the device driver

: A single colon

0 The unit number

: A final colon

The unit number allows multiple devices of the same type; for example, there could be

several SD/MMC devices connected to the CPU: “sd:0:”, “sd:1”, “sd:2”…

The maximum length of a device name is FS_CFG_MAX_DEV_NAME_LEN; this must be at least

three characters larger than the maximum length of a device driver name,

FS_CFG_MAX_DEV_DRV_NAME_LEN. A device name (or device driver name) must not contain

the characters:

 : \ /

Volumes are also specified by name. For example, a volume can be formatted:

FSVol_Fmt(“vol:”, (void *)0, &err);

Here, “vol:” is the volume name. μC/FS imposes no restrictions on these names, except

that they must end with a colon (‘:’), must be no more than FS_CFG_MAX_VOL_NAME_LEN

characters long, and must not contain either of the characters ‘\’ or ‘/’:

It is typical to name a volume the same as a device; for example, a volume may be opened:

FSVol_Open(“sd:0:” (a)

 “sd:0:” (b)

 (void *)0,

 &err);

62

Miscellaneous

In this case, the name of the volume (a) is the same as the name as the device (b). When

multiple volumes exist in the same application, the volume name should be prefixed to the

file or directory path name:

p_file = fs_fopen(“sd:0:\\dir01\file01.txt”, “w”); // File on SD card

p_file = fs_fopen(“ram:0:\\dir01\file01.txt”, “w”); // File on RAM disk

4-3 μC/FS FILE AND DIRECTORY NAMES AND PATHS

Files and directories are identified by a path string; for example, a file can be opened:

p_file = fs_fopen(“\\test\\file001.txt”, “w”);

In this case, “\\test\\file001.txt” is the path string.

An application specifies the path of a file or directory using either an absolute or a relative path.

An absolute path is a character string which specifies a unique file, and follows the pattern:

<vol_name>:<... Path ...><File>

where

<vol_name> is the name of the volume, identical to the string specified in

FSVol_Open().

<... Path ...> is the file path, which must always begin and end with a ‘\’.

<File> is the file (or leaf directory) name, including any extension.

For example:

p_file = fs_fopen(“sd:0:\\file.txt”, “w”); (a)

p_file = fs_fopen(“\\file.txt”, “w”); (b)

p_file = fs_fopen(“sd:0:\\dir01\\file01.txt”, “w”); (c)

p_file = fs_opendir(“sd:0:\\”) (d)

p_file = fs_opendir(“\\”) (e)

p_file = fs_opendir(“sd:0:\\dir01\\”) (f)

63

Miscellaneous

Which demonstrate (a) opening a file in the root directory of a specified volume; (b)

opening a file in the root directory on a default volume; (c) opening a file in a non-root

directory; (d) opening the root directory of a specified volume; (e) opening the root

directory of the default volume; (f) opening a non-root directory.

Relative paths can be used if working directories are enabled (FS_CFG_WORKING_DIR_EN is

DEF_ENABLED; see Appendix E, “FS_CFG_WORKING_DIR_EN” on page 529). A relative

path begins with neither a volume name nor a ‘\’:

<... Relative Path ...><File>

where

<... Relative Path ...> is the file path, which must not begin with a ‘\’ but

must end with a ‘\’.

<File> is the file (or leaf directory) name, including any

extension.

Two special path components can be used. “..” moves the path to the parent directory. “.”

keeps the path in the same directory (basically, it does nothing).

A relative path is appended to the current working directory of the calling task to form the

absolute path of the file or directory. The working directory functions, fs_chdir() and

fs_getcwd(), can be used to set and get the working directory.

4-4 μC/FS NAME LENGTHS

The configuration constants FS_CFG_MAX_PATH_NAME_LEN, FS_CFG_MAX_FILE_NAME_LEN

and FS_CFG_MAX_VOL_NAME_LEN in fs_cfg.h set the maximum length of path names, file

names and volume names. The constant FS_CFG_MAX_FULL_NAME_LEN is defined in

fs_cfg_fs.h to describe the maximum full name length. The path name begins with a path

separator character and includes the file name; the file name is just the portion of the path

name after the last (non-final) path separator character. The full name is composed of an

explicit volume name (optionally) and a path name; the maximum full name length may be

calculated:

64

Miscellaneous

FullNameLenmax = VolNameLenmax + PathNameLenmax

Figure 2-3 demonstrates these definitions.

Figure 4-1 File, path and volume name lengths

No maximum parent name length is defined, though one may be derived. The parent name

must be short enough so that the path of a file in the directory would be valid. Strictly, the

minimum file name length is 1 character, though some OSs may enforce larger values

(eleven on some Windows systems), thereby decreasing the maximum parent name length.

ParentNameLenmax = PathNameLenmax - FileNameLenmin - 1

The configuration constants FS_CFG_MAX_DEV_DRV_NAME_LEN and

FS_CFG_MAX_DEV_NAME_LEN in fs_cfg.h set the maximum length of device driver names

and device names, as shown in Figure 2-4. The device name is between three and five

characters longer than the device driver name, since the unit number (the integer between

the colons of the device name) must be between 0 and 255.

Figure 4-2 Device and device driver name lengths

Each of the maximum name length configurations specifies the maximum string length

without the NULL character. Consequently, a buffer which holds one of these names must be

one character longer than the define value.

myvolume:\MyDir0\MyDir1\MyDir2\my_very_very_long_file_name.txt

file name

path name

full name

volume name

parent name

sdcard:0:

device driver name

device name

65

Miscellaneous

4-5 RESOURCE USAGE

μC/FS resource usage, of both ROM and RAM, depends heavily on application usage. How

many (and which) interface functions are referenced determines the code and constant data

space requirements. The greater the quantity of file system objects (buffers, files, directories,

devices and volumes) , the more RAM needed.

Table 2-1 give the ROM usage for the file system core, plus additional components that can

be included optionally, collected on IAR EWARM v5.4. The ‘core’ ROM size includes all file

system components and functions (except those itemized in the table); this is significantly

larger than most installations because most applications use a fraction of the API.

Table 4-1 ROM Requirements.

*Includes code and data for ALL file system components and functions except those

itemized in the table.

Component ROM, Thumb Mode ROM, ARM Mode

High Size Opt High Speed Opt High Size Opt High Speed Opt

Core* 44.1 kB 52.5 kB 66.5 kB 79.4 kB

OS port (μC/OS-III) 0.2 kB 0.2 kB 2.2 kB 2.4 kB

LFN support 6.5 kB 6.7 kB 9.3 kB 9.6 kB

Directories 1.6 kB 2.2 kB 2.4 kB 3.3 kB

Volume check 2.9 kB 3.2 kB 4.7 kB 5.3 kB

Partitions 2.7 kB 3.0 kB 3.7 kB 4.2 kB

66

Miscellaneous

RAM requirements are summarized in Table 2-2. The total depends on the number of each

object allocated and the maximum sector size (set by values passed to FS_Init() in the file

system configuration structure), and various name length configuration parameters (see

Appendix E, “FS_CFG_MAX_PATH_NAME_LEN” on page 530).

Table 4-2 RAM Characteristics

§ The number of tasks that use relative path names

See also section 10-1-1 “Driver Characterization” on page 121 for ROM/RAM characteristics

of file system suite drivers.

Item RAM (bytes)

Core 360

Per device 56 + FS_CFG_MAX_DEV_NAME_LEN

Per volume 166 + FS_CFG_MAX_VOL_NAME_LEN

Per file 132

Per directory 48

Per buffer 36 + MaxSectorSize

Per device driver 20 bytes

Working directories (FS_CFG_MAX_PATH_NAME_LEN * 2) * TaskCnt§

67

Chapter

5
Devices and Volumes

To begin reading files from a medium or creating files on a medium, that medium (hereafter

called a device) and the driver which will be used to access it must be registered with the

file system. After that, a volume must be opened on that device (analogous to “mounting”).

This operation will succeed if and only if the device responds and the file system control

structures (for FAT, the Boot Parameter Block or BPB) are located and validated.

In this manual, as in the design of μC/FS, the terms ‘device’ and ‘volume’ have distinct,

non-overlapping meanings. We define a ‘device’ as a single physical or logical entity which

contains a continuous sequence of addressable sectors. An SD/MMC card is a physical

device.

We define a ‘volume’ as a collection of files and directories on a device.

These definitions were selected so that multiple volumes could be opened on a device (as

shown in Figure 5-1) without requiring ambiguous terminology.

Figure 5-1 Device and volume architecture.

partition1 partition1 partition2

ide:0: ide:1:

ide:0: ide:1a: ide:1b:

Device layer

Volume layer

68

Devices and Volumes

5-1 DEVICE OPERATIONS

The ultimate purpose of a file system device is to hold data. Consequently, two major

operations that can occur on a device are the reading and writing of individual sectors. Five

additional operations can be performed which affect not just individual sectors, but the

whole device:

■ A device can be opened. During the opening of a device, it is initialized and its

characteristics are determined (sector size, number of sectors, vendor).

■ A device can be partitioned. Partitioning ivides the final unallocated portion of the

device into two parts, so that a volume could be located on each (see section 5-4

“Partitions” on page 72).

■ A device can be low-level formatted. Some device must be low-level formatted before

being used.

■ A device can be (high-level) formatted. (High-level) formatting writes the control

information for a file system to a device so that a volume on it can be mounted.

Essentially, (high-level) formatting is the process of creating a volume on an empty

device or partition.

■ A device can be closed. During the closing of a device, it is uninitialized (if necessary)

and associated structures are freed.

These operations and the corresponding API functions are discussed in this section. For

information about using device names, see section 4-2 “μC/FS Device and Volume Names”

on page 61.

Function Description

FSDev_Close() Remove device from file system.

FSDev_GetNbrPartitions() Get number of paritions on a device.

FSDev_IO_Ctrl() Perform device I/O control operation.

FSDev_Open() Add device to file system.

FSDev_PartitionAdd() Add partition to device.

69

Devices and Volumes

Table 5-1 Device API functions

5-2 USING DEVICES

A device is opened with FSDev_Open():

The parameters are the device name (a) and a pointer to a device driver-specific

configuration structure (b). If a device driver requires no configuration structure (as the

IDE/CF driver does not), the configuration structure (b) should be passed a NULL pointer.

For other devices, like RAM disks, this must point to a valid structure.

FSDev_PartitionFind() Find partition on device and get information about partition.

FSDev_PartitionInit() Initialize partition on device.

FSDev_Query() Get device information.

FSDev_Rd() Read sector on device.

FSDev_Refresh() Refresh device in file system.

FSDev_Wr() Write sector on device.

FSDev_Open((CPU_CHAR *)“ide:0:”, <-- (a) device name

 (void *) 0, <-- (b) pointer to configuration

 (FS_ERR *)&err); <-- (c) return error

Function Description

70

Devices and Volumes

Figure 5-2 Device state transition.

Prior to FSDev_Open() being called (a), software is ignorant of the presence, state or

characteristics of the particular device. After all references to the device are released (b), this

ignorance again prevails,and any buffers or structures are freed for later use.

The return error code from this functions provides important information about the device

state:

■ If the return error code is FS_ERR_NONE, then the device is present, responsive and

low-level formatted; basically, it is ready to use.

■ If the return error code is FS_ERR_DEV_INVALID_LOW_FMT, then the device is present

and responsive, but must be low-level formatted. The application should next call

FSDev_NOR_LowFmt() for the NOR flash

Device
removed or
unresponsive

Device closed

Device closed

Present

Open

Low
Format
Valid

Closing Opening

Device not

low level

form
atted

Device
not

present

Device
could not be

initialized

All
references
released

Device
inserted

Device
low level
formatted

Device Object Pool

Closed

(a)(b)

71

Devices and Volumes

■ If the return error code is FS_ERR_DEV_NOT_PRESENT, FS_ERR_DEV_IO or

FS_ERR_DEV_TIMEOUT, the device is either not present or did not respond. This is an

important consideration for removable devices. It is still registered with the file system

suite, and the file system will attempt to re-open the device each time the application

accesses it.

■ If any other error code is returned, the device is not registered with the file system. The

developer should examine the error code to determine the source of the error.

5-3 USING REMOVABLE DEVICES

μC/FS expects that any call to a function that accesses a removable device may fail, since

the device may be removed, powered off or suddenly unresponsive. If μC/FS detects such

an event, the device will need to be refreshed or closed and re-opened. FSDev_Refresh()

refreshes a device:

There are several cases to consider:

■ If the return error is FS_ERR_NONE and the return value (a) is DEF_YES, then a new

device (e.g., SD card) has been inserted. All files and directories that are open on

volumes on the device must be closed and all volumes that are open on the device

must be closed or refreshed.

■ If the return error is FS_ERR_NONE and the return value (a) is DEF_NO, then the same

device (e.g., SD card) is still inserted. The application can continue to access open files,

directories and volumes.

■ If the return error is neither FS_ERR_NONE nor FS_ERR_DEV_INVALID_LOW_FMT, then no

functioning device is present. The device must be refreshed at a later time.

A device can be refreshed explicitly with FSDev_Refresh(); however, refresh also happens

automatically. If a volume access (e.g., FSVol_Fmt(), FSVol_Rd()) , entry access

(FSEntry_Create(), fs_remove()), file open (fs_fopen() or FSFile_Open()) or

chngd = FSDev_Refresh((CPU_CHAR *)“ide:0:”, <-- (b) device name

 (FS_ERR *)&err); <-- (c) return error

72

Devices and Volumes

directory open (fs_opendir() or FSDir_Open()) is initiated on a device that was not

present at the last attempted access, μC/FS attempts to refresh the device information; if that

succeeds, it attempts to refresh the volume information.

Files and directories have additional behavior. If a file is opened on a volume, and the

underlying device is subsequently removed or changed, all further accesses using the file

API (e.g., FSFile_Rd()) will fail with the error code FS_ERR_DEV_CHNGD; all POSIX API

functions will return error values The file should then be closed (to free the file structure).

Similarly, if a directory is opened on a volume, and the underlying device is subsequently

removed or changed, all further FSDir_Rd() attempts will fail with the error code

FS_ERR_DEV_CHNGD; fs_readdir_r() will return 1. The directory should then be closed (to

free the directory structure).

5-4 PARTITIONS

A device can be partitioned into two or more regions, and a file system created on one or

more of these, each of which could be mounted as a volume. μC/FS can handle and make

DOS-style partitions, which is a common partitioning system.

The first sector on a device with DOS-style partitions is the Master Boot Record (MBR), with

a partition table with four entries, each describing a partition. An MBR entry contains the

start address of a partition, the number of sectors it contains and its type. The structure of a

MBR entry and the MBR sector is shown in Figure 5-4.

Figure 5-3 Partition entry format.

Flag Start CHS Addr Type End CHS Addr Start LBA Addr Size in Sectors

4 8 12 16

73

Devices and Volumes

Figure 5-4 Master Boot Record.

An application can write an MBR to a device and create an initial partition with

FSDev_PartitionInit(). For example, if you wanted to create an initial 256-MB partition

on a 1-GB device “ide:0:”:

The parameters are the device name (a) and the size of the partition, in sectors (b). If (b) is

0, then the partition will take up the entire device. After this call, the device will be divided

as shown in Figure 5-5. This new partition is called a primary partition because its entry

is in the MBR. The four circles in the MBR represent the four partition entries; the one that

is now used ‘points to’ Primary Partition 1.

Figure 5-5 Device after partition initialization.

 FSDev_PartitionInit((CPU_CHAR *)“ide:0:”, <-- (a) device name

 (FS_SEC_QTY)(512 * 1024), <-- (b) size of partition

 (FS_ERR *)&err); <-- (c) return error

2nd Entry

1st Entry

3rd Entry

4th Entry

Boot Code

Signature (0xAA55)

464

480

496

448

(2)

M
B
R

Primary
Partition 1
(256 MB)

Unallocated space
(768 MB)

74

Devices and Volumes

More partitions can now be created on the device. Since the MBR has four partition entries,

three more can be made without using extended partitions (as discussed below). The

function FSDev_PartitionAdd() should be called three times:

Again, the parameters are the device name (a) and the size of the partition, in sectors (b).

After this has been done, the device is divided as shown in Figure 5-6.

Figure 5-6 Device after four partitions have been created.

When first instituted, DOS partitioning was a simple scheme allowing up to four partitions,

each with an entry in the MBR. It was later extended for larger devices requiring more with

extended partitions, partitions that contains other partitions. The primary extended
partition is the extended partition with its entry in the MBR; it should be the last occupied

entry.

 FSDev_PartitionAdd((CPU_CHAR *)“ide:0:”, <-- (a) device name

 (FS_SEC_QTY)(512 * 1024), <-- (b) size of partition

 (FS_ERR *)&err); <-- (c) return error

M
B
R

Primary
Partition 1
(256 MB)

Primary
Partition 2
(256 MB)

Primary
Partition 3
(256 MB)

Primary
Partition 4
(256 MB)

75

Devices and Volumes

An extended partition begins with a partition table that has up to two entries (typically).

The first defines a secondary partition which may contain a file system. The second may

define another extended partition; in this case, a secondary extended partition, which

can contain yet another secondary partition and secondary extended partition. Basically, the

primary extended partition heads a linked list of partitions.

Figure 5-7 Device with five partitions.

For the moment, extended partitions are not supported in μC/FS.

M
B
R

Primary
Partition 1
(256 MB) P

rim
ar

y
P

ar
tit

iti
on

 2
(1

28
 M

B
)

Primary
Extended Partition

(512 MB)

Secondary
Partition

(Partition 4)
(256 MB)

Secondary
Extended
Partition
(256 MB)

P
rim

ar
y

P
ar

tit
iti

on
 3

(1
28

 M
B

)

Secondary
Partition

(Partition 5)
(256 MB)

76

Devices and Volumes

5-5 VOLUME OPERATIONS

Five general operations can be performed on a volume:

■ A volume can be opened (mounted). During the opening of a volume, file system

control structures are read from the underlying device, parsed and verified.

■ Files can be accessed on a volume. A file is a linear data sequence (‘file contents’)

associated with some logical, typically human-readable identifier (‘file name’).

Additional properties, such as size, update date/time and access mode (e.g., read-only,

write-only, read-write) may be associated with a file. File accesses constitute reading

data from files, writing data to files, creating new files, renaming files, copying files, etc.

File access is accomplished via file module-level functions, which are covered in

Chapter 5.

■ Directories can be accessed on a volume. A directory is a container for files and

other directories. Operations include iterating through the contents of the directory,

creating new directories, renaming directories, etc. Directory access is accomplished via

directory module-level functions, which are covered in Chapter 6.

■ A volume can be formatted. (More specifically, high-level formatted.) Formatting

writes the control information for a file system to the partition on which a volume is

located.

■ A volume can be closed (unmounted). During the closing of a volume, any cached

data is written to the underlying device and associated structures are freed.

For information about using volume names, see section 4-2 “μC/FS Device and Volume

Names” on page 61. For FAT-specific volume functions, see Chapter 9, “File Systems: FAT”

on page 109.

Function Description Valid for Unmounted Volume?

FSVol_CacheAssign() Assign cache to volume. Yes

FSVol_CacheInvalidate() Invalidate cache for volume. No

FSVol_CacheFlush() Flush cache for volume. No

FSVol_Close() Close (unmount) volume. Yes

77

Devices and Volumes

Table 5-2 Volume API Functions

5-6 USING VOLUMES

A volume is opened with FSVol_Open():

The parameters are the volume name (a), the device name (b) and the partition that will be

opened (c). There is no restriction on the volume name (a); however, it is typical to give the

volume the same name as the underlying device. If the default partition is to be opened, or

if the device is not partitioned, then the partition number (c) should be zero.

The return error code from this function provides important information about the volume

state:

FSVol_Fmt() Format volume. Yes

FSVol_IsMounted() Determine whether volume is

mounted.

Yes

FSVol_LabelGet() Get volume label. No

FSVol_LabelSet() Set volume label. No

FSVol_Open() Open (mount) volume. -----

FSVol_Query() Get volume information. Yes

FSVol_Rd() Read sector on volume. No

FSVol_Refresh() Refresh a volume. No

FSVol_Wr() Write sector on volume. No

 FSVol_Open((CPU_CHAR *)“ide:0:”, <-- (a) volume name

 (CPU_CHAR *)“ide:0:”, <-- (b) device name

 (FS_PARTITION_NBR *) 0, <-- (c) partition number

 (FS_ERR *)&err); <-- (d) return error

Function Description Valid for Unmounted Volume?

78

Devices and Volumes

■ If the return error code is FS_ERR_NONE, then the volume has been mounted and is

ready to use.

■ If the return error code is FS_ERR_PARTITION_NOT_FOUND, then no valid file system

could be found on the device, or the specified partition does not exist. The device may

need to be formatted (see below).

■ If the return error code is FS_ERR_DEV, FS_ERR_DEV_NOT_PRESENT, FS_ERR_DEV_IO or

FS_ERR_DEV_TIMEOUT, the device is either not present or did not respond. This is an

important consideration for removable devices. The volume is still registered with the

file system suite, and the file system will attempt to re-open the volume each time the

application accesses it (see section 5-2 “Using Devices” on page 69 for more

information).

■ If any other error code is returned, the volume is not registered with the file system.

The developer should examine the error code to determine the source of the error.

FSVol_Fmt() formats a device, (re-)initializing the file system on the device:

The parameters are the volume name (a) and a pointer to file system-specific configuration

(b). The configuration is not required; if you are willing to accept the default format, a NULL

pointer should be passed. Alternatively, the exact properties of the file system can be

configured by passing a pointer to a FS_FAT_SYS_CFG structure as the second argument.

For more information about the FS_FAT_SYS_CFG structure, see section D-8

“FS_FAT_SYS_CFG” on page 520.

 FSVol_Fmt((CPU_CHAR *)“ide:0:”, <-- (a) volume name

 (void *) 0, <-- (b) pointer to system configuration

 (FS_ERR *)&err); <-- (c) return error

79

Devices and Volumes

5-7 USING VOLUME CACHE

File accesses often incur repeated reading of the same volume sectors. On a FAT volume,

these may be sectors in the root directory, the area of the file allocation table (FAT) from

which clusters are being allocated or data from important (often-read) files. A cache

wedged between the system driver and volume layers (as shown in Figure 5-8) will

eliminate many unnecessary device accesses. Sector data is stored upon first read or write.

Further reads return the cached data; further writes update the cache entry and, possibly,

the data on the volume (depending on the cache mode).

Figure 5-8 Volume cache architecture.

A cache is defined by three parameters: size, sector type allocation and mode. The size of

the cache is the number of sectors that will fit into it at any time. Every sector is classified

according to its type, either management, directory or file; the sector type allocation
determines the percentage of the cache that will be devoted to each type. The mode
determines when cache entries are created (i.e., when sectors are cached) and what

happens upon write.

FAT System Driver
fs_sys.*
fs_fat*.*

Volume
fs_vol.*

Cache

80

Devices and Volumes

Table 5-3 Cache types

File access presents a special case. When a file is opened with a combination of

FS_FILE_ACCESS_MODE_WR and FS_FILE_ACCESS_MODE_CACHED the update of the directory

sector will be delayed until the file is closed.

For files in read or write mode, data from the file will be cached. For files in write mode, the

update of the directory sector will be delayed until the file is closed.

5-7-1 CHOOSING CACHE PARAMETERS

The following is an example using the cache for the volume “sdcard:0:”. The cache is used

in write back mode, and the cache parameters are:

25 % of cache size is used for management sector, 15 % is used for directories sectors and

the remaining (60 %) is used for file sectors.

Cache Mode Description Cache Mode #define

Read cache Sectors cached upon read; never cached

upon write.

FS_VOL_CACHE_MODE_RD

Write-through cache Sectors cached upon read and write; data

on volume always updated upon write.

FS_VOL_CACHE_MODE_WR_THROUGH

Write-back cache Sectors cached upon read and write; data

on volume never updated upon write.

FS_VOL_CACHE_MODE_WR_BACK

pfile = FSFile_Open(“\file.txt”,

 FS_FILE_ACCESS_MODE_WR |

 FS_FILE_ACCESS_MODE_CACHED,

 &err);

81

Devices and Volumes

Listing 5-1 Cache

L5-1(1) Percent of cache buffer dedicated to management sectors.

L5-1(2) Percent of cache buffer dedicated to directory sectors.

The application using μC/FS volume cache should vary the third and fourth parameters

passed to FSVol_CacheAssign(), and select the values that give the best performance.

For an efficient cache usage, it is better to do not allocate space in the cache for sectors of

type file when the write size is greater than sector size.

When the cache is used in write back mode, all cache dirty sectors will be updated on the

media storage only when the cache is flushed..

FSVol_CacheAssign ((CPU_CHAR *)"sdcard:0:", <-- volume name

 (FS_VOL_CACHE_API *) NULL, <-- pointer to vol cache API

 (void *)&CACHE_BUF[0], <-- pointer to the cache buf

 (CPU_INT32U) CACHE_BUF_LEN, <-- cache buf size in bytes

 (CPU_INT08U) 25, <-- see (1)

 (CPU_INT08U) 15, <-- see (2)

 (FS_FLAGS) FS_VOL_CACHE_MODE_WR_BACK, <-- cache mode

 (FS_ERR *)&err); <-- used for error code

if (err != FS_ERR_NONE) {

 APP_TRACE_INFO ((" Error : could not assign Volume cache"));

 return;

}

pfile = FSFile_Open(“sdcard:0:\\file.txt”,

 FS_FILE_ACCESS_MODE_WR |

 FS_FILE_ACCESS_MODE_CACHED,

 &err);

if (pFile == (FS_FILE *)0) {

 return;

}

/*

 DO THE WRITE OPERATIONS TO THE FILE

*/

FSFile_Close (pFile, &err);

FSVol_CacheFlush ("sdcard:0:", &err); <-- Flush volume cache.

82

Devices and Volumes

5-7-2 OTHER CACHING & BUFFERING MECHANISMS

Volume cache is just one of several important caching mechanisms, which should be

balanced for optimal performance within the bounds of platform resources. The second

important software mechanism is the file buffer (see section 7-1-3 “Configuring a File

Buffer” on page 101), which makes file accesses more efficient by buffering data so a full

sector’s worth will be read or written.

Individual devices or drivers may also integrate a cache. Standard hard drives overcome

long seek times by buffering extra data upon read (in anticipation of future requests) or

clumping writes to eliminate unnecessary movement. The latter action can be particularly

powerful, but since it may involve re-ordering the sequence of sector writes will eliminate

any guarantee of fail-safety of most file systems. For that reason, write cache in most storage

devices should be disabled.

A driver may implement a buffer to reduce apparent write latency. Before a write can occur

to a flash medium, the driver must find a free (erased) area of a block; occasionally, a block

will need to be erased to make room for the next write. Incoming data can be buffered

while the long erase occurs in the background, thereby uncoupling the application’s wait

time from the real maximum flash write time.

The ideal system might use both volume cache and file buffers. A volume cache is most

powerful when confined to the sector types most subject to repeated reads: management

and directory. Caching of files, if enabled, should be limited to important (often-read) files.

File buffers are more flexible, since they cater to the many applications that find small reads

and writes more convenient than those of full sectors.

83

Chapter

6
POSIX API

The best-known API for accessing and managing files and directories is specified within the

POSIX standard (IEEE Std 1003.1). The basis of some of this functionality, in particular

buffered input/output, lies in the ISO C standard (ISO/IEC 9899), though many extensions

provide new features and clarify existing behaviors. Functions and macros prototyped in

four header files are of particular importance:

■ stdio.h. Standard buffered input/output (fopen(), fread(), etc), operating on FILE

objects.

■ dirent.h. Directory accesses (opendir(), readdir(), etc), operating on DIR objects.

■ unistd.h. Miscellaneous functions, including working directory management

(chdir(), getcwd()), ftruncate() and rmdir().

■ sys/stat.h. File statistics functions and mkdir().

μC/FS provides a POSIX-compatible API based on a subset of the functions in these four

header files. To avoid conflicts with the user compilation environment, files, functions and

objects are renamed:

■ All functions begin with ‘fs_’. For example, fopen() is renamed fs_fopen(),

opendir() is renamed fs_opendir(), getcwd() is renamed fs_getcwd(), etc.

■ All objects begin with ‘FS_’. So fs_fopen() returns a pointer to a FS_FILE and

fs_opendir() returns a pointer to a FS_DIR.

■ Some argument types are renamed. For example, the second and third parameters of

fs_fread() are typed fs_size_t to avoid conflicting with other size_t definitions.

84

POSIX API

6-1 SUPPORTED FUNCTIONS

The supported POSIX functions are listed in the table below. These are divided into four

groups. First, the functions which operate on file objects (FS_FILEs) are grouped under file

access (or simply file) functions. An application stores information in a file system by

creating a file or appending new information to an existing file. At a later time, this

information may be retrieved by reading the file. Other functions support these capabilities;

for example, the application can move to a specified location in the file or query the file

system to get information about the file.

A separate set of file operations (or entry) functions manage the files and directories

available on the system. Using these functions, the application can create, delete and

rename files and directories.

The entries within a directory can be traversed using the directory access (or simply

directory) functions, which operate on directory objects (FS_DIRs). The name and

properties of the entries are returned within a struct fs_dirent structure.

The final group of functions is the working directory functions. For information about using

file and path names, see section 4-3 “μC/FS File and Directory Names and Paths” on

page 62.

Function POSIX Equivalent Function POSIX Equivalent

fs_asctime_r() asctime_r() fs_ftruncate() ftruncate()

fs_chdir() chdir() fs_ftrylockfile() ftrylockfile()

fs_clearerr() clearerr() fs_funlockfile() funlockfile()

fs_closedir() closedir() fs_fwrite() fwrite()

fs_ctime_r() ctime_r() fs_getcwd() getcwd()

fs_fclose() fclose() fs_localtime_r() localtime_r()

fs_feof() feof() fs_mkdir() mkdir()

fs_ferror() ferror() fs_mktime() mktime()

fs_fflush() fflush() fs_rewind() rewind()

fs_fgetpos() fgetpos() fs_opendir() opendir()

fs_flockfile() flockfile() fs_readdir_r() readdir_r()

fs_fopen() fopen() fs_remove() remove()

fs_fread() fread() fs_rename() rename()

85

POSIX API

Table 6-1 POSIX API functions.

6-2 WORKING DIRECTORY FUNCTIONS

Normally, all file or directory paths must be absolute, either on the default volume or on an

explicitly-specified volume:

If working directory functionality is enabled, paths may be specified relative to the working

directory of the current task:

The two standard special path components are supported. The path component “..” moves

to the parent of the current working directory. The path component “.” makes no change;

essentially, it means the current working directory.

fs_chdir() is used to set the working directory. If a relative path is employed before any

working directory is set, the root directory of the default volume is used.

The application can get the working directory with fs_getcwd(). A terminal interface may

use this function to implement an equivalent to the standard pwd (print working directory)

command, while calling fs_chdir() to carry out a cd operation. If working directories are

enabled, the μC/Shell commands for μC/FS manipulate and access the working directory

with fs_chdir() and fs_getcwd() (see also Appendix F, “Shell Commands” on page 535).

fs_fseek() fseek() fs_rmdir() rmdir()

fs_fsetpos() fsetpos() fs_setbuf() setbuf()

fs_fstat() fstat() fs_setvbuf() setvbuf()

fs_ftell() ftell() fs_stat() stat()

p_file1 = fs_fopen(“\\file.txt”, “r”); /* File on default volume */

p_file2 = fs_fopen(“sdcard:0:\\file.txt”, “r”); /* File on explicitly-specified volume */

p_file2 = fs_fopen(“file.txt”, “r”); /* File in working directory */

p_file1 = fs_fopen(“..\\file.txt”, “r”); /* File in parent of working directory */

Function POSIX Equivalent Function POSIX Equivalent

86

POSIX API

6-3 FILE ACCESS FUNCTIONS

The file access functions provide an API for performing a sequence of operations on a file

located on a volume’s file system. The file object pointer returned when a file is opened is

passed as an argument of all file access function, and the file object so referenced maintains

information about the actual file (on the volume) and the state of the file access. The file

access state includes the file position (the next place data will be read/written), error

conditions and (if file buffering is enabled) the state of any file buffer.

As data is read from or written to a file, the file position is incremented by the number of

bytes transferred from/to the volume. The file position may also be directly manipulated by

the application using the position set function (fs_fsetpos()), and the current absolute

file position may be gotten with the position get function (fs_fgetpos()), to be later used

with the position set function.

Figure 6-1 File state transitions.

W
rite

Write

Reading Writing

Ready

R
ea

d

(f
ile

no
t a

t E
O

F
)

Read

S
e
tf

ile
p
o
si

tio
n

or
flu

sh

Error

E
rror

Must be
Closed

Clear error

V
ol

um
e

ch
an

ge

Closed

C
lo

s
e

d

Write

(file at EOF)

S
etfile

position

C
lo

se
d C

losed

Open

87

POSIX API

The file maintains flags that reflect errors encountered in the previous file access, and

subsequent accesses will fail (under certain conditions outlined here) unless these flags are

explicitly cleared (using fs_clearerr()). There are actually two sets of flags. One reflects

whether the file encountered the end-of-file (EOF) during the previous access, and if this is

set, writes will not fail, but reads will fail. The other reflects device errors, and no

subsequent file access will succeed (except file close) unless this is first cleared. The

functions fs_ferror() and fs_feof() can be used to get the state of device error and

EOF conditions, respectively.

If file buffering is enabled (FS_CFG_FILE_BUF_EN is DEF_ENABLED), then input/output

buffering capabilities can be used to increase the efficiency of file reads and writes. A buffer

can be assigned to a file using fs_setbuf() or fs_setvbuf(); the contents of the buffer

can be flushed to the storage device using fs_fflush().

If a file is shared between several tasks in an application, a file lock can be employed to

guarantee that a series of file operations are executed atomically. fs_flockfile() (or its

non-blocking equivalent fs_ftrylockfile()) acquires the lock for a task (if it does not

already own it). Accesses from other tasks will be blocked until a fs_funlockfile() is

called. This functionality is available if FS_CFG_FILE_LOCK_EN is DEF_ENABLED.

6-3-1 OPENING, READING & WRITING FILES

When an application needs to access a file, it must first open it using fs_fopen():

The return value of this function should always be verified as non-NULL before the

application proceeds to access the file. The first argument of this function is the path of the

file; if working directories are disabled, this must be the absolute file path, beginning with

either a volume name or a ‘\’ (see section 4-3 “μC/FS File and Directory Names and Paths”

on page 62). The second argument of this function is a string indicating the mode of the

file; this must be one of the strings shown in the table below. Note that in all instances, the

‘b’ (binary) option has no affect on the behavior of file accesses.

file pointer --> p_file = fs_fopen(“\\file.txt”, <-- file name

 “w+”); <-- mode string

 if (p_file == (FS_FILE *)0) {

 /* $$$$ Handle error */

 }

88

POSIX API

Table 6-2 fs_fopen() mode strings interpretations.

After a file is opened, any of the file access functions valid for that its mode can be called.

The most commonly used functions are fs_fread() and fs_fwrite(), which read or write

a certain number of ‘items’ from a file:

The return value, the number of items read (or written), should be less than or equal to the

third argument. If the operation is a read, this value may be less than the third argument for

one of two reasons. First, the file could have encountered the end-of-file (EOF), which

means that there is no more data in the file. Second, the device could have been removed,

or some other error could have prevented the operation. To diagnose the cause, the

fs_feof() function should be used. This function returns a non-zero value if the file has

encountered the EOF.

Once the file access is complete, the file must be closed; if an application fails to close files,

then the file system suite resources such as file objects may be depleted.

An example of reading a file is given in Listing 6-1.

fs_fopen() Mode String Read? Write? Truncate? Create? Append?

“r” or “rb” Yes No No No No

“w” or “wb” No Yes Yes Yes No

“a” or “ab” No Yes No Yes Yes

“r+” or “rb+” or “r+b” Yes Yes No No No

“w+” or “wb+” or “w+b” Yes Yes Yes Yes No

“a+” or “ab+” or “a+b” Yes Yes No Yes Yes

number of items read --> cnt = fs_fread(p_buf, <-- pointer to buffer

 1, <-- size of each item

 100, <-- number of items

 p_file); <-- pointer to file

89

POSIX API

Listing 6-1 Example file read.

L6-1(1) To determine whether a file read terminates because of reaching the EOF or a

device error/removal, the EOF condition should be checked using fs_feof().

L6-1(2) In most situations, either the EOF or the error indicator will be set on the file if

the return value of fs_fread() is smaller than the buffer size. Consequently,

this check is unnecessary.

void App_Fnct (void)

{

 FS_FILE *p_file;

 fs_size_t cnt;

 unsigned char buf[50];

 .

 .

 .

 p_file = fs_fopen(“\\file.txt”, “r”); /* Open file. */

 if (p_file != (FS_FILE *)0) { /* If file is opened ... */

 /* ... read from file. */

 do {

 cnt = fs_fread(&buf[0], 1, sizeof(buf), p_file);

 if (cnt > 0) {

 APP_TRACE_INFO((“Read %d bytes.\r\n”, cnt));

 }

 } while (cnt >= sizeof(buf));

 eof = fs_feof(p_file); /* Chk for EOF. */

 if (eof != 0) { /* See Note #1. */

 APP_TRACE_INFO((“Reached EOF.\r\n”));

 } else {

 err = fs_ferror(p_file); /* Chk for error. */

 if (err != 0) { /* See Note #2. */

 APP_TRACE_INFO((“Read error.\r\n”));

 }

 }

 fs_fclose(p_file); /* Close file. */

 } else {

 APP_TRACE_INFO((“Could not open \”\\file.txt\”.\r\n”));

 }

 .

 .

 .

}

90

POSIX API

6-3-2 GETTING OR SETTING THE FILE POSITION

Another common operation is getting or setting the file position. The fs_fgetpos() and

fs_fsetpos() allow the application to ‘store’ a file location, continue reading or writing the

file, and then go back to that place at a later time. An example of using file position get and

set is given in Listing 6-2.

Listing 6-2 Example file position set/get.

void App_Fnct (void)

{

 FS_FILE *p_file;

 fs_fpos_t pos;

 int err;

 .

 .

 .

 p_file = fs_fopen(“\file.txt”, “r”); /* Open file ... */

 if (p_file == (FS_FILE *)0) {

 APP_TRACE_INFO((“Could not open file.”));

 return;

 }

 .

 . /* ... read from file. */

 .

 err = fs_fgetpos(p_file, &pos); /* Save file position ... */

 if (err != 0) {

 APP_TRACE_INFO((“Could not get file position.”));

 return;

 }

 .

 . /* ... read some more from file. */

 .

 err = fs_fsetpos(p_file, &pos); /* Set file to saved position ... */

 if (err != 0) {

 APP_TRACE_INFO((“Could not set file position.”));

 return;

 }

 .

 . /* ... read some more from file. */

 .

 FS_fclose(p_file); /* When finished, close file. */

 .

 .

 .

}

91

POSIX API

6-3-3 CONFIGURING A FILE BUFFER

In order to increase the efficiency of file reads and writes, input/output buffering

capabilities are provided. Without an assigned buffer, reads and writes will be immediately

performed within fs_fread() and fs_fwrite(). Once a buffer has been assigned, data

will always be read from or written to the buffer; device access will only occur once the file

position moves beyond the window represented by the buffer.

fs_setbuf() and fs_setvbuf() assign the buffer to a file. The contents of the buffer can

be flushed to the storage device with fs_fflush(). If a buffer is assigned to a file that was

opened in update (read/write) mode, then a write may only be followed by a read if the

buffer has been flushed (by calling fs_fflush() or a file positioning function). A read may

be followed by a write only if the buffer has been flushed, except when the read

encountered the end-of-file, in which case a write may happen immediately. The buffer is

automatically flushed when the file is closed.

File buffering is particularly important when data is written in small chunks to a medium

with slow write time or limited endurance. An example is NOR flash, or even NAND flash,

where write times are much slower than read times, and the lifetime of device is constrained

by limits on the number of times each block can be erased and programmed.

92

POSIX API

Listing 6-3 Example file buffer usage.

L6-3(1) The buffer must be assigned immediately after opening the file. An attempt to

set the buffer after read or writing the file will fail.

L6-3(2) While it is not necessary to flush the buffer before closing the file, some

applications may want to make sure at certain points that all previously written

data is stored on the device before writing more.

static CPU_INT32U App_FileBuf[512 / 4]; /* Define file buffer. */

void App_Fnct (void)

{

 CPU_INT08U data1[50];

 .

 .

 .

 p_file = FS_fopen(“\\file.txt”, “w”);

 if (p_file != (FS_FILE *)0) {

 /* Set buffer (see Note #1). */

 fs_setvbuf(p_file, (void *)App_FileBuf, FS__IOFBF, sizeof(App_FileBuf));

 .

 .

 .

 fs_fflush(p_file); /* Make sure data is written to file. */

 .

 .

 .

 fs_fclose(p_file); /* When finished, close file. */

 }

 .

 .

 .

}

93

POSIX API

6-3-4 DIAGNOSING A FILE ERROR

The file maintains flags that reflect errors encountered in the previous file access, and

subsequent accesses will fail (under certain conditions outlined here) unless these flags are

explicitly cleared (using fs_clearerr()). There are actually two sets of flags. One reflects

whether the file encountered the end-of-file (EOF) during the previous access, and if this is

set, writes will not fail, but reads will fail. The other reflects device errors, and no

subsequent file access will succeed (except file close) unless this is first cleared. The

functions fs_ferror() and fs_feof() can be used to get the state of device error and

EOF conditions, respectively.

6-3-5 ATOMIC FILE OPERATIONS USING FILE LOCK

If a file is shared between several tasks in an application, the file lock can be employed to

guarantee that a series of file operations are executed atomically. fs_flockfile() (or its

non-blocking equivalent fs_ftrylockfile()) acquires the lock for a task (if it does not

already own it). Accesses from other tasks will be blocked until fs_funlockfile() is called.

Each file actually has a lock count associated with it. This allows nested calls by a task to

acquire a file lock; each of those calls must be matched with a call to fs_funlockfile().

Listing 6-4 Example file lock usage.

void App_Fnct (void)

{

 unsigned char data1[50];

 unsigned char data2[10];

 .

 .

 .

 if (App_FilePtr != (FS_FILE *)0) {

 fs_flockfile(App_FilePtr); /* Lock file. */

 /* See Note #1. */

 /* Wr data atomically. */

 fs_fwrite(data1, 1, sizeof(data1), App_FilePtr);

 fs_fwrite(data2, 1, sizeof(data1), App_FilePtr);

 fs_funlockfile(App_FilePtr); /* Unlock file. */

 }

 .

 .

 .

}

94

POSIX API

L6-4(1) fs_flockfile() will block the calling task until the file is available. If the task

must write to the file only if no other task is currently accessing it, the

non-blocking function fs_funlockfile() can be used.

6-4 DIRECTORY ACCESS FUNCTIONS

The directory access functions provide an API for iterating through the entries within a

directory. The fs_opendir() function initiates this procedure, and each subsequent call to

fs_readdir_r() (until all entries have been examined) returns information about a

particular entry in a struct fs_dirent. The fs_closedir() function releases any file system

structures and locks.

Figure 6-2 gives an example using the directory access functions to list the files in a

directory. An example result of listing a directory is shown in Figure 4-1.

void App_Fnct (void)

{

 FS_DIR *p_dir;

 struct fs_dirent dirent;

 struct fs_dirent *p_dirent;

 char str[50];

 char *p_cwd_path;

 fs_time_t ts;

 .

 .

 .

 p_dir = fs_opendir(p_cwd_path); /* Open dir. */

 if (p_dir != (FS_DIR *)0) {

 (void)fs_readdir_r(pdir, &dirent, &p_dirent); /* Rd first dir entry. */

 if (p_dirent == (FS_DIRENT *)0) { /* If NULL ... dir is empty. */

 APP_TRACE_INFO((“Empty dir: %s.\r\n”, p_cwd_path));

 } else { /* Fmt info for each entry. */

 Str_Copy(str, "-r--r—r-- : ");

 while (p_dirent != (struct dirent *)0) {

 /* Chk if file is dir. */

 if (DEF_BIT_IS_SET(dirent.Info.Attrib, FS_ENTRY_ATTRIB_DIR) == DEF_YES) {

 str[0] = ‘d’;

 }

 /* Chk if file is rd only. */

95

POSIX API

Listing 6-5 Directory Listing Output (example)

 if (DEF_BIT_IS_SET(dirent.Info.Attrib, FS_ENTRY_ATTRIB_WR) == DEF_YES) {

 str[2] = ‘w’;

 str[5] = ‘w’;

 str[8] = ‘w’;

 }

 /* Get file size. */

 if (p_dirent->Info.Size == 0) {

 if (DEF_BIT_IS_CLR(dirent.Info.Attrib, FS_ENTRY_ATTRIB_DIR) == DEF_YES) {

 Str_Copy(&str[11]," 0");

 }

 } else {

 Str_FmtNbr_Int32U(dirent.Info.Size,

 10, 10, ‘0’, DEF_NO, DEF_NO, &str[11]);

 }

 /* Get file date/time. */

 if (p_dirent->Info.DateTimeCreate.Month != 0) {

 Str_Copy(&str[22],

 (CPU_CHAR *)App_MonthNames[dirent.Info.DateTimeCreate.Month - 1]);

 Str_FmtNbr_Int32U(dirent.Info.DateTimeWr.Day,

 2, 10, ‘ ‘, DEF_NO, DEF_NO, &str[26]);

 Str_FmtNbr_Int32U(dirent.Info.DateTimeWr.Hour,

 2, 10, ‘ ’, DEF_NO, DEF_NO, &str[29]);

 Str_FmtNbr_Int32U(dirent.Info.DateTimeWr.Minute,

 2, 10, ‘ ’, DEF_NO, DEF_NO, &str[32]);

 }

 /* Output info for entry. */

 APP_TRACE_INFO((“%s%s\r\n”, str, dirent.Name));

 /* Rd next dir entry. */

 (void)fs_readdir_r(pdir, &dirent, &p_dirent);

 }

 }

 fs_closedir(p_dir); /* Close dir. */

 /* If dir could not be opened ... */

 } else { /* ... dir does not exist. */

 APP_TRACE_INFO((“Dir does not exist: %s.\r\n”, p_cwd_path));

 }

 .

 .

 .

}

96

POSIX API

Figure 6-2 Example directory listing.

The second argument fs_readdir_r(), is a pointer to a struct fs_dirent, which has two

members. The first is Name, which holds the name of the entry; the second is Info, which

has file information. For more information about the struct fs_dirent structure, see section

D-6 “FS_DIR_ENTRY (struct fs_dirent)” on page 517.

6-5 ENTRY ACCESS FUNCTIONS

The entry access functions provide an API for performing single operations on file system

entries (files and directories), such as renaming or deleting a file. Each of these operations is

atomic; consequently, in the absence of device access errors, either the operation will have

completed or no change to the storage device will have been made upon function return.

A new directory can be created with fs_mkdir() or an existing file or directory deleted or

renamed (with fs_remove() or fs_rename()).

97

Chapter

7
Files

An application stores information in a file system by creating a file or appending new

information to an existing file. At a later time, this information may be retrieved by reading

the file. Other functions support these capabilities; for example, the application can move to

a specified location in the file or query the file system to get information about the file.

These functions, which operate on file structures (FS_FILEs), are grouped under file access

(or simply file) functions. The available file functions are listed in Table 7-1.

A separate set of file operations (or entry) functions manage the files and directories

available on the system. Using these functions, the application can copy, create, delete and

rename files, and get and set a file or directory’s attributes and date/time. The available

entry functions are listed in Table 7-3.

The entry functions and the FSFile_Open() function accept full file paths. For information

about using file and path names, see section 4-3 “μC/FS File and Directory Names and

Paths” on page 62.

The functions listed in Table 7-1 and Table 7-3 are core functions in the file access module

(FSFile_####() functions) and entry module (FSEntry_####() functions). These are

matched, in most cases, by API level functions that correspond to standard C or POSIX

functions. The core and API functions provide basically the same functionality; the benefits

of the former are enhanced capabilities, a consistent interface and meaningful return error

codes.

98

Files

7-1 FILE ACCESS FUNCTIONS

The file access functions provide an API for performing a sequence of operations on a file

located on a volume’s file system. The file object pointer returned when a file is opened is

passed as the first argument of all file access functions (a characteristic which distinguishes

these from the entry access functions), and the file object so referenced maintains

information about the actual file (on the volume) and the state of the file access. The file

access state includes the file position (the next place data will be read/written), error

conditions and (if file buffering is enabled) the state of any file buffer.

Function Description

FSFile_BufAssign() Assign buffer to a file.

FSFile_BufFlush() Write buffered data to volume.

FSFile_Close() Close a file.

FSFile_ClrErr() Clear error(s) on a file.

FSFile_IsEOF() Determine whether a file is at EOF.

FSFile_IsErr() Determine whether error occurred on a file.

FSFile_IsOpen() Determine whether a file is open or not.

FSFile_LockGet() Acquire task ownership of a file.

FSFile_LockSet() Release task ownership of a file.

FSFile_LockAccept() Acquire task ownership of a file (if available).

FSFile_Open() Open a file.

FSFile_PosGet() Get file position.

FSFile_PosSet() Set file position.

FSFile_Query() Get information about a file.

FSFile_Rd() Read from a file.

FSFile_Truncate() Truncate a file.

FSFile_Wr() Write to a file.

99

Files

Table 7-1 File Access Functions

7-1-1 OPENING FILES

When an application needs to access a file, it must first open it using fs_fopen() or

FSFile_Open(). For most applications, the former with its familiar interface suffices. In

some cases, the flexibility of the latter is demanded:

The return value of this function should always be verified as non-NULL before the

application proceeds to access the file. The second argument to this function is a logical OR

of mode flags:

FS_FILE_ACCESS_MODE_RD File opened for reads.

FS_FILE_ACCESS_MODE_WR File opened for writes.

FS_FILE_ACCESS_MODE_CREATE File will be created, if necessary.

FS_FILE_ACCESS_MODE_TRUNC File length will be truncated to 0.

FS_FILE_ACCESS_MODE_APPEND All writes will be performed at EOF.

FS_FILE_ACCESS_MODE_EXCL File will be opened if and only if it does not already

exist.

FS_FILE_ACCESS_MODE_CACHED File data will be cached.

For example, if you wanted to create a file to write to if and only if it does not exist, you

would use the flags

FS_FILE_ACCESS_MODE_WR | FS_FILE_ACCESS_MODE_CREATE | FS_FILE_ACCESS_MODE_EXCL

file ptr --> p_file = FSFile_Open (“\\file.txt”, <-- file name

 FS_FILE_ACCESS_MODE_RD, <-- access mode

 &err); <-- return error

 if (p_file == (FS_FILE *)0) {

 /* $$$$ Handle error */

 }

100

Files

It is impossible to do this in a single, atomic operation using fs_fopen().

The table below lists the mode flag equivalents of the fs_fopen() mode strings.

Table 7-2 fopen() mode strings and mode equivalents

7-1-2 GETTING INFORMATION ABOUT A FILE

Detailed information about an open file, such as size and date/time stamps, can be obtained

using the FSFile_Query() function:

The FS_ENTRY_INFO structure has the following members:

“r” or “rb” FS_FILE_ACCESS_MODE_RD

“w” or “wb” FS_FILE_ACCESS_MODE_WR |

FS_FILE_ACCESS_MODE_CREATE |

FS_FILE_ACCESS_MODE_TRUNC

“a” or “ab” FS_FILE_ACCESS_MODE_WR |

FS_FILE_ACCESS_MODE_CREATE |

FS_FILE_ACCESS_MODE_APPEND

“r+” or “rb+” or “r+b” FS_FILE_ACCESS_MODE_RD |

FS_FILE_ACCESS_MODE_WR

“w+” or “wb+” or “w+b” FS_FILE_ACCESS_MODE_RD |

FS_FILE_ACCESS_MODE_WR |

FS_FILE_ACCESS_MODE_CREATE |

FS_FILE_ACCESS_MODE_TRUNC

“a+” or “ab+” or “a+b” FS_FILE_ACCESS_MODE_RD |

FS_FILE_ACCESS_MODE_WR |

FS_FILE_ACCESS_MODE_CREATE |

FS_FILE_ACCESS_MODE_APPEND

FS_ENTRY_INFO info;

FSFile_Query(p_file, <-- file pointer

 &info, <-- pointer to info structure

 &err); <-- return error

101

Files

■ Attrib contains the file attributes (see section 7-2-1 “File and Directory Attributes” on

page 104).

■ Size is the size of the file, in octets.

■ DateTimeCreate is the creation timestamp of the file.

■ DateAccess is the access timestamp (date only) of the file.

■ DateTimeWr is the last write (or modification) timestamp of the file.

■ BlkCnt is the number of blocks allocated to the file. For a FAT file system, this is the

number of clusters occupied by the file data.

■ BlkSize is the size of each block allocated in octets. For a FAT file system, this is the

size of a cluster.

DateTimeCreate, DateAccess and DateTimeWr are structures of type CLK_TS_SEC.

7-1-3 CONFIGURING A FILE BUFFER

The file module has functions to assign and flush a file buffer that are equivalents to POSIX

API functions; the primary difference is the advantage of valuable return error codes to the

application.

For more information about and an example of configuring a file buffer, see section 6-3-3

“Configuring a File Buffer” on page 91.

File Module Function

void FSFile_BufAssign (FS_FILE *p_file,

 void *p_buf,

 FS_FLAGS mode,

 CPU_SIZE_T size,

 FS_ERR *p_err);

void FSFile_BufFlush (FS_FILE *p_file,

 FS_ERR *p_err);

POSIX API Equivalent

int fs_setvbuf (FS_FILE *stream,

 char *buf,

 int mode,

 fs_size_t size);

int fs_fflush (FS_FILE *stream);

102

Files

7-1-4 FILE ERROR FUNCTIONS

The file module has functions get and clear a file’s error status that are almost exact

equivalents to POSIX API functions; the primary difference is the advantage of valuable

return error codes to the application.

For more information about this functionality, see section 6-3-4 “Diagnosing a File Error” on

page 93.

7-1-5 ATOMIC FILE OPERATIONS USING FILE LOCK

The file module has functions lock files across several operations that are almost exact

equivalents to POSIX API functions; the primary difference is the advantage of valuable

return error codes to the application.

For more information about and an example of using file locking, see section 6-3-5 “Atomic

File Operations Using File Lock” on page 93.

File Module Function

void FSFile_ClrErr (FS_FILE *p_file,

 FS_ERR *p_err);

CPU_BOOLEAN FSFile_IsErr (FS_FILE *p_file,

 FS_ERR *p_err);

CPU_BOOLEAN FSFile_IsEOF (FS_FILE *p_file,

 FS_ERR *p_err);

POSIX API Equivalent

void fs_clearerr (FS_FILE *stream);

int fs_ferror (FS_FILE *stream);

int fs_feof (FS_FILE *stream);

File Module Function

void FSFile_LockGet (FS_FILE *p_file,

 FS_ERR *p_err);

void FSFile_LockAccept (FS_FILE *p_file,

 FS_ERR *p_err);

void FSFile_LockSet (FS_FILE *p_file,

 FS_ERR *p_err);

POSIX API Equivalent

void fs_flockfile (FS_FILE *file);

int fs_ftrylockfile (FS_FILE *file);

void fs_funlockfile (FS_FILE *file);

103

Files

7-2 ENTRY ACCESS FUNCTIONS

The entry access functions provide an API for performing single operations on file system

entries (files and directories), such as copying, renaming or deleting. Each of these

operations is atomic; consequently, in the absence of device access errors, either the

operation will have completed or no change to the storage device will have been made

upon function return.

One of these functions, FSEntry_Query(), obtains information about an entry (including

the attributes, date/time stamp and file size). Two functions set entry properties,

FSEntry_AttribSet() and FSEntry_TimeSet(), which set a file’s attributes and date/time

stamp. A new file entry can be created with FSEntry_Create() or an existing entry

deleted, copied or renamed (with FSEntry_Del(), FSEntry_Copy() or

FSEntry_Rename()).

Table 7-3 Entry API Functions

Function Description

FSEntry_AttribSet() Set a file or directory's attributes.

FSEntry_Copy() Copy a file.

FSEntry_Create() Create a file or directory.

FSEntry_Del() Delete a file or directory.

FSEntry_Query() Get information about a file or directory.

FSEntry_Rename() Rename a file or directory.

FSEntry_TimeSet() Set a file or directory's date/time.

104

Files

7-2-1 FILE AND DIRECTORY ATTRIBUTES

The FSEntry_Query() function gets information about file system entry, including its

attributes, which indicate whether it is a file or directory, writable or read-only, and visible

or hidden:

The return value is a logical OR of attribute flags:

FS_ENTRY_ATTRIB_RD Entry is readable.

FS_ENTRY_ATTRIB_WR Entry is writable.

FS_ENTRY_ATTRIB_HIDDEN Entry is hidden from user-level processes.

FS_ENTRY_ATTRIB_DIR Entry is a directory.

FS_ENTRY_ATTRIB_ROOT_DIR Entry is a root directory.

If no error is returned and FS_ENTRY_ATTRIB_DIR is not set, then the entry is a file.

An entry can be made read-only (or writable) or hidden (or visible) by setting its attributes:

The second argument should be the logical OR of relevant attribute flags.

 FS_FLAGS attrib;

 FS_ENTRY_INFO info;

 FSEntry_Query(“path_name”, <-- pointer to full path name

 &info, <-- pointer to info

 &err); <-- return error

 attrib = info.Attrib;

105

Files

FS_ENTRY_ATTRIB_RD Entry is readable.

FS_ENTRY_ATTRIB_WR Entry is writable.

FS_ENTRY_ATTRIB_HIDDEN Entry is hidden from user-level processes.

If a flag is clear (not OR’d in), then that attribute will be clear. In the example above, the

entry will be made read-only (i.e., not writable) and will be visible (i.e., not hidden) since

the WR and HIDDEN flags are not set in attrib. Since there is no way to make files

write-only (i.e., not readable), the RD flag should always be set.

7-2-2 CREATING NEW FILES AND DIRECTORIES

A new file can be created using FSFile_Open() or fs_fopen(), if opened in write or

append mode. There are a few other ways that new files can be created (most of which also

apply to new directories).

The simplest is the FSEntry_Create() function, which just makes a new file or directory:

If the second argument, entry_type, is FS_ENTRY_TYPE_DIR the new entry will be a

directory. The third argument, excl, indicates whether the creation should be exclusive. If it

is exclusive (excl is DEF_YES), nothing will happen if the file already exists. Otherwise, the

file currently specified by the file name will be deleted and a new empty file with that name

created.

attrib = FS_ENTRY_ATTRIB_RD;

 FSEntry_AttribSet(“path_name”, <-- pointer to full path name

 attrib, <-- attributes

 &err); <-- return error

 FSEntry_Create(“\\file.txt”, <-- file name

 FS_ENTRY_TYPE_FILE, <-- means entry will be a file

 DEF_NO, <-- DEF_NO means creation NOT exclusive

 &err); <-- return error

106

Files

Similar functions exist to copy and rename an entry:

(FSEntry_Copy() can only be used to copy files.) The first two arguments of each of these

are both full paths; the second path is not relative to the parent directory of the first. As with

FSEntry_Create(), the third argument of each, excl, indicates whether the creation should

be exclusive. If it is exclusive (excl is DEF_YES), nothing will happen if the destination or

new file already exists.

7-2-3 DELETING FILES AND DIRECTORIES

A file or directory can be deleted using FSEntry_Del():

The second argument, entry_type, restricts deletion to specific types. If it is

FS_ENTRY_TYPE_DIR, then the entry specified by the first argument must be a directory; if it

is a file, an error will be returned. If it is FS_ENTRY_TYPE_FILE, then the entry must be a

file. If it is FS_ENTRY_TYPE_ANY, then the entry will be deleted whether it is a file or a

directory.

 FSEntry_Copy(“\\dir\\src.txt”, <-- source file name

 “\\dir\\dest.txt », <-- destination file name

 DEF_NO, <-- DEF_NO means creation not exclusive

 &err); <-- return error

 FSEntry_Rename (“\\dir\\oldname.txt”, <-- old file name

 “\\dir\\newname.txt”, <-- new file name

 DEF_NO, <-- DEF_NO means creation not exclusive

 &err); <-- return error

 FSEntry_Del(“\\dir”, <-- entry name

 FS_ENTRY_TYPE_DIR, <-- means entry must be a dir

 &err); <-- return error

107

Chapter

8
Directories

An application stores information in a file system by creating a file or appending new

information to an existing file. At a later time, this information may be retrieved by reading

the file. However, if a certain file must be found, or all files may be listed, the application

can iterate through the entries in a directory using the directory access (or simply
directory) functions. The available directory functions are listed in Table 6-1.

A separate set of directory operations (or entry) functions manage the files and

directories available on the system. Using these functions, the application can create, delete

and rename directories, and get and set a directory’s attributes and date/time. More

information about the entry functions can be found in section 7-2 “Entry Access Functions”

on page 103.

The entry functions and the directory Open() function accept one or more full directory
paths. For information about using file and path names, see section 4-3 “μC/FS File and

Directory Names and Paths” on page 62.

The functions listed in Table 8-1 are core functions in the directory access module

(FSDir_####() functions). These are matched by API level functions that correspond to

standard C or POSIX functions. More information about the API-level functions can be

found in Chapter 6, “POSIX API” on page 83. The core and API functions provide basically

the same functionality; the benefits of the former are enhanced capabilities, a consistent

interface and meaningful return error codes.

108

Directories

8-1 DIRECTORY ACCESS FUNCTIONS

The directory access functions provide an API for iterating through the entries within a

directory. The FSDir_Open() function initiates this procedure, and each subsequent call to

FSDir_Rd() (until all entries have been examined) returns a FS_DIRENT which holds

information about a particular entry. The FSDir_Close() function releases any file system

structures and locks.

Table 8-1 Directory API Functions

These functions are almost exact equivalents to POSIX API functions; the primary difference

is the advantage of valuable return error codes to the application.

For more information about and an example of using directories, see section 6-4 “Directory

Access Functions” on page 94.

Function Description

FSDir_Open() Open a directory.

FSDir_Close() Close a directory

FSDir_Rd() Read a directory entry.

FSDir_IsOpen() Determine whether a directory is open or not.

Directory Module Function

FS_DIR *FSDir_Open (CPU_CHAR *p_name_full,

 FS_ERR *p_err);

void FSDir_Close(FS_DIR *p_dir,

 FS_ERR *p_err);

void FSDir_Rd (FS_DIR *p_dir,

 FS_DIR_ENTRY *p_dir_entry,

 FS_ERR *p_err);

POSIX API Equivalent

FS_DIR *fs_opendir

 (const char *dirname);

int fs_closedir

 (FS_DIR *dirp);

int fs_readdir_r

 (FS_DIR *dirp,

 struct fs_dirent *entry,

 struct fs_dirent **result);

109

Chapter

9
File Systems: FAT

The FAT (File Allocation Table) file system, introduced as a simple file system for small disk

drives, still predominates the removable storage market, because it is supported by all major

operating systems. Since FAT’s inception, it has been extended to support larger disks as

well as longer file names. However, it remains simple enough for the most

resource-constrained embedded system.

110

File Systems: FAT

9-1 FAT ARCHITECTURE

A FAT volume consists of four basic areas:

1 Reserved area. The reserved area includes the boot sector, which contains basic

format information, like the number of sectors in the volume.

2 FAT. The FAT is a large table with one entry for each cluster. Each entry contains one of

three values: the free cluster mark (indicating that it is not allocated), the cluster

number of the next entry in the file (essentially, a link in a list of the file’s clusters), or

the end-of-cluster mark (indicating that it is the final cluster in the file).

3 Root directory. Note that in FAT32 volumes, the root directory is also part of the

data area.

4 Data area. The data area contains files and directories, which are just a special type

of file.

Figure 9-1 FAT Volume Layout

Rsvd

Area

1
st
 FAT

Area

2
nd

 FAT

Area

Root

Dir
Data Area

Rsvd

Area

1
st
 FAT

Area

2
nd

 FAT

Area
Data Area

FAT12/16

FAT32

111

File Systems: FAT

9-1-1 FAT12 / FAT16 / FAT32

The earliest version of FAT, the file system integrated into Microsoft’s DOS, was FAT12,

so-called because each entry in the File Allocation Table was 12-bits. This limited disk size

to approximately 32-MB. Extensions to 16- and 32-bit entries (FAT16 and FAT32) expand

support to 2-GB and 8-TB, respectively. As described in Appendix E, “Fat Configuration” on

page 532, support for FAT12, FAT16 and FAT32 can be individually disabled, if desired.

FAT32 introduces several new innovations above its predecessors. The root directory in the

earlier systems was a fixed size; i.e., when the medium is formatted, the maximum number

of files that could be created in the root directory (typically 512) is set. In FAT32, the root

directory is dynamically resizable, like all other directories. Two special sectors are also

included: the FS info sector and the backup boot sector. The former stores information

convenient to the operation of the host, such as the last used cluster. The latter is a copy of

the first disk sector (the boot sector), in case the original is corrupted.

9-1-2 SHORT AND LONG FILE NAMES

In the original version of FAT, files could only carry short “8 dot 3” names, with eight or

fewer characters in the main name and three or fewer in its extension. The valid characters

in these names are letters, digits, characters with values greater than 127 and the following:

$ % ‘ - _ @ ~ ` ! () { } ^ # &

In μC/FS, the name passed by the application is always verified, both for invalid length

and invalid characters. If valid, the name is converted to upper case for storage in the

directory entry.

Eventually, in a backwards-compatible extension, Microsoft introduced long file names

(LFNs). LFNs are limited to 255 characters, stored as 16-bit Unicode in long directory entries.

Each name is stored with a short file name composed by attaching a numeric “tail” to the

original; this results in names like “file~1.txt”. In addition to the characters allowed in SFNs,

the following are allowed in LFNs:

+ , ; = []

112

File Systems: FAT

As described in Appendix E, “Fat Configuration” on page 532, support for LFNs can be

disabled, if desired. If LFNs are enabled, the application may choose to specify file names in

UTF-8 format, which will be converted to 16-bit Unicode for storage in directory entries.

This option is available if FS_CFG_UTF8_EN is DEF_ENABLED (see Appendix E, “Feature

Inclusion Configuration” on page 527).

9-1-3 DIRECTORIES AND DIRECTORY ENTRIES

In the FAT file system, directories are just special files, composed of 32-byte structures

called directory entries. The topmost directory, the root directory, is located using

information in the boot sector. The normal (short file name) entries in this directory and all

other directories follow the format shown in Figure 9-2, with the following fields:

■ Name is the 11-character 8.3 SFN.

■ Attr are the attributes of the entry, indicating whether it is a file or directory, writable or

read-only and visible or hidden.

■ Creation Time and Creation Date are the time and date when the entry was created.

■ Access Date is the date on which the file was last accessed.

■ Write Time and Write Date are the time and date when the entry was last modified.

■ 1st Cluster High and 1st Cluster Low contain the first cluster containing the file’s

data.

■ File Size is the file size, in octets. If the entry is a directory, this is blank.

Figure 9-2 FAT Directory Entry (SFN Entry)

Within μC/FS, these are called Short File Name entries or SFN entries.

Name

4 8 12 16

Attr
NT

res

Crt

ms

Creation

Time

Creation

Date

 Access

Date

1
st
 Cluster

High
Write Time Write Date

1
st
 Cluster

Low
File Size

113

File Systems: FAT

Figure 9-3 LFN Directory Entry

To extend FAT for longer names, Microsoft devised the LFN directory entry, as shown in

Figure 9-2. Thirteen characters overlay the fields in a traditional SFN entry, in addition to

several important markers. The zeroth byte of the entry gives its order in the LFN entry

sequence; the first always has the sixth bit set. If three entries were necessary, they would

carry order numbers of 0x43, 0x02 and 0x01, respectively. None of these, you may note,

are valid characters (which allows backward compatibility). Byte 11, where the attributes

value is in a SFN, is always 0x0F; Microsoft found that no older software would modify or

use a directory entry with this marker. Figure 9-3 gives an example of the directory entries

created for the file “abcdefghijklm.op”. The checksum, stored in byte 13, is calculated from

the SFN. It is checked each time the directory entries are parsed; if incorrect, the file system

software knows that the SFN was modified (presumably by a system not LFN-aware).

‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘~’ ‘1’ ‘o’ ‘p’‘a’

4 8 12 16

0x0F 0x00 Chk

sum

0x0000

0x42 ‘.’ ‘o’ ‘p’ 0x0000 0xFFFF 0xFFFF

0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF0xFFFF

0x0F 0x00 Chk

sum

0x0000

0x01 ‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’

‘g’ ‘h’ ‘i’ ‘j’ ‘k’ ‘m’‘l’

0x00 0x00 Crt

ms

Creation

Time

Creation

Date

 Access

Date

1
st
 Cluster

High
Write Time Write Date

1
st
 Cluster

Low
File Size

114

File Systems: FAT

Figure 9-4 SNF entry and LFN entries for file named “abcdefghijklm.op”

9-1-4 FAT SYSTEM DRIVER ARCHITECTURE

As shown in Figure 9-2, the FAT system driver intermediates between functions that access

files and directories (e.g., fs_fopen()) and volume read/write functions. Internally, the FAT

system driver is divided into three subsystems, as shown in Figure 9-4. The first consists of

the core functions directly called by file, directory, entry and volume modules. Next are the

functions that understand the layout of the File Allocation Table and can allocate and free

clusters. The final subsystem can create SFN and LFN directory entries and search a

directory for a specific entry.

‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘~’ ‘1’ ‘o’ ‘p’‘a’

4 8 12 16

0x0F 0x00 Chk

sum

0x0000

Ord Char 1 Char 2 Char 3 Char 4 Char 5 Char 6

Char 7 Char 8 Char 9 Char 10 Char 11 Char 12 Char 12

4 8 12 16

0x0F 0x00 Chk

sum

0x0000

0x42 ‘.’ ‘o’ ‘p’ 0x0000 0xFFFF 0xFFFF

0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF0xFFFF

0x0F 0x00 Chk

sum

0x0000

0x01 ‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’

‘g’ ‘h’ ‘i’ ‘j’ ‘k’ ‘m’‘l’

0x00 0x00 Crt

ms

Creation

Time

Creation

Date

 Access

Date

1
st
 Cluster

High
Write Time Write Date

1
st
 Cluster

Low
File Size

115

File Systems: FAT

Figure 9-5 FAT system driver architecture

9-2 OPERATIONS

The application rarely needs to know about the underlying file system; the FAT system

driver within μC/FS handles file and volume accesses in a transparent manner. A few

specific cases, the application may benefit from increased awareness of FAT operation.

9-2-1 FORMATTING

A volume, once it is open, may need to be formatted before files or directories can be

created. The default format is selected by passing a NULL pointer as the second parameter

of FSVol_Fmt(). Alternatively, the exact properties of the file system can be configured

with a FS_FAT_SYS_CFG structure. An example of populating and using the FAT

configuration is shown in Listing 9-1. If the configuration is invalid, an error will be returned

from FSVol_Fmt(). For more information about the FS_FAT_SYS_CFG structure, see

Appendix D, “FS_FAT_SYS_CFG” on page 520.

Files
fs_file.*

Directories
fs_dir.*

Entries
fs_entry.*

Volume
fs_vol.*

fs_fat_file.* fs_fat_file.* fs_fat_entry.*

Core
fs_fat.*

Directory Entries
fs_fat_lfn.*
fs_fat_sfn.*

FAT Access
fs_fat_fat12.*
fs_fat_fat16.*
fs_fat_fat32.*

FAT
System
Driver

116

File Systems: FAT

Listing 9-1 Example device format

9-2-2 DISK CHECK

Errors may accrue on a FAT volume, either by device removal during file system

modifications or by improper host operation. Several corruptions are common:

■ Cross-linked files. If a cluster becomes linked to two files, then it is called

“cross-linked”. The only way to resolve this is by deleting both files; if necessary, they

can be copied first so that the contents can be verified.

■ Orphaned directory entries. If LFNs are used, a single file name may span several

directory entries. If a file deletion is interrupted, some of these may be left behind or

“orphaned” to be deleted later.

■ Invalid cluster. The cluster specified in a directory entry or linked in a chain may be

invalid. The only recourse is to zero the cluster (if in a directory entry) or replace with

end-of-cluster (if in a chain).

void App_InitFS (void)

{

 FS_ERR err;

 FS_FAT_SYS_CFG fat_cfg;

 .

 .

 .

 fat_cfg.ClusSize = 4; /* Cluster size = 4 * 512-B = 2-kB.*/

 fat_cfg.RsvdAreaSize = 1; /* Reserved area = 1 sector. */

 fat_cfg.RootDirEntryCnt = 512; /* Entries in root dir = 512. */

 fat_cfg.FAT_Type = 12; /* FAT type = FAT12. */

 fat_cfg.NbrFATs = 2; /* Number of FATs = 2. */

 FSVol_Fmt(“ram:0:”, &fat_cfg, &err);

 if (err != FS_ERR_NONE) {

 APP_TRACE_DEBUG((“Format failded.\r\n”));

 }

 .

 .

 .

}

117

File Systems: FAT

■ Chain length mismatch. Too many or too few clusters may be linked to a file, compared

to its size. If too many, the extra clusters should be freed. If too few, the file size should

be adjusted.

■ Lost cluster. A lost cluster is marked as allocated in the FAT, but is not linked to any file.

Optionally, lost cluster chains may be recovered to a file.

9-2-3 JOURNALING

Since cluster allocation information is stored separately from file information and directory

entries, most operations, such as adding data to a file, are non-atomic. The repercussions

can be innocuous (e.g., wasted disk space) or serious (e.g., directory corruption). μC/FS

includes an optional journaling add-on to its FAT system driver. System actions—such as

creating a new file—are wrapped by updates to a special journal file. The journal is a

compendium of logs, descriptions of the system before and after . When an operation is

started, an enter log is added to the journal; upon completion, an exit log is added. Logs, for

more complex operations, may be nested, the outer log giving additional context to the

inner.

Listing 9-2 Opening the journal

void App_InitFS (void)

{

 FS_ERR err;

 .

 .

 .

 /* Init the FS, Open Device and Volume(s) */

 FS_FAT_JournalOpen(“sd:0:”,

 &err);

 APP_TEST_FAULT(err, FS_ERR_NONE);

 .

 .

 .

}

118

File Systems: FAT

Listing 9-3 Starting and stopping journaling

void App_Task (void *p_arg)

{

 .

 .

 .

 FS_FAT_JournalStart(“sd:0:”, &err); /* Start journaling. */

 .

 . /* Perform fail-safe operations. */

 .

 FS_FAT_JournalStop(“sd:0:”, &err); /* Stop journaling. */

 .

 . /* Perform non-fail-safe operations. */

 .

}

119

Chapter

10
Device Drivers

The file system initializes, controls, reads and writes a device using a device driver. A μC/FS

device driver has eight interface functions, grouped into a FS_DEV_DRV structure that is

registered with the file system (with FS_DevDrvAdd()) as part of application start-up,

immediately following FS_Init().

Several restrictions are enforced to preserve the uniqueness of device drivers and simplify

management:

■ Each device driver must have a unique name.

■ No driver may be registered more than once.

■ Device drivers cannot be unregistered.

■ All device driver functions must be implemented (even if one or more is ‘empty’).

120

Device Drivers

10-1 PROVIDED DEVICE DRIVERS

Portable device drivers are provided for standard media categories:

■ IDE driver. The IDE driver supports compact flash (CF) cards and ATA IDE hard drives.

■ MSC driver. The MSC (Mass Storage Class) driver supports USB host MSC devices (i.e.,

thumb drives or USB drives) via μC/USB-Host.

■ NAND driver. The NAND flash driver support parallel (typically ONFI-compliant) and

serial (typically Atmel Dataflash) NAND flash devices.

■ NOR driver. The NOR flash driver support parallel (typically CFI-compliant) and serial

(typically SPI) NOR flash devices.

■ RAM disk driver. The RAM disk driver supports using internal or external RAM as a

storage medium.

■ SD/MMC driver. The SD/MMC driver supports SD, SD high-capacity and MMC cards,

including micro and mini form factors. Either cardmode and SPI mode can be used.

Table 10-1 summarizes the drivers, driver names and driver API structure names. If you

require more information about a driver, please consult the listed chapter.

Driver Driver Name Driver API Structure Name Reference

IDE/CF “ide:” FSDev_IDE Chapter 11,

on page 124

MSC “msc:” FSDev_MSC Chapter 13,

on page 134

NAND “nand:” FSDev_NAND Chapter 14,

on page 137

NOR “nor:” FSDev_NOR Chapter 15,

on page 151

RAM disk “ram:” FSDev_RAM Chapter 16,

on page 170

121

Device Drivers

Table 10-1 Device driver API structures

If your medium is not supported by one of these drivers, a new driver can be written based

on the template driver. Appendix C, “Device Driver” on page 394 describes how to do this.

10-1-1 DRIVER CHARACTERIZATION

Typical ROM requirements are summarized in Table 10-2. The ROM data were collected on

IAR EWARM v5.50 with high size optimization.

Table 10-2 Driver ROM requirements

* Not including BSP

**Not including μC/USB

***Not including physical-level driver or BSP

Typical RAM requirements are summarized in Table 10-3.

SD/MMC “sd:” / “sdcard:” FSDev_SD_SPI / FSDev_SD_Card Chapter 17,

on page 174

Driver
ROM, Thumb

Mode

ROM, ARM

Mode

IDE/CF * 3.6 kB 5.2 kB

MSC** 1.2 kB 1.6 kB

NAND*** 8.7 kB 12,1 kB

NOR*** 10.9 kB 15.2 kB

RAM disk 0.9 kB 1.2 kB

SD/MMC CardMode* 5.9 kB 8.6 kB

SD/MMC SPI* 5.5 kB 7.9 kB

Driver Driver Name Driver API Structure Name Reference

122

Device Drivers

Table 10-3 Driver RAM requirements

*Not including μC/USB

***See section 15-2 “Driver & Device Characteristics” on page 154.

Performance can vary significantly as a result of CPU and hardware differences, both as well

as file system format. Table 10-4 lists results for three general performance tests:

■ Read file test. Read a file in 4-kB chunks. The time to open the file is NOT included in

the time.

■ Write file test. Write a file in 4-kB chunks. The time to open (create) the file is NOT

included in the time.

Driver RAM (Overhead) RAM (Per Device)

IDE/CF 8 bytes 24 bytes

MSC* 12 bytes 32 bytes

NAND 8 bytes --- bytes

NOR*** 8 bytes --- bytes

RAM disk 8 bytes 24 bytes

SD/MMC CardMode 8 bytes 54 bytes

SD/MMC SPI 8 bytes 54 bytes

123

Device Drivers

Table 10-4 Driver performance (file test)

*Using 4-GB SanDisk Ultra II CF card

**Using 1-GB SanDisk Cruzer Micro

***Using ST M29W128GL NOR

§Using ST M25P64 serial flash

§§Using 2-GB SanDisk Ultra II SD card

Driver CPU Configuration
Performance (kB/s)

Read file Write file

IDE/CF* Freescale iMX27 200-MHz 7930 kB/s 1140 kB/s

MSC** NXP LPC2468 48-MHz 309 kB/s 142 kB/s

NOR (parallel)*** ST STM32F103VE 72-MHz 1820 kB/s 213 kB/s

NOR (serial) § ST STM32F103VE 72-MHz 691 kB/s 55 kB/s

RAM disk NXP LPC2468 48-MHz 8260 kB/s 4530 kB/s

SD/MMC CardMode§§ NXP LPC2468 48-MHz, 1-bit mode 1010 kB/s 387 kB/s

SD/MMC CardMode§§ NXP LPC2468 48-MHz, 4-bit mode 2310 kB/s 557 kB/s

SD/MMC SPI§§ NXP LPC2468 48-MHz 405 kB/s 212 kB/s

SD/MMC SPI§§ NXP LPC2468 48-MHz (w/CRC) 356 kB/s 197 kB/s

124

Chapter

11
IDE/CF Driver

Compact flash (CF) cards are portable, low-cost media often used for storage in consumer

devices. Several variants, in different media widths, are widely available, all supported by

the IDE driver. ATA IDE hard drives are also supported by this driver.

11-1 FILES AND DIRECTORIES

The files inside the IDE driver directory are outlined in this section; the generic file system

files, outlined in Chapter 3, “Directories and Files” on page 28, are also required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\IDE

This directory contains the IDE driver files.

fs_dev_ide.* are device driver for IDE devices. This file requires a set of BSP

functions be defined in a file named fs_dev_ide_bsp.c to work with a certain

hardware setup.

.\BSP\Template\fs_dev_ide_bsp.c is a template BSP. See section C-5 “IDE/CF

Device BSP” on page 408 for more information.

\Micrium\Software\uC-FS\Examples\BSP\Dev\IDE

Each subdirectory contains an example BSP for a particular platform. These are named

according to the following rubric:

<Chip Manufacturer>\<Board or CPU>\fs_dev_ide_bsp.c

125

IDE/CF Driver

11-2 USING THE IDE/CF DRIVER

To use the IDE/CF driver, five files, in addition to the generic file system files, must be

included in the build:

■ fs_dev_ide.c (located in the directory specified in Section 9.01).

■ fs_dev_ide.h (located in the directory specified in Section 9.01).

■ fs_dev_ide_bsp.c (located in the user application or BSP).

The file fs_dev_ide.h must also be #included in any application or header files that

directly reference the driver (for example, by registering the device driver). The following

directories must be on the project include path:

■ \Micrium\Software\uC-FS\Drivers\IDE

A single IDE/CF volume is opened as shown in Listing 11-1. The file system initialization

(FS_Init()) function must have been previously called.

ROM/RAM characteristics and performance benchmarks of the IDE driver can be found in

section 10-1-1 “Driver Characterization” on page 121.

CPU_BOOLEAN App_FS_AddIDE (void)

{

 FS_ERR err;

 FS_DevDrvAdd((FS_DEV_API *)&FSDev_IDE, /* (1) */

 (FS_ERR *)&err);

 if ((err != FS_ERR_NONE) && (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {

 return (DEF_FAIL);

 }

 /* (2) */

 FSDev_Open((CPU_CHAR *)“ide:0:”, /* (a) */

 (void *) 0, /* (b) */

 (FS_ERR *)&err);

126

IDE/CF Driver

Listing 11-1 Opening a IDE/CF device volume

L11-1(1) Register the IDE/CF device driver.

L11-1(2) FSDev_Open() opens/initializes a file system device. The parameters are the

device name (1a) and a pointer to a device driver-specific configuration

structure (1b). The device name (1a) is composed of a device driver name

(“ide”), a single colon, an ASCII-formatted integer (the unit number) and

another colon. Since the IDE/CF driver requires no configuration, the

configuration structure (1b) should be passed a NULL pointer.

 switch (err) {

 case FS_ERR_NONE:

 break;

 case FS_ERR_DEV:

 case FS_ERR_DEV_IO:

 case FS_ERR_DEV_TIMEOUT:

 case FS_ERR_DEV_NOT_PRESENT:

 return (DEF_FAIL);

 default:

 return (DEF_FAIL);

 }

 /* (3) */

 FSVol_Open((CPU_CHAR *)“ide:0:”, /* (a) */

 (CPU_CHAR *)“ide:0:”, /* (b) */

 (FS_PARTITION_NBR) 0, /* (c) */

 (FS_ERR *)&err);

 switch (err) {

 case FS_ERR_NONE:

 break;

 case FS_ERR_DEV:

 case FS_ERR_DEV_IO:

 case FS_ERR_DEV_TIMEOUT:

 case FS_ERR_DEV_NOT_PRESENT:

 case FS_ERR_PARTITION_NOT_FOUND: /* (4) */

 return (DEF_FAIL);

 default:

 return (DEF_FAIL);

 }

 return (DEF_OK);

}

127

IDE/CF Driver

Since IDE/CF are often removable media, it is possible for the device to not be

present when FSDev_Open() is called. The device will still be added to the file

system and a volume opened on the (not yet present) device. When the

volume is later accessed, the file system will attempt to refresh the device

information and detect a file system (see section 5-2 “Using Devices” on

page 69 for more information).

L11-1(3) FSVol_Open() opens/mounts a volume. The parameters are the volume name

(2a), the device name (2b) and the partition that will be opened (2c). There is

no restriction on the volume name (2a); however, it is typical to give the

volume the same name as the underlying device. If the default partition is to be

opened, or if the device is not partition, then the partition number (2c) should

be zero.

L11-1(4) High level format can be applied to the volume if

FS_ERR_PARTITION_NOT_FOUND is returned by the call to FSVol_Open()

function.

If the IDE initialization succeeds, the file system will produce the trace output as shown in

Figure 11-1 (if a sufficiently high trace level is configured). See section E-9 “Trace

Configuration” on page 534 about configuring the trace level.

Figure 11-1 IDE Detection Trace Output.

128

IDE/CF Driver

11-2-1 ATA (TRUE IDE) COMMUNICATION

The interface between an ATA device and host is comprised of data bus, address bus and

various control signals, as shown in Figure 11-2. Three forms of data transfer are possible,

each with several timing modes:

1 PIO (programmed input/output). PIO must always be possible; indeed, it may be the

only possible transfer form on certain hardware. Using PIO, data requests are satisfied

by direct reads or writes to the DATA register. The IDENTIFY_DEVICE command and

standard sector and multiple sector read/write commands always involve this type of

transfer. Five timing modes (0, 1, 2, 3 and 4) are standard; two more (5 and 6) are

defined in the CF specification.

2 Mutiword DMA. In Multiword DMA mode, a DMARQ and –DMACK handshake initiates

automatic data transmission, during which the host moves data between its memory

and the bus. The DMA read/write commands (READ_DMA, WRITE_DMA) may use

Multiword DMA. Three timing modes (0, 1 and 2) are standard; two more (3 and 4) are

defined in the CF specification.

3 Ultra DMA. The purposes of several control signals are reassigned during Ultra DMA

transfers. For example, IORDY becomes either DDMARDY or DSTROBE (depending on

the direction) to control data flow. The DMA read/write commands (READ_DMA,

WRITE_DMA) may use Ultra DMA. Seven timing modes (0, 1, 2, 3, 4, 5 and 6) are

standard.

Figure 11-2 True IDE (ATA) host/device connection

IDE Drive / CF CardMCU/MPU

D[0..15]

A[0..2] A00..A02

-CS0

-CS1

-ATA_SEL

-IORD

-IOWR

INTRQ

-RESET

-IORDY

DMARQ

-DMACK

-DASP

-CD1

-CD2

-CSEL

D00..D15

-CS0

-CS1

-IORD

-IOWR

INTRQ

-RESET

-IORDY

DMARQ

-DMACK

-DASP

-CD1

-CD2

129

IDE/CF Driver

The host controls the device via 8 registers (see Figure 11-3). Seven of these registers

comprise the command block: FR, SC, SN, CYL, CYH, DH and CMD. The command block

registers are written, in sequence, to execute a command. Afterwards, the error and status

register return to the host a failure indicator or otherwise signal device operation

completion. The need to poll these registers is removed if the host is instead alerted by an

interrupt request (on the INTRQ signal) to attend to the device.

Up to two devices, known as master and slave (or device 0 and device 1) may be located on

a single conventional bus. The active device (the target for the next command) is selected

by the DEV bit in the DH register, and generally only one device can be accessed at a time,

meaning that a read or write to one cannot interrupt a read or write to the other.

Pin Name(s) Function

A00, A01, A02, -CS0, -CS1 Address group. Use by host to select the register or data port that will be

accessed.

-IORD Asserted by host to read register or data port.

-IOWR Asserted by host to write register or data port.

-IORDY

INTRQ Interrupt request to the host.

-RESET Hardware reset signal.

DMARQ Asserted by device when it is ready for a DMA transfer.

-DMACK DMA acknowledge signal asserted by host in response to DMARQ.

-DASP Disk Active/Slav Present signal in Master/Slave handshake protocol.

-CD1, -CD2 Chip detect.

130

IDE/CF Driver

Figure 11-3 Register definitions

Abbreviation Name R/W
Control Signals

CS1 CS0 A02 A01 A00

DATA Data R/W 0 1 0 0 0

ERR Error R 0 1 0 0 1

FR Features W 0 1 0 0 1

SC Sector Count W 0 1 0 1 0

SN Sector Number W 0 1 0 1 1

CYL Cylinder Low W 0 1 1 0 0

CYH Cylinder High W 0 1 1 0 1

DH Card/Drive/Head W 0 1 1 1 0

CMD Command W 0 1 1 1 1

STATUS Status R 0 1 1 1 1

ALTSTATUS Alternate Status R 1 0 1 1 0

DEVCTRL Device Control W 1 0 1 1 0

DEV Device selected:

 0 = Device 0 (Master)

 1 = Device 1 (Slave)

ABRT Command has

been aborted

DH

ERR

STATUS
and
ALTSTATUS BSY

Device is busy

DRDY
Device is ready to

accept commands

DRQ Device is ready to

transfer a word of

data

ERR Error occurred during

execution of previous

command

Command-depen

Obsolete

SRST Software reset bit

0

DEVCTRL

Reserved

nIEN Device interrupt enable

131

IDE/CF Driver

11-2-2 IDE BSP OVERVIEW

A BSP is required so that the IDE driver will work on a particular system. The functions

shown in the table below must be implemented. Pleaser refer to section C-5 “IDE/CF Device

BSP” on page 408 for the details about implementing your own BSP.

Table 11-1 IDE BSP Functions

Function Description

FSDev_IDE_BSP_Open() Open (initialize) hardware.

FSDev_IDE_BSP_Close() Close (uninitialize) hardware.

FSDev_IDE_BSP_Lock() Acquire IDE bus lock.

FSDev_IDE_BSP_Unlock() Release IDE bus lock.

FSDev_IDE_BSP_Reset() Hardware-reset IDE device

FSDev_IDE_BSP_RegRd() Read from IDE device register.

FSDev_IDE_BSP_RegWr() Write to IDE device register.

FSDev_IDE_BSP_CmdWr() Write command to IDE device register.

FSDev_IDE_BSP_DataRd() Read data from IDE device.

FSDev_IDE_BSP_DataWr() Write data to IDE device.

FSDev_IDE_BSP_DMA_Start() Setup DMA for command (Initialize channel).

FSDev_IDE_BSP_DMA_End() End DMA transfer (and uninitialize channel).

FSDev_IDE_BSP_GetDrvNbr() Get IDE drive number.

FSDev_IDE_BSP_GetModesSupported() Get supported transfer modes.

FSDev_IDE_BSP_SetMode() Set transfer modes.

FSDev_IDE_BSP_Dly400_ns() Delay for 400 ns.

132

IDE/CF Driver

Figure 11-4 Command execution

DMA
Command?

Setup DMA
FSDev_IDE_BSP_DMA_Start()

End DMA
FSDev_IDE_BSP_DMA_End()

Write command
FSDev_IDE_BSP_CmdWr()

Wait for data request

More data?

Read or write data
FSDev_IDE_BSP_DataRd/Wr()

Write command
FSDev_IDE_BSP_CmdWr()

Check for error

YesNo

Yes

No

Start

Return

133

Chapter

12
Logical Device Driver

The logical device driver is not released yet. It should be released in a soon future.

134

Chapter

13
MSC Driver

The MSC driver supports USB mass storage class devices (i.e., USB drives, thumb drives)

using the μC/USB host stack.

13-1 FILES AND DIRECTORIES

The files inside the MSC driver directory are outlined in this section; the generic file-system

files, outlined in Chapter 3, “Directories and Files” on page 28, are also required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\MSC

This directory contains the MSC driver files.

fs_dev_msc.* constitute the MSC device driver.

\Micrium\Software\uC-USB

This directory contains the code for μC/USB. For more information, please see the μC/USB

user manual.

135

MSC Driver

13-2 USING THE MSC DRIVER

To use the MSC driver, two files, in addition to the generic file system files, must be

included in the build:

■ fs_dev_msc.c.

■ fs_dev_msc.h.

The file fs_dev_msc.h must also be #included in any application or header files that

directly reference the driver (for example, by registering the device driver). The following

directory must be on the project include path:

■ \Micrium\Software\uC-FS\Dev\MSC

Before μC/FS is initialized, the μC/USB host stack must be initialized as shown in

Listing 13-1. The file system initialization function (FS_Init()) must then be called and the

MSC driver, FSDev_MSC, restivered (using FS_DevDrvAdd()). The USB notification function

should add/remove devices when events occur, as shown in Listing 13-1.

ROM/RAM characteristics and performance benchmarks of the MSC driver can be found in

section 10-1-1 “Driver Characterization” on page 121.

Listing 13-1 Example μC/USB initialization

static void App_InitUSB_Host (void)

{

 USBH_ERR err;

 err = USBH_HostCreate(&App_USB_Host, &USBH_AT91SAM9261_Drv);

 if (err != USBH_ERR_NONE) {

 return;

 }

 err = USBH_HostInit(&App_USB_Host);

 if (err != USBH_ERR_NONE) {

 return;

 }

 USBH_ClassDrvReg(&App_USB_Host, &USBH_MSC_ClassDrv,

 (USBH_CLASS_NOTIFY_FNCT)App_USB_HostMSC_ClassNotify, (void *)0);

}

136

MSC Driver

Listing 13-2 μC/USB MSC notification function

If the file system and USB stack initialization succeed, the file system will produce the trace

output as shown in Figure 13-1 (if a sufficiently high trace level is configured) when the a

MSC device is connected. See section E-9 “Trace Configuration” on page 534 about

configuring the trace level.

Figure 13-1 MSC Detection Trace Output

static void App_USB_HostMSC_ClassNotify (void *pclass_dev,

 CPU_INT08U is_conn,

 void *pctx)

{

 USBH_MSC_DEV *p_msc_dev;

 USBH_ERR usb_err;

 FS_ERR fs_err;

 p_msc_dev = (USBH_MSC_DEV *)pclass_dev;

 switch (is_conn) {

 case USBH_CLASS_DEV_STATE_CONNECTED: /* ----- MASS STORAGE DEVICE CONN'D ----- */

 usb_err = USBH_MSC_RefAdd(p_msc_dev);

 if (usb_err == USBH_ERR_NONE) {

 FSDev_MSC_DevOpen(p_msc_dev, &fs_err);

 }

 break;

 case USBH_CLASS_DEV_STATE_REMOVED: /* ----- MASS STORAGE DEVICE REMOVED ---- */

 FSDev_MSC_DevClose(p_msc_dev);

 USBH_MSC_RefRel(p_msc_dev);

 break;

 default:

 break;

 }

}

137

Chapter

14
NAND Flash Driver

NAND flash is a low-cost on-board storage solution. Typically, NAND flash have a

multiplexed bus for address and data, resulting in a much lower pin count than parallel

NOR devices. Their low price-per-bit and relatively high capacities often makes these

preferable to NOR, though the higher absolute cost (because the lowest-capacity devices

are at least 128-Mb) reverses the logic for applications requiring very little storage.

Standard storage media (like hard drives) or managed flash-based devices (like SD/MMC

and CF cards) require relatively simple drivers that convert the file system's request to read

or write a sector into a hardware transaction. The driver for a raw NAND flash (or raw NOR

flash, for that matter) is more complicated. Flash is divided into large blocks (often 16-kB to

512-kB); however, the high-level software expects to read or write small sectors (512-bytes

to 4096-bytes) atomically. The driver implements a small block abstraction (SBA) to conceal

the device geometry from the file system. To aggravate matters, each block may be

subjected to a finite number of erases only. A wear-leveling algorithm must be employed so

that each block is used equally..

Table 14-1 NAND Flash Devices

Device

Category
Capacity Page Size Block Size Endurance ECC

Small-page

SLC NAND

Flash

128 Mb to 1

Gb

512 bytes 16 kB 100,000

erases/block

1-bit correction,

2-bit detection

Large-Page SLC

NAND Flash

1 Gb to 4 Gb 2 kB or 4 kB 128 kB or 256

kB

100,000

erases/block

1-bit correction,

2-bit detection

138

NAND Flash Driver

14-1 FILES AND DIRECTORIES

The files inside the NAND driver directory are outlined in this section; the generic

file-system files, outlined in Chapter 3, “Directories and Files” on page 28, are also required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\NAND

This directory contains the NAND driver files.

fs_dev_nand.*

These files are device driver for NAND flash devices. This file requires a set of BSP

functions be defined in a file named fs_dev_nand_bsp.c to work with a certain

hardware setup.

.\BSP\Template\fs_dev_nand_bsp.c

This is a template BSP for traditional NAND devices accessed via a bus interface. See

section C-7 “NAND Flash BSP” on page 440 for more information.

.\BSP\Template (GPIO)\fs_dev_nand_bsp.c

This is a template BSP for NAND devices accessed via GPIO. See section C-7 “NAND

Flash BSP” on page 440 for more information.

.\BSP\Template (SPI GPIO)\fs_dev_nand_bsp.c

This is a template BSP for Atmel Dataflash devices accessed via GPIO (bit-banging). See

section C-8 “NAND Flash SPI BSP” on page 450 for more information.

.\BSP\Template (SPI)\fs_dev_nand_bsp.c

This is a template BSP for Atmel Dataflash devices accessed via SPI. See section C-8

“NAND Flash SPI BSP” on page 450 for more information.

139

NAND Flash Driver

.\PHY

This directory contains physical-level drivers for specific NAND types:

fs_dev_nand_0512x08.* 512-byte page NAND, 8-bit data bus

fs_dev_nand_2048x08.* 2048-byte page NAND, 8-bit data bus

fs_dev_nand_2048x16.* 2048-byte page NAND, 16-bit data bus

fs_dev_nand_at45.* Atmel AT45 serial flash

.\PHY\Template\fs_dev_nand_phy.c

This is a template for a physical-layer driver.

\Micrium\Software\uC-FS\Examples\BSP\Dev\NAND

Each subdirectory contains an example BSP for a particular platform. These are named

according to the following rubric:

<Chip Manufacturer>\<Board or CPU>\fs_dev_nand_bsp.c

14-2 DRIVER & DEVICE CHARACTERISTICS

All NAND devices share certain characteristics. The medium is always organized into units

(called blocks) which are erased at the same time; when erased, all bits are 1. Only an

erase operation can change a bit from a 0 to a 1; only an unprogrammed byte can have its

bits changed from 1 to 0. Each block is divided into pages, which comprises a data area

140

NAND Flash Driver

(often 512, 2048 or 4096 bytes) and a spare area (often 1/32 the size of the data area). The

page is fundamentally the smallest programmable unit, but some devices allow several

program operations per page between erases.

NAND flash experience occasional bit-errors, where one or more bits stored are flipped

upon retrieval. An error-correcting code (ECC) is required so software can correct these

bit-errors or take appropriate measures if too many errors occur. A single bit

error-correcting code per 512 bytes of data is sufficient for single-level cell (SLC) flash.

The driver RAM requirement depends on flash parameters such as block size and run-time

configurations such as sector size. Typical cases can be found in the datasheet.

14-3 USING A NAND DEVICE (SOFTWARE ECC)

To use the NAND driver, five files, in addition to the generic file system files, must be

included in the build:

■ fs_dev_nand.c.

■ fs_dev_nand.h.

■ fs_dev_nand_bsp.c (located in the user application or BSP).

■ A physical-layer driver, typically one provided in

\Micrium\Software\uC-FS\Dev\NAND\PHY

The file fs_dev_nand.h must also be #included in any application or header files that

directly reference the driver (for example, by registering the device driver). The following

directories must be on the project include path:

■ \Micrium\Software\uC-FS\Dev\NAND

■ \Micrium\Software\uC-FS\Dev\NAND\PHY

A single NAND volume is opened as shown in Listing 14-1. The file system initialization

(FS_Init()) function must have previously been called and the NAND device driver,

FSDev_NAND, registered (using FS_DevDrvAdd()).

141

NAND Flash Driver

ROM characteristics and performance benchmarks of the NAND driver can be found in

section 10-1-1 “Driver Characterization” on page 121. The NAND driver also provides

interface functions to perform low-level operations (see section A-9 “NAND Driver

Functions” on page 340).

static CPU_BOOLEAN App_FS_AddNAND (void)

{

 FS_DEV_NAND_CFG nand_cfg;

 FS_ERR err;

 FS_DevDrvAdd((FS_DEV_API *)&FSDev_NAND, /* (1) */

 (FS_ERR *)&err);

 if ((err != FS_ERR_NONE) &&

 (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {

 APP_TRACE_DBG((" ...could not add driver w/err = %d\r\n\r\n", &err));

 return (DEF_FAIL);

 }

 /* (2) */

 nand_cfg.BlkNbrFirst = APP_CFG_FS_NAND_BLK_NBR_FIRST;

 nand_cfg.BlkCnt = APP_CFG_FS_NAND_BLK_CNT;

 nand_cfg.SecSize = APP_CFG_FS_NAND_SEC_SIZE;

 nand_cfg.RBCnt = APP_CFG_FS_NAND_RB_CNT;

 nand_cfg.PhyPtr = (FS_DEV_NAND_PHY_API *)APP_CFG_FS_NAND_PHY_PTR;

 nand_cfg.BusWidth = APP_CFG_FS_NAND_BUS_WIDTH;

 nand_cfg.MaxClkFreq = APP_CFG_FS_NAND_MAX_CLK_FREQ;

142

NAND Flash Driver

 /* (3) */

 FSDev_Open("nand:0:", /* (a) */

 (void *)&nand_cfg, /* (b) */

 &err);

 switch (err) {

 case FS_ERR_NONE:

 APP_TRACE_DBG((" ...opened device.\r\n"));

 break;

 case FS_ERR_DEV_INVALID_LOW_FMT:

 APP_TRACE_DBG((" ...opened device (not low-level formatted).\r\n"));

#if (FS_CFG_RD_ONLY_EN == DEF_DISABLED)

 FSDev_NAND_LowFmt("nand:0:", &err); /* (4) */

#endif

 if (err != FS_ERR_NONE) {

 APP_TRACE_DBG((" ...low-level format failed.\r\n"));

 return (DEF_FAIL);

 }

 break;

 case FS_ERR_DEV: /* Device error. */

 case FS_ERR_DEV_IO:

 case FS_ERR_DEV_TIMEOUT:

 case FS_ERR_DEV_NOT_PRESENT:

 default:

 APP_TRACE_DBG((" ...opening device failed w/err = %d.\r\n\r\n", err));

 return (DEF_FAIL);

 }

143

NAND Flash Driver

Listing 14-1 Opening a NAND device volume

L14-1(1) Register the NAND device driver FSDev_NAND.

L14-1(2) The NAND device configuration should be assigned. For more information

about these parameters, see section D-3 “FS_DEV_NAND_CFG” on page 511.

 /* (5) */

 FSVol_Open("nand:0:", /* (a) */

 "nand:0:", /* (b) */

 0, /* (c) */

 &err);*/

 switch (err) {

 case FS_ERR_NONE:

 APP_TRACE_DBG((" ...opened volume (mounted).\r\n"));

 break;

 case FS_ERR_PARTITION_NOT_FOUND: /* Volume error. */

 APP_TRACE_DBG((" ...opened device (not formatted).\r\n"));

#if (FS_CFG_RD_ONLY_EN == DEF_DISABLED)

 FSVol_Fmt("nand:0:", (void *)0, &err); /* (6) */

#endif

 if (err != FS_ERR_NONE) {

 APP_TRACE_DBG((" ...format failed.\r\n"));

 return (DEF_FAIL);

 }

 break;

 case FS_ERR_DEV: /* Device error. */

 case FS_ERR_DEV_IO:

 case FS_ERR_DEV_TIMEOUT:

 case FS_ERR_DEV_NOT_PRESENT:

 APP_TRACE_DBG((" ...opened volume (unmounted).\r\n"));

 return (DEF_FAIL);

 default:

 APP_TRACE_DBG((" ...opening volume failed w/err = %d.\r\n\r\n", err));

 return (DEF_FAIL);

 }

 return (DEF_OK);

}

144

NAND Flash Driver

L14-1(3) FSDev_Open() opens/initializes a file system device. The parameters are the

device name (3a) and a pointer to a device driver-specific configuration

structure (3b). The device name (3a) s composed of a device driver name

(“nand”), a single colon, an ASCII-formatted integer (the unit number) and

another colon.

L14-1(4) FSDev_NAND_LowFmt() low-level formats a NAND. If the NAND has never

been used with μC/FS, it must be low-level formatted before being used.

Low-level formatting will associate logical sectors with physical areas of the

device.

FSVol_Open() opens/mounts a volume. The parameters are the volume name (5a), the

device name (5b) and the partition that will be opened (5c). There is no restriction on the

volume name (5a); however, it is typical to give the volume the same name as the

underlying device. If the default partition is to be opened, or if the device is not partition,

then the partition number (5c) should be zero.

FSVol_Fmt() formats a file system device. If the NAND has just been low-level formatted,

there will be no file system on it after it is opened (it will be unformatted) and must be

formatted before files can be created or accessed.

145

NAND Flash Driver

If the NAND initialization succeeds, the file system will produce the trace output as shown

in Figure 14-1 (if a sufficiently high trace level is configured). See section E-9 “Trace

Configuration” on page 534 about configuring the trace level.

Figure 14-1 NAND detection trace output

146

NAND Flash Driver

14-3-1 DRIVER ARCHITECTURE

When used with a NAND device, the NAND driver is three layered, as depicted in the figure

below. The generic NAND driver, as always, provides sector abstraction and performs

wear-leveling (to make certain all blocks are used equally). Below this, the physical-layer

driver implements a particular command set to read and program the flash and erase

blocks. Lastly, a BSP implements function to initialize the bus interface and access the

NAND.

Figure 14-2 NAND driver architecture

14-3-2 HARDWARE

Parallel NAND devices typically connect to a host MCU/MPU via an external bus interface

(EBI), with a 8 or 16 data lines, or via GPIO pins. Many silicon vendors offer NAND

product lines; many new devices are conformant to the Open NAND Flash Interface (ONFI).

A set of query information allows the μC/FS NAND driver physical-layer drivers to interface

with these newer flash without configuration or modification; most older flash can be

handled based purely on device ID.

%�%����
���
���
����	�
����

����������� ���!��������� "��#$!����%�%&�
� �"&���$�&�'��"���$ ��(��#��)��'�$�*
+���+� �����$++�,+�!-��$���.�����/.$++0%

�� �
	��/!� �����
���

1)(+�)� "��($�"�!.+$��2�2��#+$�3�
!�))$ ����"%

*��

���
����	�
�"#��$"%��

�!!����2�2����$�,.��� "��#$!�����
��14%

���
����	�
��"&%$"%��
���
����	�
��"&%$����

���
����	�
���
��

,���
���	����
��

$+!.+$"��
$ ��!3�!-�
�

%

%�%�

147

NAND Flash Driver

Table 14-2 Pins, standard NAND

*From perspective of CPU

Pin Input/Output* Description

Chip Enable (nCE) O Enables access to a specific chip. Several NANDs can be

placed on the same bus if each has a separate chip enable.

Command Latch

Enable (CLE)

O Indicates that data is a command.

Address Latch

Enable (ALE)

O Indicates that data is an address.

Read Enable (nRE) O Enables serial data output from NAND.

Write Enable (nWE) O Controls latching of data input to NAND.

Read/Busy (R/nB) I Indicates status of NAND operation.

Data Bus (D0...D7

or D0...D15)

I/O Used to write commands and addresses and to read/write

data.

��������

�!
.%
�

�&
�0

�#��"�$�

1�*��	'�2�����"��

148

NAND Flash Driver

14-3-3 NAND BSP OVERVIEW

A BSP is required so that a physical-layer driver for a parallel flash will work on a particular

system. The functions shown in the table below must be implemented. Pleaser refer to

section C-7 “NAND Flash BSP” on page 440 for the details about implementing your own

BSP.

Table 14-3 NAND BSP functions

The Open()/Close() functions are called upon open/close; these calls are always matched.

The remaining functions (RdData(), WrAddr(), WrCmd(), WrData()) read data from or

write data to the NAND.

14-4 PHYSICAL-LAYER DRIVERS

The physical-layer drivers distributed with the NAND driver (see the table below) support a

wide variety of flash devices from major vendors.

Function Description

FSDev_NAND_BSP_Open() Open (initialize) NAND bus interface.

FSDev_NAND_BSP_Close() Close (uninitialize) NAND bus interface.

FSDev_NAND_BSP_ChipSelEn() Enable NAND chip select.

FSDev_NAND_BSP_ChipSecDis() Disable NAND chip select.

FSDev_NAND_BSP_RdData() Read data from NAND.

FSDev_NAND_BSP_WrAddr() Write address to NAND.

FSDev_NAND_BSP_WrCmd() Write command to NAND.

FSDev_NAND_BSP_WrData() Write data to NAND.

FSDev_NAND_BSP_WaitWhileBusy() Wait while NAND is busy.

149

NAND Flash Driver

Figure 14-3 Physical-layer drivers

14-4-1 FSDEV_NAND_0512X08

FSDev_NAND_0512x08 supports small-page (512-byte) SLC NAND flash. The ECC is a 1-bit

correct/2-bit detect code; this implementation uses a Hamming code. The sector size

cannot exceed the page size, so the configured sector size MUST be 512-bytes.

14-4-2 FSDEV_NAND_2048X08, FSDEV_NAND_2048X16

FSDev_NAND_2048x08 and FSDev_NAND_4096x08 support large-page (2048-byte) SLC

NAND flash. The ECC is a 1-bit correct/2-bit detect code; this implementation uses a

Hamming code. The sector size cannot exceed the page size, so the configured sector size

MUST be less than 2048-bytes.

This physical-layer driver advertises its page size as the selected sector size, to take

advantage of the partial page programming ability of SLC NAND. If a sector size of

512-bytes is used, the device MUST support at least four partial page programming

operations between erases; if a sector size of 1024-bytes is used, the device MUST support

at least two partial page programming operations between erases.

Driver API Files Description

FSDev_NAND_0512x08 fs_dev_nand_0512x08.* Supports 512-byte page SLC

flash, 8-bit bus.

FSDev_NAND_2048x08 fs_dev_nand_2048x08.* Supports 2048-byte page SLC

flash, 8-bit bus.

FSDev_NAND_2048x16 fs_dev_nand_2048x16.* Supports 2048-byte page SLC

flash, 16-bit bus.

FSDev_NAND_AT45 fs_dev_nand_at45.* Supports various Atmel AT45

“DataFlash” serial devices.

150

NAND Flash Driver

14-4-3 FSDEV_NAND_AT45

FSDev_NAND_AT45 supports Atmel's AT45 serial flash memories ("DataFlash"), as described

in various datasheets at Atmel (http://www.atmel.com). This driver has been tested with or

should work with the devices in the table below.

While their underlying flash technology is NOR-type, the AT45-series devices are organized

in a typical NAND-like way: each page of the device has a data area and a smaller spare

area. No matter which AT45-series device is used, the physical-layer driver advertises its

page size as 512-bytes; consequently, the driver MUST be configured with a 512-byte sector

size.

Table 14-4 Supported AT45 serial flash

Manufacturer
Device Capacity Device Page Size Device Page

Count

Atmel AT45DB161D 16 Mb 512-byte 4096

Atmel AT45DB321D 32 Mb 512-byte 8192

Atmel AT45DB641D 64 Mb 1024-byte 8192

151

Chapter

15
NOR Flash Driver

NOR flash is a low-capacity on-board storage solution. Traditional parallel NOR flash,

located on the external bus of a CPU, offers extremely fast read performance, but

comparatively slow writes (typically performed on a word-by-word basis). Often, these

store application code in addition to providing a file system. The parallel architecture of

traditional NOR flash restricts use to a narrow class of CPUs and may consume valuable PCB

space. Increasingly, serial NOR flash are a valid alternative, with fast reads speeds and

comparable capacities, but demanding less of the CPU and hardware, being accessed by SPI

or SPI-like protocols. Table 15-1 briefly compares these two technologies; specific listings of

supported devices are located in section 15-5 “Physical-Layer Drivers” on page 166.

Table 15-1 NOR Flash Devices

Device Category Typical Packages Manufacturers Description

Parallel NOR Flash TSOP32, TSOP48,

BGA48, TSOP56,

BGA56

AMD (Spansion) Intel

(Numonyx) SST ST

(Numonyx)

Parallel data (8- or 16-bit) and

address bus (20+ bits). Most devices

have CFI ‘query’ information and use

one of several standard command

sets.

Serial NOR Flash SOIC-8N, SOIC-8W,

SOIC-16, WSON,

USON

Atmel SST ST

(Numonyx)

SPI or multi-bit SPI-like interface.

Command sets are generally similar.

152

NOR Flash Driver

15-1 FILES AND DIRECTORIES

The files inside the RAM disk driver directory are outlined in this section; the generic

file-system files, outlined in Chapter 3, “Directories and Files” on page 28, are also required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\NOR

This directory contains the NOR driver files.

fs_dev_nor.*

These files are device driver for NOR flash devices. This file requires a set of BSP

functions be defined in a file named fs_dev_nor_bsp.c to work with a certain

hardware setup.

.\BSP\Template\fs_dev_nor_bsp.c

This is a template BSP for traditional parallel NOR devices. See section C-10 “NOR Flash

BSP” on page 459 for more information.

.\BSP\Template (SPI)\fs_dev_nor_bsp.c

This is a template BSP for serial (SPI) NOR devices. See section C-11 “NOR Flash SPI

BSP” on page 466 for more information.

.\BSP\Template (SPI GPIO)\fs_dev_nor_bsp.c

This is a template BSP for serial (SPI) NOR devices using GPIO (bit-banging). See

section C-11 “NOR Flash SPI BSP” on page 466 for more information.

153

NOR Flash Driver

.\PHY

This directory contains physical-level drivers for specific NOR types:

fs_dev_nor_amd_1x08.* CFI-compatible parallel NOR implementing AMD

command set (1 chip, 8-bit data bus)

fs_dev_nor_amd_1x16.* CFI-compatible parallel NOR implementing AMD

command set (1 chip, 16-bit data bus)

fs_dev_nor_intel.* CFI-compatible parallel NOR implementing Intel

command set (1 chip, 16-bit data bus)

fs_dev_nor_sst39.* SST SST39 Multi-Purpose Flash

fs_dev_nor_stm25.* ST STM25 serial flash

fs_dev_nor_sst25.* SST SST25 serial flash

\Micrium\Software\uC-FS\Examples\BSP\Dev\NOR

Each subdirectory contains an example BSP for a particular platform. These are named

according to the following rubric:

<Chip Manufacturer>\<Board or CPU>\fs_dev_nor_bsp.c

154

NOR Flash Driver

15-2 DRIVER & DEVICE CHARACTERISTICS

NOR devices, no matter what attachment interface (serial or parallel), share certain

characteristics. The medium is always organized into units (called blocks) which are erased

at the same time; when erased, all bits are 1. Only an erase operation can change a bit from

a 0 to a 1, but any bit can be individually programmed from a 1 to a 0. The μC/FS driver

requires that any 2-byte word can be individually accessed (read or programmed).

The driver RAM requirement depends on flash parameters such as block size and run-time

configurations such as sector size. For a particular instance, a general formula can give an

approximate:

where

secs_per_blk The number of sectors per block.

blk_cnt_used The number of blocks on the flash which will be used for the file

system.

sec_cnt The total number of sectors on the device.

sec_size The sector size configured for the device, in octets.

 if (secs_per_blk < 255) {

 temp1 = ceil(blk_cnt_used / 8) + (blk_cnt_used * 1);

 } else {

 temp1 = ceil(blk_cnt_used / 8) + (blk_cnt_used * 2);

 }

 if (sec_cnt < 65535) {

 temp2 = sec_cnt * 2;

 } else {

 temp2 = sec_cnt * 4;

 }

 temp3 = sec_size;

 TOTAL = temp1 + temp2 + temp3;

155

NOR Flash Driver

secs_per_blk and sec_cnt can be calculated from more basic parameters:

where

blk_size The size of a block on the device, in octets

Take as an example a 16-Mb NOR that is entirely dedicated to file system usage, with a

64-KB block size, configured with a 512-B sector. The following parameters describe the

format:

and the RAM usage is approximately

In this example, as in most situations, increasing the sector size will decrease the RAM

usage. If the sector size were 1024-B, only 5188-B would have been needed, but a moderate

performance penalty would be paid.

 secs_per_blk = floor(blk_size / sec_size);

 sec_cnt = secs_per_blk * blk_cnt_used;

 blk_cnt_used = 32;

 blk_size = 65536;

 sec_size = 512;

 secs_per_blk = 65536 / 512 = 128;

 sec_cnt = 128 * 32 = 4096;

 temp1 = (32 / 8) + (32 * 2) = 68;

 temp2 = 4096 * 2 = 8192;

 temp3 = 512;

 TOTAL = 68 + 8192 + 512 = 8772;

156

NOR Flash Driver

15-3 USING A PARALLEL NOR DEVICE

To use the NOR driver, five files, in addition to the generic file system files, must be

included in the build:

■ fs_dev_nor.c.

■ fs_dev_nor.h.

■ fs_dev_nor_bsp.c (located in the user application or BSP).

■ A physical-layer driver, typically one provided in

\Micrium\Software\uC-FS\Dev\NOR\PHY

The file fs_dev_nor.h must also be #included in any application or header files that

directly reference the driver (for example, by registering the device driver). The following

directories must be on the project include path:

■ \Micrium\Software\uC-FS\Dev\NOR

■ \Micrium\Software\uC-FS\Dev\NOR\PHY

A single NOR volume is opened as shown in Table 15-1. The file system initialization

(FS_Init()) function must have previously been called.

ROM characteristics and performance benchmarks of the NOR driver can be found in

section 10-1-1 “Driver Characterization” on page 121. The NOR driver also provides

interface functions to perform low-level operations (see section A-10 “NOR Driver

Functions” on page 350).

157

NOR Flash Driver

CPU_BOOLEAN App_FS_AddNOR (void)

{

 FS_DEV_NOR_CFG nor_cfg;

 FS_ERR err;

 FS_DevDrvAdd((FS_DEV_API *)&FSDev_Nor, /* (1) */

 (FS_ERR *)&err);

 if ((err != FS_ERR_NONE) && (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {

 return (DEF_FAIL);

 }

 /* (2) */

 nor_cfg.AddrBase = APP_CFG_FS_NOR_ADDR_BASE;

 nor_cfg.RegionNbr = APP_CFG_FS_NOR_REGION_NBR;

 nor_cfg.AddrStart = APP_CFG_FS_NOR_ADDR_START;

 nor_cfg.DevSize = APP_CFG_FS_NOR_DEV_SIZE;

 nor_cfg.SecSize = APP_CFG_FS_NOR_SEC_SIZE;

 nor_cfg.PctRsvd = APP_CFG_FS_NOR_PCT_RSVD;

 nor_cfg.PctRsvdSecActive = APP_CFG_FS_NOR_PCT_RSVD_SEC_ACTIVE;

 nor_cfg.EraseCntDiffTh = APP_CFG_FS_NOR_ERASE_CNT_DIFF_TH;

 nor_cfg.PhyPtr = (FS_DEV_NOR_PHY_API *)APP_CFG_FS_NOR_PHY_PTR;

 nor_cfg.BusWidth = APP_CFG_FS_NOR_BUS_WIDTH;

 nor_cfg.BusWidthMax = APP_CFG_FS_NOR_BUS_WIDTH_MAX;

 nor_cfg.PhyDevCnt = APP_CFG_FS_NOR_PHY_DEV_CNT;

 nor_cfg.MaxClkFreq = APP_CFG_FS_NOR_MAX_CLK_FREQ;

 /* (3) */

 FSDev_Open((CPU_CHAR *)“nor:0:”, /* (a) */

 (void *)&nor_cfg, /* (b) */

 (FS_ERR *)&err);

 switch (err) {

 case FS_ERR_NONE:

 APP_TRACE_DBG((" ...opened device.\r\n"));

 break;

 case FS_ERR_DEV_INVALID_LOW_FMT: /* Low fmt invalid. */

 APP_TRACE_DBG((" ...opened device (not low-level formatted).\r\n"));

 FSDev_NOR_LowFmt("nor:0:", &err); /* (4) */

 if (err != FS_ERR_NONE) {

 APP_TRACE_DBG((" ...low-level format failed.\r\n"));

 return (DEF_FAIL);

 }

 break;

 default: /* Device error. */

 APP_TRACE_DBG((" ...opening device failed w/err = %d.\r\n\r\n", err));

 return (DEF_FAIL);

 }

158

NOR Flash Driver

Listing 15-1 Opening a NOR device volume

L15-1(1) Register the NOR device driver FSDev_NOR.

L15-1(2) The NOR device configuration should be assigned. For more information about

these parameters, see section D-4 “FS_DEV_NOR_CFG” on page 513.

L15-1(3) FSDev_Open() opens/initializes a file system device. The parameters are the

device name (3a) and a pointer to a device driver-specific configuration

structure (3b). The device name (3a) s composed of a device driver name

(“nor”), a single colon, an ASCII-formatted integer (the unit number) and

another colon.

L15-1(4) FSDev_NOR_LowFmt() low-level formats a NOR. If the NOR has never been

used with μC/FS, it must be low-level formatted before being used. Low-level

formatting will associate logical sectors with physical areas of the device.

 /* (5) */

 FSVol_Open((CPU_CHAR *)“nor:0:”, /* (a) */

 (CPU_CHAR *)“nor:0:”, /* (b) */

 (FS_PARTITION_NBR) 0, /* (c) */

 (FS_ERR *)&err);

 switch (err) {

 case FS_ERR_NONE:

 APP_TRACE_DBG((" ...opened volume (mounted).\r\n"));

 break;

 case FS_ERR_PARTITION_NOT_FOUND: /* Volume error. */

 APP_TRACE_DBG((" ...opened device (not formatted).\r\n"));

 FSVol_Fmt("nor:0:", (void *)0, &err); /* (6) */

 if (err != FS_ERR_NONE) {

 APP_TRACE_DBG((" ...format failed.\r\n"));

 return (DEF_FAIL);

 }

 break;

 default: /* Device error. */

 APP_TRACE_DBG((" ...opening volume failed w/err = %d.\r\n\r\n", err));

 return (DEF_FAIL);

 }

 return (DEF_OK);

}

159

NOR Flash Driver

FSVol_Open() opens/mounts a volume. The parameters are the volume name (5a), the

device name (5b) and the partition that will be opened (5c). There is no restriction on the

volume name (5a); however, it is typical to give the volume the same name as the

underlying device. If the default partition is to be opened, or if the device is not partition,

then the partition number (5c) should be zero.

FSVol_Fmt() formats a file system device. If the NOR has just been low-level format, it will

have no file system on it after it is opened (it will be unformatted) and must be formatted

before files can be created or accessed.

If the NOR initialization succeeds, the file system will produce the trace output as shown in

Figure 15-1 (if a sufficiently high trace level is configured). See section E-9 “Trace

Configuration” on page 534 about configuring the trace level.

Figure 15-1 NOR detection trace output

160

NOR Flash Driver

15-3-1 DRIVER ARCHITECTURE

When used with a parallel NOR device, the NOR driver is three layered, as depicted in the

figure below. The generic NOR driver, as always, provides sector abstraction and performs

wear-leveling (to make certain all blocks are used equally). Below this, the physical-layer

driver implements a particular command set to read and program the flash and erase

blocks. Lastly, a BSP implements function to initialize and unitialize the bus interface.

Device commands are executed by direct access to the NOR, at locations appropriately

offset from the configured base address.

Figure 15-2 NOR driver architecture (parallel NOR flash)

15-3-2 HARDWARE

Parallel NOR devices typically connect to a host MCU/MPU via an external bus interface

(EBI), with an 8- or 16-bit data lines and 20 or more address lines (depending on the device

size). Many silicon vendors offer parallel NOR product lines; most devices currently

marketed are conformant to the Common Flash Interface (CFI). A set of query information

allows the μC/FS NOR driver physical-layer drivers to interface with almost any NOR flash

without configuration or modification. The standard query information provides the

following details:

NOR Driver
fs_dev_nor.c/h

Provides generic driver interface (e.g.,

init, read, write) and performs wear-

leveling so all blocks are used equally.

Physical-Layer Driver

Implements particular NOR flash

command set; accesses NOR directly

on bus interface.

BSP

fs_dev_nor_amd_1x16.*

Initialize/uninitial-

ize bus interface.

fs_dev_nor_cfi_intel.*
fs_dev_nor_cfi_sst39.*

fs_dev_nor_bsp.c
NOR

Bus interface

161

NOR Flash Driver

■ Command set. Three different command sets are common: Intel, AMD and SST. All

three are supported.

■ Geometry. A device is composed of one or more regions of identically-sized erase

blocks. Uniform devices contain only one region. Boot-block devices often have one or

two regions of small blocks for code storage at the top or bottom of the device. All of

these are supported by the NOR driver.

.

.

.

Table 15-2 CFI query information

Table 15-2 gives the format of CFI query information. The first three bytes should constitute

the marker string “QRY”, by which the retrieval of correct parameters is verified. A two-byte

command set identifier follows; this must match the identifier for the command set

supported by the physical-layer driver. Beyond is the geometry information: the device size,

the number of erase block regions, and the size and number of blocks in each region. For

most flash, these regions are contiguous and sequential, the first at the beginning of the

device, the second just after. Since this is not always true (see section 15-5-3

Offset Length (Bytes) Contents

0x10 1 Query string “Q”

0x11 1 Query string “R”

0x12 1 Query string “Y”

0x13 2 Command set

0x27 1 Device size, in bytes = 2n

0x2A 2 Maximum number of bytes in multi-byte write = 2N

0x2C 1 Number of erase block regions = m

0x2D 2 Region 1: Number of erase blocks = x + 1

0x2F 2 Region 1: Size of each erase block = y * 256 (bytes)

0x31 2 Region 2: Number of erase blocks = x + 1

0x33 2 Region 2: Size of each erase block = y * 256 (bytes)

0x2D + (m-1) * 4 2 Region m: Number of erase blocks = x + 1

0x2F + (m-1) * 4 2 Region m: Size of each erase block = y * 256 (bytes)

162

NOR Flash Driver

“FSDev_NOR_SST39” on page 168 for an example), the manufacturer’s information should

always be checked and, for atypical devices, the physical-layer driver copied to the

application directory and modified.

Table 15-3 Common command sets

15-3-3 NOR BSP OVERVIEW

A BSP is required so that a physical-layer driver for a parallel flash will work on a particular

system. The functions shown in the table below must be implemented. Pleaser refer to

section C-10 “NOR Flash BSP” on page 459 for the details about implementing your own

BSP.

Table 15-4 NOR BSP functions

The Open()/Close() functions are called upon open/close; these calls are always matched.

Command Set Identifier Description

0x0001 Intel

0x0002 AMD/Spansion

0x0003 Intel

0x0102 SST

Function Description

FSDev_NOR_BSP_Open() Open (initialize) bus for NOR.

FSDev_NOR_BSP_Close() Close (uninitialize) bus for NOR.

FSDev_NOR_BSP_Rd_XX() Read from bus interface.

FSDev_NOR_BSP_RdWord_XX() Read word from bus interface.

FSDev_NOR_BSP_WrWord_XX() Write word to bus interface

FSDev_NOR_BSP_WaitWhileBusy() Wait while NOR is busy.

163

NOR Flash Driver

The remaining functions (Rd_XX(), RdWord_XX(), WrWord_XX()) read data from or write

data to the NOR. If a single parallel NOR device will be accessed, these function may be

defined as macros to speed up bus accesses.

15-4 USING A SERIAL NOR DEVICE

When used with a serial NOR device, the NOR driver is three layered, as depicted in the

figure below. The generic NOR driver, as always, provides sector abstraction and performs

wear-leveling (to make certain all blocks are used equally). Below this, the physical-layer

driver implements a particular command set to read and program the flash and erase

blocks. Lastly, a BSP implements function to communicate with the device over SPI. Device

commands are executed though this BSP.

Figure 15-3 NOR driver architecture (serial NOR flash)

NOR Driver
fs_dev_nor.c/h

Provides generic driver interface (e.g.,

init, read, write) and performs wear-

leveling so all blocks are used equally.

Physical-Layer Driver

Implements particular serial NOR flash

command set; accesses NOR through

SPI interface.

SPI BSP

fs_dev_nor_stm25.*

Implements SPI communication for a

particular MCU/MPU.

fs_dev_nor_sst25.*

fs_dev_nor_bsp.c

164

NOR Flash Driver

15-4-1 HARDWARE

Serial NOR devices typically connect to a host MCU/MPU via an SPI or SPI-like bus.

Eight-pin devices, with the functions listed in Table 15-5, or similar, are common, and are

often employed with the HOLD and WP pins held high (logic low, or inactive), as shown in

Table 15-5. As with any SPI device, four signals are used to communicate with the host (CS,

SI, SCK and SO).

Figure 15-4 Typical serial NOR connections

SO

SI

SCK

CS VCC

HOLD

WP

VSS

CS

MISO

MOSI

SCK

SERIAL NORMCU/MPU

165

NOR Flash Driver

15-4-2 NOR SPI BSP OVERVIEW

An NOR BSP is required so that a physical-layer driver for a serial flash will work on a

particular system. For more information about these functions, see section C-11 on

page 466.

Table 15-5 NOR SPI BSP Functions

Function Description

FSDev_NOR_BSP_SPI_Open() Open (initialize) SPI.

FSDev_NOR_BSP_SPI_Close() Close (uninitialize) SPI.

FSDev_NOR_BSP_SPI_Lock() Acquire SPI lock.

FSDev_NOR_BSP_SPI_Unlock() Release SPI lock.

FSDev_NOR_BSP_SPI_Rd() Read from SPI.

FSDev_NOR_BSP_SPI_Wr() Write to SPI.

FSDev_NOR_BSP_SPI_ChipSelEn() Enable chip select.

FSDev_NOR_BSP_SPI_ChipSelDis() Disable chip select.

FSDev_NOR_BSP_SPI_SetClkFreq() Set SPI clock frequency.

166

NOR Flash Driver

15-5 PHYSICAL-LAYER DRIVERS

The physical-layer drivers distributed with the NOR driver (see the table below) support a

wide variety of parallel and serial flash devices from major vendors. Whenever possible,

advanced programming algorithms (such as the common buffered programming

commands) are used to optimize performance. Within the diversity of NOR flash, some may

be found which implement the basic command set, but not the advanced features; for

these, a released physical-layer may need to be modified. In all cases, the manufacturer’s

reference should be compared to the driver description below.

Table 15-6 Physical-layer drivers

Driver API Files Description

FSDev_NOR_AMD_1x08 fs_dev_nor_amd_1x08.* Supports CFI-compatible devices with 8-bit data bus

implementing AMD command set.

FSDev_NOR_AMD_1x16 fs_dev_nor_amd_1x16.* Supports CFI-compatible devices i with 16-bit data bus

mplementing AMD command set.

FSDev_NOR_Intel_1x16 fs_dev_nor_intel.* Supports CFI-compatible devices i with 16-bit data bus

mplementing Intel command set.

FSDev_NOR_SST39 fs_dev_nor_sst39.* Supports various SST SST39 devices with 16-bit data

bus.

FSDev_NOR_STM29_1x08 fs_dev_nor_stm29_1x08.* Supports various ST M29 devices with 8-bit data bus.

FSDev_NOR_STM29_1x16 fs_dev_nor_stm29_1x16.* Supports various ST M29 devices with 16-bit data bus.

FSDev_NOR_STM25 fs_dev_nor_stm25.* Supports various ST M25 serial devices.

FSDev_NOR_SST25 fs_dev_nor_sst25.* Supports various SST SST25 serial devices.

167

NOR Flash Driver

15-5-1 FSDEV_NOR_AMD_1X08, FSDEV_NOR_AMD_1X16

FSDev_NOR_AMD_1x08 and FSDev_NOR_AMD_1x16 support CFI NOR flash implementing

AMD command set, including:

■ Most AMD and Spansion devices

■ Most ST/Numonyx devices

■ Others

The fast programming command “write to buffer and program”, supported by many flash

implementing the AMD command set, is used in this driver if the “Maximum number of

bytes in a multi-byte write” (in the CFI device geometry definition) is non-zero.

Some flash implementing AMD command set have non-zero multi-byte write size but do not

support the “write to buffer & program” command. Often these devices will support

alternate fast programming methods. This driver MUST be modified for those devices, to

ignore the multi-byte write size in the CFI information. Define NOR_NO_BUF_PGM to force this

mode of operation.

15-5-2 FSDEV_NOR_INTEL_1X16

FSDev_NOR_Intel_1x16 supports CFI NOR flash implementing Intel command set,

including

■ Most Intel/Numonyx devices

■ Some ST/Numonyx M28 device

■ Others

168

NOR Flash Driver

15-5-3 FSDEV_NOR_SST39

FSDev_NOR_SST39 supports SST’s SST39 Multi-Purpose Flash memories, as described in

various datasheets at SST (http://www.sst.com). SST39 devices use a modified form of the

AMD command set. A more significant deviation is in the CFI device geometry information,

which describes two different views of the memory organization—division in to small

sectors and division into large blocks—rather than contiguous, separate regions. The driver

always uses the block organization.

15-5-4 FSDEV_NOR_STM25

FSDev_NOR_STM25 supports Numonyx/ST’s M25 & M45 serial flash memories, as described

in various datasheets at Numonyx (http://www.numonyx.com). This driver has been tested

with or should work with the devices in the table below.

The M25P-series devices are programmed on a page (256-byte) basis and erased on a sector

(32- or 64-KB) basis. The M25PE-series devices are also programmed on a page (256-byte)

basis, but are erased on a page, subsector (4-KB) or sector (64-KB) basis.

Table 15-7 Supported M25 serial flash

Manufacturer Device Capacity Block Size Block Count

ST M25P10 1 Mb 64-KB 2

ST M25P20 2 Mb 64-KB 4

ST M25P40 4 Mb 64-KB 8

ST M25P80 8 Mb 64-KB 16

ST M25P16 16 Mb 64-KB 32

ST M25P32 32 Mb 64-KB 64

ST M25P64 64 Mb 64-KB 128

ST M25P128 128 Mb 64-KB 256

ST M25PE10 1 Mb 64-KB 2

ST M25PE20 2 Mb 64-KB 4

ST M25PE40 4 Mb 64-KB 8

ST M25PE80 8 Mb 64-KB 16

ST M25PE16 16 Mb 64-KB 32

169

NOR Flash Driver

15-5-5 FSDEV_NOR_SST25

FSDev_NOR_SST25 supports SST’s SST25 serial flash memories, as described in various

datasheets at Numonyx (http://www.numonyx.com). This driver has been tested with or

should work with the devices in the table below.

The M25P-series devices are programmed on a word (2-byte) basis and erased on a sector

(4-KB) or block (32-KB) basis. The revision A devices and revision B devices differ slightly.

Both have an Auto-Address Increment (AAI) programming mode. In revision A devices, the

programming is performed byte-by-byte; in revision B devices, word-by-word. Revision B

devices can also be erased on a 64-KB block basis and support a command to read a

JEDEC-compatible ID.

Table 15-8 Supported SST25 serial flash

Manufacturer Device Capacity Block Size Block Count

SST SST25VF010B 1 Mb 4-KB 32

SST SST25VF020B 2 Mb 4-KB 64

SST SST25VF040B 4 Mb 4-KB 128

SST SST25VF080B 8 Mb 32-KB 32

SST SST25VF016B 16 Mb 32-KB 64

SST SST25VF032B 32 Mb 32-KB 128

170

Chapter

16
RAM Disk Driver

The simplest device driver is the RAM disk driver, which uses a block of memory (internal

or external) as a storage medium.

16-1 FILES AND DIRECTORIES

The files inside the RAM disk driver directory are outlined in this section; the generic

file-system files, outlined in Chapter 3, “Directories and Files” on page 28, are also required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\RAMDisk

This directory contains the RAM disk driver files.

fs_dev_ramdisk.* constitute the RAM disk device driver.

171

RAM Disk Driver

16-2 USING THE RAM DISK DRIVER

To use the RAM disk driver, two files, in addition to the generic FS files, must be included in

the build:

■ fs_dev_ramdisk.c.

■ fs_dev_ramdisk.h.

The file fs_dev_ramdisk.h must also be #included in any application or header files that

directly reference the driver (for example, by registering the device driver). The following

directory must be on the project include path:

■ \Micrium\Software\uC-FS\Dev\RAMDisk

A single RAM disk is opened as shown in . The file system initialization (FS_Init())

function must have previously been called.

ROM/RAM characteristics and performance benchmarks of the RAM disk driver can be

found in section 10-1-1 “Driver Characterization” on page 121. For more information about

the FS_DEV_RAM_CFG structure, see section D-5 “FS_DEV_RAM_CFG” on page 516.

#define APP_CFG_FS_RAM_SEC_SIZE 512 /* (1) */

#define APP_CFG_FS_RAM_NBR_SECS (48 * 1024)

static CPU_INT32U App_FS_RAM_Disk[APP_CFG_FS_RAM_SEC_SIZE * APP_CFG_FS_RAM_NBR_SECS / 4];

CPU_BOOLEAN App_FS_AddRAM (void)

{

 FS_ERR err;

 FS_DEV_RAM_CFG cfg;

 FS_DevDrvAdd((FS_DEV_API *)&FSDev_RAM, /* (2) */

 (FS_ERR *)&err);

 if ((err != FS_ERR_NONE) && (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {

 return (DEF_FAIL);

 }

 ram_cfg.SecSize = APP_CFG_FS_RAM_SEC_SIZE; /* (3) */

 ram_cfg.Size = APP_CFG_FS_RAM_NBR_SECS;

 ram_cfg.DiskPtr = (void *)&App_FS_RAM_Disk[0]

172

RAM Disk Driver

Listing 16-1 Opening a RAM disk volume

L16-1(1) The sector size and number of sectors in the RAM disk must be defined. The

sector size should be 512, 1024, 2048 or 4096; the number of sectors will be

determined by your application requirements. This defines a 24-MB RAM disk

(49152 512-B sectors). On most CPUs, it is beneficial to 32-bit align the RAM

disk, since this will speed up access.

L16-1(2) Register the RAM disk driver FSDev_RAM.

L16-1(3) The RAM disk parameters—sector size, size (in sectors) and pointer to the

disk—should be assigned to a FS_DEV_RAM_CFG structure.

 /* (4) */

 FSDev_Open((CPU_CHAR *)“ram:0:”, /* (a) */

 (void *)&ram_cfg, /* (b) */

 (FS_ERR *)&err);

 if (err != FS_ERR_NONE) {

 return (DEF_FAIL);

 }

 /* (5) */

 FSVol_Open((CPU_CHAR *)“ram:0:”, /* (a) */

 (CPU_CHAR *)“ram:0:”, /* (b) */

 (FS_PARTITION_NBR) 0, /* (c) */

 (FS_ERR *)&err);

 switch (err) {

 case FS_ERR_NONE:

 APP_TRACE_DBG((" ...opened volume (mounted).\r\n"));

 break;

 case FS_ERR_PARTITION_NOT_FOUND: /* Volume error. */

 APP_TRACE_DBG((" ...opened device (not formatted).\r\n"));

 FSVol_Fmt("ram:0:", (void *)0, &err); /* (6) */

 if (err != FS_ERR_NONE) {

 APP_TRACE_DBG((" ...format failed.\r\n"));

 return (DEF_FAIL);

 }

 break;

 default: /* Device error. */

 APP_TRACE_DBG((" ...opening volume failed w/err = %d.\r\n\r\n", err));

 return (DEF_FAIL);

 }

 return (DEF_OK);

}

173

RAM Disk Driver

L16-1(4) FSDev_Open() opens/initializes a file system device. The parameters are the

device name (3a) and a pointer to a device driver-specific configuration

structure (3b). The device name (3a) s composed of a device driver name

(“ram”), a single colon, an ASCII-formatted integer (the unit number) and

another colon.

L16-1(5) FSVol_Open() opens/mounts a volume. The parameters are the volume name

(5a), the device name (5b) and the partition that will be opened (5c). There is

no restriction on the volume name (5a); however, it is typical to give the

volume the same name as the underlying device. If the default partition is to be

opened, or if the device is not partition, then the partition number (5c) should

be zero.

L16-1(6) FSVol_Fmt() formats a file system volume. If the RAM disk is in volatile RAM,

it have no file system on it after it is opened (it will be unformatted) and must

be formatted before a volume on it is opened.

If the RAM disk initialization succeeds, the file system will produce the trace output as

shown in Figure 16-1 (if a sufficiently high trace level is configured). See section E-9 “Trace

Configuration” on page 534 about configuring the trace level.

Figure 16-1 RAM Disk Initialization Trace Output

174

Chapter

17
SD/MMC Drivers

SD (Secure Digital) cards and MMCs (MultiMedia Cards) are portable, low-cost media often

used for storage in consumer devices. Six variants, as shown in Table 17-1, are widely

available to electronic retail outlets, all supported by SD/MMC driver. The MMCplus and SD

or SDHC are offered in compatible large card formats. Adapters are offered for the

remaining devices so that these can fit in standard SD/MMC card slots.

Two further products incorporating SD/MMC technology are emerging. First, some cards

now integrate both USB and SD/MMC connectivity, for increased ease-of-access in both PCs

and embedded devices. The second are embedded MMC (trademarked eMMC), fixed

flash-based media addressed like MMC cards.

175

SD/MMC Drivers

Table 17-1 SD/MMC Devices

SD/MMC cards can be used in two modes: card mode (also referred to as MMC mode and

SD mode) and SPI mode. The former offers up to 8 data lines (depending on the type of

card); the latter, only one data line, but the accessibility of a communication bus common

on many MCUs/MPUs. Because these modes involve different command protocols, they

require different drivers.

Card Size Pin Count Description

MMCPlus 32 x 24 x 1.4 mm 13

Most current MMC cards can

operate with 1, 4 or 8 data lines,

though legacy media were

limited to a single data line. The

maximum clock frequency is 20

MHz, providing for maximum

theoretical transfer speeds of

20 MB/s, 80 MB/s and 160

MB/s for the three possible bus

widths.

MMCmobile 18 x 24 x 1.4 mm 13

MMCmicro 14 x 12 x 1.1 mm 13

SD or SDHC 32 x 24 x 1.4 mm 9

SD cards can operate in

cardmode with 1 or 4 data lines

or in SPI mode. The maximum

clock frequency is 25 MHz,

providing for maximum

theoretical transfer speeds of

25 MHz and 50 MHz for the two

possible bus widths.

SDmini 21.5 x 20 x 1.4 mm 11

SDmicro 15 x 11 x 1.0 mm 8

176

SD/MMC Drivers

17-1 FILES AND DIRECTORIES

The files inside the SD/MMC driver directory is outlined in this section; the generic

file-system files, outlined in Chapter 3, “Directories and Files” on page 28, are also required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\SD

This directory contains the SD/MMC driver files.

fs_dev_sd.* contain functions and definitions required for both SPI and card modes.

\Micrium\Software\uC-FS\Dev\SD\Card

This directory contains the SD/MMC driver files for card mode.

fs_dev_sd_card.* are device driver for SD/MMC cards using card mode. This file

requires a set of BSP functions be defined in a file named fs_dev_sd_card_bsp.c to

work with a certain hardware setup.

.\BSP\Template\fs_dev_sd_card_bsp.c is a template BSP. See section C-12

“SD/MMC Cardmode BSP” on page 467 for more information.

\Micrium\Software\uC-FS\Dev\SD\SPI

This directory contains the SD/MMC driver files for SPI mode.

fs_dev_sd_spi.* are device driver for SD/MMC cards using SPI mode. This file

requires a set of BSP functions be defined in a file named fs_dev_sd_spi_bsp.c to

work with a certain hardware setup.

.\BSP\Template\fs_dev_sd_spi_bsp.c is a template BSP. See section C-13 “SD/MMC

SPI mode BSP” on page 493 for more information.

.\BSP\Template (GPIO)\fs_dev_sd_spi_bsp.c is a template GPIO (bit-banging)

BSP. See section C-13 “SD/MMC SPI mode BSP” on page 493 for more information.

177

SD/MMC Drivers

\Micrium\Software\uC-FS\Examples\BSP\Dev\SD\Card

Each subdirectory contains an example BSP for a particular platform. These are named

according to the following rubric:

<Chip Manufacturer>\<Board or CPU>\fs_dev_sd_card_bsp.c

\Micrium\Software\uC-FS\Examples\BSP\Dev\SD\SPI

Each subdirectory contains an example BSP for a particular platform. These are named

according to the following rubric:

<Chip Manufacturer>\<Board or CPU>\fs_dev_sd_spi_bsp.c

17-2 USING THE SD/MMC CARDMODE DRIVER

To use the SD/MMC cardmode driver, five files, in addition to the generic file system files,

must be included in the build:

■ fs_dev_sd.c.

■ fs_dev_sd.h.

■ fs_dev_sd_card.c.

■ fs_dev_sd_card.h.

■ fs_dev_sd_card_bsp.c.

The file fs_dev_sd_card.h must also be #included in any application or header files that

directly reference the driver (for example, by registering the device driver). The following

directories must be on the project include path:

■ \Micrium\Software\uC-FS\Dev\SD

■ \Micrium\Software\uC-FS\Dev\SD\Card

178

SD/MMC Drivers

A single SD/MMC volume is opened as shown in Listing 17-1. The file system initialization

(FS_Init()) function must have previously been called.

ROM/RAM characteristics and performance benchmarks of the SD/MMC driver can be found

in section 10-1-1 “Driver Characterization” on page 121. The SD/MMC driver also provides

interface functions to get low-level card information and read the Card ID and Card-Specific

Data registers (see section A-11 “SD/MMC Driver Functions” on page 364).

CPU_BOOLEAN App_FS_AddSD_Card (void)

{

 FS_ERR err;

 FS_DevDrvAdd((FS_DEV_API *)&FSDev_SD_Card, /* (1) */

 (FS_ERR *)&err);

 if ((err != FS_ERR_NONE) && (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {

 return (DEF_FAIL);

 }

 /* (2) */

 FSDev_Open((CPU_CHAR *)“sdcard:0:”, /* (a) */

 (void *) 0, /* (b) */

 (FS_ERR *)&err);

 switch (err) {

 case FS_ERR_NONE:

 break;

 case FS_ERR_DEV:

 case FS_ERR_DEV_IO:

 case FS_ERR_DEV_TIMEOUT:

 case FS_ERR_DEV_NOT_PRESENT:

 return (DEF_FAIL);

 default:

 return (DEF_FAIL);

 }

 /* (3) */

 FSVol_Open((CPU_CHAR *)“sdcard:0:”, /* (a) */

 (CPU_CHAR *)“sdcard:0:”, /* (b) */

 (FS_PARTITION_NBR) 0, /* (c) */

 (FS_ERR *)&err);

179

SD/MMC Drivers

Listing 17-1 Opening a SD/MMC device volume.

L17-1(1) Register the SD/MMC CardMode device driver FSDev_SD_Card.

L17-1(2) FSDev_Open() opens/initializes a file system device. The parameters are the

device name (1a) and a pointer to a device driver-specific configuration

structure (1b). The device name (1a) is composed of a device driver name

(“sdcard”), a single colon, an ASCII-formatted integer (the unit number) and

another colon. Since the SD/MMC CardMode driver requires no configuration,

the configuration structure (1b) should be passed a NULL pointer.

Since SD/MMC are often removable media, it is possible for the device to not

be present when FSDev_Open() is called. The device will still be added to the

file system and a volume opened on the (not yet present) device. When the

volume is later accessed, the file system will attempt to refresh the device

information and detect a file system (see section 5-2 “Using Devices” on

page 69 for more information).

L17-1(3) FSVol_Open() opens/mounts a volume. The parameters are the volume name

(2a), the device name (2b) and the partition that will be opened (2c). There is

no restriction on the volume name (2a); however, it is typical to give the

 switch (err) {

 case FS_ERR_NONE:

 APP_TRACE_DBG((" ...opened volume (mounted).\r\n"));

 break;

 case FS_ERR_DEV:

 case FS_ERR_DEV_IO:

 case FS_ERR_DEV_TIMEOUT:

 case FS_ERR_DEV_NOT_PRESENT:

 case FS_ERR_PARTITION_NOT_FOUND:

 APP_TRACE_DBG((" ...opened device (unmounted).\r\n"));

 return (DEF_FAIL);

 default:

 APP_TRACE_DBG((" ...opening volume failed w/err = %d.\r\n\r\n", err));

 return (DEF_FAIL);

 }

 return (DEF_OK);

}

180

SD/MMC Drivers

volume the same name as the underlying device. If the default partition is to be

opened, or if the device is not partition, then the partition number (2c) should

be zero.

If the SD/MMC initialization succeeds, the file system will produce the trace output as

shown in Figure 17-1 (if a sufficiently high trace level is configured). See section E-9 “Trace

Configuration” on page 534 about configuring the trace level.

Figure 17-1 SD/MMC detection trace output

17-2-1 SD/MMC CARDMODE COMMUNICATION

In card mode, seven, nine or thirteen pins on the SD/MMC device are used, with the

functions listed in the table below. All cards start up in “1 bit” mode (upon entering

identification mode), which involves only a single data line. Once the host (the MCU/MPU)

discovers the capabilities of the card, it may initiate 4- or 8-bit communication (the latter

available only on new MMCs). Some card holders contain circuitry for card detect and write

protect indicators, which the MCU/MPU may also monitor.

Pin Name Type Description

 1 CD/DAT3 I/O Card Detect/Data Line (Bit 3)

 2 CMD I/O Command/Response

 3 Vss1 S Supply voltage ground

 4 VDD S Supply voltage

181

SD/MMC Drivers

Table 17-2 SD/MMC pinout (Card Mode).

*Only present in MMC cards.

Exchanges between the host and card begin with a command (sent by the host on the

CMD line), often followed by a response from the card (also on the CMD line); finally,

one or more blocks data may be sent in one direction (on the data line(s)), each

appended with a CRC.

Figure 17-2 SD/MMC communication sequence

F17-2(1) When no data is being transmitted, data lines are held low.

F17-2(2) Data block is preceded by a start bit (‘0’); an end bit (‘1’) follows the CRC.

F17-2(3) The CRC is the 16-bit CCITT CRC.

 5 CLK I Clock

 6 VSS2 S Supply voltage ground

 7 DAT0 I/O Data Line (Bit 0)

 8 DAT1 I/O Data Line (Bit 1)

 9 DAT2 I/O Data Line (Bit 2)

10 DAT4 I/O Data Line (Bit 4)*

11 DAT5 I/O Data Line (Bit 5)*

12 DAT6 I/O Data Line (Bit 6)*

13 DAT7 I/O Data Line (Bit 7)*

Pin Name Type Description

Command Respose

Host-to-card Card-to-host

Data

C
R

C

Card-to-host (read)

Host-to-card (write)

CMD

DAT Busy

(write only)

(1)

(4)(2)

(5) (6)

(3)

182

SD/MMC Drivers

F17-2(4) During the busy signaling following a write, DAT0 only is held low.

F17-2(5) See Figure 17-3 for description of the command format.

F17-2(6) See Figure 17-3 for description of the command format.

Figure 17-3 SD/MMC command and response formats.

F17-3(1) Command index is not valid for response formats R2 and R3.

F17-3(2) CRC is not valid for response format R3.

When a card is first connected to the host (at card power-on), it is in the ‘inactive’ state,

awaiting a GO_IDLE_STATE command to start the initialization process, which is dependent

on the card type. During initialization, the card starting in the ‘idle’ state moves through the

‘ready’ (as long as it supports the voltage range specified by the host) and ‘identification’

states (if it is assigned an address by or is assigned an address) before ending up in‘standby’.

It can now get selected by the host for data transfers. Figure 15-9 flowcharts this procedure.

17-2-2 SD/MMC CARDMODE COMMUNICATION DEBUGGING

The SD/MMC cardmode driver accesses the hardware through a port (BSP). A new BSP

developed according to MCU/MPU documentation or by example must be verified

step-by-step until flawless operation is achieved:

0 1 CRC 1ArgumentCmd ix

Start bit

Transmission bit End bit

6 bits 32 bits 7 bits

0 0 CRC 1ResponseCmd ix

Start bit

Transmission bit End bit

6 bits 32 or 128 bits 7 bits

(1) (2)

Command
format

Response
format

183

SD/MMC Drivers

1 Initialization (1-bit). Initialization must succeed for a SD/MMC card in 1-bit mode.

2 Initialization (4- or 8-bit). Initialization must succeed for a SD/MMC card in 4 or 8-bit

mode.

3 Read data. Data must be read from card, in both single- and multiple-block transactions.

4 Write data. Data must be written to the card, in both single and multiple-block

transactions, and subsequently verified (by reading the modified sectors and comparing

to the intended contents).

The (1-bit) initialization process reveals that commands can be executed and responses are

returned with the proper bits in the correct byte-order. Example responses for each step in

the sequence are given in Figure 17-5 and Figure 17-6. The first command executed,

GO_IDLE_STATE, never receives a response from the card. Only V2 SD cards respond to

SEND_IF_COND, returning the check pattern sent to the card and the accepted voltage range.

The OCR register, read with SD_SEND_OP_COND or SEND_OP_COND, assumes basically the

same format for all card types. Finally, the CID (card ID) and CSD (card-specific data)

registers are read—the only times ‘long’ (132-bit) responses are returned.

Multiple-bit initialization (often 4-bit) when performed on a SD card further confirms that

the 8-byte SCR register and 64-byte SD status can be read and that the bus width can be set

in the BSP. Though all current cards support 4-bit mode operation, the SD_BUS_WIDTHS field

of the SCR is checked before configure the card bus width. Afterwards, the 64-byte SD

status is read to see whether the bus width change was accomplished. When first debugging

a port, it may be best to force multi-bit operation disabled by returning 1 from the BSP

function FSDev_SD_Card_BSP_GetBusWidthMax().

184

SD/MMC Drivers

Figure 17-4 Simplified SD/MMC cardmode initialization and state transitions

Power On

GO_IDLE_STATE

SEND_IF_COND

SD_SEND_OP_COND

CCS in
response?

V2.0+ High
Capacity SD card

V2.0+ Standard
Capacity SD card

SD_SEND_OP_COND

Invalid

command

YesNo

Invalid

command

SEND_OP_COND

V1.x Standard
Capacity SD card

MMC

SEND_CID

In
ac

tiv
e

st
at

e
Id

le
St

at
e

R
ea

dy

St
at

e

SEND_CSD

St
an

db
y

St
at

e

(1)

(2)

(3)(3)

(4)

(6)

(7)

READ_OCR

(5)

Valid

command

READ_OCR

(5)

185

SD/MMC Drivers

Figure 17-5 Command responses (SD card)

Fig 15-6 (1)
No response

Check pattern
0xA50x1

Reserved
0x00000

8 bits4 bits20 bits

Voltage
range

VDD Voltage Window
0xFF8000

Reserved
0x00

24 bits6 bits
X1

Card Capacity
Status

Card power
up status

GO_IDLE_STATE

SEND_IF_COND

Fig 15-6 (2)

SD_SEND_OP_COND

Fig 15-6 (3)

OCR

1 = High capacity

0 = Standard capacity

May not be 1 on initial

reading(s)

Command Response

ALL_SEND_CID

Fig 15-6 (5)

MID OID

PNM

PRV PSN

MDT CRC

0x03534453
0x44303247
0x80021A7C
0x83008B3A

Response only for SD V2 cards

MID

OID = OEM/Application ID

= Manufacturer ID

PNM = Product name

PRV = Product revision

PSN = Product serial number

MDT = Manufacturing date

127

 63

Example

SEND_CSD

Fig 15-6 (6)

= 0x03
= 0x5344
= 0x5344303247 = “SD02G”

= 0x80 = 8.0

= 0x021A7C83
= 0x008

127

 63

TAAC NSAC TRAN_SPEED

CCC C_SIZE

CRC

0x00260032
0x5F5A83C9
0x3EFBCFFF
0x928040CA

Examples

127

 63

TAAC NSAC TRAN_SPEED

CCC C_SIZE

CRC

(H
ig

h
ca

pa
ci

ty
)

(S
td

 c
ap

ac
ity

)

0x400E0032
0x5B590000
0x1E5C7F80
0x0A4040DE

186

SD/MMC Drivers

Figure 17-6 Command responses (MMC card)

Figure 17-7 SD SCR Register

Fig 15-6 (1)
No response

VDD Voltage Window
0xFF8000

Reserved
0x00

24 bits7 bits
1

Card power
up status

GO_IDLE_STATE

SEND_OP_COND

Fig 15-6 (4)

OCR

May not be 1 on initial

reading(s)

Command Response

ALL_SEND_CID

Fig 15-6 (5)

MID OID

PRV PSN

MDT CRC

0x1EFFFF4D
0x4D432020
0x20105E60
0x21BA5B7E

MID

OID = OEM/Application ID

= Manufacturer ID

PNM = Product name

PRV = Product revision

PSN = Product serial number

MDT = Manufacturing date

127

 63

Example

SEND_CSD

Fig 15-6 (6)

= 0x1E
= 0xFFFF
= 0x4D4D43202020 = “MMC ”

= 0x10 = 1.0

= 0x5E6021BA
= 0x5B

127

 63

Examples

TAAC NSAC TRAN_SPEED

CCC C_SIZE

CRC

0x902F002A
0x1F5A83C7
0x6DB79FFF
0x9680000E

PNM

SD_BUS_WIDTHS

Bit 0 = 1-bit

Bit 2 = 4-bit

7

3

187

SD/MMC Drivers

Figure 17-8 SD Status

17-2-3 SD/MMC CARDMODE BSP OVERVIEW

A BSP is required so that the SD/MMC cardmode driver will work on a particular system.

The functions shown in the table below must be implemented. Pleaser refer to section C-12

“SD/MMC Cardmode BSP” on page 467 for the details about implementing your own BSP.

Function Description

FSDev_SD_Card_BSP_Open() Open (initialize) SD/MMC card interface.

FSDev_SD_Card_BSP_Close() Close (uninitialize) SD/MMC card interface.

FSDev_SD_Card_BSP_Lock() Acquire SD/MMC card bus lock.

FSDev_SD_Card_BSP_Unlock() Release SD/MMC card bus lock.

FSDev_SD_Card_BSP_CmdStart() Start a command.

FSDev_SD_Card_BSP_CmdWaitEnd() Wait for a command to end and get response.

FSDev_SD_Card_BSP_CmdDataRd() Read data following command.

FSDev_SD_Card_BSP_CmdDataWr() Write data following command.

FSDev_SD_Card_BSP_GetBlkCntMax() Get max block count.

FSDev_SD_Card_BSP_GetBusWidthMax() Get maximum bus width, in bits.

DAT_BUS_WIDTH

511

447

SD_CARD_TYPE

SIZE_OF_PROTECTED_AREA

CLASS ERASE_

SIZE

383

00b = 1-bit

01b = 4-bit

SPEED_CLASS 0x00 = Class 0

0x01 = Class 2

0x02 = Class 3

0x03 = Class 4

0x0000 = Regular rd/wr card

188

SD/MMC Drivers

Table 17-3 SD/MMC cardmode BSP functions

The Open()/Close() functions are called upon open/close or medium change; these calls

are always matched. The status and information functions (GetBlkCntMax(),

GetBusWidthMax(), SetBusWidth(), SetClkFreq(), SetTimeoutData(),

SetTimeoutResp()) help configure the new card upon insertion. Lock() and Unlock()

surround all card accesses.

The remaining functions (CmdStart(), CmdWaitEnd(), CmdDataRd(), CmdDataWr())

constitute the command execution state machine (see Figure 17-9). A return error from one

of the functions will abort the state machine, so the requisite considerations, such as

preparing for the next command or preventing further interrupts, must be first handled.

Figure 17-9 Command execution

FSDev_SD_Card_BSP_SetBusWidth() Set bus width.

FSDev_SD_Card_BSP_SetClkFreq() Set clock frequency.

FSDev_SD_Card_BSP_SetTimeoutData() Set data timeout.

FSDev_SD_Card_BSP_SetTimeoutResp() Set response timeout

Function Description

Start command execution
FSDev_SD_Card_BSP_CmdStart()

Error

returned

Wait for command to execute and
response to be returned

FSDev_SD_Card_BSP_CmdWaitEnd()

Error

returned

Data?
ReadWrite

FSDev_SD_Card_BSP_CmdDataWr() FSDev_SD_Card_BSP_CmdDataRd()

Return

Return

Return

189

SD/MMC Drivers

17-3 USING THE SD/MMC SPI DRIVER

To use the SD/MMC SPI driver, five files, in addition to the generic file system files, must be

included in the build:

■ fs_dev_sd.c.

■ fs_dev_sd.h.

■ fs_dev_sd_spi.c.

■ fs_dev_sd_spi.h.

■ fs_dev_sd_spi_bsp.c.

The file fs_dev_sd_spi.h must also be #included in any application or header files that

directly reference the driver (for example, by registering the device driver). The following

directories must be on the project include path:

■ \Micrium\Software\uC-FS\Dev\SD

■ \Micrium\Software\uC-FS\Dev\SD\SPI

A single SD/MMC volume is opened as shown in Listing 17-2. The file system initialization

(FS_Init()) function must have previously been called.

190

SD/MMC Drivers

ROM/RAM characteristics and performance benchmarks of the SD/MMC driver can be found

in section 10-1-1 “Driver Characterization” on page 121. The SD/MMC driver also provides

interface functions to get low-level card information and read the Card ID and Card-Specific

Data registers (see section A-11 “SD/MMC Driver Functions” on page 364).

FS_ERR App_FS_AddSD_SPI (void)

{

 FS_ERR err;

 FS_DevDrvAdd((FS_DEV_API *)&FSDev_SD_SPI, /* (1) */

 (FS_ERR *)&err);

 if ((err != FS_ERR_NONE) && (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {

 return (DEF_FAIL);

 }

191

SD/MMC Drivers

Listing 17-2 Opening a SD/MMC device volume

L17-2(1) Register the SD/MMC SPI device driver FSDev_SD_SPI.

 /* (2) */

 FSDev_Open((CPU_CHAR *)“sd:0:”, /* (a) */

 (void *) 0, /* (b) */

 (FS_ERR *)&err);

 switch (err) {

 case FS_ERR_NONE:

 break;

 case FS_ERR_DEV:

 case FS_ERR_DEV_IO:

 case FS_ERR_DEV_TIMEOUT:

 case FS_ERR_DEV_NOT_PRESENT:

 return (DEF_FAIL);

 default:

 return (DEF_FAIL);

 }

 /* (3) */

 FSVol_Open((CPU_CHAR *)“sd:0:”, /* (a) */

 (CPU_CHAR *)“sd:0:”, /* (b) */

 (FS_PARTITION_NBR) 0, /* (c) */

 (FS_ERR *)&err);

 switch (err) {

 case FS_ERR_NONE:

 APP_TRACE_DBG((" ...opened volume (mounted).\r\n"));

 break;

 case FS_ERR_DEV:

 case FS_ERR_DEV_IO:

 case FS_ERR_DEV_TIMEOUT:

 case FS_ERR_DEV_NOT_PRESENT:

 case FS_ERR_PARTITION_NOT_FOUND:

 APP_TRACE_DBG((" ...opened device (unmounted).\r\n"));

 return (DEF_FAIL);

 default:

 APP_TRACE_DBG((" ...opening volume failed w/err = %d.\r\n\r\n", err));

 return (DEF_FAIL);

 }

 return (DEF_OK);

}

192

SD/MMC Drivers

L17-2(2) FSDev_Open() opens/initializes a file system device. The parameters are the

device name (1a) and a pointer to a device driver-specific configuration

structure (1b). The device name (1a) is composed of a device driver name

(“sd”), a single colon, an ASCII-formatted integer (the unit number) and

another colon. Since the SD/MMC SPI driver requires no configuration, the

configuration structure (1b) should be passed a NULL pointer.

Since SD/MMC are often removable media, it is possible for the device to not

be present when FSDev_Open() is called. The device will still be added to the

file system and a volume opened on the (not yet present) device. When the

volume is later accessed, the file system will attempt to refresh the device

information and detect a file system (see section 5-2 “Using Devices” on

page 69 for more information).

L17-2(3) FSVol_Open() opens/mounts a volume. The parameters are the volume name

(2a), the device name (2b) and the partition that will be opened (2c). There is

no restriction on the volume name (2a); however, it is typical to give the

volume the same name as the underlying device. If the default partition is to be

opened, or if the device is not partition, then the partition number (2c) should

be zero.

If the SD/MMC initialization succeeds, the file system will produce the trace output as

shown in Figure 17-10 (if a sufficiently high trace level is configured). See section E-9 “Trace

Configuration” on page 534 about configuring the trace level.

Figure 17-10 SD/MMC detection trace output

193

SD/MMC Drivers

17-3-1 SD/MMC SPI COMMUNICATION

SPI is a simple protocol supported by peripherals commonly built-in on CPUs. Moreover,

since the communication can easily be accomplished by software control of GPIO pins

(“software SPI” or “bit-banging”), a SD/MMC card can be connected to almost any platform.

In SPI mode, seven pins on the SD/MMC device are used, with the functions listed in

Table 17-4. As with any SPI device, four signals are used to communicate with the host (CS,

DataIn, CLK and DataOut). Some card holders contain circuitry for card detect and write

protect indicators, which the MCU/MPU may also monitor.

Table 17-4 SD/MMC Pinout (SPI Mode)

The four signals connecting the host (or master) and card (also known as the slave) are

named variously in different manuals and documents. The DataIn pin of the card is also

known as MOSI (Master Out Slave In); it is the data output of the host CPU. Similarly, the

DataOut pin of the card is also known as MISO (Master In Slave Out); it is the data input of

the host CPU. The CS and CLK pins (also known as SSEL and SCK) are the chip select and

clock pins. The host selects the slave by asserting CS, potentially allowing it to choose a

single peripheral among several that are sharing the bus (i.e., by sharing the CLK, MOSI and

MISO signals).

When a card is first connected to the host (at card power-on), it is in the ‘inactive’ state,

awaiting a GO_IDLE_STATE command to start the initialization process. The card will enter

SPI mode (rather than card mode) because the driver holds the CS signal low while

executing the GO_IDLE_STATE command. The card now in the ‘idle’ state moves through the

‘ready’ (as long as it supports the voltage range specified by the host) before ending up

in‘standby’. It can now get selected by the host (using the chip select) for data transfers.

Figure 15-5 flowcharts this procedure.

Pin Name Type Description

1 CS I Chip Select

2 DataIn I Host-to-card commands and data

3 Vss1 S Supply voltage ground

4 VDD S Supply voltage

5 CLK I Clock

6 VSS2 S Supply voltage ground

7 DataOut O Card-to-host data and status

194

SD/MMC Drivers

17-3-2 SD/MMC SPI COMMUNICATION DEBUGGING

The SD/MMC SPI driver accesses the hardware through a port (SPI BSP) as described in

section C-13 “SD/MMC SPI mode BSP” on page 493. A new BSP developed according to

MCU/MPU documentation or by example must be verified step-by-step until flawless

operation is achieved:

1 Initialization. Initialization must succeed.

2 Read data. Data must be read from card, in both single- and multiple-block transactions.

3 Write data. Data must be written to the card, in both single and multiple-block

transactions, and subsequently verified (by reading the modified sectors and comparing

to the intended contents).

Figure 17-11 SD/MMC SPI mode communication sequence

F17-11(1) When no data is being transmitted, DataOut line is held high.

F17-11(2) During busy signaling, DataOut line is held low.

F17-11(3) The CRC is the 16-bit CCITT CRC. By default, this is optional and dummy bytes

may be transmitted instead. The card only checks the CRC if CRC_ON_OFF has

been executed.

0 1 CRC 1ArgumentCmd ix

Start bit

Transmission bit End bit

6 bits 32 bits 7 bits

0 0 CRC 1ResponseCmd ix

Start bit

Transmission bit End bit

6 bits 32 or 128 bits 7 bits

(1) (2)

Command
format

Response
format

195

SD/MMC Drivers

Figure 17-12 SD/MMC SPI mode command and response formats

0 1 CRC 1ArgumentCmd ix

Start bit

Transmission bit End bit

6 bits 32 bits 7 bits

0

Start bit
Address Out Of Range/Block Length Error

Command
format

Response
format

R1 Response

Additional
response (if any)

Address Misalign
Erase Sequence Error
Com CRC Error
Illegal Command/Switch Error
Erase Reset
In Idle State

196

SD/MMC Drivers

Figure 17-13 Simplified SD/MMC SPI mode initialization and state transitions.

The initialization process reveals that commands can be executed and proper responses are

returned. The command responses in SPI mode are identical to those in cardmode (see

Figure 17-5 and Figure 17-6), except each is preceded by a R1 status byte. Obvious errors,

such as improper initialization or failed chip select manipulation, will typically be caught

here. More subtle conditions may appear intermittently during reading or writing.

Power On

GO_IDLE_STATE

SEND_IF_COND

SD_SEND_OP_COND

CCS in
response?

V2.0+ High
Capacity SD card

V2.0+ Standard
Capacity SD card

SD_SEND_OP_COND

Invalid

command

YesNo

Invalid

command

SEND_OP_COND

V1.x Standard
Capacity SD card

MMC

SEND_CID

In
ac

tiv
e

st
at

e
Id

le
St

at
e

R
ea

dy

St
at

e

SEND_CSD

St
an

db
y

St
at

e

(1)

(2)

(3)(3)

(4)

(6)

(7)

READ_OCR

(5)

Valid

command

READ_OCR

(5)

197

SD/MMC Drivers

17-3-3 SD/MMC SPI BSP OVERVIEW

An SPI BSP is required so that the SD/MMC SPI driver will work on a particular system. For

more information about these functions, see section C-14 “SPI BSP” on page 494.

Table 17-5 SD/MMC SPI BSP Functions

Function Description

FSDev_SD_SPI_BSP_SPI_Open() Open (initialize) SPI.

FSDev_SD_SPI_BSP_SPI_Close() Close (uninitialize) SPI.

FSDev_SD_SPI_BSP_SPI_Lock() Acquire SPI lock.

FSDev_SD_SPI_BSP_SPI_Unlock() Release SPI lock.

FSDev_SD_SPI_BSP_SPI_Rd() Read from SPI.

FSDev_SD_SPI_BSP_SPI_Wr() Write to SPI.

FSDev_SD_SPI_BSP_SPI_ChipSelEn() Enable chip select.

FSDev_SD_SPI_BSP_SPI_ChipSelDis() Disable chip select.

FSDev_SD_SPI_BSP_SPI_SetClkFreq() Set SPI clock frequency.

198

Appendix

A
μC/FS API Reference Manual

This chapter provides a reference to μC/FS services. The following information is provided

for each entry:

■ A brief description of the service

■ The function prototype

■ The filename of the source code

■ The #define constant required to enable code for the service

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service

■ One or two examples of how to use the function

Many functions return error codes. These error codes should be checked by the application

to ensure that the μC/FS function performed its operation as expected.

Each of the user-accessible file system services is presented in alphabetical order within an

appropriate section; the section for a particular function can be determined from its name.

199

μC/FS API Reference Manual

Section Functions begin with…

General file system functions FS_

POXIX API functions fs_

Device functions FSDev_F

Directory functions FSDir_

Entry functions FSEntry_

File functions FSFile_

Time functions FSTime_

Volume functions FSVol_

NAND driver functions FSDev_NAND_

NOR driver functions FSDev_NOR_

SD/MMC driver functions FSDev_SD_

Compact Flash/IDE driver functions FSDev_IDE_

MSC driver functions FSDev_MSC_

RAMDisk driver functions FSDev_RAM_

FAT functions FS_FAT_

BSP functions FS_BSP_

OS functions FS_OS_

200

μC/FS API Reference Manual

A-1 GENERAL FILE SYSTEM FUNCTIONS

void

FS_DevDrvAdd (FS_DEV_API *p_dev_api,

 FS_ERR *p_err);

FS_ERR

FS_Init (FS_CFG *p_fs_cfg);

CPU_INT08U

FS_VersionGet (void);

void

FS_WorkingDirGet (CPU_CHAR *path_dir,

 CPU_SIZE_T len_max,

 FS_ERR *p_err);

void

FS_WorkingDirSet (CPU_CHAR *path_dir,

 FS_ERR *p_err);

FS_DevDrvAdd()

void FS_DevDrvAdd (FS_DEV_API *p_dev_drv,

 FS_ERR *p_err);

201

μC/FS API Reference Manual

A-1-1 FS_DevDrvAdd()

void FS_DevDrvAdd (FS_DEV_API *p_dev_drv,

 FS_ERR *p_err);

Adds a device driver to the file system.

ARGUMENTS

p_dev_drv Pointer to device driver (see Section C.08).

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Device driver added.

FS_ERR_NULL_PTR Argument p_dev_drv passed a NULL

pointer.

FS_ERR_DEV_DRV_ALREADY_ADDED Device driver already added.

FS_ERR_DEV_DRV_INVALID_NAME Device driver name invalid.

FS_ERR_DEV_DRV_NO_TBL_POS_AVAIL No device driver table position available.

RETURNED VALUE

None.

File Called from Code enabled by

fs.c Application N/A

202

μC/FS API Reference Manual

NOTES/WARNINGS

1 The NameGet() device driver interface function MUST return a valid name:

■ The name must be unique (e.g., a name that is not returned by any other device

driver);

■ The name must NOT include any of the characters: ‘:’, ‘\’ or ‘/’.

■ The name must contain fewer than FS_CFG_MAX_DEV_DRV_NAME_LEN characters;

■ The name must NOT be an empty string.

2 The Init() device driver interface function is called to initialize driver structures and

any hardware for detecting the presence of devices (for a removable medium).

203

μC/FS API Reference Manual

A-1-2 FS_Init()

FS_ERR FS_Init (FS_CFG *p_fs_cfg);

Initializes μC/FS and MUST be called prior to calling any other μC/FS API functions.

ARGUMENTS

p_fs_cfg Pointer to file system configuration (see Section C.01).

RETURNED VALUE

FS_ERR_NONE, if successful;

Specific initialization error code, otherwise.

The return value SHOULD be inspected to determine whether μC/FS is successfully

initialized or not. If μ/FS did NOT successfully initialize, search for the returned error in

fs_err.h and source files to locate where μC/FS initialization failed.

NOTES/WARNINGS

μC/LIB memory management function Mem_Init() MUST be called prior to calling this

function.

File Called from Code enabled by

fs.h Application N/A

204

μC/FS API Reference Manual

A-1-3 FS_VersionGet()

CPU_INT16U FS_VersionGet (void);

Gets the μC/FS software version.

ARGUMENTS

None.

RETURNED VALUE

μC/FS software version.

NOTES/WARNINGS

The value returned is multiplied by 100. For example, version 4.03 would be returned

as 403.

File Called from Code enabled by

fs.c Application N/A

205

μC/FS API Reference Manual

A-1-4 FS_WorkingDirGet()

void FS_WorkingDirGet (CPU_CHAR *path_dir,

 CPU_SIZE_T size,

 FS_ERR *p_err);

Get the working directory for the current task.

ARGUMENTS

path_dir String buffer that will receive the working directory path.

size Size of string buffer.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Working directory obtained.

FS_ERR_NULL_PTR Argument path_dir passed a NULL

pointer.

FS_ERR_NULL_ARG Argument size passed a NULL value.

FS_ERR_NAME_BUF_TOO_SHORT Argument size less than length of path

FS_ERR_VOL_NONE_EXIST No volumes exist.

RETURNED VALUE

None.

NOTES/WARNINGS

If no working directory is assigned for the task, the default working directory—the root

directory on the default volume—will be returned in the user buffer and set as the task’s

working directory.

File Called from Code enabled by

fs.c Application;

fs_getcwd()

FS_CFG_WORKING_DIR_EN

206

μC/FS API Reference Manual

A-1-5 FS_WorkingDirSet()

void FS_WorkingDirSet (CPU_CHAR *path_dir,

 FS_ERR *p_err);

Set the working directory for the current task.

ARGUMENTS

path_dir String buffer that specified EITHER...

(a) the absolute working directory path to set;

(b) a relative path that will be applied to the current working directory.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Working directory set.

FS_ERR_NULL_PTR Argument path_dir passed a NULL

pointer.

FS_ERR_VOL_NONE_EXIST No volumes exist.

FS_ERR_WORKING_DIR_NONE_AVAIL No working directories available.

FS_ERR_WORKING_DIR_INVALID Argument path_dir passed an invalid

directory.

RETURNED VALUE,

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs.c Application;

fs_chdir()

FS_CFG_WORKING_DIR_EN

207

μC/FS API Reference Manual

A-2 POSIX API FUNCTIONS

char *

fs_asctime_r (const struct fs_tm *p_time,

 char *str_time);

int

fs_chdir (const char *path_dir);

void

fs_clearerr (FS_FILE *p_file);

int

fs_closedir (FS_DIR *p_dir);

char *

fs_ctime_r (const fs_time_t *p_ts,

 char *str_time);

int

fs_fclose (FS_FILE *p_file);

int

fs_feof (FS_FILE *p_file);

int

fs_ferror (FS_FILE *p_file);

int

fs_fflush (FS_FILE *p_file);

int

fs_fgetpos (FS_FILE *p_file,

 fs_fpos_t *p_pos);

void

fs_flockfile (FS_FILE *p_file);

FS_FILE *

fs_fopen (const char *name_full,

 const char *str_mode);

208

μC/FS API Reference Manual

fs_size_t

fs_fread (void *p_dest,

 fs_size_t size,

 fs_size_t nitems,

 FS_FILE *p_file);

int

fs_fseek (FS_FILE *p_file,

 long int offset,

 int origin);

int

fs_fsetpos (FS_FILE *p_file,

 fs_fpos_t *p_pos);

long int

fs_ftell (FS_FILE *p_file);

int

fs_ftruncate (FS_FILE *p_file,

 fs_off_t size);

int

fs_ftrylockfile (FS_FILE *p_file);

void

fs_funlockfile (FS_FILE *p_file);

fs_size_t

fs_fwrite (void *p_src,

 fs_size_t size,

 fs_size_t nitems,

 FS_FILE *p_file);

char *

fs_getcwd (char *path_dir,

 fs_size_t size);

struct fs_tm *

fs_localtime_r (const fs_time_t *p_ts,

 struct fs_tm *p_time);

209

μC/FS API Reference Manual

int

fs_mkdir (const char *name_full);

fs_time_t

fs_mktime (struct fs_tm *p_time);

FS_DIR *

fs_opendir (const char *name_full);

int

fs_readdir (FS_DIR *p_dir,

 struct fs_dirent *p_dir_entry,

 struct fs_dirent **pp_result);

int

fs_remove (const char *name_full);

int

fs_rename (const char *name_full_old,

 const char *name_full_new);

void

fs_rewind (FS_FILE *p_file);

int

fs_setbuf (FS_FILE *p_file,

 fs_size_t size);

int

fs_setvbuf (FS_FILE *p_file,

 char *p_buf,

 int mode,

 fs_size_t size);

210

μC/FS API Reference Manual

A-2-1 fs_asctime_r()

char *fs_asctime_r (const struct fs_tm *p_time,

 char *str_time);

Converts date/time to string in the form:

Sun Sep 16 01:03:52 1973\n\0

ARGUMENTS

p_time Pointer to date/time to format.

str_time String buffer that will receive date/time string (see Note).

RETURNED VALUE

Pointer to str_time, if NO errors.

Pointer to NULL, otherwise.

NOTES/WARNINGS

str_time MUST be at least 26 characters long. Buffer overruns MUST be prevented by

caller.

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

211

μC/FS API Reference Manual

A-2-2 fs_chdir()

int fs_chdir (const char *path_dir);

Set the working directory for the current task.

ARGUMENTS

path_dir String buffer that specifies EITHER...

(a) the absolute working directory path to set;

(b) relative path that will be applied to the current working directory.

RETURNED VALUE

 0, if no error occurs.

-1, otherwise

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and

FS_CFG_WORKING_DIR_EN

212

μC/FS API Reference Manual

A-2-3 fs_clearerr()

void fs_clearerr (FS_FILE *p_file);

Clear EOF and error indicators on a file.

ARGUMENTS

p_file Pointer to a file.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

213

μC/FS API Reference Manual

A-2-4 fs_closedir()

int fs_closedir (FS_DIR *p_dir);

Close and free a directory.

ARGUMENTS

p_dir Pointer to a directory.

RETURNED VALUE

 0, if the directory is successfully closed.

-1, if any error was encountered.

NOTES/WARNINGS

After a directory is closed, the application MUST desist from accessing its directory pointer.

This could cause file system corruption, since this handle may be re-used for a different

directory.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and

FS_CFG _DIR_EN

214

μC/FS API Reference Manual

A-2-5 fs_ctime_r()

char *fs_ctime_r (const fs_time_t *p_ts,

 char *str_time);

Converts timestamp to string in the form:

Sun Sep 16 01:03:52 1973\n\0

ARGUMENTS

p_ts Pointer to timestamp to format.

str_time String buffer that will receive date/time string (see Note).

RETURNED VALUE

Pointer to str_time, if NO errors.

Pointer to NULL, otherwise.

NOTES/WARNINGS

str_time MUST be at least 26 characters long. Buffer overruns MUST be prevented by

caller.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

215

μC/FS API Reference Manual

A-2-6 fs_fclose()

int fs_fclose (FS_FILE *p_file);

Close and free a file.

ARGUMENTS

p_file Pointer to a file.

RETURNED VALUE

0, if the file was successfully closed.

FS_EOF, otherwise.

NOTES/WARNINGS

1 After a file is closed, the application MUST desist from accessing its file pointer. This

could cause file system corruption, since this handle may be re-used for a different file.

2 If the most recent operation is output (write), all unwritten data is written to the file.

3 Any buffer assigned with fs_setbuf() or fs_setvbuf() shall no longer be accessed

by the file system and may be re-used by the application.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

216

μC/FS API Reference Manual

A-2-7 fs_feof()

int fs_feof (FS_FILE *p_file);

Test EOF indicator on a file.

ARGUMENTS

p_file Pointer to a file.

RETURNED VALUE

0, if EOF indicator is NOT set or if an error occurred

Non-zero value, if EOF indicator is set.

NOTES/WARNINGS

1 The return value from this function should ALWAYS be tested against 0:

rtn = fs_feof(p_file);

if (rtn == 0) {

 // EOF indicator is NOT set

} else {

 // EOF indicator is set

}

2 If the end-of-file indicator is set (i.e., fs_feof() returns DEF_YES), fs_clearerr() can

be used to clear that indicator.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

217

μC/FS API Reference Manual

A-2-8 fs_ferror()

int fs_ferror (FS_FILE *p_file);

Test error indicator on a file.

ARGUMENTS

p_file Pointer to a file.

RETURNED VALUE

0, if error indicator is NOT set or if an error occurred

Non-zero value, if error indicator is set.

NOTES/WARNINGS

1 The return value from this function should ALWAYS be tested against 0:

rtn = fs_ferror(p_file);

if (rtn == 0) {

 // Error indicator is NOT set

} else {

 // Error indicator is set

}

2 If the error indicator is set (i.e., fs_ferror() returns a non-zero value),

fs_clearerr() can be used to clear that indicator.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

218

μC/FS API Reference Manual

A-2-9 fs_fflush()

int fs_fflush (FS_FILE *p_file);

Flush buffer contents to file.

ARGUMENTS

p_file Pointer to a file.

RETURNED VALUE

0, if flushing succeeds.

FS_EOF, otherwise.

NOTES/WARNINGS

1 If the most recent operation is output (write), all unwritten data is written to the file.

2 If the most recent operation is input (read), all buffered data is cleared.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and

FS_CF_FILE_BUF_EN

219

μC/FS API Reference Manual

A-2-10 fs_fgetpos()

int fs_fgetpos (FS_FILE *p_file,

 fs_fpos_t *p_pos);

Get file position indicator.

ARGUMENTS

p_file Pointer to a file.

p_pos Pointer to variable that will receive the file position indicator.

RETURNED VALUE

0, if no error occurs.

Non-zero value, otherwise.

NOTES/WARNINGS

1 The return value should be tested against 0:

rtn = fs_fgetpos(p_file, &pos);

if (rtn == 0) {

 // No error occurred

} else {

 // Handle error

}

2 The value placed in pos should be passed to FS_fsetpos() to reposition the file to its

position at the time when this function was called.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

220

μC/FS API Reference Manual

A-2-11 fs_flockfile()

void fs_flockfile (FS_FILE *p_file);

Acquire task ownership of a file.

ARGUMENTS

p_file Pointer to a file.

RETURNED VALUE

None.

NOTES/WARNINGS

A lock count is associated with each file:

1 The file is unlocked when the lock count is zero.

2 If the lock count is positive, a task owns the file.

3 When fs_flockfile() is called, if…

a.…the lock count is zero OR

b.…the lock count is positive and the caller owns the file…

…the lock count will be incremented and the caller will own the file. Otherwise, the

caller will wait until the lock count returns to zero.

4 Each call to fs_funlockfile() incremenets the lock count.

5 Matching calls to fs_flockfile() (or fs_ftrylockfile()) and fs_funlockfile()

can be nested.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and

FS_CFG_FILE_LOCK_EN

221

μC/FS API Reference Manual

A-2-12 fs_fopen()

FS_FILE *fs_fopen (const char *name_full,

 const char *str_mode);

Open a file.

ARGUMENTS

name_full Name of the file. See section 4-3 “μC/FS File and Directory Names and Paths”

on page 62 for information about file names.

str_mode Access mode of the file.

RETURNED VALUE

Pointer to a file, if NO errors.

Pointer to NULL, otherwise.

NOTES/WARNINGS

1 The access mode should be one of the strings shown in section Table 7-2 “fopen()

mode strings and mode equivalents” on page 100.

2 The character ‘b’ has no effect.

3 Opening a file with read mode fails if the file does not exist.

4 Opening a file with append mode causes all writes to be forced to the end-of-file.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

222

μC/FS API Reference Manual

A-2-13 fs_fread()

fs_size_t fs_fread (void *p_dest,

 fs_size_t size,

 fs_size_t nitems,

 FS_FILE *p_file);

Read from a file.

ARGUMENTS

p_dest Pointer to destination buffer.

size Size of each item to read.

nitems Number of items to read.

p_file Pointer to a file.

RETURNED VALUE

Number of items read.

NOTES/WARNINGS

1 The size or nitems is 0, then the file is unchanged and zero is returned.

2 If the file is buffered and the last operation is output (write), then a call to fs_flush()

or fs_fsetpos() or fs_fseek() MUST occur before input (read) can be performed.

3 The file must have been opened in read or update (read/write) mode.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

223

μC/FS API Reference Manual

A-2-14 fs_fseek()

int fs_fseek (FS_FILE *p_file,

 long int offset,

 int origin);

Set file position indicator.

ARGUMENTS

p_file Pointer to a file.

offset Offset from the file position specified by whence.

origin Reference position for offset:

FS_SEEK_SET Offset is from the beginning of the file.

FS_SEEK_CUR Offset is from the current file position.

FS_SEEK_END Offset is from the end of the file.

RETURNED VALUE

 0, if the function succeeds.

-1, otherwise.

File Called from Code enabled by

fs_api..c Application; fs_frewind() FS_CFG_API_EN

224

μC/FS API Reference Manual

NOTES/WARNINGS

1 If a read or write error occurs, the error indicator shall be set.

2 The new file position, measured in bytes form the beginning of the file, is obtained by

adding offset to…:

a.…0 (the beginning of the file), if whence is FS_SEEK_SET;

b.…the current file position, if whence is FS_SEEK_CUR;

c.…the file size, if whence is FS_SEEK_END;

3 The end-of-file indicator is cleared.

4 If the file position indicator is set beyond the file’s current data…

a.…and data is later written to that point, reads from the gap will read 0.

b.…the file MUST be opened in write or read/write mode.

225

μC/FS API Reference Manual

A-2-15 fs_fsetpos()

int fs_fsetpos (FS_FILE *p_file,

 fs_fpos_t *p_pos);

Set file position indicator.

ARGUMENTS

p_file Pointer to a file.

p_pos Pointer to variable containing file position indicator.

RETURNED VALUE

0, if the function succeeds.

Non-zero value, otherwise.

NOTES/WARNINGS

1 The return value should be tested against 0:

rtn = fs_fsetpos(pfile, &pos);
if (rtn == 0) {
 // No error occurred
} else {
 // Handle error
}

2 If a read or write error occurs, the error indicator shall be set.

3 The value stored in pos should be the value from an earlier call to fs_fgetpos(). No

attempt is made to verify that the value in pos was obtained by a call to fs_fgetpos().

4 See also fs_fseek().

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

226

μC/FS API Reference Manual

A-2-16 fs_ftell()

long int fs_ftell (FS_FILE *p_file);

Get file position indicator.

ARGUMENTS

p_file Pointer to a file.

RETURNED VALUE

The current file system position, if the function succeeds.

-1, otherwise.

NOTES/WARNINGS

The file position returned is measured in bytes from the beginning of the file.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

227

μC/FS API Reference Manual

A-2-17 fs_ftruncate()

int fs_ftruncate (FS_FILE *p_file,

 fs_off_t size);

Truncate a file.

ARGUMENTS

p_file Pointer to a file.

size Size of the file after truncation

RETURNED VALUE

0, if the function succeeds.

-1, otherwise.

NOTES/WARNINGS

1 The file MUST be opened in write or read/write mode.

2 If fs_ftruncate() succeeds, the size of the file shall be equal to length.

a. If the size of the file was previously greater than length, the extra data shall no longer

be available.

b. If the file previously was smaller than this length, the size of the file shall be

increased.

3 If the file position indicator before the call to fs_ftruncate() lay in the extra data

destroyed by the function, then the file position will be set to the end-of-file.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and not

FS_CFG_RD_ONLY_EN

228

μC/FS API Reference Manual

A-2-18 fs_ftrylockfile()

int fs_ftrylockfile (FS_FILE *p_file);

Acquire task ownership of a file (if available).

ARGUMENTS

p_file Pointer to a file.

RETURNED VALUE

0, if no error occurs and the file lock is acquired.

Non-zero value, otherwise.

NOTES/WARNINGS

fs_ftrylockfile() is the non-blocking version of fs_flockfile(); if the lock is not

available, the function returns an error.

See fs_flockfile().

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and

FS_CFG_FILE_LOCK_EN

229

μC/FS API Reference Manual

A-2-19 fs_funlockfile()

void fs_funlockfile (FS_FILE *p_file);

Release task ownership of a file.

ARGUMENTS

p_file Pointer to a file.

RETURNED VALUE

None.

NOTES/WARNINGS

See fs_flockfile().

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and

FS_CFG_FILE_LOCK_EN

230

μC/FS API Reference Manual

A-2-20 fs_fwrite()

fs_size_t fs_fwrite (void *p_src,

 fs_size_t size,

 fs_size_t nitems,

 FS_FILE *p_file);

Write to a file.

ARGUMENTS

p_src Pointer to source buffer.

size Size of each item to write.

nitems Number of items to write.

p_file Pointer to a file.

RETURNED VALUE

Number of items written.

NOTES/WARNINGS

1 The size or nitems is 0, then the file is unchanged and zero is returned.

2 If the file is buffered and the last operation is input (read), then a call to fs_fsetpos()

or fs_fseek() MUST occur before output (write can be performed unless the

end-of-file was encountered.

3 The file must have been opened in write or update (read/write) mode.

4 If the file was opened in append mode, all writes are forced to the end-of-file.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and not

FS_CFG_RD_ONLY_EN

231

μC/FS API Reference Manual

A-2-21 fs_getcwd()

char *fs_getcwd (char *path_dir,

 fs_size_t size)

Get the working directory for the current task.

ARGUMENTS

path_dir String buffer that will receive the working directory path.

size Size of string buffer.

RETURNED VALUE

Pointer to path_dir, if no error occurs.

Pointer to NULL, otherwise

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and not

FS_CFG_WORKING_DIR_EN

232

μC/FS API Reference Manual

A-2-22 fs_localtime_r()

struct fs_tm *fs_localtime_r (const fs_time_t *p_ts,

 struct fs_tm *p_time);

Convert timestamp to date/time.

ARGUMENTS

p_ts Pointer to time value.

p_time Pointer to variable that will receive broken-down time.

RETURNED VALUE

Pointer to p_time, if NO errors.

Pointer to NULL, otherwise.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

233

μC/FS API Reference Manual

A-2-23 fs_mkdir()

int fs_mkdir (const char *name_full);

Create a directory.

ARGUMENTS

name_full Name of the directory.

RETURNED VALUE

0, if the directory is created.

-1, if the directory is NOT created.

NOTES/WARNINGS

None.

EXAMPLE

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and not

FS_CFG_RD_ONLY_EN

void App_Fnct (void)

{

 int err;

 .

 .

 .

 err = fs_mkdir(“sd:0:\\data\\old”); /* Make dir. */

 if (err != 0) {

 APP_TRACE_INFO((“Could not make dir.”));

 }

 .

 .

 .

}

234

μC/FS API Reference Manual

A-2-24 fs_mktime()

fs_time_t fs_mktime (struct fs_tm *p_time);

Convert date/time to timestamp.

ARGUMENTS

p_time Pointer to date/time to convert.

RETURNED VALUE

Time value, if NO errors.

(fs_time_t)-1, otherwise.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

235

μC/FS API Reference Manual

A-2-25 fs_opendir()

FS_DIR *fs_opendir (const char *name_full);
D

Open a directory.

ARGUMENTS

name_full Name of the directory. See section 4-3 “μC/FS File and Directory Names and

Paths” on page 62 for information about directory names.

RETURNED VALUE

Pointer to a directory, if NO errors.

Pointer to NULL, otherwise.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and

FS_CFG_DIR_EN

236

μC/FS API Reference Manual

A-2-26 fs_readdir_r()

int fs_readdir (FS_DIR *p_dir,

 struct fs_dirent *p_dir_entry,

 struct fs_dirent **pp_result);

Read a directory entry from a directory.

ARGUMENTS

p_dir Pointer to a directory.

p_dir_entry Pointer to variable that will receive directory entry information.

pp_result Pointer to variable that will receive:

(a) p_dir_entry, if NO error occurs AND directory does not

encounter EOF.

(b) pointer to NULL if an error occurs OR directory encounters

EOF.

RETURNED VALUE

1, if an error occurs.

0, otherwise.

NOTES/WARNINGS

1 Entries for “dot” (current directory) and “dot-dot” (parent directory) shall be returned, if

present. No entry with an empty name shall be returned.

2 If an entry is removed from or added to the directory after the directory has been

opened, information may or may not be returned for that entry.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and

FS_CFG_DIR_EN

237

μC/FS API Reference Manual

A-2-27 fs_remove()

int fs_remove (const char *name_full);

Delete a file or directory.

ARGUMENTS

name_full Name of the entry.

RETURNED VALUE

0, if the file is NOT removed.

-1, if the file is NOT removed.

NOTES/WARNINGS

1 When a file is removed, the space occupied by the file is freed and shall no longer be

accessible.

2 A directory can be removed only if it is an empty directory.

3 The root directory cannot be removed.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and not

FS_CFG_RD_ONLY_EN

238

μC/FS API Reference Manual

EXAMPLE

void App_Fnct (void)

{

 int err;

 .

 .

 .

 err = fs_remove(“sd:0:\\data\\file001.txt”); /* Remove file. */

 if (err != 0) {

 APP_TRACE_INFO((“Could not remove file.”));

 }

 .

 .

 .

 err = fs_remove(“sd:0:\\data\\old”); /* Remove dir. */

 if (err != 0) {

 APP_TRACE_INFO((“Could not remove dir.”));

 }

 .

 .

 .

}

239

μC/FS API Reference Manual

A-2-28 fs_rename()

int fs_rename (const char *name_full_old,

 const char *name_full_new);

Rename a file or directory.

ARGUMENTS

name_full_old Old name of the entry.

name_full_new New name of the entry.

RETURNED VALUE

 0, if the entry is NOT renamed.

-1, if the entry is NOT renamed.

NOTES/WARNINGS

1 name_full_old and name_full_new MUST specify entries on the same volume.

2 If path_old and path_new specify the same entry, the volume will not be modified and

no error will be returned.

3 If path_old specifies a file:

a. path_new must NOT specify a directory;

b. if path_new is a file, it will be removed.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and not

FS_CFG_RD_ONLY_EN

240

μC/FS API Reference Manual

4 If path_old specifies a directory:

a. path_new must NOT specify a file

b. if path_new is a directory, path_new MUST be empty; if so, it will be removed.

5 The root directory may NOT be renamed.

EXAMPLE

L4-6(1) For this example file rename to succeed, the following must be true when the

function is called:

1 The file sd:0:\data\file001.txt must exist.

2 The directory sd:0:\data\old must exist.

3 If sd:0:\data\old\file001.txt exists, it must not be read-only.

If sd:0:\data\old\file001.txt exists and is not read-only, it will be removed and

sd:0:\data\file001.txt will be renamed.

void App_Fnct (void)

{

 int err;

 .

 .

 .

 /* See Note #1. */

 err = fs_rename(“sd:0:\\data\\file001.txt”, /* Rename file. */

 “sd:0:\\data\\old\\file001.txt”);

 if (err != 0) {

 APP_TRACE_INFO((“Could not rename file.”));

 }

 .

 .

 .

}

241

μC/FS API Reference Manual

A-2-29 fs_rewind()

void fs_rewind (FS_FILE *p_file);

Reset file position indicator of a file.

ARGUMENTS

p_file Pointer to a file.

RETURNED VALUE

None.

NOTES/WARNINGS

1 fs_rewind() is equivalent to

(void)fs_fseek(p_file, 0, FS_SEEK_SET)

except that it also clears the error indictor of the file.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

242

μC/FS API Reference Manual

A-2-30 fs_rmdir()

int fs_rmdir (const char *name_full);

Delete a directory.

ARGUMENTS

name_full Name of the file.

RETURNED VALUE

0, if the directory is removed.

-1, if the directory is NOT removed.

NOTES/WARNINGS

1 A directory can be removed only if it is an empty directory.

2 The root directory cannot be removed.

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and not

FS_CFG_RD_ONLY_EN

243

μC/FS API Reference Manual

EXAMPLE

void App_Fnct (void)

{

 int err;

 .

 .

 .

 err = fs_rmdir(“sd:0:\\data\\old”); /* Remove dir. */

 if (err != 0) {

 APP_TRACE_INFO((“Could not remove dir.”));

 }

 .

 .

 .

}

244

μC/FS API Reference Manual

A-2-31 fs_setbuf()

int fs_setbuf (FS_FILE *p_file,

 fs_size_t size);

Assign buffer to a file.

ARGUMENTS

p_file Pointer to a file.

size Size of buffer, in octets.

RETURNED VALUE

-1, if an error occurs.

0, if no error occurs.

NOTES/WARNINGS

1 fs_setbuf() is equivalent to fs_setvbuf() invoked with FS__IOFBF for mode and

FS_BUFSIZE for size.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and

FS_CFG_FILE_BUF_EN

245

μC/FS API Reference Manual

A-2-32 fs_setvbuf()

int fs_setvbuf (FS_FILE *p_file,

 char *p_buf,

 int mode,

 fs_size_t size);

Assign buffer to a file.

ARGUMENTS

p_file Pointer to a file.

p_buf Pointer to buffer.

mode Buffer mode:

FS__IONBR Unbuffered.

FS__IOFBF Fully buffered.

size Size of buffer, in octets.

RETURNED VALUE

-1, if an error occurs.

0, if no error occurs.

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN and

FS_CFG_FILE_BUF_EN

246

μC/FS API Reference Manual

NOTES/WARNINGS

1 fs_setvbuf() MUST be used after a stream is opened but before any other operation

is performed on stream.

2 size MUST be more than or equal to the size of one sector; it will be rounded DOWN

to the nearest size of a multiple of full sectors.

3 Once a buffer is assigned to a file, a new buffer may not be assigned nor may the

assigned buffer be removed. To change the buffer, the file should be closed and

re-opened.

4 Upon power loss, any data stored in file buffers will be lost.

247

μC/FS API Reference Manual

A-3 DEVICE FUNCTIONS

Most device access functions can return any of the following device errors:

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV Device access error.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_TIMEOUT Device timeout error.

Each of these indicates that the state of the device is not suitable for the intended operation.

void

FSDev_Close (CPU_CHAR *name_dev,

 FS_ERR *p_err);

FS_PARTITION_NBR

FSDev_GetNbrPartitions (CPU_CHAR *name_dev,

 FS_ERR *p_err);

void

FSDev_GetDevName (FS_QTY dev_nbr,

 CPU_CHAR *name_dev);

FS_QTY

FSDev_GetDevCnt (void);

FS_QTY

FSDev_GetDevCntMax (void);

void

FSDev_Open (CPU_CHAR *name_dev,

 void *p_dev_cfg,

 FS_ERR *p_err);

248

μC/FS API Reference Manual

FS_PARTITION_NBR

FSDev_PartitionAdd (CPU_CHAR *name_dev,

 FS_SEC_QTY partition_size,

 FS_ERR *p_err);

void

FSDev_PartitionFind (CPU_CHAR *name_dev,

 FS_PARTITION_NBR partition_nbr,

 FS_PARTITION_ENTRY *p_partition_entry,

 FS_ERR *p_err);

void

FSDev_PartitionInit (CPU_CHAR *name_dev,

 FS_SEC_QTY partition_size,

 FS_ERR *p_err);

void

FSDev_Query (CPU_CHAR *name_dev,

 FS_DEV_INFO *p_info,

 FS_ERR *p_err);

void

FSDev_Rd (CPU_CHAR *name_dev,

 void *p_dest,

 FS_SEC_NBR start,

 FS_SEC_QTY cnt,

 FS_ERR *p_err);

CPU_BOOLEAN

FSDev_Refresh (CPU_CHAR *name_dev,

 FS_ERR *p_err);

void

FSDev_Wr (CPU_CHAR *name_dev,

 void *p_src,

 FS_SEC_NBR start,

 FS_SEC_QTY cnt,

 FS_ERR *p_err);

249

μC/FS API Reference Manual

A-3-1 FSDev_Close()

void FSDev_Close (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Close and free a device.

ARGUMENTS

name_dev Device name.

p_err Pointer to variable that will receive return error code from this function :

FS_ERR_NONE Device removed successfully.

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev.c Application N/A

250

μC/FS API Reference Manual

A-3-2 FSDev_GetDevName()

void FSDev_GetDevName (FS_QTY dev_nbr,

 CPU_CHAR *name_dev);

Get name of the nth open device. n should be between 0 and the return value of

FSDev_GetNbrDevs() (inclusive).

ARGUMENTS

dev_nbr Device number.

name_dev String buffer that will receive the device name (see Note #2).

RETURNED VALUE

None.

NOTES/WARNINGS

1 name_dev MUST point to a character array of FS_CFG_MAX_DEV_NAME_LEN characters.

2 If the device does not exist, name_dev will receive an empty string.

File Called from Code enabled by

fs_dev.c Application N/A

251

μC/FS API Reference Manual

A-3-3 FSDev_GetDevCnt()

FS_QTY FSDev_GetDevCnt (void);

Gets the number of open devices.

ARGUMENTS

None.

RETURNED VALUE

Number of devices currently open.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev.c Application N/A

252

μC/FS API Reference Manual

A-3-4 FSDev_GetDevCntMax()

FS_QTY FSDev_GetDevCntMax (void);

Gets the maximum possible number of open devices.

ARGUMENTS

None.

RETURNED VALUE

Maximum number of open devices.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev.c Application N/A

253

μC/FS API Reference Manual

A-3-5 FSDev_GetNbrPartitions()

FS_PARTITION_NBR FSDev_GetNbrPartitions (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Get number of partitions on a device

ARGUMENTS

name_dev Pointer to the device name.

p_err Pointer to variable that will receive return error code from this function.

FS_ERR_NONE Number of partitions obtained.

FS_ERR_DEV_VOL_OPEN Volume open on device.

FS_ERR_INVALID_SIG Invalid MBR signature.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

Or device access error (see section B-4 “Device Error Codes” on page 377).

RETURNED VALUE

Number of partitions on the device, if no error was encountered.

Zero, otherwise.

NOTES/WARNINGS

Device state change will result from device I/O, not present or timeout error.

File Called from Code enabled by

fs_dev.c Application FS_CFG_PARTITION_EN

254

μC/FS API Reference Manual

A-3-6 FSDev_Open()

void FSDev_Open (CPU_CHAR *name_dev,

 void *p_dev_cfg,

 FS_ERR *p_err);

Open a device.

ARGUMENTS

name_dev Device name. See section 4-3 “μC/FS File and Directory Names and Paths” on

page 62 for information about device names.

p_dev_cfg Pointer to device configuration.

p_err Pointer to variable that will receive the return error code from this function (see

Note #2):

FS_ERR_NONE Device opened successfully.

FS_ERR_DEV_ALREADY_OPEN Device is already open.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_INVALID_NAME Specified device name not valid.

FS_ERR_DEV_INVALID_SEC_SIZE Invalid device sector size.

FS_ERR_DEV_INVALID_SIZE Invalid device size.

FS_ERR_DEV_INVALID_UNIT_NBR Specified unit number invalid.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_NONE_AVAIL No devices available.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_TIMEOUT Device timeout error.

FS_ERR_DEV_UNKNOWN Unknown device error.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer

File Called from Code enabled by

fs_dev.c Application N/A

255

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

1 The return error code from the function SHOULD always be checked by the calling

application to determine whether the device was successfully opened. Repeated calls to

FSDev_Open() resulting in errors that do not indicate failure to open (such as

FS_ERR_DEV_LOW_FMT_INVALID) without matching FSDev_Close() calls may exhaust

the supply of device structures.

a. If FS_ERR_NONE is returned, then the device has been added to the file system and is

immediately accessible.

b. If FS_DEV_INVALID_LOW_FMT is returned, then the device has been added to the file

system, but needs to be low-level formatted, though it is present.

c. If FS_ERR_DEV_NOT_PRESENT, FS_ERR_DEV_IO or FS_ERR_DEV_TIMEOUT is returned,

then the device has been added to the file system, though it is probably not present.

The device will need to be either closed and re-added, or refreshed.

d. If FS_ERR_DEV_INVALID_NAME, FS_ERR_DEV_INVALID_SEC_SIZE,

FS_ERR_DEV_INVALID_SIZE, FS_ERR_DEV_INVALID_UNIT_NBR or

FS_ERR_DEV_NONE_AVAIL is returned, then the device has NOT been added to the file

system.

e. If FS_ERR_DEV_UNKNOWN is returned, then the device driver is in an indeterminate

state. The system MAY need to be restarted and the device driver should be examined

for errors. The device has NOT been added to the file system.

256

μC/FS API Reference Manual

A-3-7 FSDev_PartitionAdd()

FS_PARTITION_NBR FSDev_PartitionAdd (CPU_CHAR *name_dev,

 FS_SEC_QTY partition_size,

 FS_ERR *p_err);

Adds a partition to a device. See also section 5-4 “Partitions” on page 72.

ARGUMENTS

name_dev Device name

partition_size Size, in sectors, of the partition to add.

p_err Pointer to variable that will receive return error code from this function.

FS_ERR_NONE Partition added.

FS_ERR_INVALID_PARTITION Invalid partition.

FS_ERR_INVALID_SEC_NBR Sector start or count invalid.

FS_ERR_INVALID_SIG Invalid MBR signature.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

Or device access error (see section B-4 “Device Error Codes” on page 377).

RETURNED VALUE

The index of the created partition. The first partition on the device has an index of 0.

FS_INVALID_PARTITION_NBR is returned if the function fails to add the partition.

NOTES/WARNINGS

Device state change will result from device I/O, not present or timeout error.

File Called from Code enabled by

fs_dev.c Application FS_CFG_PARTITION_EN and

not FS_CFG_RD_ONLY_EN

257

μC/FS API Reference Manual

A-3-8 FSDev_PartitionFind()

void FSDev_PartitionFind (CPU_CHAR *name_dev,

 FS_PARTITION_NBR partition_nbr,

 FS_PARTITION_ENTRY *p_partition_entry,

 FS_ERR *p_err);

Find a partition on a device.

See also section 5-4 “Partitions” on page 72.

ARGUMENTS

name_dev Device name.

partition_nbr Index of the partition to find.

p_partition_entry Pointer to variable that will receive the partition information.

p_err Pointer to variable that will receive return error code from this function.

FS_ERR_NONE Partition found.

FS_ERR_DEV_VOL_OPEN Volume open on device.

FS_ERR_INVALID_PARTITION Invalid partition.

FS_ERR_INVALID_SEC_NBR Sector start or count invalid.

FS_ERR_INVALID_SIG Invalid MBR signature.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_partition_entry passed a

NULL pointer.

Or device access error (see section B-4 “Device Error Codes” on page 377).

File Called from Code enabled by

fs_dev.c Application FS_CFG_PARTITION_EN

258

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

Device state change will result from device I/O, not present or timeout error.

259

μC/FS API Reference Manual

A-3-9 FSDev_PartitionInit()

void FSDev_PartitionInit (CPU_CHAR *name_dev,

 FS_SEC_QTY partition_size,

 FS_ERR *p_err);

Initialize the partition structure on a device.

See also section 5-4 “Partitions” on page 72.

ARGUMENTS

name_dev Device name.

partition_size Size of partition, in sectors.

OR

0, if partition will occupy entire device.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Partition structure initialized.

FS_ERR_DEV_VOL_OPEN Volume open on device.

FS_ERR_INVALID_SEC_NBR Sector start or count invalid.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

Or device access error (see section B-4 “Device Error Codes” on page 377).

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev.c Application not FS_CFG_RD_ONLY_EN

260

μC/FS API Reference Manual

NOTES/WARNINGS

1 Function blocked if a volume is open on the device. All volume (and files) MUST be

closed prior to initializing the partition structure, since it will obliterate any existing file

system.

2 Device state change will result from device I/O, not present or timeout error.

261

μC/FS API Reference Manual

A-3-10 FSDev_Query()

void FSDev_Query (CPU_CHAR *name_dev,

 FS_DEV_INFO *p_info,

 FS_ERR *p_err);

Obtain information about a device.

ARGUMENTS

name_dev Device name.

p_info Pointer to structure that will receive device information (see Note).

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Device information obtained.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_info passed a NULL pointer.

FS_ERR_INVALID_SEC_NBR Sector start or count invalid.

Or device access error (see section B-4 “Device Error Codes” on page 377).

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev.c Application N/A

262

μC/FS API Reference Manual

A-3-11 FSDev_Rd()

void FSDev_Rd (CPU_CHAR *name_dev,

 void *p_dest,

 FS_SEC_NBR start,D

 FS_SEC_QTY cnt,

 FS_ERR *p_err);

Read data from device sector(s).

ARGUMENTS

name_dev Device name.

p_dest Pointer to destination buffer.

start Start sector of read.

cnt Number of sectors to read

p_err Pointer to variable that will receive the return error code from this function

FS_ERR_NONE Sector(s) read.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_dest passed a NULL pointer.

Or device access error (see section B-4 “Device Error Codes” on page 377).

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev.c Application N/A

263

μC/FS API Reference Manual

NOTES/WARNINGS

Device state change will result from device I/O, not present or timeout error.

264

μC/FS API Reference Manual

A-3-12 FSDev_Refresh()

CPU_BOOLEAN FSDev_Refresh (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Refresh a device.

ARGUMENTS

name_dev Device name.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Device opened successfully.

FS_ERR_DEV_INVALID_SEC_SIZE Invalid device sector size.

FS_ERR_DEV_INVALID_SIZE Invalid device size.

FS_ERR_DEV_INVALID_UNIT_NBR Specified unit number invalid.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer

Or device access error (see section B-4 “Device Error Codes” on page 377).

RETURNED VALUE

DEF_YES, if the device has not changed.

DEF_NO, if the device has not changed.

File Called from Code enabled by

fs_dev.c Application N/A

265

μC/FS API Reference Manual

NOTES/WARNINGS

1 If device has changed, all volumes open on the device must be refreshed and all files

closed and reopened.

2 A device status change may be caused by

a. A device was connected, but no longer is.

b. A device was not connected, but now is.

c. A different device is connected.

266

μC/FS API Reference Manual

A-3-13 FSDev_Wr()

void FSDev_Wr (CPU_CHAR *name_dev,

 void *p_src,

 FS_SEC_NBR start,

 FS_SEC_QTY cnt,

 FS_ERR *p_err);

Write data to device sector(s).

ARGUMENTS

name_dev Device name.

p_src Pointer to source buffer.

start Start sector of write.

cnt Number of sectors to write

p_err Pointer to variable that will receive the return error code from this function

FS_ERR_NONE Sector(s) written.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_src passed a NULL pointer.

Or device access error (see section B-4 “Device Error Codes” on page 377).

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev.c Application not FS_CFG_RD_ONLY_EN

267

μC/FS API Reference Manual

NOTES/WARNINGS

Device state change will result from device I/O, not present or timeout error.

A-4 DIRECTORY ACCESS FUNCTIONS

void

FSDir_Close (FS_DIR *p_dir,

 FS_ERR *p_err);

CPU_BOOLEAN

FSDir_IsOpen (CPU_CHAR *name_full,

 FS_ERR *p_err);

FS_DIR *

FSDir_Open (CPU_CHAR *name_full,

 FS_ERR *p_err);

void

FSDir_Rd (FS_DIR *p_dir,

 FS_DIR_ENTRY *p_dir_entry,

 FS_ERR *p_err);

268

μC/FS API Reference Manual

A-4-1 FSDir_Close()

void FSDir_Close (FS_DIR *p_dir,

 FS_ERR *p_err);

Close and free a directory.

See fs_closedir() for more information.

ARGUMENTS

p_dir Pointer to a directory.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Directory closed.

FS_ERR_NULL_PTR Argument p_dir passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_dir’s TYPE is invalid or

unknown.

FS_ERR_DIR_DIS Directory module disabled.

FS_ERR_DIR_NOT_OPEN Directory NOT open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dir.c Application;

fs_closedir()

FS_CFG_DIR_EN

269

μC/FS API Reference Manual

A-4-2 FSDir_IsOpen()

CPU_BOOLEAN FSDir_Open (CPU_CHAR *name_full,

 FS_ERR *p_err);

Test if a directory is already open. This function is also called by various FSEntry_*

functions to prevent concurrent access to an entry in the FAT filesystem.

ARGUMENTS

name_full Name of the directory. See section 4-3 “μC/FS File and Directory Names and

Paths” on page 62.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Directory opened.

FS_ERR_NULL_PTR Argument name_full passed a NULL pointer.

FS_ERR_NAME_INVALID Entry name specified invalid or volume could

not be found.

Or entry error (see section B-8 “Entry Error Codes” on page 378).

RETURNED VALUE

DEF_NO, if dir is NOT open.

DEF_YES, if dir is open.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dir.c Application;

fs_opendir();

FSEntry_*

FS_CFG_DIR_EN

270

μC/FS API Reference Manual

A-4-3 FSDir_Open()

FS_DIR *FSDir_Open (CPU_CHAR *name_full,

 FS_ERR *p_err);

Open a directory. See fs_opendir() for more information.

ARGUMENTS

name_full Name of the directory. See section 4-3 “μC/FS File and Directory Names and

Paths” on page 62.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Directory opened.

FS_ERR_NULL_PTR Argument name_full passed a NULL pointer.

FS_ERR_DIR_DIS Directory module disabled.

FS_ERR_DIR_NONE_AVAIL No directory available.

FS_ERR_DEV Device access error.

FS_ERR_NAME_INVALID Entry name specified invalid or volume could

not be found.

FS_ERR_NAME_PATH_TOO_LONG Entry name is too long.

FS_ERR_VOL_NOT_OPEN Volume not opened.

FS_ERR_VOL_NOT_MOUNTED Volume not mounted.

FS_ERR_BUF_NONE_AVAIL Buffer not available.

Or entry error (see section B-8 “Entry Error Codes” on page 378).

RETURNED VALUE

Pointer to a directory, if NO errors.

Pointer to NULL, otherwise.

File Called from Code enabled by

fs_dir.c Application;

fs_opendir()

FS_CFG_DIR_EN

271

μC/FS API Reference Manual

NOTES/WARNINGS

None.

272

μC/FS API Reference Manual

A-4-4 FSDir_Rd()

void FSDir_Rd (FS_DIR *p_dir,

 FS_DIR_ENTRY *p_dir_entry,

 FS_ERR *p_err);

Read a directory entry from a directory. See fs_readdir_r() for more information.

ARGUMENTS

p_dir Pointer to a directory.

p_dir_entry Pointer to variable that will receive directory entry information.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Directory read successfully.

FS_ERR_NULL_PTR Argument p_dir/p_dir_entry passed a

NULL pointer.

FS_ERR_INVALID_TYPE Argument p_dir’s TYPE is invalid or

unknown.

FS_ERR_DIR_DIS Directory module disabled.

FS_ERR_DIR_NOT_OPEN Directory NOT open.

FS_ERR_EOF End of directory reached.

FS_ERR_DEV Device access error.

FS_ERR_BUF_NONE_AVAIL Buffer not available.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dir.c Application;

fs_readdir_r()

FS_CFG_DIR_EN

273

μC/FS API Reference Manual

A-5 ENTRY ACCESS FUNCTIONS

void

FSEntry_AttribSet (CPU_CHAR *name_full,

 FS_FLAGS attrib,

 FS_ERR *p_err);

void

FSEntry_Copy (CPU_CHAR *name_full_src,

 CPU_CHAR *name_full_dest,

 CPU_BOOLEAN excl,

 FS_ERR *p_err);

void

FSEntry_Create (CPU_CHAR *name_full,

 FS_FLAGS entry_type,

 CPU_BOOLEAN excl,

 FS_ERR *p_err);

void

FSEntry_Del (CPU_CHAR *name_full,

 FS_FLAGS entry_type,

 FS_ERR *p_err);

void

FSEntry_Query (CPU_CHAR *name_full,

 FS_ENTRY_INFO *p_info,

 FS_ERR *p_err);

void

FSEntry_Rename (CPU_CHAR *name_full_src,

 CPU_CHAR *name_full_dest,

 CPU_BOOLEAN excl,

 FS_ERR *p_err);

void

FSEntry_TimeSet (CPU_CHAR *name_full,

 FS_DATE_TIME *p_time,

 CPU_INT08U flag,

 FS_ERR *p_err);

274

μC/FS API Reference Manual

A-5-1 FSEntry_AttribSet()

void FSEntry_AttribSet (CPU_CHAR *name_full,

 FS_FLAGS attrib,

 FS_ERR *p_err);

Set a file or directory’s attributes.

ARGUMENTS

name_full Name of the entry. See section 4-3 “μC/FS File and Directory Names and Paths”

on page 62.

attrib Entry attributes to set (see Note #2).

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Entry attributes set successfully.

FS_ERR_NULL_PTR Argument name_full passed a NULL

pointer.

FS_ERR_NAME_INVALID Entry name specified invalid OR volume

could not be found.

FS_ERR_NAME_PATH_TOO_LONG Entry name specified too long.

FS_ERR_VOL_NOT_OPEN Volume was not open.

FS_ERR_VOL_NOT_MOUNTED Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL Buffer not available.

FS_ERR_DEV Device access error.

Or entry error (See section B-8 “Entry Error Codes” on page 378).

RETURNED VALUE

None.

File Called from Code enabled by

fs_entry.c Application not FS_CFG_RD_ONLY_EN

275

μC/FS API Reference Manual

NOTES/WARNINGS

1 If the entry does not exist, an error is returned.

2 Three attributes may be modified by this function:

FS_ENTRY_ATTRIB_RD Entry is readable.

FS_ENTRY_ATTRIB_WR Entry is writable.

FS_ENTRY_ATTRIB_HIDDEN Entry is hidden from user-level processes.

An attribute will be cleared if its flag is not OR’d into attrib. An attribute will be set if

its flag is OR’d into attrib. If another flag besides these are set, then an error will be

returned.

3 The attributes of the root directory may NOT be set.

276

μC/FS API Reference Manual

A-5-2 FSEntry_Copy()

void FSEntry_Copy (CPU_CHAR *name_full_src,

 CPU_CHAR *name_full_dest,

 CPU_BOOLEAN excl,

 FS_ERR *p_err);

Copy a file.

ARGUMENTS

name_full_src Name of the source file. See section 4-3 “μC/FS File and Directory

Names and Paths” on page 62.

name_full_dest Name of the destination file.

excl Indicates whether the creation of the new entry shall be exclusive (see

Note #1):

DEF_YES, if the entry shall be copied only if name_full_dest does not exist.

DEF_NO, if the entry shall be copied even if name_full_dest does exist.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE File copied successfully.

FS_ERR_NULL_PTR Argument name_full_src or

name_full_dest passed a NULL pointer.

FS_ERR_NAME_INVALID Entry name specified invalid OR volume

could not be found.

FS_ERR_NAME_PATH_TOO_LONG Entry name specified too long.

FS_ERR_VOL_NOT_OPEN Volume was not open.

FS_ERR_VOL_NOT_MOUNTED Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL Buffer not available.

FS_ERR_DEV Device access error.

File Called from Code enabled by

fs_entry.c Application not FS_CFG_RD_ONLY_EN

277

μC/FS API Reference Manual

Or entry error (See section B-8 “Entry Error Codes” on page 378).

RETURNED VALUE

None.

NOTES/WARNINGS

1 name_full_src must be an existing file. It may not be an existing directory.

2 If excl is DEF_NO, name_full_dest must either not exist or be an existing file; it may

not be an existing directory. If excl is DEF_YES, name_full_dest must not exist.

278

μC/FS API Reference Manual

A-5-3 FSEntry_Create()

void FSEntry_Create (CPU_CHAR *name_full,

 FS_FLAGS entry_type,

 CPU_BOOLEAN excl,

 FS_ERR *p_err);

Create a file or directory.

See also fs_mkdir().

ARGUMENTS

name_full Name of the entry. See section 4-3 “μC/FS File and Directory Names and Paths”

on page 62.

entry_type Indicates whether the new entry shall be a directory or a file (see Note #1) :

FS_ENTRY_TYPE_DIR, if the entry shall be a directory.

FS_ENTRY_TYPE_FILE, if the entry shall be a file.

excl Indicates whether the creation of the new entry shall be exclusive (see Note

#1):

DEF_YES, if the entry shall be created only if p_name_full does not exist.

DEF_NO, if the entry shall be created even if p_name_full does exist.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Entry created successfully.

FS_ERR_NULL_PTR Argument name_full passed a NULL

pointer.

FS_ERR_NAME_INVALID Entry name specified invalid OR volume

could not be found.

File Called from Code enabled by

fs_entry.c Application;

fs_mkdir()

not FS_CFG_RD_ONLY_EN

279

μC/FS API Reference Manual

FS_ERR_NAME_PATH_TOO_LONG Entry name specified too long.

FS_ERR_VOL_NOT_OPEN Volume was not open.

FS_ERR_VOL_NOT_MOUNTED Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL Buffer not available.

FS_ERR_DEV Device access error.

Or entry error.

RETURNED VALUE

None.

NOTES/WARNINGS

1 If the entry exists and is a file, entry_type is FS_ENTRY_TYPE_FILE and excl is DEF_NO,

then the existing entry will be truncated. If the entry exists and is a directory and

entry_type is FS_ENTRY_TYPE_DIR, then no change will be made to the file system.

2 If the entry exists and is a directory, dir is DEF_NO and excl is DEF_NO, then no change

will be made to the file system. Similarly, if the entry exists and is a file, dir is DEF_YES

and excl is DEF_NO, then no change will be made to the file system.

3 The root directory may not be created.

280

μC/FS API Reference Manual

A-5-4 FSEntry_Del()

void FSEntry_Del (CPU_CHAR *name_full,

 FS_FLAGS entry_type,

 FS_ERR *p_err);

Delete a file or directory.

See also fs_remove() and fs_rmdir().

ARGUMENTS

name_full Pointer to character string representing the name of the entry. See section 4-3

“μC/FS File and Directory Names and Paths” on page 62.

entry_type Indicates whether the entry MAY be a file (see Notes #1 and #2):

FS_ENTRY_TYPE_DIR, if the entry must be a dir.

FS_ENTRY_TYPE_FILE, if the entry must be a file.

FS_ENTRY_TYPE_ANY, if the entry may be any type.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Entry date/time set successfully.

FS_ERR_NULL_PTR Argument name_full passed a NULL

pointer.

FS_ERR_NAME_INVALID Entry name specified invalid OR volume

could not be found.

FS_ERR_NAME_PATH_TOO_LONG Entry name specified too long.

FS_ERR_VOL_NOT_OPEN Volume was not open.

FS_ERR_VOL_NOT_MOUNTED Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL Buffer not available.

FS_ERR_DEV Device access error.

Or entry error.

File Called from Code enabled by

fs_entry.c Application;

fs_rmdir();

fs_remove()

not FS_CFG_RD_ONLY_EN

281

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

1 When a file is removed, the space occupied by the file is freed and shall no longer be

accessible.

2 A directory can be removed only if it is an empty directory.

3 The root directory cannot be deleted.

282

μC/FS API Reference Manual

A-5-5 FSEntry_Query()

void FSEntry_Query (CPU_CHAR *name_full,

 FS_ENTRY_INFO *p_info,

 FS_ERR *p_err);

Get information about a file or directory.

ARGUMENTS

name_full Name of the entry. See section 4-3 “μC/FS File and Directory Names and Paths”

on page 62.

p_info Pointer to structure that will receive the file information.

p_err Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE File information obtained successfully.

FS_ERR_NULL_PTR Argument name_full passed a NULL

pointer.

FS_ERR_NAME_INVALID Entry name specified invalid OR volume

could not be found.

FS_ERR_NAME_PATH_TOO_LONG Entry name specified too long.

FS_ERR_VOL_NOT_OPEN Volume was not open.

FS_ERR_VOL_NOT_MOUNTED Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL Buffer not available.

FS_ERR_DEV Device access error.

RETURNED VALUE

None.

File Called from Code enabled by

fs_entry.c Application;

fs_stat()

N/A

283

μC/FS API Reference Manual

NOTES/WARNINGS

None.

284

μC/FS API Reference Manual

A-5-6 FSEntry_Rename()

void FSEntry_Rename (CPU_CHAR *name_full_old,

 CPU_CHAR *name_full_new,

 CPU_BOOLEAN excl,

 FS_ERR *p_err);

Rename a file or directory.

See also fs_rename().

ARGUMENTS

name_full_old Old path of the entry. See section 4-3 “μC/FS File and Directory

Names and Paths” on page 62.

name_full_new New path of the entry.

excl Indicates whether the creation of the new entry shall be exclusive (see

Note #1):

DEF_YES, if the entry shall be renamed only if name_full_new does not exist.

DEF_NO, if the entry shall be renamed even if name_full_new does exist.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE File copied successfully.

FS_ERR_NULL_PTR Argument name_full_old or

name_full_new passed a NULL pointer.

FS_ERR_NAME_INVALID Entry name specified invalid OR volume

could not be found.

FS_ERR_NAME_PATH_TOO_LONG Entry name specified too long.

FS_ERR_VOL_NOT_OPEN Volume was not open.

FS_ERR_VOL_NOT_MOUNTED Volume was not mounted.

File Called from Code enabled by

fs_entry.c Application;

fs_rename()

not FS_CFG_RD_ONLY_EN

285

μC/FS API Reference Manual

FS_ERR_BUF_NONE_AVAIL Buffer not available.

FS_ERR_DEV Device access error.

FS_ERR_NAME_INVALID Invalid file name or path.

Or entry error.

RETURNED VALUE

None.

NOTES/WARNINGS

1 If name_full_old and name_full_new specify entries on different volumes, then

name_full_old MUST specify a file. If name_full_old specifies a directory, an error

will be returned.

2 If name_full_old and name_full_new specify the same entry, the volume will not be

modified and no error will be returned.

3 If name_full_old specifies a file:

a. name_full_new must NOT specify a directory;

b. if excl is DEF_NO and name_full_new is a file, it will be removed.

4 If name_full_old specifies a directory:

a. name_full_new must NOT specify a file

b. if excl is DEF_NO and name_full_new is a directory, name_full_new MUST be empty;

if so, it will be removed.

5 If excl is DEF_NO, name_full_new must not exist.

6 The root directory may NOT be renamed.

286

μC/FS API Reference Manual

A-5-7 FSEntry_TimeSet()

void FSEntry_TimeSet (CPU_CHAR *name_full,

 FS_DATE_TIME *p_time,

 CPU_INT08U flag,

 FS_ERR *p_err);

Set a file or directory’s date/time.

ARGUMENTS

name_full Name of the entry. See section 4-3 “μC/FS File and Directory Names and Paths”

on page 62.

p_time Pointer to date/time.

flag Flag to indicate which Date/Time should be set

FS_DATE_TIME_CREATE Entry Created Date/Time will be set.

FS_DATE_TIME_MODIFY Entry Modified Date/Time will be set.

FS_DATE_TIME_ACCESS Entry Accessed Date will be set.

FS_DATE_TIME_ALL All the above will be set.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Entry date/time set successfully.

FS_ERR_NULL_PTR Argument name_full or p_time passed a

NULL pointer.

FS_ERR_FILE_INVALID_DATE_TIME Date/time specified invalid.

FS_ERR_NAME_INVALID Entry name specified invalid OR volume

could not be found.

FS_ERR_NAME_PATH_TOO_LONG Entry name specified too long.

FS_ERR_VOL_NOT_OPEN Volume was not open.

FS_ERR_VOL_NOT_MOUNTED Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL Buffer not available.

File Called from Code enabled by

fs_entry.c Application not FS_CFG_RD_ONLY_EN

287

μC/FS API Reference Manual

FS_ERR_DEV Device access error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

288

μC/FS API Reference Manual

A-6 FILE FUNCTIONS

void

FSFile_BufAssign (FS_FILE *p_file,

 void *p_buf,

 FS_FLAGS mode,

 CPU_SIZE_T size,

 FS_ERR *p_err);

void

FSFile_BufFlush (FS_FILE *p_file,

 FS_ERR *p_err);

void

FSFile_Close (FS_FILE *p_file,

 FS_ERR *p_err);

void

FSFile_ClrErr (FS_FILE *p_file,

 FS_ERR *p_err);

CPU_BOOLEAN

FSFile_IsEOF (FS_FILE *p_file,

 FS_ERR *p_err);

CPU_BOOLEAN

FSFile_IsErr (FS_FILE *p_file,

 FS_ERR *p_err);

CPU_BOOLEAN

FSFile_IsOpen (CPU_CHAR *name_full,

 FS_FLAGS *p_mode,

 FS_ERR *p_err);

void

FSFile_LockAccept(FS_FILE *p_file,

 FS_ERR *p_err);

void

FSFile_LockGet (FS_FILE *p_file,

 FS_ERR *p_err);

289

μC/FS API Reference Manual

void

FSFile_LockSet (FS_FILE *p_file,

 FS_ERR *p_err);

FS_FILE *

FSFile_Open (CPU_CHAR *name_full,

 FS_FLAGS mode

 FS_ERR *p_err);

FS_FILE_SIZE

FSFile_PosGet (FS_FILE *p_file,

 FS_ERR *p_err);

void

FSFile_PosSet (FS_FILE *p_file,

 FS_FILE_OFFSET offset,

 FS_FLAGS origin,

 FS_ERR *p_err);

void

FSFile_Query (FS_FILE *p_file,

 FS_ENTRY_INFO *p_info,

 FS_ERR *p_err);

CPU_SIZE_T

FSFile_Rd (FS_FILE *p_file,

 void *p_dest,

 CPU_SIZE_T size,

 FS_ERR *p_err);

void

FSFile_Truncate (FS_FILE *p_file,

 FS_FILE_SIZE size,

 FS_ERR *p_err);

CPU_SIZE_T

FSFile_Wr (FS_FILE *p_file,

 void *p_src,

 CPU_SIZE_T size,

 FS_ERR *p_err);

290

μC/FS API Reference Manual

A-6-1 FSFile_BufAssign()

void FSFile_BufAssign (FS_FILE *p_file,

 void *p_buf,

 FS_FLAGS mode,

 CPU_SIZE_T size,

 FS_ERR *p_err);

Assign buffer to a file.

See fs_setvbuf() for more information.

ARGUMENTS

p_file Pointer to a file.

p_buf Pointer to buffer.

mode Buffer mode:

FS_FILE_BUF_MODE_RD Data buffered for reads.

FS_FILE_BUF_MODE_WR Data buffered for writes.

FS_FILE_BUF_MODE_RD_WR Data buffered for reads and writes..

size Size of buffer, in octets.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE File buffer assigned.

FS_ERR_NULL_PTR Argument p_file or p_buf passed a

NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_INVALID_BUF_MODE Invalid buffer mode.

File Called from Code enabled by

fs_file.c Application;

fs_setbuf();

fs_setvbuf()

FS_CFG_FILE_BUF_EN

291

μC/FS API Reference Manual

FS_ERR_FILE_INVALID_BUF_SIZE Invalid buffer size.

FS_ERR_FILE_BUF_ALREADY_ASSIGNED Buffer already assigned.

FS_ERR_FILE_NOT_OPEN File NOT open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

292

μC/FS API Reference Manual

A-6-2 FSFile_BufFlush()

void FSFile_BufFlush (FS_FILE *p_file,

 FS_ERR *p_err);

Flush buffer contents to file.

See fs_fflush() for more information.

ARGUMENTS

p_file Pointer to a file.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE File buffer flushed successfully.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_file.c Application;

fs_fflush()

FS_CFG_FILE_BUF_EN

293

μC/FS API Reference Manual

A-6-3 FSFile_Close()

void FSFile_Close (FS_FILE *p_file,

 FS_ERR *p_err);

Close and free a file.

See fs_fclose() for more information.

ARGUMENTS

p_file Pointer to a file.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE File closed.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_file.c Application;

fs_fclose()

N/A

294

μC/FS API Reference Manual

A-6-4 FSFile_ClrErr()

void FSFile_ClrErr (FS_FILE *p_file,

 FS_ERR *p_err);

Clear EOF and error indicators on a file.

See fs_clearerr() for more information

ARGUMENTS

p_file Pointer to a file.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Error and end-of-file indicators cleared.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_file.c Application;

fs_clearerr()

N/A

295

μC/FS API Reference Manual

A-6-5 FSFile_IsEOF()

CPU_BOOLEAN FSFile_IsEOF (FS_FILE *p_file,

 FS_ERR *p_err);

Test EOF indicator on a file.

See fs_feof() for more information.

ARGUMENTS

p_file Pointer to a file.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE EOF indicator obtained.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

RETURNED VALUE

DEF_NO if EOF indicator is NOT set or if an error occurred

DEF_YES if EOF indicator is set.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_file.c Application;

fs_feof()

N/A

296

μC/FS API Reference Manual

A-6-6 FSFile_IsErr()

CPU_BOOLEAN FSFile_IsErr (FS_FILE *p_file,

 FS_ERR *p_err);

Test error indicator on a file.

See fs_ferror() for more information.

ARGUMENTS

p_file Pointer to a file.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Error indicator obtained.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

RETURNED VALUE

DEF_NO if error indicator is NOT set or if an error occurred

DEF_YES if error indicator is set.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_file.c Application;

fs_ferr()

N/A

297

μC/FS API Reference Manual

A-6-7 FSFile_IsOpen()

CPU_BOOLEAN FSFile_IsOpen (CPU_CHAR *name_full,

 FS_FLAGS *p_mode

 FS_ERR *p_err);

Test if file is already open.

ARGUMENTS

name_full Name of the file. See section 4-3 “μC/FS File and Directory Names and Paths”

on page 62 for information about file names.

p_mode Pointer to variable that will receive the file access mode (see section 7-1-1

“Opening Files” on page 99 for the description the file access mode).

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Error indicator obtained.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_BUF_NONE_AVAIL No buffer available.

FS_ERR_ENTRY_NOT_FILE Entry NOT a file.

FS_ERR_NAME_INVALID Invalid file name or path.

FS_ERR_VOL_INVALID_SEC_NBR Invalid sector number found in directory

entry.

RETURNED VALUE

DEF_NO if file is NOT open

DEF_YES if file is open.

File Called from Code enabled by

fs_file.c Application;

FSFile_Open()

N/A

298

μC/FS API Reference Manual

NOTES/WARNINGS

None.

299

μC/FS API Reference Manual

A-6-8 FSFile_LockAccept()

void FSFile_LockAccept (FS_FILE *p_file,

 FS_ERR *p_err);

Acquire task ownership of a file (if available).

See fs_flockfile() for more information.

ARGUMENTS

p_file Pointer to a file.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE File lock acquired.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

FS_ERR_FILE_LOCKED File owned by another task.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_file.c Application;

fs_ftrylockfile()

FS_CFG_FILE_LOCK_EN

300

μC/FS API Reference Manual

A-6-9 FSFile_LockGet()

void FSFile_LockGet (FS_FILE *p_file,

 FS_ERR *p_err);

Acquire task ownership of a file.

See fs_flockfile() for more information.

ARGUMENTS

p_file Pointer to a file.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE File lock acquired.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_file.c Application;

fs_flockfile()

FS_CFG_FILE_LOCK_EN

301

μC/FS API Reference Manual

A-6-10 FSFile_LockSet()

void FSFile_LockSet (FS_FILE *p_file,

 FS_ERR *p_err);

Release task ownership of a file.

See fs_funlockfile() for more information.

ARGUMENTS

p_file Pointer to a file.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE File lock acquired.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

FS_ERR_FILE_NOT_LOCKED File NOT locked or locked by different

task.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_file.c Application;

fs_funlockfile()

FS_CFG_FILE_LOCK_EN

302

μC/FS API Reference Manual

A-6-11 FSFile_Open()

FS_FILE *FSFile_Open (CPU_CHAR *name_full,

 FS_FLAGS mode

 FS_ERR *p_err);

Open a file.

See fs_fopen() for more information.

ARGUMENTS

name_full Name of the file. See section 4-3 “μC/FS File and Directory Names and Paths”

on page 62 for information about file names.

mode File access mode (see Notes #1 and #2).

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE File opened.

FS_ERR_NULL_PTR Argument p_name_full passed a NULL

pointer.

Or entry error (see Section B.04).

RETURNED VALUE

None.

File Called from Code enabled by

fs_file.c Application;

fs_fopen()

N/A

303

μC/FS API Reference Manual

NOTES/WARNINGS

1 The access mode should be the logical OR of one or more flags :

FS_FILE_ACCESS_MODE_RD File opened for reads.

FS_FILE_ACCESS_MODE_WR File opened for writes.

FS_FILE_ACCESS_MODE_CREATE File will be created, if necessary.

FS_FILE_ACCESS_MODE_TRUNC File length will be truncated to 0.

FS_FILE_ACCESS_MODE_APPEND All writes will be performed at EOF.

FS_FILE_ACCESS_MODE_EXCL File will be opened if and only if it does not already

exist.

FS_FILE_ACCESS_MODE_CACHED File data will be cached.

■ If FS_FILE_ACCESS_MODE_TRUNC is set, then FS_FILE_ACCESS_MODE_WR must also

be set.

■ If FS_FILE_ACCESS_MODE_EXCL is set, then FS_FILE_ACCESS_MODE_CREATE must

also be set.

■ FS_FILE_ACCESS_MODE_RD and/or FS_FILE_ACCESS_MODE_WR must be set.

2 The mode string argument of fs_fopen() function can specify a subset of the possible

valid modes for this function. The equivalent modes of fs_fopen() mode strings are

shown in Table 5-4.

304

μC/FS API Reference Manual

Table A-1 fs_fopen() mode strings and mode equivalents.

fopen() Mode String mode Equivalent

“r” or “rb” FS_FILE_ACCESS_MODE_RD

“w” or “wb” FS_FILE_ACCESS_MODE_WR |

FS_FILE_ACCESS_MODE_CREATE |

FS_FILE_ACCESS_MODE_TRUNC

“a” or “ab” FS_FILE_ACCESS_MODE_WR |

FS_FILE_ACCESS_MODE_CREATE |

FS_FILE_ACCESS_MODE_APPEND

“r+” or “rb+” or “r+b” FS_FILE_ACCESS_MODE_RD |

FS_FILE_ACCESS_MODE_WR

“w+” or “wb+” or “w+b” FS_FILE_ACCESS_MODE_RD |

FS_FILE_ACCESS_MODE_WR |

FS_FILE_ACCESS_MODE_CREATE |

FS_FILE_ACCESS_MODE_TRUNC

“a+” or “ab+” or “a+b” FS_FILE_ACCESS_MODE_RD |

FS_FILE_ACCESS_MODE_WR |

FS_FILE_ACCESS_MODE_CREATE |

FS_FILE_ACCESS_MODE_APPEND

305

μC/FS API Reference Manual

A-6-12 FSFile_PosGet()

FS_FILE_SIZE FSFile_PosGet (FS_FILE *p_file,

 FS_ERR *p_err);

Set file position indicator.

See fs_ftell() for more information.

ARGUMENTS

p_file Pointer to a file.

p_err Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE File position gotten successfully.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

FS_ERR_FILE_INVALID_POS Invalid file position.

RETURNED VALUE

The current file position, if no errors (see Note).

0, otherwise.

NOTES/WARNINGS

The file position returned is the number of bytes from the beginning of the file up to the

current file position.

File Called from Code enabled by

fs_file.c Application;

fs_ftell();

fs_fgetpos()

N/A

306

μC/FS API Reference Manual

A-6-13 FSFile_PosSet()

void FSFile_PosSet (FS_FILE *p_file,

 FS_FILE_OFFSET offset,

 FS_FLAGS origin,

 FS_ERR *p_err);

Get file position indicator.

See fs_fseek() for more information.

ARGUMENTS

p_file Pointer to a file.

offset Offset from the file position specified by origin.

origin Reference position for offset:

FS_FILE_ORIGIN_START Offset is from the beginning of the file.

FS_FILE_ORIGIN_CUR Offset is from the current file position.

FS_FILE_ORIGIN_END Offset is from the end of the file.

p_err Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE File position set successfully.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_INVALID_ORIGIN Invalid origin specified.

FS_ERR_FILE_INVALID_OFFSET Invalid offset specified.

FS_ERR_FILE_NOT_OPEN File NOT open.

File Called from Code enabled by

fs_file.c Application;

fs_fseek();

fs_fsetpos()

N/A

307

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

None.

308

μC/FS API Reference Manual

A-6-14 FSFile_Query()

void FSFile_Query (FS_FILE *p_file,

 FS_ENTRY_INFO *p_info,

 FS_ERR *p_err);

FSFile_Query() is used to get information about a file.

ARGUMENTS

p_file Pointer to a file.

p_info Pointer to structure that will receive the file information (see Note).

p_err Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE File information obtained successfully.

FS_ERR_NULL_PTR Argument p_file or p_info passed a

NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_file.c Application;

fs_fstat()

N/A

309

μC/FS API Reference Manual

A-6-15 FSFile_Rd()

CPU_SIZE_T FSFile_Rd (FS_FILE *p_file,

 void *p_dest,

 CPU_SIZE_T size,

 FS_ERR *p_err);

Read from a file.

See fs_fread() for more information.

ARGUMENTS

p_file Pointer to a file.

p_dest Pointer to destination buffer.

size Number of octets to read.

p_err Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE File read successfully.

FS_ERR_EOF End-of-file reached.

FS_ERR_NULL_PTR Argument p_file/p_dest passed a NULL

pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

FS_ERR_FILE_INVALID_OP Invalid operation on file.

FS_ERR_DEV Device access error.

File Called from Code enabled by

fs_file.c Application;

fs_fread()

N/A

310

μC/FS API Reference Manual

RETURNED VALUE

The number of bytes read, if file read successful.

0, otherwise.

NOTES/WARNINGS

None.

311

μC/FS API Reference Manual

A-6-16 FSFile_Truncate()

void FSFile_Truncate (FS_FILE *p_file,

 FS_FILE_SIZE size,

 FS_ERR *p_err);

Truncate a file.

See fs_ftruncate() for more information.

ARGUMENTS

p_file Pointer to a file.

size Size of the file after truncation

p_err Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE File truncated successfully.

FS_ERR_NULL_PTR Argument p_file passed a NULL pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_file.c Application;

fs_ftruncate()

not FS_CFG_RD_ONLY_EN

312

μC/FS API Reference Manual

A-6-17 FSFile_Wr()

CPU_SIZE_T FSFile_Wr (FS_FILE *p_file,

 void *p_src,

 CPU_SIZE_T size,

 FS_ERR *p_err);

Write to a file.

See fs_fwrite() for more information.

ARGUMENTS

p_file Pointer to a file.

p_src Pointer to source buffer.

size Number of octets to write.

p_err Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE File write successfully.

FS_ERR_NULL_PTR Argument p_file/p_src passed a NULL

pointer.

FS_ERR_INVALID_TYPE Argument p_file's type is invalid or

unknown.

FS_ERR_FILE_NOT_OPEN File NOT open.

FS_ERR_FILE_INVALID_OP Invalid operation on file.

FS_ERR_DEV Device access error.

File Called from Code enabled by

fs_file.c Application;

fs_fwrite()

not FS_CFG_RD_ONLY_EN

313

μC/FS API Reference Manual

RETURNED VALUE

The number of bytes written, if file write successful.

0, otherwise.

NOTES/WARNINGS

None.

314

μC/FS API Reference Manual

A-7 VOLUME FUNCTIONS

void

FSVol_Close (CPU_CHAR *name_vol,

 FS_ERR *p_err);

void

FSVol_Fmt (CPU_CHAR *name_vol,

 void *p_fs_cfg,

 FS_ERR *p_err);

void

FSVol_GetDfltVolName (CPU_CHAR *name_vol);

FS_QTY

FSVol_GetVolCnt (void);

FS_QTY

FSVol_GetVolCntMax (void);

void

FSVol_GetVolName (FS_QTY vol_nbr,

 CPU_CHAR *name_vol);

CPU_BOOLEAN

FSVol_IsMounted (CPU_CHAR *name_vol);

void

FSVol_LabelGet (CPU_CHAR *name_vol,

 CPU_CHAR *label,

 CPU_SIZE_T len_max,

 FS_ERR *p_err);

void

FSVol_LabelSet (CPU_CHAR *name_vol,

 CPU_CHAR *label,

 FS_ERR *p_err);

void

FSVol_Open (CPU_CHAR *name_vol,

 CPU_CHAR *name_dev,

 FS_PARTITION_NBR partition_nbr,

 FS_ERR *p_err);

315

μC/FS API Reference Manual

void

FSVol_Query (CPU_CHAR *name_vol,

 FS_VOL_INFO *p_info,

 FS_ERR *p_err);

void

FSVol_Rd (CPU_CHAR *name_vol,

 void *p_dest,

 FS_SEC_NBR start,

 FS_SEC_QTY cnt,

 FS_ERR *p_err);

void

FSVol_Wr (CPU_CHAR *name_vol,

 void *p_src,

 FS_SEC_NBR start,

 FS_SEC_QTY cnt,

 FS_ERR *p_err);

316

μC/FS API Reference Manual

A-7-1 FSVol_Close()

void FSVol_Close (CPU_CHAR *name_vol,

 FS_ERR *p_err);

Close and free a volume.

ARGUMENTS

name_vol Volume name.

p_err Pointer to variable that will receive the return error code from this function.

See Note #2.

FS_ERR_NONE Volume opened.

FS_ERR_NAME_NULL Argument name_vol passed a NULL

pointer.

FS_ERR_VOL_NOT_OPEN Volume not open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_vol.c Application N/A

317

μC/FS API Reference Manual

A-7-2 FSVol_Fmt()

void FSVol_Fmt (CPU_CHAR *name_vol,

 void *p_fs_cfg,

 FS_ERR *p_err);

Format a volume.

ARGUMENTS

name_vol Colume name.

p_fs_cfg Pointer to file system driver-specific configuration. For all file system drivers, if

this is a pointer to NULL, then the default configuration will be selected. More

information about the appropriate structure for the FAT file system driver can

be found in Chapter 6.

p_err Pointer to variable that will receive the return error code from this function

FS_ERR_NONE Volume formatted.

FS_ERR_DEV Device error.

FS_ERR_DEV_INVALID_SIZE Invalid device size.

FS_ERR_NAME_NULL Argument name_vol passed a NULL

pointer.

FS_ERR_VOL_DIRS_OPEN Directories open on volume.

FS_ERR_VOL_FILES_OPEN Files open on volume.

FS_ERR_VOL_INVALID_SYS Invalid file system parameters.

FS_ERR_VOL_NOT_OPEN Volume not open.

REQUIRED CONFIGURATION

None.

File Called from Code enabled by

fs_vol.c Application not FS_CFG_RD_ONLY_EN

318

μC/FS API Reference Manual

NOTES/WARNINGS

1 Function blocked if files or directories are open on the volume. All files and directories

MUST be closed prior to formatting the volume.

2 For any file system driver, if p_fs_cfg is a pointer to NULL, then the default

configuration will be selected. If non-NULL, the argument should be passed a pointer

to the appropriate configuration structure. For the FAT file system driver, p_fs_cfg

should be passed a pointer to a FS_FAT_SYS_CFG.

319

μC/FS API Reference Manual

A-7-3 FSVol_GetDfltVolName()

void FSVol_GetDfltVolName (CPU_CHAR *name_vol);

Get name of the default volume.

ARGUMENTS

name_vol String buffer that will receive the volume name (see Note #2).

RETURNED VALUE

None.

NOTES/WARNINGS

1 name_vol MUST point to a character array of FS_CFG_MAX_VOL_NAME_LEN characters.

2 If the volume does not exist, name_vol will receive an empty string.

File Called from Code enabled by

fs_vol.c Application N/A

320

μC/FS API Reference Manual

A-7-4 FSVol_GetVolCnt()

FS_QTY FSVol_GetVolCnt (void);

Get the number of open volumes.

ARGUMENTS

None.

RETURNED VALUE

Number of volumes currently open.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_vol.c Application N/A

321

μC/FS API Reference Manual

A-7-5 FSVol_GetVolCntMax()

FS_QTY FSVol_GetVolCntMax (void);

Get the maximum possible number of open volumes.

ARGUMENTS

None.

RETURNED VALUE

The maximum number of open volumes.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_vol.c Application N/A

322

μC/FS API Reference Manual

A-7-6 FSVol_GetVolName()

void FSVol_GetVolName (FS_QTY vol_nbr,

 CPU_CHAR *name_vol);

Get name of the nth open volume. n should be between 0 and the return value of

FSVol_GetNbrVols() (inclusive).

ARGUMENTS

vol_nbr Volume number.

name_vol String buffer that will receive the volume name (see Note #2).

RETURNED VALUE

None.

NOTES/WARNINGS

1 name_vol MUST point to a character array of FS_CFG_MAX_VOL_NAME_LEN characters.

2 If the volume does not exist, name_vol will receive an empty string.

File Called from Code enabled by

fs_vol.c Application N/A

323

μC/FS API Reference Manual

A-7-7 FSVol_IsDflt()

CPU_BOOLEAN FSVol_IsDflt (CPU_CHAR *name_vol);

Determine whether a volume is the default volume.

ARGUMENTS

name_vol Volume name.

RETURNED VALUE

DEF_YES, if the volume with name name_vol is the default volume.

DEF_NO, if no volume with name name_vol exists.

DEF_NO, or the volume with name name_vol is not the default volume.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_vol.c Application N/A

324

μC/FS API Reference Manual

A-7-8 FSVol_IsMounted()

CPU_BOOLEAN FSVol_IsMounted (CPU_CHAR *name_vol);

Determine whether a volume is mounted.

ARGUMENTS

name_vol Volume name.

RETURNED VALUE

DEF_YES, if the volume is open and is mounted.

DEF_NO, if the volume is not open or is not mounted.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_vol.c Application N/A

325

μC/FS API Reference Manual

A-7-9 FSVol_LabelGet()

void FSVol_LabelGet (CPU_CHAR *name_vol,

 CPU_CHAR *label,

 CPU_SIZE_T len_max,

 FS_ERR *p_err);

Get volume label.

ARGUMENTS

name_vol Volume name.

label String buffer that will receive volume label.

len_max Size of string buffer.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Label gotten.

FS_ERR_DEV_CHNGD Device has changed.

FS_ERR_NAME_NULL Argument name_vol passed a NULL

pointer.

FS_ERR_NULL_PTR Argument label passed a NULL pointer.

FS_ERR_DEV Device access error.

FS_ERR_VOL_LABEL_NOT_FOUND Volume label was not found.

FS_ERR_VOL_LABEL_TOO_LONG Volume label is too long.

FS_ERR_VOL_NOT_MOUNTED Volume is not mounted.

FS_ERR_VOL_NOT_OPEN Volume is not open.

File Called from Code enabled by

fs_vol.c Application N/A

326

μC/FS API Reference Manual

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

len_max is the maximum length string that can be stored in the buffer label; it does NOT

include the final NULL character. The buffer label MUST be of at least len_max + 1

characters..

327

μC/FS API Reference Manual

A-7-10 FSVol_LabelSet()

void FSVol_LabelSet (CPU_CHAR *name_vol,

 CPU_CHAR *label,

 FS_ERR *p_err);

Set volume label.

ARGUMENTS

name_vol Volume name.

label Volume label.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Label set.

FS_ERR_DEV_CHNGD Device has changed.

FS_ERR_NAME_NULL Argument name_vol passed a NULL

pointer.

FS_ERR_NULL_PTR Argument label passed a NULL pointer.

FS_ERR_DEV Device access error.

FS_ERR_DIR_FULL Directory is full (space could not be

allocated).

FS_ERR_DEV_FULL Device is full (space could not be

allocated).

FS_ERR_VOL_LABEL_INVALID Volume label is invalid.

FS_ERR_VOL_LABEL_TOO_LONG Volume label is too long.

FS_ERR_VOL_NOT_MOUNTED Volume is not mounted.

FS_ERR_VOL_NOT_OPEN Volume is not open.

File Called from Code enabled by

fs_vol.c Application not FS_CFG_RD_ONLY_EN

328

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

The label on a FAT volume must be no longer than 11-characters, each belonging to the set

of valid short file name (SFN) characters. Before it is committed to the volume, the label

will be converted to upper case and will be padded with spaces until it is an 11-character

string.

329

μC/FS API Reference Manual

A-7-11 FSVol_Open()

void FSVol_Open (CPU_CHAR *name_vol,

 CPU_CHAR *name_dev,

 FS_PARTITION_NBR partition_nbr,

 FS_ERR *p_err);

Open a volume.

ARGUMENTS

name_vol Volume name. See Section 2.04 for information about device names.

name_dev Device name.

partition_nbr Partition number. If 0, the default partition will be mounted.

p_err Pointer to variable that will receive the return error code from this function.

See Note #2.

FS_ERR_NONE Volume opened.

FS_ERR_DEV_VOL_OPEN Volume open on device.

FS_ERR_INVALID_SIG Invalid MBR signature.

FS_ERR_NAME_NULL Argument name_vol / name_dev passed a

NULL pointer.

FS_ERR_PARTITION_INVALID_NBR Invalid partition number.

FS_ERR_PARTITION_NOT_FOUND Partition not found.

FS_ERR_VOL_ALREADY_OPEN Volume is already open.

FS_ERR_VOL_INVALID_NAME Volume name invalid.

FS_ERR_VOL_NONE_AVAIL No volumes available.

Or device access error (see section B-4 “Device Error Codes” on page 377).

File Called from Code enabled by

fs_vol.c Application N/A

330

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

1 If FS_ERR_PARTITION_NOT_FOUND is returned, then no valid partition (or valid file

system) was found on the device. It is still placed on the list of used volumes; however,

it cannot be addressed as a mounted volume (e.g., files cannot be accessed).

Thereafter, unless a new device is inserted, the only valid commands are

a. FSVol_Fmt(), which creates a file system on the device;

b. FSVol_Close(), which frees the volume structure;

c. FSVol_Query(), which returns information about the device.

2 If FS_ERR_DEV, FS_ERR_DEV_NOT_PRESENT, FS_ERR_DEV_IO or FS_ERR_DEV_TIMEOUT is

returned, then the volume has been added to the file system, though the underlying

device is probably not present. The volume will need to be either closed and re-added,

or refreshed.

331

μC/FS API Reference Manual

A-7-12 FSVol_Query()

void FSVol_Query (CPU_CHAR *name_vol,

 FS_VOL_INFO *p_info,

 FS_ERR *p_err);

Obtain information about a volume.

ARGUMENTS

name_vol Volume name.

p_info Pointer to structure that will receive volume information (see Note).

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Volume information obtained.

FS_ERR_DEV Device access error.

FS_ERR_NAME_NULL Argument name_vol passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_info passed a NULL pointer.

FS_ERR_VOL_NOT_OPEN Volume is not open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_vol.c Application N/A

332

μC/FS API Reference Manual

A-7-13 FSVol_Rd()

void FSVol_Rd (CPU_CHAR *name_vol,

 void *p_dest,

 FS_SEC_NBR start,

 FS_SEC_QTY cnt,

 FS_ERR *p_err);

Reads data from volume sector(s).

ARGUMENTS

name_vol Volume name.

p_dest Pointer to destination buffer.

start Start sector of read.

cnt Number of sectors to read

p_err Pointer to variable that will receive the return error code from this function

FS_ERR_NONE Sector(s) read.

FS_ERR_DEV Device access error.

FS_ERR_NAME_NULL Argument name_vol passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_dest passed a NULL pointer.

FS_ERR_VOL_NOT_MOUNTED Volume is not mounted.

FS_ERR_VOL_NOT_OPEN Volume is not open.

File Called from Code enabled by

fs_vol.c Application N/A

333

μC/FS API Reference Manual

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.

334

μC/FS API Reference Manual

A-7-14 FSVol_Wr()

void FSVol_Wr (CPU_CHAR *name_vol,
 void *p_src,
 FS_SEC_NBR start,
 FS_SEC_QTY cnt,
 FS_ERR *p_err);

Writes data to volume sector(s).

ARGUMENTS

name_vol Volume name.

p_src Pointer to source buffer.

start Start sector of write.

cnt Number of sectors to write

p_err Pointer to variable that will receive the return error code from this function

FS_ERR_NONE Sector(s) written.

FS_ERR_DEV Device access error.

FS_ERR_NAME_NULL Argument name_vol passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_src passed a NULL pointer.

FS_ERR_VOL_NOT_MOUNTED Volume is not mounted.

FS_ERR_VOL_NOT_OPEN Volume is not open.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_vol.c Application not FS_CFG_RD_ONLY_EN

335

μC/FS API Reference Manual

A-8 VOLUME CACHE FUNCTIONS

void

FSVol_CacheAssign (CPU_CHAR *name_vol,

 FS_VOL_CACHE_API *p_cache_api,

 void *p_cache_data,

 CPU_INT32U size,

 CPU_INT08U pct_mgmt,

 CPU_INT08U pct_dir,

 FS_FLAGS mode,

 FS_ERR *p_err);

void

FSVol_CacheInvalidate (CPU_CHAR *name_vol,

 FS_ERR *p_err);

void

FSVol_CacheFlush (CPU_CHAR *name_vol,

 FS_ERR *p_err);

336

μC/FS API Reference Manual

A-8-1 FSVol_CacheAssign ()

void FSVol_CacheAssign (CPU_CHAR *name_vol,

 FS_VOL_CACHE_API *p_cache_api,

 void *p_cache_data,

 CPU_INT32U size,

 CPU_INT08U pct_mgmt,

 CPU_INT08U pct_dir,

 FS_FLAGS mode,

 FS_ERR *p_err)

Assign cache to a volume.

ARGUMENTS

name_vol Volume name.

p_cache_api Pointer to: (a) cache API to use; OR (b) NULL, if default cache API

should be used.

p_cache_data Pointer to cache data.

size Size, in bytes, of cache buffer.

pct_mgmt Percent of cache buffer dedicated to management sectors.

pct_dir Percent of cache buffer dedicated to directory sectors.

mode Cache mode

FS_VOL_CACHE_MODE_WR_THROUGH

FS_VOL_CACHE_MODE_WR_BACK

FS_VOL_CACHE_MODE_RD

File Called from Code enabled by

fs_vol.c Application FS_CFG_CACHE_EN

337

μC/FS API Reference Manual

p_err Pointer to variable that will receive return error code from this function:

FS_ERR_NONE Cache created.

FS_ERR_NAME_NULL ‘name_vol’ passed a NULL pointer.

FS_ERR_VOL_NOT_OPEN Volume not open.

FS_ERR_NULL_PTR ‘p_cache_data’ passed a NULL pointer.

FS_ERR_CACHE_INVALID_MODE Mode specified invalid

FS_ERR_CACHE_INVALID_SEC_TYPE Sector type sepecified invalid.

FS_ERR_CACHE_TOO_SMALL Size specified too small for cache.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

338

μC/FS API Reference Manual

A-8-2 FSVol_CacheInvalidate ()

void FSVol_CacheInvalidate (CPU_CHAR *name_vol,

 FS_ERR *p_err)

Invalidate cache on a volume.

ARGUMENTS

name_vol Volume name.

p_err Pointer to variable that will receive return error code from this function:

FS_ERR_NONE Cache created.

FS_ERR_NAME_NULL ‘name_vol’ passed a NULL pointer.

FS_ERR_DEV_CHNGD Device has changed.

FS_ERR_VOL_NO_CACHE No cache assigned to volume.

FS_ERR_VOL_NOT_OPEN Volume not open.

FS_ERR_VOL_NOT_MOUNTED Volume not mounted.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_vol.c Application FS_CFG_CACHE_EN

339

μC/FS API Reference Manual

A-8-3 FSVol_CacheFlush ()

void FSVol_CacheFlush (CPU_CHAR *name_vol,

 FS_ERR *p_err)

Flush cache on a volume.

ARGUMENTS

name_vol Volume name.

p_err Pointer to variable that will receive return error code from this function:

FS_ERR_NONE Cache created.

FS_ERR_NAME_NULL ‘name_vol’ passed a NULL pointer.

FS_ERR_DEV_CHNGD Device has changed.

FS_ERR_VOL_NO_CACHE No cache assigned to volume.

FS_ERR_VOL_NOT_OPEN Volume not open.

FS_ERR_VOL_NOT_MOUNTED Volume not mounted.

FS_ERR_DEV_INVALID_SEC_NBR Sector start or count invalid.

FS_ERR_DEV_INVALID_lOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout error.

FS_ERR_DEV_NOT_PRESENT Device is not present.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_vol.c Application FS_CFG_CACHE_EN

340

μC/FS API Reference Manual

A-9 NAND DRIVER FUNCTIONS

void

FSDev_NAND_LowFmt (CPU_CHAR *name_dev,

 FS_ERR *p_err);

void

FSDev_NAND_LowMount (CPU_CHAR *name_dev,

 FS_ERR *p_err);

void

FSDev_NAND_LowUnmount (CPU_CHAR *name_dev,

 FS_ERR *p_err);

void

FSDev_NAND_PhyRdSec (CPU_CHAR *name_dev,

 void *p_dest,

 void *p_spare

 FS_SEC_NBR sec_nbr_phy,

 FS_ERR *p_err);

void

FSDev_NAND_PhyWrSec (CPU_CHAR *name_dev,

 void *p_src,

 void *p_spare,

 FS_SEC_NBR sec_nbr_phy,

 FS_ERR *p_err);

void

FSDev_NAND_PhyEraseBlk (CPU_CHAR *name_dev,

 CPU_INT32U blk_nbr_phy,

 FS_ERR *p_err);

341

μC/FS API Reference Manual

A-9-1 FSDev_NAND_LowFmt()

void FSDev_NAND_LowFmt (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Low-level format a NAND device.

ARGUMENTS

name_dev Device name (see Note).

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Device low-level formatted successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NAND device (e.g., “nand:0:”).

Low-level formating associates physical areas (sectors) of the device with logical sector

numbers. A NAND medium MUST be low-level formatted with this driver prior to access by

the high-level file system, a requirement which the device module enforces.

File Called from Code enabled by

fs_dev_nand.c Application N/A

342

μC/FS API Reference Manual

A-9-2 FSDev_NAND_LowMount()

void FSDev_NAND_LowMount (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Low-level mount a NAND device.

ARGUMENTS

name_dev Device name (see Note).

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Device low-level mounted successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NAND device (e.g., “nand:0:”).

Low-level mounting parses the on-device structure, detecting the presence of a valid

low-level format. If FS_ERR_DEV_INVALID_LOW_FMT is returned, the device is NOT low-level

formatted.

File Called from Code enabled by

fs_dev_nand.c Application N/A

343

μC/FS API Reference Manual

A-9-3 FSDev_NAND_LowUnmount()

void FSDev_NAND_LowUnmount (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Low-level unmount a NAND device.

ARGUMENTS

name_dev Device name (see Note).

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Device low-level unmounted successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NAND device (e.g., “nand:0:”).

Low-level unmounting clears software knowledge of the on-disk structures, forcing the

device to again be low-level mounted or formatted prior to further use.

File Called from Code enabled by

fs_dev_nand.c Application N/A

344

μC/FS API Reference Manual

A-9-4 FSDev_NAND_PhyRdSec()

void FSDev_NAND_PhyRdSec (CPU_CHAR *name_dev,

 void *p_dest,

 void *p_spare,

 FS_SEC_NBR sec_nbr_phy,

 FS_ERR *p_err);

Read sector from a NAND device and store data in buffer.

ARGUMENTS

name_dev Device name (see Note).

p_dest Pointer to destination buffer.

p_spare Pointer to buffer that will receive spare data.

sec_nbr_phy Sector to read.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Octets read successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_dest passed a NULL pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device.

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

File Called from Code enabled by

fs_dev_nand.c Application N/A

345

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NAND device (e.g., “nand:0:”).

346

μC/FS API Reference Manual

A-9-5 FSDev_NAND_PhyWrSec()

void FSDev_NAND_PhyWrSec (CPU_CHAR *name_dev,

 void *p_src,

 void *p_spare

 FS_SEC_NBR sec_nbr_phy,

 FS_ERR *p_err);

Write to a NAND device from a buffer.

ARGUMENTS

name_dev Device name (see Note).

p_src Pointer to source buffer.

p_spare Pointer to buffer that contains the spare data.

sec_nbr_phy Sector to write.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Octets written successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_src passed a NULL pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device.

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

File Called from Code enabled by

fs_dev_nand.c Application N/A

347

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NAND device (e.g., “nand:0:”).

Care should be taken if this function is used while a file system exists on the device, or if

the device is low-level formatted. The page modified is NOT verified as being outside any

existing file system or low-level format information.

During a program operation, only 1 bits can be changed; a 0 bit cannot be changed to a 1.

The application MUST know that the page being programmed have not already been

programmed.

348

μC/FS API Reference Manual

A-9-6 FSDev_NAND_PhyEraseBlk()

void FSDev_NAND_PhyEraseBlk (CPU_CHAR *name_dev,

 CPU_INT32U blk_nbr_phy,

 FS_ERR *p_err);

Erase block of NAND device.

ARGUMENTS

name_dev Device name (see Note).

blk_nbr_phy Block to erase.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Block erased successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NAND device (e.g., “nand:0:”).

File Called from Code enabled by

fs_dev_nand.c Application N/A

349

μC/FS API Reference Manual

Care should be taken if this function is used while a file system exists on the device, or if

the device is low-level formatted. The erased block is NOT verified as being outside any

existing file system or low-level format information.

350

μC/FS API Reference Manual

A-10 NOR DRIVER FUNCTIONS

void

FSDev_NOR_LowFmt (CPU_CHAR *name_dev,

 FS_ERR *p_err);

void

FSDev_NOR_LowMount (CPU_CHAR *name_dev,

 FS_ERR *p_err);

void

FSDev_NOR_LowUnmount (CPU_CHAR *name_dev,

 FS_ERR *p_err);

void

FSDev_NOR_LowCompact (CPU_CHAR *name_dev,

 FS_ERR *p_err);

void

FSDev_NOR_LowDefrag (CPU_CHAR *name_dev,

 FS_ERR *p_err);

void

FSDev_NOR_PhyRd (CPU_CHAR *name_dev,

 void *p_dest,

 CPU_INT32U start,

 CPU_INT32U cnt,

 FS_ERR *p_err);

void

FSDev_NOR_PhyWr (CPU_CHAR *name_dev,

 void *p_src,

 CPU_INT32U start,

 CPU_INT32U cnt,

 FS_ERR *p_err);

void

FSDev_NOR_PhyEraseBlk (CPU_CHAR *name_dev,

 CPU_INT32U start,

 CPU_INT32U size,

 FS_ERR *p_err);

351

μC/FS API Reference Manual

void

FSDev_NOR_PhyEraseChip (CPU_CHAR *name_dev,

 FS_ERR *p_err);

352

μC/FS API Reference Manual

A-10-1 FSDev_NOR_LowFmt()

void FSDev_NOR_LowFmt (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Low-level format a NOR device.

ARGUMENTS

name_dev Device name (see Note).

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Device low-level formatted successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NOR device (e.g., “nor:0:”).

Low-level formating associates physical areas (sectors) of the device with logical sector

numbers. A NOR medium MUST be low-level formatted with this driver prior to access by

the high-level file system, a requirement which the device module enforces.

File Called from Code enabled by

fs_dev_nor.c Application N/A

353

μC/FS API Reference Manual

A-10-2 FSDev_NOR_LowMount()

void FSDev_NOR_LowMount (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Low-level mount a NOR device.

ARGUMENTS

name_dev Device name (see Note).

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Device low-level mounted successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NOR device (e.g., “nor:0:”).

Low-level mounting parses the on-device structure, detecting the presence of a valid

low-level format. If FS_ERR_DEV_INVALID_LOW_FMT is returned, the device is NOT low-level

formatted.

File Called from Code enabled by

fs_dev_nor.c Application N/A

354

μC/FS API Reference Manual

A-10-3 FSDev_NOR_LowUnmount()

void FSDev_NOR_LowUnmount (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Low-level unmount a NOR device.

ARGUMENTS

name_dev Device name (see Note).

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Device low-level unmounted successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NOR device (e.g., “nor:0:”).

Low-level unmounting clears software knowledge of the on-disk structures, forcing the

device to again be low-level mounted or formatted prior to further use.

File Called from Code enabled by

fs_dev_nor.c Application N/A

355

μC/FS API Reference Manual

A-10-4 FSDev_NOR_LowCompact()

void FSDev_NOR_LowCompact (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Low-level compact a NOR device.

ARGUMENTS

name_dev Device name (see Note).

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Device low-level compacted successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NOR device (e.g., “nor:0:”).

Compacting groups sectors containing high-level data into as few blocks as possible. If an

image of a file system is to be formed for deployment, to be burned into chips for

production, then it should be compacted after all files and directories are created.

File Called from Code enabled by

fs_dev_nor.c Application N/A

356

μC/FS API Reference Manual

A-10-5 FSDev_NOR_LowDefrag()

void FSDev_NOR_LowDefrag (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Low-level defragment a NOR device.

ARGUMENTS

name_dev Device name (see Note).

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Device low-level defragmented
successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL
pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid
device

FS_ERR_DEV_NOT_OPEN Device is not open.
FS_ERR_DEV_NOT_PRESENT Device is not present.
FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.
FS_ERR_DEV_IO Device I/O error.
FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NOR device (e.g., “nor:0:”).

Defragmentation groups sectors containing high-level data into as few blocks as possible, in

order of logical sector. A defragmented file system should have near-optimal access speeds

in a read-only environment.

File Called from Code enabled by

fs_dev_nor.c Application N/A

357

μC/FS API Reference Manual

A-10-6 FSDev_NOR_PhyRd()

void FSDev_NOR_PhyRd (CPU_CHAR *name_dev,

 void *p_dest,

 CPU_INT32U start,

 CPU_INT32U cnt,

 FS_ERR *p_err);

Read from a NOR device and store data in buffer.

ARGUMENTS

name_dev Device name (see Note).

p_dest Pointer to destination buffer.

start Start address of read (relative to start of device).

cnt Number of octets to read.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Octets read successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_dest passed a NULL pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device.

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

File Called from Code enabled by

fs_dev_nor.c Application N/A

358

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NOR device (e.g., “nor:0:”).

359

μC/FS API Reference Manual

A-10-7 FSDev_NOR_PhyWr()

void FSDev_NOR_PhyWr (CPU_CHAR *name_dev,

 void *p_src,

 CPU_INT32U start,

 CPU_INT32U cnt,

 FS_ERR *p_err);

Write to a NOR device from a buffer.

ARGUMENTS

name_dev Device name (see Note).

p_src Pointer to source buffer.

start Start address of write (relative to start of device).

cnt Number of octets to write.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Octets written successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_src passed a NULL pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device.

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

File Called from Code enabled by

fs_dev_nor.c Application N/A

360

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NOR device (e.g., “nor:0:”).

Care should be taken if this function is used while a file system exists on the device, or if

the device is low-level formatted. The octet location(s) modified are NOT validated as being

outside any existing file system or low-level format information.

During a program operation, only 1 bits can be changed; a 0 bit cannot be changed to a 1.

The application MUST know that the octets being programmed have not already been

programmed.

361

μC/FS API Reference Manual

A-10-8 FSDev_NOR_PhyEraseBlk()

void FSDev_NOR_PhyEraseBlk (CPU_CHAR *name_dev,

 CPU_INT32U start,

 CPU_INT32U size,

 FS_ERR *p_err);

Erase block of NOR device.

ARGUMENTS

name_dev Device name (see Note).

start Start address of block (relative to start of device).

size Size of block, in octets.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Block erased successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev_nor.c Application N/A

362

μC/FS API Reference Manual

NOTES/WARNINGS

The device MUST be a NOR device (e.g., “nor:0:”).

Care should be taken if this function is used while a file system exists on the device, or if

the device is low-level formatted. The erased block is NOT validated as being outside any

existing file system or low-level format information.

363

μC/FS API Reference Manual

A-10-9 FSDev_NOR_PhyEraseChip()

void FSDev_NOR_PhyEraseChip (CPU_CHAR *name_dev,

 FS_ERR *p_err);

Erase entire NOR device.

ARGUMENTS

name_dev Device name (see Note).

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Device erased successfully.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a NOR device (e.g., “nor:0:”).

This function should NOT be used while a file system exists on the device, or if the device

is low-level formatted, unless the intent is to destroy all existing information.

File Called from Code enabled by

fs_dev_nor.c Application N/A

364

μC/FS API Reference Manual

A-11 SD/MMC DRIVER FUNCTIONS

void

FSDev_SD_Card_QuerySD (CPU_CHAR *name_dev,

 FS_DEV_SD_INFO *p_info,

 FS_ERR *p_err);

void

FSDev_SD_SPI_QuerySD (CPU_CHAR *name_dev,

 FS_DEV_SD_INFO *p_info,

 FS_ERR *p_err);

void

FSDev_SD_Card_RdCID (CPU_CHAR *name_dev,

 CPU_INT08U *p_info,

 FS_ERR *p_err);

void

FSDev_SD_SPI_RdCID (CPU_CHAR *name_dev,

 CPU_INT08U *p_info,

 FS_ERR *p_err);

void

FSDev_SD_Card_RdCSD (CPU_CHAR *name_dev,

 CPU_INT08U *p_info,

 FS_ERR *p_err);

void

FSDev_SD_SPI_RdCSD (CPU_CHAR *name_dev,

 CPU_INT08U *p_info,

 FS_ERR *p_err);

365

μC/FS API Reference Manual

A-11-1 FSDev_SD_xxx_QuerySD()

void FSDev_SD_Card_QuerySD (CPU_CHAR *name_dev,

 FS_DEV_SD_INFO *p_info,

 FS_ERR *p_err);

void FSDev_SD_SPI_QuerySD (CPU_CHAR *name_dev,

 FS_DEV_SD_INFO *p_info,

 FS_ERR *p_err);

Get low-level information abou SD/MMC card.

ARGUMENTS

name_dev Device name (see Note).

p_info Pointer to structure that will receive SD/MMC card information.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE SD/MMC info obtained.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_info passed a NULL pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

File Called from Code enabled by

fs_dev_sd_card.c,

fs_dev_sd_spi.c

Application N/A

366

μC/FS API Reference Manual

RETURNED VALUE

None.

NOTES/WARNINGS

The device MUST be a SD/MMC device; (for FSDev_SD_Card_QuerySD(), e.g.,

“sdcard:0:”; for FSDev_SD_SPI_QuerySD(), e.g., “sd:0:”).

367

μC/FS API Reference Manual

A-11-2 FSDev_SD_xxx_RdCID()

void FSDev_SD_Card_RdCID (CPU_CHAR *name_dev,

 CPU_INT08U *p_info,

 FS_ERR *p_err);

void FSDev_SD_SPI_RdCID (CPU_CHAR *name_dev,

 CPU_INT08U *p_info,

 FS_ERR *p_err);

Read SD/MMC Card ID (CID) register.

ARGUMENTS

name_dev Device name (see Note #1).

p_dest Pointer to 16-byte buffer that will receive SD/MMC Card ID register.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE SD/MMC Card ID register read.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_dest passed a NULL pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev_sd_card.c,

fs_dev_sd_spi.c

Application N/A

368

μC/FS API Reference Manual

NOTES/WARNINGS

1 The device MUST be a SD/MMC device; (for FSDev_SD_Card_QuerySD(), e.g.,

“sdcard:0:”; for FSDev_SD_SPI_QuerySD(), e.g., “sd:0:”).

2 For SD cards, the structure of the CID is defined in the SD Card Association’s “Physical

Layer Simplified Specification Version 2.00”, Section 5.1. For MMC cards, the structure

of the CID is defined in the JEDEC’s “MultiMediaCard (MMC) Electrical Standard, High

Capacity”, Section 8.2.

369

μC/FS API Reference Manual

A-11-3 FSDev_SD_xxx_RdCSD()

void FSDev_SD_Card_RdCSD (CPU_CHAR *name_dev,

 CPU_INT08U *p_info,

 FS_ERR *p_err);

void FSDev_SD_SPI_RdCSD (CPU_CHAR *name_dev,

 CPU_INT08U *p_info,

 FS_ERR *p_err);

Read SD/MMC Card-Specific Data (CSD) register.

ARGUMENTS

name_dev Device name (see Note #1).

p_dest Pointer to 16-byte buffer that will receive SD/MMC Card-Specific Data register.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE SD/MMC Card-Specific Data register read.

FS_ERR_NAME_NULL Argument name_dev passed a NULL

pointer.

FS_ERR_NULL_PTR Argument p_dest passed a NULL pointer.

FS_ERR_DEV_INVALID Argument name_dev specifies an invalid

device

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev_sd_card.c,

fs_dev_sd_spi.c

Application N/A

370

μC/FS API Reference Manual

NOTES/WARNINGS

1 The device MUST be a SD/MMC device; (for FSDev_SD_Card_QuerySD(), e.g.,

“sdcard:0:”; for FSDev_SD_SPI_QuerySD(), e.g., “sd:0:”).

2 For SD cards, the structure of the CSD is defined in the SD Card Association’s “Physical

Layer Simplified Specification Version 2.00”, Section 5.3.2 (v1.x and v2.0 standard

capacity) or Section 5.3.3. (v2.0 high capacity). For MMC cards, the structure of the

CSD is defined in the JEDEC’s “MultiMediaCard (MMC) Electrical Standard, High

Capacity”, Section 8.3.

A-12 FAT SYSTEM DRIVER FUNCTIONS

void

FS_FAT_JournalOpen (CPU_CHAR *name_vol,

 FS_ERR *p_err);

void

FS_FAT_JournalClose (CPU_CHAR *name_vol,

 FS_ERR *p_err);

void

FS_FAT_JournalStart (CPU_CHAR *name_vol,

 FS_ERR *p_err);

void

FS_FAT_JournalStop (CPU_CHAR *name_vol,

 FS_ERR *p_err);

void

FS_FAT_VolChk (CPU_CHAR *name_vol,

 FS_ERR *p_err);

371

μC/FS API Reference Manual

A-12-1 FS_FAT_JournalOpen()

Open journal on volume.

ARGUMENTS

name_vol Volume name.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Journal opened.

FS_ERR_DEV Device access error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

372

μC/FS API Reference Manual

A-12-2 FS_FAT_JournalClose()

void FS_FAT_JournalClose (CPU_CHAR *name_vol,

 FS_ERR *p_err);

Close journal on volume.

ARGUMENTS

name_vol Volume name.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Journal closed.

FS_ERR_DEV Device access error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

373

μC/FS API Reference Manual

A-12-3 FS_FAT_JournalStart()

void FS_FAT_JournalStart (CPU_CHAR *name_vol,

 FS_ERR *p_err);

Start journaling on volume.

ARGUMENTS

name_vol Volume name.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Journaling started.

FS_ERR_DEV Device access error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

374

μC/FS API Reference Manual

A-12-4 FS_FAT_JournalStop()

void FS_FAT_JournalStop (CPU_CHAR *name_vol,

 FS_ERR *p_err);

Stop journaling on volume.

ARGUMENTS

name_vol Volume name.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Journaling stopped.

FS_ERR_DEV Device access error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

375

μC/FS API Reference Manual

A-12-5 FS_FAT_VolChk()

Check the file system on a volume.

ARGUMENTS

name_vol Volume name.

p_err Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE Volume checked without errors.

FS_ERR_NAME_NULL Argument name_vol passed a null

pointer.

FS_ERR_DEV Device access error.

FS_ERR_VOL_NOT_OPEN Volume not open.

FS_ERR_BUF_NONE_AVAIL No buffers available.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_fat.c Application FS_CFG_FAT_VOL_CHK_EN

376

Appendix

B
μC/FS Error Codes

This appendix provides a brief explanation of μC/FS error codes defined in fs_err.h. Any

error codes not listed here may be searched in fs_err.h for both their numerical value and

usage.

B-1 SYSTEM ERROR CODES

FS_ERR_NONE No error.

FS_ERR_INVALID_ARG Invalid argument.

FS_ERR_INVALID_CFG Invalid configuration.

FS_ERR_INVALID_CHKSUM Invalid checksum.

FS_ERR_INVALID_LEN Invalid length.

FS_ERR_INVALID_TIME Invalid date/time.

FS_ERR_INVALID_TIMESTAMP Invalid timestamp.

FS_ERR_INVALID_TYPE Invalid object type.

FS_ERR_MEM_ALLOC Mem could not be alloc'd.

FS_ERR_NULL_ARG Arg(s) passed NULL val(s).

FS_ERR_NULL_PTR Ptr arg(s) passed NULL ptr(s).

FS_ERR_OS OS err.

FS_ERR_OVF Value too large to be stored in type.

FS_ERR_EOF EOF reached.

FS_ERR_WORKING_DIR_NONE_AVAIL No working dir avail.

FS_ERR_WORKING_DIR_INVALID Working dir invalid.

B-2 BUFFER ERROR CODES

FS_ERR_BUF_NONE_AVAIL No buffer available.

377

μC/FS Error Codes

B-3 CACHE ERROR CODES

FS_ERR_CACHE_INVALID_MODE Mode specified invalid.

FS_ERR_CACHE_INVALID_SEC_TYPE Device already open.

FS_ERR_CACHE_TOO_SMALL Device has changed.

B-4 DEVICE ERROR CODES

FS_ERR_DEV Device access error.

FS_ERR_DEV_ALREADY_OPEN Device already open.

FS_ERR_DEV_CHNGD Device has changed.

FS_ERR_DEV_FIXED Device is fixed (cannot be closed).

FS_ERR_DEV_FULL Device is full (no space could be allocated).

FS_ERR_DEV_INVALID Invalid device.

FS_ERR_DEV_INVALID_CFG Invalid dev cfg.

FS_ERR_DEV_INVALID_ECC Invalid ECC.

FS_ERR_DEV_INVALID_IO_CTRL I/O control invalid.

FS_ERR_DEV_INVALID_LOW_FMT Low format invalid.

FS_ERR_DEV_INVALID_LOW_PARAMS Invalid low-level device parameters.

FS_ERR_DEV_INVALID_MARK Invalid mark.

FS_ERR_DEV_INVALID_NAME Invalid device name.

FS_ERR_DEV_INVALID_OP Invalid operation.

FS_ERR_DEV_INVALID_SEC_NBR Invalid device sec nbr.

FS_ERR_DEV_INVALID_SEC_SIZE Invalid device sec size.

FS_ERR_DEV_INVALID_SIZE Invalid device size.

FS_ERR_DEV_INVALID_UNIT_NBR Invalid device unit nbr.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_NONE_AVAIL No device avail.

FS_ERR_DEV_NOT_OPEN Device not open.

FS_ERR_DEV_NOT_PRESENT Device not present.

FS_ERR_DEV_TIMEOUT Device timeout.

FS_ERR_DEV_UNIT_NONE_AVAIL No unit avail.

FS_ERR_DEV_UNIT_ALREADY_EXIST Unit already exists.

FS_ERR_DEV_UNKNOWN Unknown.

FS_ERR_DEV_VOL_OPEN Vol open on dev.

378

μC/FS Error Codes

B-5 DEVICE DRIVER ERROR CODES

FS_ERR_DEV_DRV_ALREADY_ADDED Device driver already added.

FS_ERR_DEV_DRV_INVALID_NAME Invalid device driver name.

FS_ERR_DEV_DRV_NO_TBL_POS_AVAIL No pos available in device driver table.

B-6 DIRECTORY ERROR CODES

FS_ERR_DIR_ALREADY_OPEN Directory already open.

FS_ERR_DIR_DIS Directory module disabled.

FS_ERR_DIR_FULL Directory is full.

FS_ERR_DIR_NONE_AVAIL No directory avail.

FS_ERR_DIR_NOT_OPEN Directory not open.

B-7 ECC ERROR CODES

FS_ERR_ECC_CORRECTABLE Correctable ECC error.

FS_ERR_ECC_UNCORRECTABLE Uncorrectable ECC error.

B-8 ENTRY ERROR CODES

FS_ERR_ENTRIES_SAME Paths specify same file system entry.

FS_ERR_ENTRIES_TYPE_DIFF Paths do not both specify files OR directories.

FS_ERR_ENTRIES_VOLS_DIFF Paths specify file system entries on different

vols.

FS_ERR_ENTRY_CORRUPT File system entry is corrupt.

FS_ERR_ENTRY_EXISTS File system entry exists.

FS_ERR_ENTRY_INVALID File system entry invalid.

FS_ERR_ENTRY_NOT_DIR File system entry NOT a directory.

FS_ERR_ENTRY_NOT_EMPTY File system entry NOT empty.

FS_ERR_ENTRY_NOT_FILE File system entry NOT a file.

FS_ERR_ENTRY_NOT_FOUND File system entry NOT found.

FS_ERR_ENTRY_PARENT_NOT_FOUND Entry parent NOT found.

FS_ERR_ENTRY_PARENT_NOT_DIR Entry parent NOT a directory.

FS_ERR_ENTRY_RD_ONLY File system entry marked read-only.

FS_ERR_ENTRY_ROOT_DIR File system entry is a root directory.

FS_ERR_ENTRY_TYPE_INVALID File system entry type is invalid.

379

μC/FS Error Codes

FS_ERR_ENTRY_OPEN Operation not allowed on entry

corresponding to an open file/dir.

B-9 FILE ERROR CODES

FS_ERR_FILE_ALREADY_OPEN File already open.

FS_ERR_FILE_BUF_ALREADY_ASSIGNED Buf already assigned.

FS_ERR_FILE_ERR Error indicator set on file.

FS_ERR_FILE_INVALID_ACCESS_MODE Access mode is specified invalid.

FS_ERR_FILE_INVALID_ATTRIB Attributes are specified invalid.

FS_ERR_FILE_INVALID_BUF_MODE Buf mode is specified invalid or unknown.

FS_ERR_FILE_INVALID_BUF_SIZE Buf size is specified invalid.

FS_ERR_FILE_INVALID_DATE_TIME Date/time is specified invalid.

FS_ERR_FILE_INVALID_DATE_TIME_FLAG Date/time flag is specified invalid.

FS_ERR_FILE_INVALID_NAME Name is specified invalid.

FS_ERR_FILE_INVALID_ORIGIN Origin is specified invalid or unknown.

FS_ERR_FILE_INVALID_OFFSET Offset is specified invalid.

FS_ERR_FILE_INVALID_FILES Invalid file arguments.

FS_ERR_FILE_INVALID_OP File operation invalid.

FS_ERR_FILE_INVALID_OP_SEQ File operation sequence invalid.

FS_ERR_FILE_INVALID_POS File position invalid.

FS_ERR_FILE_LOCKED File locked.

FS_ERR_FILE_NONE_AVAIL No file available.

FS_ERR_FILE_NOT_OPEN File NOT open.

FS_ERR_FILE_NOT_LOCKED File NOT locked.

FS_ERR_FILE_OVF File size overflowed max file size.

FS_ERR_FILE_OVF_OFFSET File offset overflowed max file offset.

B-10 NAME ERROR CODES

FS_ERR_NAME_BASE_TOO_LONG Base name too long.

FS_ERR_NAME_EMPTY Name empty.

FS_ERR_NAME_EXT_TOO_LONG Extension too long.

FS_ERR_NAME_INVALID Invalid file name or path.

FS_ERR_NAME_MIXED_CASE Name is mixed case.

FS_ERR_NAME_NULL Name ptr arg(s) passed NULL ptr(s).

FS_ERR_NAME_PATH_TOO_LONG Entry path is too long.

380

μC/FS Error Codes

FS_ERR_NAME_BUF_TOO_SHORT Buffer for name is too short.

FS_ERR_NAME_TOO_LONG Full name is too long.

B-11 PARTITION ERROR CODES

FS_ERR_PARTITION_INVALID Partition invalid.

FS_ERR_PARTITION_INVALID_NBR Partition nbr specified invalid.

FS_ERR_PARTITION_INVALID_SIG Partition sig invalid.

FS_ERR_PARTITION_INVALID_SIZE Partition size invalid.

FS_ERR_PARTITION_MAX Max nbr partitions have been created in MBR.

FS_ERR_PARTITION_NOT_FINAL Prev partition is not final partition.

FS_ERR_PARTITION_NOT_FOUND Partition NOT found.

FS_ERR_PARTITION_ZERO Partition zero.

B-12 POOLS ERROR CODES

FS_ERR_POOL_EMPTY Pool is empty.

FS_ERR_POOL_FULL Pool is full.

FS_ERR_POOL_INVALID_BLK_ADDR Block not found in used pool pointers.

FS_ERR_POOL_INVALID_BLK_IN_POOL Block found in free pool pointers.

FS_ERR_POOL_INVALID_BLK_IX Block index invalid.

FS_ERR_POOL_INVALID_BLK_NBR Number blocks specified invalid.

FS_ERR_POOL_INVALID_BLK_SIZE Block size specified invalid.

B-13 FILE SYSTEM ERROR CODES

FS_ERR_SYS_TYPE_NOT_SUPPORTED File sys type not supported.

FS_ERR_SYS_INVALID_SIG Sec has invalid OR illegal sig.

FS_ERR_SYS_DIR_ENTRY_PLACE Dir entry could not be placed.

FS_ERR_SYS_DIR_ENTRY_NOT_FOUND Dir entry not found.

FS_ERR_SYS_DIR_ENTRY_NOT_FOUND_YET Dir entry not found (yet).

FS_ERR_SYS_SEC_NOT_FOUND Sec not found.

FS_ERR_SYS_CLUS_CHAIN_END Cluster chain ended.

FS_ERR_SYS_CLUS_CHAIN_END_EARLY Cluster chain ended before number clusters

traversed.

FS_ERR_SYS_CLUS_INVALID Cluster invalid.

FS_ERR_SYS_CLUS_NOT_AVAIL Cluster not avail.

381

μC/FS Error Codes

FS_ERR_SYS_SFN_NOT_AVAIL SFN is not avail.

FS_ERR_SYS_LFN_ORPHANED LFN entry orphaned.

B-14 VOLUME ERROR CODES

FS_ERR_VOL_INVALID_NAME Invalid volume name.

FS_ERR_VOL_INVALID_SIZE Invalid volume size.

FS_ERR_VOL_INVALID_SEC_SIZE Invalid volume sector size.

FS_ERR_VOL_INVALID_CLUS_SIZE Invalid volume cluster size.

FS_ERR_VOL_INVALID_OP Volume operation invalid.

FS_ERR_VOL_INVALID_SEC_NBR Invalid volume sector number.

FS_ERR_VOL_INVALID_SYS Invalid file system on volume.

FS_ERR_VOL_NO_CACHE No cache assigned to volume.

FS_ERR_VOL_NONE_AVAIL No vol avail.

FS_ERR_VOL_NONE_EXIST No vols exist.

FS_ERR_VOL_NOT_OPEN Vol NOT open.

FS_ERR_VOL_NOT_MOUNTED Vol NOT mounted.

FS_ERR_VOL_ALREADY_OPEN Vol already open.

FS_ERR_VOL_FILES_OPEN Files open on vol.

FS_ERR_VOL_DIRS_OPEN Dirs open on vol.

FS_ERR_JOURNAL_ALREADY_OPEN Journal already open.

FS_ERR_JOURNAL_CFG_CHANGED File system suite cfg changed since log

created.

FS_ERR_JOURNAL_FILE_INVALID Journal file invalid.

FS_ERR_JOURNAL_FULL Journal full.

FS_ERR_JOURNAL_LOG_INVALID_ARG Invalid arg read from journal log.

FS_ERR_JOURNAL_LOG_INCOMPLETE Log not completely entered in journal.

FS_ERR_JOURNAL_LOG_NOT_PRESENT Log not present in journal.

FS_ERR_JOURNAL_NOT_OPEN Journal not open

FS_ERR_JOURNAL_NOT_REPLAYING Journal not being replayed.

FS_ERR_JOURNAL_NOT_STARTED Journaling not started.

FS_ERR_JOURNAL_NOT_STOPPED Journaling not stopped.

FS_ERR_VOL_LABEL_INVALID Volume label is invalid.

FS_ERR_VOL_LABEL_NOT_FOUND Volume label was not found.

FS_ERR_VOL_LABEL_TOO_LONG Volume label is too long.

382

μC/FS Error Codes

B-15 OS LAYER ERROR CODES

FS_ERR_OS_LOCK Lock not acquired.

FS_ERR_OS_INIT OS not initialized.

FS_ERR_OS_INIT_LOCK Lock signal not successfully initialized.

FS_ERR_OS_INIT_LOCK_NAME Lock signal name not successfully initialized.

383

Appendix

C
μC/FS Porting Manual

μC/FS adapts to its environment via a number of ports. The simplest ones, common to all

installations, interface with the application, OS kernel (if any) and CPU. More complicated

may be ports to media drivers, which require additional testing, validation and optimization;

but many of those are still straightforward. Figure C-1 diagrams the relationship between

μC/FS and external modules and hardware.

The sections in this chapter describe each require function and give hints for implementers.

Anyone creating a new port should first check the example ports are included in the μC/FS

distribution in the following directory:

\Micrium\Software\uC-FS\Examples\BSP\Dev

The port being contemplated may already exist; failing that, some similar CPU/device may

have already be supported.

384

μC/FS Porting Manual

Figure C-1 μC/FS Ports Architecture

FC-1(1) μC/Clk act as a centralized clock management module. If you use an external

real-time clock, you will have to write functions to let μC/FS know the date and

time.

FC-1(2) The CPU port (within μC/CPU) adapts the file system suite to the CPU and

compiler characteristics. The fixed-width types (e.g., CPU_INT16U) used in the

file system suite are defined here.

FC-1(3) The RTOS port adapts the file system suite to the OS kernel (if any) included in

the application. The files FS_OS.C/H contain functions primarily aimed at

making accesses to devices and critical information in memory thread-safe.

FC-1(4) μC/FS interfaces with memory devices through drivers following a generic

driver model. It is possible to create a driver for a different type of device from

this model/template.

��
�����
����

%�&
��
���

%�%�
��
���

��
���
��
���

��
���
����)��������(������

��'

��.

&���

��,
��
���

����3����
����������

%�%�
���
	�

%�&�
���
	�

��
����
3����

����������

���

���

���

�
� ���

���

���

���
��	�
���

����

����
����

385

μC/FS Porting Manual

FC-1(5) The IDE/CF driver can be ported to any ATA host controller or bus interface.

FC-1(6) The NAND driver can be ported for many physical organizations (page size,

bus width, etc.).

FC-1(7) The NAND driver can be ported to any bus interface. A NAND device can also

be located directly on GPIO and accessed by direct toggling of port pins.

FC-1(8) The NAND driver can be ported to any SPI peripheral (for SPI flash). A NAND

device can also be located directly on GPIO and accessed by direct toggling of

port pins.

FC-1(9) The NOR driver can be ported to many physical organization (command set,

bus type, etc.).

FC-1(10) The NOR driver can be ported to any bus interface.

FC-1(11) The NOR driver can be ported to any SPI peripheral (for SPI flash).

FC-1(12) The SD/MMC driver can be ported to any SD/MMC host controller for

cardmode access.

FC-1(13) The SD/MMC driver can be ported to any SPI peripheral for SPI mode access.

C-1 DATE/TIME MANAGEMENT

Depending on the settings of μC/Clk, you might have to write time management functions

that are specific to your application. For example, you might have to define the function

Clk_ExtTS_Get() to obtain the timestamp of your system provided by a real-time clock

peripheral. Please refer to μC/Clk manual for more details.

386

μC/FS Porting Manual

C-2 CPU PORT

μC/CPU is a processor/compiler port needed for μC/FS to be CPU/compiler-independant.

Ports for the most popular architectures are already available in the μC/CPU distribution. If

the μC/CPU port for your target architecture is not available, you should create your own

based on the port template (also available in μC/CPU distribution). You should refer to the

μC/CPU user manual to know how you should use it in your project.

C-3 OS KERNEL

μC/FS can be used with or without an RTOS. Either way, an OS port must be included in

your project. The port includes one code/header file pair:

fs_os.c

fs_os.h

μC/FS manages devices and data structures that may not be accessed by severally tasks

simultaneously. An OS kernel port leverages the kernel’s mutual exclusion services

(mutexes) for that purpose.

These files are generally placed in a directory named according to the following rubric:

\Micrium\Software\uC-FS\OS\<os_name>

Four sets of files are included with the μC/FS distribution:

\Micrium\Software\uC-FS\OS\Template Template

\Micrium\Software\uC-FS\OS\None No OS kernel port

\Micrium\Software\uC-FS\OS\uCOS-II μC/OS-II port

\Micrium\Software\uC-FS\OS\uCOS-III μC/OS-III port

If you don’t use any OS (including a custom in-house OS), you should include the port for

no OS in your project. You must also make sure that you manage interrupts correctly.

If you are using μC/OS-II or μC/OS-III, you should include the appropriate ports in your

project. If you use another OS, you should create your own port based on the template. The

functions that need to be written in this port are described here.

387

μC/FS Porting Manual

FS_OS_Init(), FS_OS_Lock() and FS_OS_Unlock()

The core data structures are protected by a single mutex. FS_OS_Init() creates this

semaphore. FS_OS_Lock() and FS_OS_Unlock() acquire and release the resource. Lock

operations are never nested.

FS_OS_DevInit(), FS_OS_DevLock() and FS_OS_DevUnlock()

File system device, generally, do not tolerate multiple simultaneous accesses. A different

mutex controls access to each device and information about it in RAM. FS_OS_DevInit()

creates one mutex for each possible device. FS_OS_DevLock() and FS_OS_DevUnlock()

acquire and release access to a specific device. Lock operations for the same device are

never nested.

FS_OS_FileInit(), FS_OS_FileAccept(), FS_OS_FileLock() and

FS_OS_FileUnlock()

Multiple calls to file access functions may be required for a file operation that must be

guaranteed atomic. For example, a file may be a conduit of data from one task to several. If a

data entry cannot be read in a single file read, some lock is necessary to prevent preemption

by another consumer. File locks, represented by API functions like FSFile_LockGet() and

flockfile(), provide a solution. Four functions implement the actual lock in the OS port.

FS_OS_FileInit() creates one mutex for each possible file. FS_OS_FileLock()/

FS_OS_FileAccept() and FS_OS_FileUnlock() acquire and release access to a specific

file. Lock operations for the same file MAY be nested, so the implementations must be able to

determine whether the active task owns the mutex. If it does, then an associated lock count

should be incremented; otherwise, it should try to acquire the resource as normal.

388

μC/FS Porting Manual

FS_OS_WorkingDirGet() and FS_OS_WorkingDirSet()

File and directory paths are typically interpreted absolutely; they must start at the root

directory, specifying every intermediate path component. If much work will be

accomplished upon files in a certain directory or a task requires a root directory as part of

its context, working directories are valuable. Once a working directory is set for a task,

subsequent non-absolute paths will be interpreted relative to the set directory.

Listing C-1 FS_OS_WorkingDirGet()/Set() (μC/OS-III)

LC-1(1) FS_OS_WorkingDirGet() gets the pointer to the working directory associated

with the active task. In μC/OS-III, the pointer is stored in one of the task

registers, a set of software data that is part of the task context (just like

hardware register values). The implantation casts the integral register value to a

#if (FS_CFG_WORKING_DIR_EN == DEF_ENABLED)

CPU_CHAR *FS_OS_WorkingDirGet (void) (1)

{

 OS_ERR os_err;

 CPU_INT32U reg_val;

 CPU_CHAR *p_working_dir;

 reg_val = OSTaskRegGet((OS_TCB *) 0,

 FS_OS_REG_ID_WORKING_DIR,

 &os_err);

 if (os_err != OS_ERR_NONE) {

 reg_val = 0u;

 }

 p_working_dir = (CPU_CHAR *)reg_val;

 return (p_working_dir);

}

#endif

#if (FS_CFG_WORKING_DIR_EN == DEF_ENABLED)

void FS_OS_WorkingDirSet (CPU_CHAR *p_working_dir) (2)

{

 OS_ERR os_err;

 CPU_INT32U reg_val;

 reg_val = (CPU_INT32U)p_working_dir;

 OSTaskRegSet((OS_TCB *) 0,

 FS_OS_REG_ID_WORKING_DIR,

 reg_val,

 &os_err);

 (void)&os_err;

}

#endif

389

μC/FS Porting Manual

pointer to a character. If no working directory has been assigned, the return

value must be a pointer to NULL. In the case of μC/OS-III, that will be done

because the register values are cleared upon task creation.

LC-1(2) FS_OS_WorkingDirSet() associates a working directory with the active task.

The pointer is cast to the integral register data type and stored in a task register.

The application calls either of the core file system functions FS_WorkingDirSet() or

fs_chdir() to set the working directory. The core function forms the full path of the

working directory and “saves” it with the OS port function FS_OS_WorkingDirSet(). The

port function should associate it with the task in some manner so that it can be retrieved

with FS_OS_WorkingDirGet() even after many context switches have occurred.

Listing C-2 FS_OS_WorkingDirFree() (μC/OS-III)

LC-2(1) If the register value is zero, no working directory has been assigned and no

action need be taken.

LC-2(2) FS_WorkingDirObjFree() frees the working directory object to the working

directory pool. If this were not done, the unfreed object would constitute a

memory leak that could deplete the heap memory eventually.

#if (FS_CFG_WORKING_DIR_EN == DEF_ENABLED)

void FS_OS_WorkingDirFree (OS_TCB *p_tcb)

{

 OS_ERR os_err;

 CPU_INT32U reg_val;

 CPU_CHAR *path_buf;

 reg_val = OSTaskRegGet(p_tcb,

 FS_OS_REG_ID_WORKING_DIR,

 &os_err);

 if (os_err != OS_ERR_NONE) {

 return;

 }

 if (reg_val == 0u) { (1)

 return;

 }

 path_buf = (CPU_CHAR *)reg_val;

 FS_WorkingDirObjFree(path_buf); (2)

}

#endif

390

μC/FS Porting Manual

The character string for the working directory is allocated from the μC/LIB heap. If a task is

deleted, it must be freed (made available for future allocation) to avert a crippling memory

leak. The internal file system function FS_WorkingDirObjFree() releases the string to an

object pool. In the port for μC/OS-III, that function is called by FS_OS_WorkingDirFree()

which must be called by the assigned task delete hook.

FS_OS_Dly_ms()

Device drivers and example device driver ports delay task execution FS_OS_Dly_ms().

Common functions allow BSP developers to optimize implementation easily. A millisecond

delay may be accomplished with an OS kernel service, if available. The trivial

implementation of a delay (particularly a sub-millisecond delay) is a while loop; better

performance may be achieved with hardware timers with semaphores for wait and

asynchronous notification. The best solution will vary from one platform to another, since

the additional context switches may prove burdensome. No matter which strategy is

selected, the function MUST delay for at least the specified time amount; otherwise,

sporadic errors can occur. Ideally, the actual time delay will equal the specified time amount

to avoid wasting processor cycles.

Listing C-3 FS_OS_Dly_ms()

void FS_BSP_Dly_ms (CPU_INT16U ms)

{

 /* $$$$ Insert code to delay for specified number of millieconds. */

}

391

μC/FS Porting Manual

FS_OS_Sem####()

The four generic OS semaphore functions provide a complete abstraction of a basic OS

kernel service. FS_OS_SemCreate() creates a semaphore which may later be deleted with

FS_OS_SemDel(). FS_OS_SemPost() signals the semaphore (with or without timeout) and

FS_OS_SemPend() waits until the semaphore is signaled. On systems without an OS kernel,

the trivial implementations in Listing C-4 are recommended.

Listing C-4 FS_OS_Sem####() trivial implementations

CPU_BOOLEAN FS_OS_SemCreate (FS_BSP_SEM *p_sem, (1)

 CPU_INT16U cnt)

{

 p_sem = cnt; / $$$$ Create semaphore with initial count 'cnt'. */

 return (DEF_OK);

}

CPU_BOOLEAN FS_OS_SemDel (FS_BSP_SEM *p_sem) (2)

{

 p_sem = 0u; / $$$$ Delete semaphore. */

 return (DEF_OK);

}

392

μC/FS Porting Manual

Listing C-5 FS_OS_Sem####() trivial implementations (continued)

LC-5(1) FS_OS_SemCreate() creates a semaphore in the variable p_sem. For this trivial

implementation, FS_BSP_SEM is a integer type which stores the current count,

i.e., the number of objects available.

LC-5(2) FS_OS_SemDel() deletes a semaphore created by FS_OS_SemCreate().

CPU_BOOLEAN FS_OS_SemPend (FS_BSP_SEM *p_sem, (3)

 CPU_INT32U timeout)

{

 CPU_INT32U timeout_cnts;

 CPU_INT16U sem_val;

 CPU_SR_ALLOC();

 if (timeout == 0u) {

 sem_val = 0u;

 while (sem_val == 0u) {

 CPU_CRITICAL_ENTER();

 sem_val = *p_sem; /* $$$$ If semaphore available ... */

 if (sem_val > 0u) {

 p_sem = sem_val - 1u; / ... decrement semaphore count. */

 }

 CPU_CRITICAL_EXIT();

 }

 } else {

 timeout_cnts = timeout * FS_BSP_CNTS_PER_MS;

 sem_val = 0;

 while ((timeout_cnts > 0u) &&

 (sem_val == 0u)) {

 CPU_CRITICAL_ENTER();

 sem_val = *p_sem; /* $$$$ If semaphore available ... */

 if (sem_val > 0) {

 p_sem = sem_val - 1u; / ... decrement semaphore count. */

 }

 CPU_CRITICAL_EXIT();

 timeout_cnts--;

 }

 }

 if (sem_val == 0u) {

 return (DEF_FAIL);

 } else {

 return (DEF_OK);

 }

}

393

μC/FS Porting Manual

Listing C-6 FS_OS_Sem####() trivial implementations (continued)

LC-6(3) FS_OS_SemPend() waits until a semaphore is signaled. If a zero timeout is

given, the wait is possibly infinite (it never times out).

LC-6(4) FS_OS_SemPost() signals a semaphore.

CPU_BOOLEAN FS_OS_SemPost (FS_BSP_SEM *p_sem) (4)

{

 CPU_INT16U sem_val;

 CPU_SR_ALLOC();

 CPU_CRITICAL_ENTER();

 sem_val = *p_sem; /* $$$$ Increment semaphore value. */

 sem_val++;

 *p_sem = sem_val;

 CPU_CRITICAL_EXIT();

 return (DEF_OK);

}

394

μC/FS Porting Manual

C-4 DEVICE DRIVER

Devices drivers for the most popular devices are already available for μC/FS. If you use a

particular device for which no driver exist, you should read this section to understand how

to build your own driver.

A device driver is registered with the file system by passing a pointer to its API structure as

the first parameter of FS_DevDrvAdd(). The API structure, FS_DEV_API, includes pointers to

eight functions used to control and access the device:

The functions which must be implemented are listed and described in Table C-1. The first two

functions, NameGet() and Init(), act upon the driver as a whole; neither should interact

with any physical devices. The remaining functions act upon individual devices, and the first

argument of each is a pointer to a FS_DEV structure which holds device information, including

the unit number which uniquely identifies the device unit (member UnitNbr).

const FS_DEV_API FSDev_#### = {

 FSDev_####_NameGet,

 FSDev_####_Init,

 FSDev_####_Open,

 FSDev_####_Close,

 FSDev_####_Rd,

#if (FS_CFG_RD_ONLY_EN == DEF_DISABLED)

 FSDev_####_Wr,

#endif

 FSDev_####_Query,

 FSDev_####_IO_Ctrl

};

Function Description

NameGet() Get driver name.

Init() Initialize driver.

Open() Open a device.

Close() Close a device.

Rd() Read from a device.

Wr() Write to a device.

Query() Get information about a device.

395

μC/FS Porting Manual

Table C-1 Device Driver API Functions

IO_Ctrl() Execute device I/O control operation.

Function Description

396

μC/FS Porting Manual

C-4-1 NameGet()

static const CPU_CHAR *FSDev_####_NameGet (void);

Device drivers are identified by unique names, on which device names are based. For

example, the unique name for the NAND flash driver is “nand”; the NAND devices will be

named “nand:0:”, “nand:1:”, etc.

ARGUMENTS

None.

RETURNED VALUE

Pointer to the device driver name.

NOTES/WARNINGS

1 The name MUST NOT include the ‘:’ character.

2 The name MUST be constant; each time this function is called, the same name MUST be

returned.

3 The device driver NameGet() function is called while the caller holds the FS lock.

File Called from Code enabled by

fs_dev_####.c various N/A

397

μC/FS Porting Manual

C-4-2 Init()

static void FSDev_####_Init (void);

The device driver Init() function should initialize any structures, tables or variables that

are common to all devices or are used to manage devices accessed with the driver. This

function SHOULD NOT initialize any devices; that will be done individually for each with

the device driver’s Open() function.

ARGUMENTS

None.

RETURNED VALUE

None.

NOTES/WARNINGS

1 The device driver Init() function is called while the caller holds the FS lock.

File Called from Code enabled by

fs_dev_####.c FS_DevDrvAdd() N/A

398

μC/FS Porting Manual

C-4-3 Open()

static void FSDev_####_Open (FS_DEV *p_dev,

 void *p_dev_cfg,

 FS_ERR *p_err);

The device driver Open() function should initialize the hardware to access a device and

attempt to initialize that device. If this function is successful (i.e., it returns FS_ERR_NONE),

then the file system suite expects the device to be ready for read and write accesses.

ARGUMENTS

p_dev Pointer to device to open.

p_dev_cfg Pointer to device configuration.

p_err Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE Device opened successfully.

FS_ERR_DEV_ALREADY_OPEN Device unit is already opened.

FS_ERR_DEV_INVALID_CFG Device configuration specified invalid.

FS_ERR_DEV_INVALID_LOW_FMT Device needs to be low-level formatted.

FS_ERR_DEV_INVALID_LOW_PARAMS Device low-level device parameters

invalid.

FS_ERR_DEV_INVALID_UNIT_NBR Device unit number is invalid.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_NOT_PRESENT Device unit is not present.

FS_ERR_DEV_TIMEOUT Device timeout.

FS_ERR_MEM_ALLOC Memory could not be allocated.

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev_####.c FSDev_Open() N/A

399

μC/FS Porting Manual

NOTES/WARNINGS

1 Tracking whether a device is open is not necessary, because this should NEVER be

called when a device is already open.

2 Some drivers may need to track whether a device has been previously opened

(indicating that the hardware has previously been initialized).

3 This will be called EVERY time the device is opened.

4 The driver should identify the device instance to be opened by checking

p_dev->UnitNbr. For example, if “template:2:” is to be opened, then p_dev->UnitNbr

will hold the integer 2.

5 The device driver Open() function is called while the caller holds the device lock.

400

μC/FS Porting Manual

C-4-4 Close()

static void FSDev_####_Close (FS_DEV *p_dev);

The device driver Close() function should uninitialize the hardware and release or free any

resources acquired in the Open() function.

ARGUMENTS

p_dev Pointer to device to close.

RETURNED VALUE

None.

NOTES/WARNINGS

1 Tracking whether a device is open is not necessary, because this should ONLY be called

when a device is open.

2 This will be called EVERY time the device is closed.

3 The device driver Close() function is called while the caller holds the device lock.

File Called from Code enabled by

fs_dev_####.c FSDev_Close() N/A

401

μC/FS Porting Manual

C-4-5 Rd()

static void FSDev_####_Rd (FS_DEV *p_dev,

 void *p_dest,

 FS_SEC_NBR start,

 FS_SEC_QTY cnt,

 FS_ERR *p_err);

The device driver Rd() function should read from a device and store data in a buffer. If an

error is returned, the file system suite assumes that no data is read; if not all data can be

read, an error MUST be returned.

ARGUMENTS

p_dev Pointer to device to read from.

p_dest Pointer to destination buffer.

start Start sector of read.

cnt Number of sectors to read

p_err Pointer to variable that will receive the return error code from this function

FS_ERR_NONE Sector(s) read.

FS_ERR_DEV_INVALID_UNIT_NBR Device unit number is invalid.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev_####.c FSDev_RdLocked() N/A

402

μC/FS Porting Manual

NOTES/WARNINGS

1 Tracking whether a device is open is not necessary, because this should ONLY be called

when a device is open.

2 The device driver Rd() function is called while the caller holds the device lock.

C-4-6 Wr()

static void FSDev_####_Wr (FS_DEV *p_dev,

 void *p_src,

 FS_SEC_NBR start,

 FS_SEC_QTY cnt,

 FS_ERR *p_err);

The device driver Wr() function should write to a device the data from a buffer. If an error

is returned, the file system suite assumes that no data has been written.

ARGUMENTS

p_dev Pointer to device to write to.

p_src Pointer to source buffer.

start Start sector of write.

cnt Number of sectors to write

File Called from Code enabled by

fs_dev_####.c FSDev_WrLocked() N/A

403

μC/FS Porting Manual

p_err Pointer to variable that will receive the return error code from this function

FS_ERR_NONE Sector(s) written.

FS_ERR_DEV_INVALID_UNIT_NBR Device unit number is invalid.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

NOTES/WARNINGS

1 Tracking whether a device is open is not necessary, because this should ONLY be called

when a device is open.

2 The device driver Wr() function is called while the caller holds the device lock.

404

μC/FS Porting Manual

C-4-7 Query()

static void FSDev_####_Query (FS_DEV *p_dev,

 FS_DEV_INFO *p_info,

 FS_ERR *p_err);

The device driver Query() function gets information about a device.

ARGUMENTS

p_dev Pointer to device to query.

p_info Pointer to structure that will receive device information.

p_err Pointer to variable that will receive the return error code from this function

FS_ERR_NONE Device information obtained.

FS_ERR_DEV_INVALID_UNIT_NBR Device unit number is invalid.

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

RETURNED VALUE

None.

NOTES/WARNINGS

1 Tracking whether a device is open is not necessary, because this should ONLY be called

when a device is open.

2 The device driver Query() function is called while the caller holds the device lock.

File Called from Code enabled by

fs_dev_####.c FSDev_Open(),
FSDev_Refresh(),
FSDev_QueryLocked()

N/A

405

μC/FS Porting Manual

For more information about the FS_DEV_INFO structure, see section D-2 “FS_DEV_INFO” on

page 510.

406

μC/FS Porting Manual

C-4-8 IO_Ctrl()

static void FSDev_####_IO_Ctrl (FS_DEV *p_dev,

 FS_IO_CTRL_CMD cmd,

 Void *p_buf,

 FS_ERR *p_err);

The device driver IO_Ctrl() function performs an I/O control operation.

ARGUMENTS

p_dev Pointer to device to query.

p_buf Buffer which holds data to be used for operations

OR

Buffer in which data will be stored as a result of operation.

p_err Pointer to variable that will receive the return error code from this function

FS_ERR_NONE Control operation performed successfully.

FS_ERR_DEV_INVALID_IO_CTRL I/O control operation unknown to driver.

FS_ERR_DEV_INVALID_UNIT_NBR Device unit number is invalid.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_NOT_OPEN Device is not open.

FS_ERR_DEV_NOT_PRESENT Device is not present.

FS_ERR_DEV_TIMEOUT Device timeout.

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev_####.c various N/A

407

μC/FS Porting Manual

NOTES/WARNINGS

1 Tracking whether a device is open is not necessary, because this should ONLY be called

when a device is open.

2 Defined I/O control operations are

a. FS_DEV_IO_CTRL_REFRESH Refresh device.

b. FS_DEV_IO_CTRL_LOW_FMT Low-level format device.

c. FS_DEV_IO_CTRL_LOW_MOUNT Low-level mount device.

d. FS_DEV_IO_CTRL_LOW_UNMOUNT Low-level unmount device.

e. FS_DEV_IO_CTRL_LOW_COMPACT Low-level compact device.

f. FS_DEV_IO_CTRL_LOW_DEFRAH Low-level defragment device.

g. FS_DEV_IO_CTRL_SEC_RELEASE Release data in sector

h. FS_DEV_IO_CTRL_PHY_RD Read physical device

i. FS_DEV_IO_CTRL_PHY_WR Write physical device

j. FS_DEV_IO_CTRL_PHY_RD_PAGE Read physical device page

k. FS_DEV_IO_CTRL_PHY_WR_PAGE Write physical device page

l. FS_DEV_IO_CTRL_PHY_ERASE_BLK Erase physical device block

m. FS_DEV_IO_CTRL_PHY_ERASE_CHIP Erase physical device

Not all of these operations are valid for all devices.

The device driver IO_Ctrl() function is called while the caller holds the device lock.

408

μC/FS Porting Manual

C-5 IDE/CF DEVICE BSP

If you use and IDE/CF device, a driver is already available for μC/FS. A BSP is required so

that the IDE driver will work on a particular system. The port includes one code file:

FS_DEV_IDE_BSP.C

Several example ports are included in the μC/FS distribution in files named according to the

following rubric:

\Micrium\Software\uC-FS\Examples\BSP\Dev\IDE\<manufacturer>\<board name>

Each BSP must implement the functions in Table C-2.

Function Description

FSDev_IDE_BSP_Open() Open (initialize) hardware.

FSDev_IDE_BSP_Close() Close (uninitialize) hardware.

FSDev_IDE_BSP_Lock() Acquire IDE bus lock.

FSDev_IDE_BSP_Unlock() Release IDE bus lock.

FSDev_IDE_BSP_Reset() Hardware-reset IDE device

FSDev_IDE_BSP_RegRd() Read from IDE device register.

FSDev_IDE_BSP_RegWr() Write to IDE device register.

FSDev_IDE_BSP_CmdWr() Write command to IDE device register.

FSDev_IDE_BSP_DataRd() Read data from IDE device.

FSDev_IDE_BSP_DataWr() Write data to IDE device.

FSDev_IDE_BSP_DMA_Start() Setup DMA for command (Initialize channel).

FSDev_IDE_BSP_DMA_End() End DMA transfer (and uninitialize channel).

FSDev_IDE_BSP_GetDrvNbr() Get IDE drive number.

FSDev_IDE_BSP_GetModesSupported() Get supported transfer modes.

FSDev_IDE_BSP_SetMode() Set transfer modes.

FSDev_IDE_BSP_Dly400_ns() Delay for 400 ns.

409

μC/FS Porting Manual

Table C-2 IDE/CF BSP Functions

Figure C-2 Command Execution

DMA
Command?

Setup DMA
FSDev_IDE_BSP_DMA_Start()

End DMA
FSDev_IDE_BSP_DMA_End()

Write command
FSDev_IDE_BSP_CmdWr()

Wait for data request

More data?

Read or write data
FSDev_IDE_BSP_DataRd/Wr()

Write command
FSDev_IDE_BSP_CmdWr()

Check for error

YesNo

Yes

No

Start

Return

410

μC/FS Porting Manual

C-5-1 FSDev_IDE_BSP_Open()

CPU_BOOLEAN FSDev_IDE_BSP_Open (FS_QTY unit_nbr);

Initialize IDE/CF hardware.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

RETURNED VALUE

DEF_OK, if interface was opened

DEF_FAIL, otherwise

NOTES/WARNINGS

This function will be called every time the IDE/CF device is opened.

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_Refresh() N/A

411

μC/FS Porting Manual

C-5-2 FSDev_IDE_BSP_Close()

void FSDev_IDE_BSP_Close (FS_QTY unit_nbr);

Uninitialize IDE/CF hardware.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

RETURNED VALUE

None.

NOTES/WARNINGS

This function will be called every time the IDE/CF device is closed.

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_Close() N/A

412

μC/FS Porting Manual

C-5-3 FSDev_IDE_BSP_Lock() / FSDev_IDE_BSP_Unlock()

void FSDev_IDE_BSP_Lock (FS_QTY unit_nbr);

void FSDev_IDE_BSP_Unlock (FS_QTY unit_nbr);

Acquire/release IDE/CF bus lock.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

RETURNED VALUE

None.

NOTES/WARNINGS

FSDev_IDE_BSP_Lock() will be called before the IDE/CF driver begins to access the

IDE/CF bus. The application should NOT use the same bus to access another device until

the matching call to FSDev_IDE_BSP_Unlock() has been made.

File Called from Code enabled by

fs_dev_ide_bsp.c various N/A

413

μC/FS Porting Manual

C-5-4 FSDev_IDE_BSP_Reset()

void FSDev_IDE_BSP_Reset (FS_QTY unit_nbr);

Hardware-reset the IDE/CF device.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_Refresh() N/A

414

μC/FS Porting Manual

C-5-5 FSDev_IDE_BSP_RegRd()

CPU_INT08U FSDev_IDE_BSP_RegRd (FS_QTY unit_nbr,

 CPU_INT08U reg);

Read from IDE/CF device register.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

reg Register to read:

FS_DEV_IDE_REG_ERR Error Register.

FS_DEV_IDE_REG_SC Sector Count Register.

FS_DEV_IDE_REG_SN Sector Number Register.

FS_DEV_IDE_REG_CYL Cylinder Low Register.

FS_DEV_IDE_REG_CYH Cylinder High Register.

FS_DEV_IDE_REG_DH Card/Drive/Head Register.

FS_DEV_IDE_REG_CMD Command Register.

FS_DEV_IDE_REG_ALTSTATUS Alternate Status Register.

RETURNED VALUE

Register value.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_ide_bsp.c various N/A

415

μC/FS Porting Manual

C-5-6 FSDev_IDE_BSP_RegWr()

void FSDev_IDE_BSP_RegWr (FS_QTY unit_nbr,

 CPU_INT08U reg,

 CPU_INT08U val);

Write to IDE/CF device register.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

reg Register to read:

FS_DEV_IDE_REG_FR Features Register.

FS_DEV_IDE_REG_SC Sector Count Register.

FS_DEV_IDE_REG_SN Sector Number Register.

FS_DEV_IDE_REG_CYL Cylinder Low Register.

FS_DEV_IDE_REG_CYH Cylinder High Register.

FS_DEV_IDE_REG_DH Card/Drive/Head Register.

FS_DEV_IDE_REG_CMD Command Register.

FS_DEV_IDE_REG_DEVCTRL Device Control Register.

val Value to write into register.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_ide_bsp.c various N/A

416

μC/FS Porting Manual

C-5-7 FSDev_IDE_BSP_CmdWr()

void FSDev_IDE_BSP_CmdWr (FS_QTY unit_nbr,

 CPU_INT08U cmd[]);

Write 7-byte command to IDE/CF device registers.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

cmd Array holding command.

RETURNED VALUE

None.

NOTES/WARNINGS

The 7 bytes of the command should be written to the IDE device registers as follows:

REG_FR = cmd[0]

REG_SC = cmd[1]

REG_SN = cmd[2]

REG_CYL = cmd[3]

REG_CYN = cmd[4]

REG_DH = cmd[5]

REG_CMD = cmd[6]

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_RdData()

FSDev_IDE_WrData()

N/A

417

μC/FS Porting Manual

C-5-8 FSDev_IDE_BSP_DataRd()

void FSDev_IDE_BSP_DataRd (FS_QTY unit_nbr,

 void *p_dest,

 CPU_SIZE_T cnt);

Read data from IDE/CF device.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

p_dest Pointer to destination memory buffer.

cnt Number of octets of data to read.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_RdData() N/A

418

μC/FS Porting Manual

C-5-9 FSDev_IDE_BSP_DataWr()

void FSDev_IDE_BSP_DataRd (FS_QTY unit_nbr,

 void *p_src,

 CPU_SIZE_T cnt);

Write data to IDE/CF device.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

p_src Pointer to source memory buffer.

cnt Number of octets of data to write.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_WrData() N/A

419

μC/FS Porting Manual

C-5-10 FSDev_IDE_BSP_DMA_Start()

void FSDev_IDE_BSP_DMA_Start (FS_QTY unit_nbr,

 void *p_data,

 CPU_SIZE_T cnt,

 FS_FLAGS mode_type,

 CPU_BOOLEAN rd);

Setup DMA for command (initialize channel).

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

p_data Pointer to memory buffer.

cnt Number of octets to transfer.

mode_type Transfer mode type:

FS_DEV_IDE_MODE_TYPE_DMA Multiword DMA mode.

FS_DEV_IDE_MODE_TYPE_UDMA Ultra-DMA mode.

rd Indicates whether transfer is read or write:

DEF_YES Transfer is read.

DEF_NO Transfer is write.

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_RdData()

FSDev_IDE_WrData()

N/A

420

μC/FS Porting Manual

NOTES/WARNINGS

DMA setup occurs before the command is executed (in FSDev_IDE_BSP_CmdWr()).

Afterwards, data transmission completion must be confirmed (in

FSDev_IDE_BSP_DMA_End()) before the driver checks the command status.

If the return value of FSDev_IDE_BSP_GetModesSupported() does not include

FS_DEV_IDE_MODE_TYPE_DMA or FS_DEV_IDE_MODE_TYPE_UDMA, this function need not be

implemented; it will never be called.

C-5-11 FSDev_IDE_BSP_DMA_End()

void FSDev_IDE_BSP_DMA_End (FS_QTY unit_nbr,

 void *p_data,

 CPU_SIZE_T cnt,

 CPU_BOOLEAN rd);

Setup DMA for command (initialize channel).

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

p_data Pointer to memory buffer.

cnt Number of octets to transfer.

rd Indicates whether transfer was read or write:

DEF_YES Transfer was read.

DEF_NO Transfer was write.

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_RdData()

FSDev_IDE_WrData()

N/A

421

μC/FS Porting Manual

RETURNED VALUE

None.

NOTES/WARNINGS

DMA setup occurs before the command is executed (in FSDev_IDE_BSP_CmdWr()).

Afterwards, data transmission completion must be confirmed (in

FSDev_IDE_BSP_DMA_End()) before the driver checks the command status.

When this function returns, the host controller should be setup to transmit commands in

PIO mode.

If the return value of FSDev_IDE_BSP_GetModesSupported() does not include

FS_DEV_IDE_MODE_TYPE_DMA or FS_DEV_IDE_MODE_TYPE_UDMA, this function need not be

implemented; it will never be called.

422

μC/FS Porting Manual

C-5-12 FSDev_IDE_BSP_GetDrvNbr()

CPU_INT08U FSDev_IDE_BSP_GetDrvNbr (FS_QTY unit_nbr);

Get IDE/CF driver number.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

RETURNED VALUE

Drive number (0 or 1).

NOTES/WARNINGS

Two IDE devices may be accessed on the same bus by setting the DEV bit of the drive/head

register. If the bit should be clear, this function should return 0; if the bit should be set, this

function should return 1.

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_Refresh() N/A

423

μC/FS Porting Manual

C-5-13 FSDev_IDE_BSP_GetModesSupported()

FS_FLAGS FSDev_IDE_BSP_GetModesSupported (FS_QTY unit_nbr);

Get supported transfer modes.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

RETURNED VALUE

Bit-mapped variable indicating supported transfer mode(s); should be the bitwise OR of

one or more of:

FS_DEV_IDE_MODE_TYPE_PIO PIO mode supported.

FS_DEV_IDE_MODE_TYPE_DMA Multiword DMA mode supported.

FS_DEV_IDE_MODE_TYPE_UDMA Ultra-DMA mode supported.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_Refresh() N/A

424

μC/FS Porting Manual

C-5-14 FSDev_IDE_BSP_SetMode()

CPU_INT08U FSDev_IDE_BSP_SetMode (FS_QTY unit_nbr,

 FS_FLAGS mode_type,

 CPU_INT08U mode);

Set transfer mode timings.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

mode_type Transfer mode type.

FS_DEV_IDE_MODE_TYPE_PIO PIO mode.

FS_DEV_IDE_MODE_TYPE_DMA Multiword DMA mode.

FS_DEV_IDE_MODE_TYPE_UDMA Ultra-DMA mode.

mode Transfer mode, between 0 and maximum mode supported for mode type by

device (inclusive)..

RETURNED VALUE

Mode selected; should be between 0 and mode, inclusive

NOTES/WARNINGS

If DMA is supported, two transfer modes will be setup. The first will be a PIO mode; the

second will be a Multiword DMA or Ultra-DMA mode. Thereafter, the host controller or bus

interface must be capable of both PIO and DMA transfers.

File Called from Code enabled by

fs_dev_ide_bsp.c FSDev_IDE_Refresh() N/A

425

μC/FS Porting Manual

C-5-15 FSDev_IDE_BSP_Dly400_ns()

CPU_INT08U FSDev_IDE_BSP_Dly400_ns (FS_QTY unit_nbr);

Delay 400-ns.

ARGUMENTS

unit_nbr Unit number of IDE/CF device.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_ide_bsp.c various N/A

426

μC/FS Porting Manual

C-6 NAND Flash Physical-Layer Driver

The NAND driver is divided into three layers. The topmost layer, the generic driver, requires

an intermediate physical-layer driver to effect flash operations like erasing blocks and

writing octets depending on the memory type and organization. The physical-layer driver is

already available for different architectures and includes one code/header file pair named

according to the following rubric:

FS_DEV_NAND_<device_name>.C

FS_DEV_NAND_<device_name>.H

The physical-layer driver acts via a BSP. The generic drivers for traditional NAND flash

require a BSP as described in Appendix C, “NAND Flash BSP” on page 440. The drivers for

SPI flash (like Atmel Dataflash) require a SPI BSP as described in Appendix C, “NAND Flash

SPI BSP” on page 450.

Figure C-3 NAND Driver Architecture

%�%����
���
���
����	�
����

����������� ���!��������� "��#$!����%�%&�
� �"&���$�&�'��"���$ ��(��#��)��'�$�*
+���+� �����$++�,+�!-��$���.�����/.$++0%

�� �
	��/!� �����
���

�!!������2�2��� �$�,.��� "��#$!�%

*��

���
����	�
�"#���$"%��

1 �"�$+�5�6. � �"�$+* �5�6��$�6'��"��� �"3�
,.��� "��#$!�%

���
����	�
��"&%�$"%��
���
����	�
��"&%�$����

���
����	�
���
��

%�%�����
	�

�� �
	��/!� �����
���

�!!������2�2��� �$ �7�1�� "��#$!�%

*��

1 �"�$+�5�6. � �"�$+* �5�6��$�6'��"��� �"3��
7�1�� "��#$!�%

���
����	�
���
��

%�%�����
	�

���
����	�
�	�&#��

��������������)�	� ���
��������)�	�

427

μC/FS Porting Manual

Each physical-layer driver must implement the functions to be placed into a

FS_DEV_NAND_PHY_API structure:

The functions which must be implemented are listed and described in Table C-5. The first

argument of each of these is a pointer to a FS_DEV_NAND_PHY_DATA structure which holds

physical device information. Specific members will be described in subsequent sections as

necessary. The NAND driver populates an internal instance of this type based upon

configuration information. Before the file system suite has been initialized, the application

may do the same if raw device accesses are a necessary part of its start-up procedure.

const FS_DEV_NAND_PHY_API FSDev_NAND_#### {

 FSDev_NAND_PHY_Open,

 FSDev_NAND_PHY_Close,

 FSDev_NAND_PHY_RdPage,

 FSDev_NAND_PHY_RdSpare,

 FSDev_NAND_PHY_WrPage,

 FSDev_NAND_PHY_WrSpare,

 FSDev_NAND_PHY_CopyBack,

 FSDev_NAND_PHY_EraseBlk,

 FSDev_NAND_PHY_IO_Ctrl,

};

Function Description

Open() Open (initialize) a NAND device and get NAND device information.

Close() Close (uninitialize) a NAND device.

RdPage() Read a page from a NAND device and store data in buffer.

RdSpare() Read a spare area from a NAND device and store data in buffer.

WrPage() Write to a page of a NAND device from data in buffer.

WrSpare() Write to a spare area of a NAND device from data in buffer.

WrCopyBack) Copy data from one block to another.

EraseBlk() Erase block of NAND device.

IO_Ctrl() Perform NAND device I/O control operation.

428

μC/FS Porting Manual

Table C-3 NAND flash physical-layer driver functions

429

μC/FS Porting Manual

C-6-1 Open()

void Open (FS_DEV_NAND_PHY_DATA *p_phy_data,

 FS_ERR *p_err);

Open (initialize) a NAND device instance and get NAND device information.

ARGUMENTS

p_phy_data Pointer to NAND phy data.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

NOTES/WARNINGS

Several members of p_phy_data may need to be used/assigned:

1 UnitNbr is the unit number of the NAND device.

2 BlkCnt and BlkSize MUST be assigned the block count and block size of the device,

respectively. A block is the device erase unit, e.g., the smallest area of the device that

can be erased at any time.

3 PageSize MUST be assigned the page size of the device. A page is the device program

unit, i.e., the smallest area of the device that can be programmed at any time.

4 BlkSize MUST be a multiple of PageSize.

5 PageSize MUST be a multiple of SecSize.

6 SpareSize MUST be assigned the size (in bytes) of the spare arear per sector.

File Called from Code enabled by

NAND physical-layer driver FSDev_NAND_Open() N/A

430

μC/FS Porting Manual

7 MaxClkFreq specifies the maximum SPI clock frequency.

8 BusWidth specify the bus configuration.

431

μC/FS Porting Manual

C-6-2 Close()

void Close (FS_DEV_NAND_PHY_DATA *p_phy_data);

Close (uninitialize) a NAND device instance.

ARGUMENTS

p_phy_data Pointer to NAND phy data.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

NAND physical-layer driver FSDev_NAND_Close() N/A

432

μC/FS Porting Manual

C-6-3 RdPage()

void RdPage (FS_DEV_NAND_PHY_DATA *p_phy_data,

 void *p_dest,

 void *p_dest_spare,

 FS_SEC_NBR sec_nbr_phy,

 FS_ERR *p_err);

Read from a NAND device and store data in buffer.

ARGUMENTS

p_phy_data Pointer to NAND phy data.

p_dest Pointer to destination buffer.

p_dest_spare Pointer to destination spare buffer.

sec_nbr_phy Physical sector to read from the page.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Octets read successfully.

FS_ERR_DEV_INVALID_OP Device invalid operation.

FS_ERR_DEV_INVALID_ECC Invalid ECC.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout error.

RETURNED VALUE

None.

File Called from Code enabled by

NAND physical-layer driver FSDev_NAND_PhyRdSecHandler() N/A

433

μC/FS Porting Manual

NOTES/WARNINGS

None.

434

μC/FS Porting Manual

C-6-4 RdSpare()

void RdSpare (FS_DEV_NAND_PHY_DATA *p_phy_data,

 void *p_dest,

 FS_SEC_NBR sec_nbr_phy,

 CPU_INT08U offset,

 CPU_INT08U bytes_nbr,

 FS_ERR *p_err);

Read data from NAND page spare area and store data in buffer.

ARGUMENTS

p_phy_data Pointer to NAND phy data.

p_dest Pointer to destination buffer.

sec_nbr_phy Physical sector to read from the page.

offset Offset in the spare area.

bytes_nbr Number of bytes to read.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Octets read successfully.

FS_ERR_DEV_INVALID_OP Device invalid operation.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout error.

RETURNED VALUE

None.

File Called from Code enabled by

NAND physical-layer driver FSDev_NAND_PhyRdSpareHandler() N/A

435

μC/FS Porting Manual

C-6-5 WrPage()

void WrPage (FS_DEV_NAND_PHY_DATA *p_phy_data,

 void *p_src,

 void *p_src_spare,

 FS_SEC_NBR sec_nbr_phy,

 FS_ERR *p_err);

Write to a NAND device.

ARGUMENTS

p_phy_data Pointer to NAND phy data.

p_src Pointer to source buffer.

p_src_spare Pointer to source spare buffer.

sec_nbr_phy Physical sector to write.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Octets written successfully.

FS_ERR_DEV_INVALID_OP Device invalid operation.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

NAND physical-layer driver FSDev_NAND_PhyWrSecHandler() N/A

436

μC/FS Porting Manual

C-6-6 WrSpare()

void WrSpare (FS_DEV_NAND_PHY_DATA *p_phy_data,

 void *p_src,

 FS_SEC_NBR sec_nbr_phy,

 CPU_INT08U offset,

 CPU_INT08U bytes_nbr,

 FS_ERR *p_err);

Write data to a NAND device page spare area.

ARGUMENTS

p_phy_data Pointer to NAND phy data.

p_src Pointer to source buffer.

sec_nbr_phy Sector number for which the spare area will be written.

offset Offset in the spare area.

bytes_nbr Number of bytes to write.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Octets written successfully.

FS_ERR_DEV_INVALID_OP Device invalid operation.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout error.

RETURNED VALUE

None.

File Called from Code enabled by

NAND physical-layer driver FSDev_NAND_PhyWrSpareHandler() N/A

437

μC/FS Porting Manual

C-6-7 CopyBack()

void CopyBack (FS_DEV_NAND_PHY_DATA *p_phy_data,

 CPU_INT32U src_page_nbr_phy,

 CPU_INT32U dest_page_nbr_phy,

 FS_ERR *p_err);

Make internal copy back of page data.

ARGUMENTS

p_phy_data Pointer to NAND phy data.

src_page_nbr_phy Source page number.

dest_page_nbr_phy Destination page number.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Page copied successfully.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

NAND physical-layer driver N/A N/A

438

μC/FS Porting Manual

C-6-8 EraseBlk()

void EraseBlk (FS_DEV_NAND_PHY_DATA *p_phy_data,

 CPU_INT32U blk_nbr_phy,

 FS_ERR *p_err);

Erase block of NAND device.

ARGUMENTS

p_phy_data Pointer to NAND phy data.

blk_nbr_phy Block to erase.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Block erased successfully.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

NAND physical-layer driver FSDev_NAND_PhyEraseBlkHandler() N/A

439

μC/FS Porting Manual

C-6-9 IO_Ctrl()

void IO_Ctrl (FS_DEV_NAND_PHY_DATA *p_phy_data,

 CPU_INT08U opt,

 void *p_data,

 FS_ERR *p_err);

Perform NAND device I/O control operation.

ARGUMENTS

p_phy_data Pointer to NAND phy data.

opt Control command.

p_data Buffer which holds data to be used for operation.

OR

Buffer in which data will be stored as a result of operation.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_DEV_INVALID_IO_CTRL I/O control unknown to driver.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

Table C-4

File Called from Code enabled by

NAND physical-layer driver N/A N/A

440

μC/FS Porting Manual

C-7 NAND Flash BSP

The NAND driver must adapt to the specific hardware using a BSP. The following functions

must be implemented to interface the NAND driver on a parallel bus.

441

μC/FS Porting Manual

C-7-1 FSDev_NAND_BSP_Open()

CPU_BOOLEAN FSDev_NAND_BSP_Open (FS_QTY unit_nbr,

 CPU_INT08U bus_width);

Open (initialize) bus for NAND.

ARGUMENTS

unit_nbr Unit number of NAND.

bus_width Bus width, in bits.

RETURNED VALUE

DEF_OK, if interface was opened.

DEF_FAIL, otherwise.

NOTES/WARNINGS

This function will be called every time the device is opened.

File Called from Code enabled by

fs_dev_nand_bsp.c NAND physical-layer driver N/A

442

μC/FS Porting Manual

C-7-2 FSDev_NAND_BSP_Close()

void FSDev_NAND_BSP_Close (FS_QTY unit_nbr);

Close (uninitialize) bus for NAND.

ARGUMENTS

unit_nbr Unit number of NAND.

RETURNED VALUE

None.

NOTES/WARNINGS

This function will be called every time the device is closed.

File Called from Code enabled by

fs_dev_nand_bsp.c NAND physical-layer driver N/A

443

μC/FS Porting Manual

C-7-3 FSDev_NAND_BSP_ChipSelEn()

void FSDev_NAND_BSP_ChipSelEn (FS_QTY unit_nbr);

Enable NAND chip select / chip enable.

ARGUMENTS

unit_nbr Unit number of NAND.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_nand_bsp.c NAND physical-layer driver N/A

444

μC/FS Porting Manual

C-7-4 FSDev_NAND_BSP_ChipSelDis()

void FSDev_NAND_BSP_ChipSelDis (FS_QTY unit_nbr);

Disable NAND chip select / chip enable.

ARGUMENTS

unit_nbr Unit number of NAND.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_nand_bsp.c NAND physical-layer driver N/A

445

μC/FS Porting Manual

C-7-5 FSDev_NAND_BSP_RdData()

void FSDev_NAND_BSP_RdData (FS_QTY unit_nbr,

 void *p_dest);

 CPU_SIZE_T cnt);

Read data from NAND.

ARGUMENTS

unit_nbr Unit number of NAND.

p_dest Pointer destination memory buffer.

cnt Number of octets to read.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_nand_bsp.c NAND physical-layer driver N/A

446

μC/FS Porting Manual

C-7-6 FSDev_NAND_BSP_WrAddr()

void FSDev_NAND_BSP_WrAddr (FS_QTY unit_nbr,

 CPU_INT08U *p_addr);

 CPU_SIZE_T cnt);

Write address to NAND.

ARGUMENTS

unit_nbr Unit number of NAND.

p_addr Pointer to buffer that holds address.

cnt Number of octets to write.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_nand_bsp.c NAND physical-layer driver N/A

447

μC/FS Porting Manual

C-7-7 FSDev_NAND_BSP_WrCmd()

void FSDev_NAND_BSP_WrCmd (FS_QTY unit_nbr,

 CPU_INT08U *p_cmd);

 CPU_SIZE_T cnt);

Write command to NAND.

ARGUMENTS

unit_nbr Unit number of NAND.

p_cmd Pointer to buffer that holds command.

cnt Number of octets to write.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_nand_bsp.c NAND physical-layer driver N/A

448

μC/FS Porting Manual

C-7-8 FSDev_NAND_BSP_WrData()

void FSDev_NAND_BSP_WrData (FS_QTY unit_nbr,

 CPU_INT08U *p_src);

 CPU_SIZE_T cnt);

Write data to NAND.

ARGUMENTS

unit_nbr Unit number of NAND.

p_src Pointer to source memory buffer

cnt Number of octets to write.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_nand_bsp.c NAND physical-layer driver N/A

449

μC/FS Porting Manual

C-7-9 FSDev_NAND_BSP_WaitWhileBusy()

CPU_BOOLEAN FSDev_NAND_BSP_WaitWhileBusy

 (FS_QTY unit_nbr,

 FS_DEV_NAND_PHY_DATA *p_addr,

 CPU_BOOLEAN (*poll_fnct)(FS_DEV_NAND_PHY_DATA *),

 CPU_INT32U to_us);

Wait while NAND is busy.

ARGUMENTS

unit_nbr Unit number of NAND.

p_phy_data Pointer to NAND phy data.

poll_fnct Pointer to function to poll, if there is no hardware ready/busy

signal.

to_us Timeout, in microseconds.

RETURNED VALUE

DEF_OK, if NAND became ready.

DEF_FAIL, otherwise.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_nand_bsp.c NAND physical-layer driver N/A

450

μC/FS Porting Manual

C-8 NAND Flash SPI BSP

The NAND driver must adapt to the specific hardware using a BSP. A serial NAND Flash will

be interfaced on a SPI bus. See Appendix C, “SPI BSP” on page 494 for the details on how

to implement the software port for your SPI bus.

C-9 NOR Flash Physical-Layer Driver

The NOR driver is divided into three layers. The topmost layer, the generic driver, requires

an intermediate physical-layer driver to effect flash operations like erasing blocks and

writing octets. The physical-layer driver includes one code/header file pair named according

to the following rubric:

FS_DEV_NOR_<device_name>.C

FS_DEV_NOR_<device_name>.H

A non-uniform flash—a flash with some blocks of one size and some blocks of another—

will require a custom driver adapted from the generic driver for the most similar medium

type. Multiple small blocks should be grouped together to form large blocks, effectively

making the flash appear uniform to the generic driver. A custom physical-layer driver can

also implement advanced program operations unique to a NOR device family.

451

μC/FS Porting Manual

The physical-layer driver acts via a BSP. The generic drivers for traditional NOR flash require

a BSP as described in Appendix C, “NOR Flash BSP” on page 459. The drivers for SPI flash

require a SPI BSP as described in Appendix C, “NOR Flash SPI BSP” on page 466.

Figure C-4 NOR Driver Architecture

Each physical-layer driver must implement the functions to be placed into a

FS_DEV_NOR_PHY_API structure:

The functions which must be implemented are listed and described in Table C-5. The first

argument of each of these is a pointer to a FS_DEV_NOR_PHY_DATA structure which holds

physical device information. Specific members will be described in subsequent sections as

const FS_DEV_NOR_PHY_API FSDev_NOR_#### {

 FSDev_NOR_PHY_Open,

 FSDev_NOR_PHY_Close,

 FSDev_NOR_PHY_Rd,

 FSDev_NOR_PHY_Wr,

 FSDev_NOR_PHY_EraseBlk,

 FSDev_NOR_PHY_IO_Ctrl,

};

fs_dev_nor.c/h

Provides generic driver interface (e.g.,
init, read, write) and performs wear-
leveling so all blocks are used equally.

Physical-Layer
Driver

Implements particular
NOR flash command
set; accesses NOR
directly on bus
interface.

BSP

Initialize/uninitial-
ize bus interface.

fs_dev_nor_bsp.
c

NOR

Bus
interface

Physical-Layer
Driver

Implements particular
NOR flash command
set; accesses NOR
with SPI BSP.

SPI BSP

Access NOR via
SPI.

fs_dev_nor_bsp.c

Traditional
NOR Serial NOR

452

μC/FS Porting Manual

necessary. The NOR driver populates an internal instance of this type based upon

configuration information. Before the file system suite has been initialized, the application

may do the same if raw device accesses are a necessary part of its start-up procedure.

Table C-5 NOR flash physical-layer driver functions

Function Description

Open() Open (initialize) a NOR device and get NOR device information.

Close() Close (uninitialize) a NOR device.

Rd() Read from a NOR device and store data in buffer.

Wr() Write to a NOR device from a buffer.

EraseBlk() Erase block of NOR device.

IO_Ctrl() Perform NOR device I/O control operation.

453

μC/FS Porting Manual

C-9-1 Open()

void Open (FS_DEV_NOR_PHY_DATA *p_phy_data,

 FS_ERR *p_err);

Open (initialize) a NOR device instance and get NOR device information.

ARGUMENTS

p_phy_data Pointer to NOR phy data.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

NOTES/WARNINGS

Several members of p_phy_data may need to be used/assigned:

1 BlkCnt and BlkSize MUST be assigned the block count and block size of the device,

respectively.

2 RegionNbr specifies the block region that will be used. AddrRegionStart MUST be

assigned the start address of this block region.

3 DataPtr may store a pointer to any driver-specific data.

4 UnitNbr is the unit number of the NOR device.

5 MaxClkFreq specifies the maximum SPI clock frequency.

6 BusWIdth, BusWidthMax and PhyDevCnt specify the bus configuration. AddrBase

specifies the base address of the NOR flash memory.

File Called from Code enabled by

NOR physical-layer driver FSDev_NOR_Open() N/A

454

μC/FS Porting Manual

C-9-2 Close()

void Close (FS_DEV_NOR_PHY_DATA *p_phy_data);

Close (uninitialize) a NOR device instance.

ARGUMENTS

p_phy_data Pointer to NOR phy data.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

NOR physical-layer driver FSDev_NOR_Close() N/A

455

μC/FS Porting Manual

C-9-3 Rd()

void Rd (FS_DEV_NOR_PHY_DATA *p_phy_data,

 void *p_dest,

 CPU_INT32U start,

 CPU_INT32U cnt,

 FS_ERR *p_err);

Read from a NOR device and store data in buffer.

ARGUMENTS

p_phy_data Pointer to NOR phy data.

p_dest Pointer to destination buffer.

start Start address of read (relative to start of device).

cnt Number of octets to read.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Octets read successfully.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

NOR physical-layer driver FSDev_NOR_PhyRdHandler() N/A

456

μC/FS Porting Manual

C-9-4 Wr()

void Wr (FS_DEV_NOR_PHY_DATA *p_phy_data,

 void *p_src,

 CPU_INT32U start,

 CPU_INT32U cnt,

 FS_ERR *p_err);

Write to a NOR device from a buffer.

ARGUMENTS

p_phy_data Pointer to NOR phy data.

p_src Pointer to source buffer.

start Start address of write (relative to start of device).

cnt Number of octets to write.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Octets written successfully.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

NOR physical-layer driver FSDev_NOR_PhyWrHandler() N/A

457

μC/FS Porting Manual

C-9-5 EraseBlk()

void EraseBlk (FS_DEV_NOR_PHY_DATA *p_phy_data,

 CPU_INT32U start,

 CPU_INT32U size,

 FS_ERR *p_err);

Erase block of NOR device.

ARGUMENTS

p_phy_data Pointer to NOR phy data.

start Start address of block (relative to start of device).

size Size of block, in octets

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Block erased successfully.

FS_ERR_DEV_INVALID_OP Invalid operation for device.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

NOR physical-layer driver FSDev_NOR_PhyEraseBlkHandler() N/A

458

μC/FS Porting Manual

C-9-6 IO_Ctrl()

void IO_Ctrl (FS_DEV_NOR_PHY_DATA *p_phy_data,

 CPU_INT08U opt,

 void *p_data,

 FS_ERR *p_err);

Perform NOR device I/O control operation.

ARGUMENTS

p_phy_data Pointer to NOR phy data.

opt Control command.

p_data Buffer which holds data to be used for operation.

OR

Buffer in which data will be stored as a result of operation.

p_err Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE Control operation performed successfully.

FS_ERR_DEV_INVALID_IO_CTRL I/O control unknown to driver.

FS_ERR_DEV_INVALID_OP Invalid operation for device.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_TIMEOUT Device timeout error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

NOR physical-layer driver various N/A

459

μC/FS Porting Manual

C-10 NOR Flash BSP

A “traditional” NOR flash has two buses, one for addresses and another for data. For

example, the host initiates a data read operation with the address of the target location

latched onto the address bus; the device responds by outputting a data word on the data

bus.

A BSP abstracts the flash interface for the physical layer driver. The port includes one code

file:

FS_DEV_NOR_BSP.C

This file is generally placed with other BSP files in a directory named according to the

following rubric:

\Micrium\Software\EvalBoards\<manufacturer>\<board_name>

\<compiler>\BSP\

Table C-6 NOR BSP Functions

Function Description

FSDev_NOR_BSP_Open() Open (initialize) bus for NOR

FSDev_NOR_BSP_Close() Close (uninitialize) bus for NOR.

FSDev_NOR_BSP_Rd_08()/16() Read from bus interface.

FSDev_NOR_BSP_RdWord_08()/16() Read word from bus interface.

FSDev_NOR_BSP_WrWord_08()/16() Write word to bus interface.

FSDev_NOR_BSP_WaitWhileBusy() Wait while NOR is busy.

460

μC/FS Porting Manual

C-10-1 FSDev_NOR_BSP_Open()

CPU_BOOLEAN FSDev_NOR_BSP_Open (FS_QTY unit_nbr,

 CPU_ADDR addr_base,

 CPU_INT08U bus_width,

 CPU_INT08U phy_dev_cnt);

Open (initialize) bus for NOR.

ARGUMENTS

unit_nbr Unit number of NOR.

addr_base Base address of NOR.

bus_width Bus width, in bits.

phy_dev_cnt Number of devices interleaved.

RETURNED VALUE

DEF_OK, if interface was opened.

DEF_FAIL, otherwise.

NOTES/WARNINGS

This function will be called EVERY time the device is opened.

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

461

μC/FS Porting Manual

C-10-2 FSDev_NOR_BSP_Close()

void FSDev_NOR_BSP_Close (FS_QTY unit_nbr);

Close (uninitialize) bus for NOR.

ARGUMENTS

unit_nbr Unit number of NOR.

RETURNED VALUE

None.

NOTES/WARNINGS

This function will be called EVERY time the device is closed.

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

462

μC/FS Porting Manual

C-10-3 FSDev_NOR_BSP_Rd_XX()

void FSDev_NAND_BSP_Rd_08 (FS_QTY unit_nbr,

 void *p_dest,

 CPU_ADDR addr_src,

 CPU_SIZE_T cnt);

void FSDev_NAND_BSP_Rd_16 (FS_QTY unit_nbr,

 void *p_dest,

 CPU_ADDR addr_src,

 CPU_SIZE_T cnt);

Read data from bus interface.

ARGUMENTS

unit_nbr Unit number of NOR.

p_dest Pointer to destination memory buffer.

addr_src Source address.

cnt Number of words to read.

RETURNED VALUE

None.

NOTES/WARNINGS

Data should be read from the bus in words sized to the data bus; for any unit, only the

function with its access width will be called.

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

463

μC/FS Porting Manual

C-10-4 FSDev_NOR_BSP_RdWord_XX()

CPU_INT08U FSDev_NAND_BSP_RdWord_08 (FS_QTY unit_nbr,

 CPU_ADDR addr_src);

CPU_INT16U FSDev_NAND_BSP_RdWord_16 (FS_QTY unit_nbr,

 CPU_ADDR addr_src);

Read data from bus interface.

ARGUMENTS

unit_nbr Unit number of NOR.

addr_src Source address.

RETURNED VALUE

Word read.

NOTES/WARNINGS

Data should be read from the bus in words sized to the data bus; for any unit, only the

function with its access width will be called.

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

464

μC/FS Porting Manual

C-10-5 FSDev_NOR_BSP_WrWord_XX()

void FSDev_NAND_BSP_WrWord_08 (FS_QTY unit_nbr,

 CPU_ADDR addr_src,

 CPU_INT08U datum);

void FSDev_NAND_BSP_WrWord_16 (FS_QTY unit_nbr,

 CPU_ADDR addr_src,

 CPU_INT16U datum);

Write data to bus interface.

ARGUMENTS

unit_nbr Unit number of NOR.

addr_src Source address.

datum Word to write.

RETURNED VALUE

None.

NOTES/WARNINGS

Data should be written o the bus in words sized to the data bus; for any unit, only the

function with its access width will be called.

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

465

μC/FS Porting Manual

C-10-6 FSDev_NOR_BSP_WaitWhileBusy()

CPU_BOOLEAN

FSDev_NOR_BSP_WaitWhileBusy

 (FS_QTY unit_nbr,

 FS_DEV_NOR_PHY_DATA *p_phy_data,

 CPU_BOOLEAN (*poll_fnct)(FS_DEV_NOR_PHY_DATA *),

 CPU_INT32U to_us);

Wait while NAND is busy.

ARGUMENTS

unit_nbr Unit number of NOR.

p_phy_data Pointer to NOR phy data.

poll_fnct Pointer to function to poll, if there is no hardware ready/busy signal.

to_us Timeout, in microseconds.

RETURNED VALUE

DEF_OK, if NAND became ready.

DEF_FAIL, otherwise.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

466

μC/FS Porting Manual

Listing C-7 FSDev_NOR_BSP_WaitWhileBusy() (without hardware read/busy signal)

LC-7(1) At least to_us microseconds should elapse before the function gives up and

returns. Returning early can cause disruptive timeout errors within the

physical-layer driver.

LC-7(2) poll_fnct should be called with p_phy_data as its sole argument. If it returns

DEF_OK, then the device is ready and the function should return DEF_OK.

LC-7(3) If to_us microseconds elapse without the poll function or hardware ready/busy

signaling indicating success, the function should return DEF_FAIL.

C-11 NOR Flash SPI BSP

The NOR driver must adapt to the specific hardware using a BSP. A serial NOR Flash will be

interfaced on a SPI bus. See Appendix C, “SPI BSP” on page 494 for the details on how to

implement the software port for your SPI bus.

CPU_BOOLEAN FSDev_NOR_BSP_WaitWhileBusy

 (FS_QTY unit_nbr,

 FS_DEV_NOR_PHY_DATA *p_phy_data,

 CPU_BOOLEAN (*poll_fnct)(FS_DEV_NOR_PHY_DATA *),

 CPU_INT32U to_us)

{

 CPU_INT32U time_cur_us;

 CPU_INT32U time_start_us;

 CPU_BOOLEAN rdy;

 time_cur_us = /* $$$$ GET CURRENT TIME, IN MICROSECONDS. */;

 time_start_us = time_cur_us;

 while (time_cur_us - time_start_us < to_us) { (1)

 rdy = poll_fnct(p_phy_data); (2)

 if (rdy == DEF_OK) {

 return (DEF_OK);

 }

 time_cur_us = /* $$$$ GET CURRENT TIME, IN MICROSECONDS. */;

 }

 return (DEF_FAIL); (3)

}

467

μC/FS Porting Manual

C-12 SD/MMC Cardmode BSP

The SD/MMC cardmode protocol is unique to SD- and MMC-compliant devices. The generic

driver handles the peculiarities for initializing, reading and writing a card (including state

transitions and error handling), but each CPU has a different host controller that must be

individually ported. To that end, a BSP, supplementary to the general μC/FS BSP, is required

that abstracts the SD/MMC interface. The port includes one code file:

FS_DEV_SD_CARD_BSP.C

This file is generally placed with other BSP files in a directory named according to the

following rubric:

\Micrium\Software\EvalBoards\<manufacturer>\<board_name>

\<compiler>\BSP\

Several example ports are included in the μC/FS distribution in files named according to the

following rubric:

\Micrium\Software\uC-FS\Examples\BSP\Dev\SD\Card\<cpu_name>

Function Description

FSDev_SD_Card_BSP_Open() Open (initialize) SD/MMC card interface.

FSDev_SD_Card_BSP_Close() Close (uninitialize) SD/MMC card interface.

FSDev_SD_Card_BSP_Lock() Acquire SD/MMC card bus lock.

FSDev_SD_Card_BSP_Unlock() Release SD/MMC card bus lock.

FSDev_SD_Card_BSP_CmdStart() Start a command.

FSDev_SD_Card_BSP_CmdWaitEnd() Wait for a command to end and get response.

FSDev_SD_Card_BSP_CmdDataRd() Read data following command.

FSDev_SD_Card_BSP_CmdDataWr() Write data following command.

FSDev_SD_Card_BSP_GetBlkCntMax() Get max block count.

FSDev_SD_Card_BSP_GetBusWidthMax() Get maximum bus width, in bits.

468

μC/FS Porting Manual

Table C-7 SD/MMC cardmode BSP functions

Each BSP must implement the functions in Table C-7. (For information about creating a port

for a platform accessing a SD/MMC device in SPI mode, see section C-13 “SD/MMC SPI

mode BSP” on page 493) This software interface was designed by reviewing common host

implementations as well as the SD card association’s SD Specification Part A2 – SD Host

Controller Simplified Specification, Version 2.00, which recommends a host architecture and

provides the state machines that would guide operations. Example function

implementations for a theoretical compliant host are provided in this chapter. Common

advanced requirements (such as multiple cards per slot) and optimizations (such as DMA)

are possible. No attempt has been made, however, to accommodate non-storage devices

that are accessed on a SD/MMC cardmode, including SDIO devices.

The core operation being abstracted is the command/response sequence for high-level card

transactions. The key functions, CmdStart(), CmdWaitEnd(), CmdDataRd() and

CmdDataWr(), are called within the state machine of Figure C-5. If return error from one of

the functions will abort the state machine, so the requisite considerations, such as preparing

for the next command or preventing further interrupts, must be handled if an operation

cannot be completed.

FSDev_SD_Card_BSP_SetBusWidth() Set bus width.

FSDev_SD_Card_BSP_SetClkFreq() Set clock frequency.

FSDev_SD_Card_BSP_SetTimeoutData() Set data timeout.

FSDev_SD_Card_BSP_SetTimeoutResp() Set response timeout.

Function Description

469

μC/FS Porting Manual

Figure C-5 Command execution

The remaining functions either investigate host capabilities (GetBlkCntMax(),

GetBusWidthMax()) or set operational parameters (SetBusWidth(), SetClkFreq(),

SetTimeoutData(), SetTimeoutResp()). Together, these function sets help configure a

new card upon insertion. Note that the parameters configured by the ‘set’ functions belong

to the card, not the slot; if multiple cards may be multiplexed in a single slot, these must be

saved when set and restored whenever Lock() is called.

Two elements of host behavior routinely influence implementation and require design

choices. First, block data can typically be read/written either directly from a FIFO or

transferred automatically by the peripheral to/from a memory buffer with DMA. While the

former approach may be simpler—no DMA controller need be setup—it may not be

reliable. Unless the host can stop the host clock upon FIFO underrun (for write) or

overrun (for read), effectively pausing the operation from the card’s perspective, transfers

at high clock frequency or multiple-bus configurations will probably fail. Interrupts or

other tasks can interrupt the operation, or the CPU just may be unable to fill the FIFO fast

enough. DMA avoids those pitfalls by offloading the responsibility for moving data

directly to the CPU.

Start command execution
FSDev_SD_Card_BSP_CmdStart()

Error
returned

Wait for command to execute and
response to be returned

FSDev_SD_Card_BSP_CmdWaitEnd()

Error
returned

Data?
ReadWrite

FSDev_SD_Card_BSP_CmdDataWr() FSDev_SD_Card_BSP_CmdDataRd()

Return

Return

Return

470

μC/FS Porting Manual

Second, the completion of operations such as command execution and data read/write are

often signaled via interrupts (unless some error occurs, whereupon a different interrupt is

triggered). During large transfers, these operations occur frequently and the typical wait

between initiation and completion is measured in microseconds. On most platforms, polling

the interrupt status register within the task performs better (i.e., results in faster reads and

writes) than waiting on a semaphore for an asynchronous notification from the ISR, because

the penalty of extra context switches is not incurred.

C-12-1 FSDev_SD_Card_BSP_Open()

CPU_BOOLEAN FSDev_SD_Card_BSP_Open (FS_QTY unit_nbr);

Open (initialize) SD/MMC card interface.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

RETURNED VALUE

DEF_OK, if interface was opened.

DEF_FAIL, otherwise.

NOTES/WARNINGS

This function will be called EVERY time the device is opened.

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

471

μC/FS Porting Manual

C-12-2 FSDev_SD_Card_BSP_Lock()

FSDev_SD_Card_BSP_Unlock()

void FSDev_SD_Card_BSP_Lock (FS_QTY unit_nbr);

void FSDev_SD_Card_BSP_Unlock (FS_QTY unit_nbr);

Acquire/release SD/MMC card bus lock.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

RETURNED VALUE

None.

NOTES/WARNINGS

FSDev_SD_Card_BSP_Lock() will be called before the driver begins to access the SD/MMC

card bus. The application should NOT use the same bus to access another device until the

matching call to FSDev_SD_Card_BSP_Unlock() has been made.

The clock frequency, bus width and timeouts set by the FSDev_SD_Card_BSP_Set####()

functions are parameters of the card, not the bus. If multiple cards are located on the same

bus, those parameters must be saved (in memory) when set and restored when

FSDev_SD_Card_BSP_Lock() is called.

File Called from Code enabled by

fs_dev_sd_card_bsp.c SD/MMC cardmode driver N/A

472

μC/FS Porting Manual

C-12-3 FSDev_SD_Card_BSP_CmdStart()

void FSDev_SD_Card_BSP_CmdStart (FS_QTY unit_nbr,

 FS_DEV_SD_CARD_CMD *p_cmd,

 void *p_data,

 FS_ERR *p_err);

Start a command.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

p_cmd Pointer to command to transmit (see Note #2).

p_data Pointer to buffer address for DMA transfer (see Note #3).

p_err Pointer to variable that will receive the return error code from this function:

FS_DEV_SD_CARD_ERR_NONE No error.

FS_DEV_SD_CARD_ERR_NO_CARD No card present.

FS_DEV_SD_CARD_ERR_BUSY Controller is busy.

FS_DEV_SD_CARD_ERR_UNKNOWN Unknown or other error.

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev_sd_card_bsp.c SD/MMC cardmode driver N/A

473

μC/FS Porting Manual

NOTES/WARNINGS

1 The command start will be followed by zero, one or two additional BSP function calls,

depending on whether data should be transferred and on whether any errors occur.

a. FSDev_SD_Card_BSP_CmdStart() starts execution of the command. IT may also set

up the DMA transfer (if necessary).

b. FSDev_SD_Card_BSP_CmdWaitEnd() waits for the execution of the command to end,

getting the command response (if any).

c. If data should transferred from the card to the host,

FSDev_SD_Card_BSP_CmdDataRd() will read that data; if data should be transferred

from the host to the card, FSDev_SD_Card_BSP_CmdDataWr() will write that data.

2 The command p_cmd has the following parameters:

a. p_cmd->Cmd is the command index.

b. p_cmd->Arg is the 32-bit argument (or 0 if there is no argument).

c. p_cmd->Flags is a bit-mapped variable with zero or more command flags:

FS_DEV_SD_CARD_CMD_FLAG_INIT Initialization sequence before command.

FS_DEV_SD_CARD_CMD_FLAG_BUSY Busy signal expected after command.

FS_DEV_SD_CARD_CMD_FLAG_CRC_VALID CRC valid after command.

FS_DEV_SD_CARD_CMD_FLAG_IX_VALID Index valid after command.

FS_DEV_SD_CARD_CMD_FLAG_OPEN_DRAIN Command line is open drain.

FS_DEV_SD_CARD_CMD_FLAG_DATA_START Data start command.

FS_DEV_SD_CARD_CMD_FLAG_DATA_STOP Data stop command.

FS_DEV_SD_CARD_CMD_FLAG_RESP Response expected.

FS_DEV_SD_CARD_CMD_FLAG_RESP_LONG Long response expected.

d. p_cmd->DataDir indicates the direction of any data transfer that should follow this

command, if any:

FS_DEV_SD_CARD_DATA_DIR_NONE No data transfer.

FS_DEV_SD_CARD_DATA_DIR_HOST_TO_CARD Transfer host-to-card (write).

FS_DEV_SD_CARD_DATA_DIR_CARD_TO_HOST Transfer card-to-host (read).

474

μC/FS Porting Manual

e. p_cmd->DataType indicates the type of the data transfer that should follow this

command, if any:

FS_DEV_SD_CARD_DATA_TYPE_NONE No data transfer.

FS_DEV_SD_CARD_DATA_TYPE_SINGLE_BLOCK Single data block.

FS_DEV_SD_CARD_DATA_TYPE_MULTI_BLOCK Multiple data blocks.

FS_DEV_SD_CARD_DATA_TYPE_STREAM Stream data.

f. p_cmd->RespType indicates the type of the response that should be expected from

this command:

FS_DEV_SD_CARD_RESP_TYPE_NONE No response.

FS_DEV_SD_CARD_RESP_TYPE_R1 R1 response: Normal Response

Command.

FS_DEV_SD_CARD_RESP_TYPE_R1B R1b response.

FS_DEV_SD_CARD_RESP_TYPE_R2 R2 response: CID, CSD Register.

FS_DEV_SD_CARD_RESP_TYPE_R3 R3 response: OCR Register.

FS_DEV_SD_CARD_RESP_TYPE_R4 R4 response: Fast I/O Response (MMC).

FS_DEV_SD_CARD_RESP_TYPE_R5 R5 response: Interrupt Request Response

(MMC).

FS_DEV_SD_CARD_RESP_TYPE_R5B R5B response.

FS_DEV_SD_CARD_RESP_TYPE_R6 R6 response: Published RCA Response.

FS_DEV_SD_CARD_RESP_TYPE_R7 R7 response: Card Interface Condition.

g. p_cmd->BlkSize and p_cmd->BlkCnt are the block size and block count of the data

transfer that should follow this command, if any.

3. The pointer to the data buffer that will receive the data transfer that should follow

this command, p_data, is given so that a DMA transfer can be set up.

EXAMPLE

The example implementation of FSDev_SD_Card_BSP_CmdStart() in , like the examples in

subsequent sections, targets a generic host conformant to the SD card association’s host

controller specification. While few hosts do conform, most have a similar mixture of

registers and registers fields and require the same sequences of basic actions.

475

μC/FS Porting Manual

void FSDev_SD_Card_BSP_CmdStart (FS_QTY unit_nbr,

 FS_DEV_SD_CARD_CMD *p_cmd,

 void *p_data,

 FS_ERR *p_err)

{

 CPU_INT16U command;

 CPU_INT32U present_state;

 CPU_INT16U transfer_mode;

 present_state = REG_STATE; /* Chk if controller busy. */ (1)

 if (DEF_BIT_IS_SET_ANY(present_state, BIT_STATE_CMD_INHIBIT_DAT |

 BIT_STATE_CMD_INHIBIT_CMD) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_BUSY;

 return;

 }

 transfer_mode = DEF_BIT_NONE; /* Calc transfer mode reg value. */ (2)

 if (p_cmd->DataType == FS_DEV_SD_CARD_DATA_TYPE_MULTIPLE_BLOCK) {

 transfer_mode |= BIT_TRANSFER_MODE_MULTIPLE_BLOCK

 | BIT_TRANSFER_MODE_AUTO_CMD12

 | BIT_TRANSFER_MODE_BLOCK_COUNT_ENABLE;

 }

 if (p_cmd->DataDir == FS_DEV_SD_CARD_DATA_DIR_CARD_TO_HOST) {

 transfer_mode |= BIT_TRANSFER_MODE_READ | BIT_TRANSFER_MODE_DMA_ENABLE;

 } else {

 transfer_mode |= BIT_TRANSFER_MODE_DMA_ENABLE;

 }

 command = (CPU_INT16U)p_cmd->Cmd << 8; /* Calc command register value */ (3)

 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_DATA_START) == DEF_YES) {

 command |= BIT_COMMAND_DATA_PRESENT;

 }

 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_IX_VALID) == DEF_YES) {

 command |= BIT_COMMAND_DATA_COMMAND_IX_CHECK;

 }

 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_CRC_VALID) == DEF_YES) {

 command |= BIT_COMMAND_DATA_COMMAND_CRC_CHECK;

 }

 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_RESP) == DEF_YES) {

 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_RESP_LONG) == DEF_YES) {

 command |= BIT_COMMAND_DATA_COMMAND_RESPONSE_LENGTH_136;

 } else {

 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_BUSY) == DEF_YES) {

 command |= BIT_COMMAND_DATA_COMMAND_RESPONSE_LENGTH_48;

 } else {

 command |= BIT_COMMAND_DATA_COMMAND_RESPONSE_LENGTH_48_BUSY;

 }

 }

 }

476

μC/FS Porting Manual

Listing C-8 FSDev_SD_Card_BSP_CmdStart()

LC-8(1) Check whether the controller is busy. Though no successful operation should

return without the controller idle, an error condition, programming mistake or

unexpected condition could make an assumption about initial controller state

false. This simple validation is recommended to avoid side-effects and to aid

port debugging.

LC-8(2) Calculate the transfer mode register value. The command’s DataType and

DataDir members specify the type and direction of any transfer. Since this

examples uses DMA, DMA is enabled in the transfer mode register.

LC-8(3) Calculate the command register value. The command index is available in the

command’s Cmd member, which is supplemented by the bits OR’d into Flags to

describe the expected result—response and data transfer—following the

command execution.

LC-8(4) The hardware registers are written to execute the command. The sequence in

which the registers are written is important. Typically, as in this example, the

assignment to the command register actually triggers execution.

 /* Write registers to exec cmd. */ (4)

 REG_SDMA_ADDESS = p_data;

 REG_BLOCK_COUNT = p_cmd->BlkCnt;

 REG_BLOCK_SIZE = p_cmd->BlkSize;

 REG_ARGUMENT = p_cmd->Arg;

 REG_TRANSFER_MODE = transfer_mode;

 REG_COMMAND = command;

 *p_err = FS_DEV_SD_CARD_ERR_NONE;

}

477

μC/FS Porting Manual

C-12-4 FSDev_SD_Card_BSP_CmdWaitEnd()

void FSDev_SD_Card_BSP_CmdWaitEnd (FS_QTY unit_nbr,

 FS_DEV_SD_CARD_CMD *p_cmd,

 CPU_INT32U *p_resp,

 FS_ERR *p_err);

Wait for command to end and get command response.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

p_cmd Pointer to command that is ending.

p_resp Pointer to buffer that will receive command response, if any.

p_err Pointer to variable that will receive the return error code from this function:

FS_DEV_SD_CARD_ERR_NONE No error.

FS_DEV_SD_CARD_ERR_NO_CARD No card present.

FS_DEV_SD_CARD_ERR_UNKNOWN Unknown or other error.

FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT Timeout in waiting for command

response.

FS_DEV_SD_CARD_ERR_RESP_TIMEOUT Timeout in receiving command response.

FS_DEV_SD_CARD_ERR_RESP_CHKSUM Error in response checksum.

FS_DEV_SD_CARD_ERR_RESP_CMD_IX Response command index error.

FS_DEV_SD_CARD_ERR_RESP_END_BIT Response end bit error.

FS_DEV_SD_CARD_ERR_RESP Other response error.

FS_DEV_SD_CARD_ERR_DATA Other data error.

RETURNED VALUE

None.

File Called from Code enabled by

fs_dev_sd_card_bsp.c SD/MMC cardmode driver N/A

478

μC/FS Porting Manual

NOTES/WARNINGS

1 This function will be called even if no response is expected from the command.

2 This function will NOT be called if FSDev_SD_Card_BSP_CmdStart() returned an error.

3 The data stored in the response buffer should include only the response data, i.e.,

should not include the start bit, transmission bit, command index, CRC and end bit.

a. For a command with a normal (48-bit) response, a 4-byte response should be stored

in p_resp.

b. For a command with a long (136-bit) response, a 16-byte response should be

returned in p_resp:

The first 4-byte word should hold bits 127..96 of the response.

The second 4-byte word should hold bits 95..64 of the response.

The third 4-byte word should hold bits 63..32 of the response.

The four 4-byte word should hold bits 31.. 0 of the response.

EXAMPLE

The implementation of FSDev_SD_Card_BSP_CmdWaitEnd() in is targeted for the same

host controller as the other listings in this chapter; for more information, see

FSDev_SD_Card_BSP_CmdStart().

479

μC/FS Porting Manual

void FSDev_SD_Card_BSP_CmdWaitEnd (FS_QTY unit_nbr,

 FS_DEV_SD_CARD_CMD *p_cmd,

 CPU_INT32U *p_resp,

 FS_ERR *p_err)

{

 CPU_INT16U interrupt_status;

 CPU_INT16U error_status;

 CPU_INT16U timeout;

 timeout = 0u; /* Wait until cmd exec complete.*/ (1)

 interrupt_status = REG_INTERRUPT_STATUS;

 while (DEF_BIT_IS_CLR(interrupt_status, BIT_INTERRUPT_STATUS_ERROR |

 BIT_INTERRUPT_STATUS_COMMAND_COMPLETE) == DEF_YES)) {

 timeout++;

 interrupt_status = REG_INTERRUPT_STATUS;

 if (timeout == TIMEOUT_RESP_MAX) {

 *p_err = FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT;

 return;

 }

 }

 /* Handle error. */ (2)

 if (DEF_BIT_IS_SET(interrupt_status, BIT_INTERRUPT_STATUS_ERROR) == DEF_YES) {

 error_status = REG_ERROR_STATUS;

 if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_COMMAND_INDEX) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_RESP_CMD_IX;

 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_COMMAND_END_BIT) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_RESP_END_BIT;

 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_COMMAND_CRC) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_RESP_CRC;

 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_COMMAND_TIMEOUT) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_RESP_TIMEOUT;

 } else {

 *p_err = FS_DEV_SD_CARD_ERR_RESP;

 }

 REG_ERROR_STATUS = error_status;

 REG_INTERRUPT_STATUS = interrupt_status;

 return;

 }

480

μC/FS Porting Manual

Listing C-9 FSDev_SD_Card_BSP_CmdWaitEnd()

LC-9(1) Wait until command execution completes or an error occurs. The wait loop (or

wait on semaphore) SHOULD always have a timeout to avoid blocking the task

in the case of an unforeseen hardware malfunction or a software flaw.

LC-9(2) Check if an error occurred. The error status register is decoded to produce the

actual error condition. That is not necessary, strictly, but error counters that

accumulate within the generic driver based upon returned error values may be

useful while debugging a port.

LC-9(3) Read the response, if any. Note that the order in which a long response is

stored in the buffer may oppose its storage in the controller’s register or FIFO.

 /* Read response. */ (3)

 REG_INTERRUPT_STATUS = BIT_INTERRUPT_STATUS_COMMAND_COMPLETE;

 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_RESP) == DEF_YES) {

 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_RESP_LONG) == DEF_YES) {

 *(p_resp + 3) = REG_RESPONSE_00

 *(p_resp + 2) = REG_RESPONSE_01

 *(p_resp + 1) = REG_RESPONSE_02

 *(p_resp + 0) = REG_RESPONSE_03

 } else {

 *(p_resp + 0) = REG_RESPONSE_00

 }

 }

 *p_err = FS_DEV_SD_CARD_ERR_NONE;

}

481

μC/FS Porting Manual

C-12-5 FSDev_SD_Card_BSP_CmdDataRd()

void FSDev_SD_Card_BSP_CmdDataRd (FS_QTY unit_nbr,

 FS_DEV_SD_CARD_CMD *p_cmd,

 void *p_dest,

 FS_ERR *p_err);

Read data following a command.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

p_cmd Pointer to command that was started.

p_dest Pointer to destination buffer.

p_err Pointer to variable that will receive the return error code from this function:

FS_DEV_SD_CARD_ERR_NONE No error.

FS_DEV_SD_CARD_ERR_NO_CARD No card present.

FS_DEV_SD_CARD_ERR_UNKNOWN Unknown or other error.

FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT Timeout in waiting for data.

FS_DEV_SD_CARD_ERR_DATA_OVERRUN Data overrun.

FS_DEV_SD_CARD_ERR_DATA_TIMEOUT Timeout in receiving data.

FS_DEV_SD_CARD_ERR_DATA_CHKSUM Error in data checksum.

FS_DEV_SD_CARD_ERR_DATA_START_BIT Data start bit error.

FS_DEV_SD_CARD_ERR_DATA Other data error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_RdData() N/A

482

μC/FS Porting Manual

EXAMPLE

The implementation of FSDev_SD_Card_BSP_CmdDataRd() in Listing C-10 is targeted for

the same host controller as the other listings in this chapter; for more information, see

FSDev_SD_Card_BSP_CmdStart().

Listing C-10 FSDev_SD_Card_BSP_CmdDataRd()

void FSDev_SD_Card_BSP_CmdDataRd (FS_QTY unit_nbr,

 FS_DEV_SD_CARD_CMD *p_cmd,

 void *p_dest,

 FS_ERR *p_err)

{

 CPU_INT16U interrupt_status;

 CPU_INT16U error_status;

 CPU_INT16U timeout;

 timeout = 0u; /* Wait until data xfer compl. */ (1)

 interrupt_status = REG_INTERRUPT_STATUS;

 while (DEF_BIT_IS_CLR(interrupt_status,BIT_INTERRUPT_STATUS_ERROR |

 BIT_INTERRUPT_STATUS_TRANSFER_COMPLETE) == DEF_YES)) {

 timeout++;

 interrupt_status = REG_INTERRUPT_STATUS;

 if (timeout == TIMEOUT_TRANSFER_MAX) {

 *p_err = FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT;

 return;

 }

 }

 /* Handle error. */ (2)

 if (DEF_BIT_IS_SET(interrupt_status, BIT_INTERRUPT_STATUS_ERROR) == DEF_YES) {

 error_status = REG_ERROR_STATUS;

 if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_END_BIT) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_DATA;

 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_CRC) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_DATA_CRC;

 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_TIMEOUT) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_DATA_TIMEOUT;

 } else {

 *p_err = FS_DEV_SD_CARD_ERR_UNKONWN;

 }

 REG_ERROR_STATUS = error_status;

 REG_INTERRUPT_STATUS = interrupt_status;

 return;

 }

 *p_err = FS_DEV_SD_CARD_ERR_NONE; (3)

}

483

μC/FS Porting Manual

LC-10(1) Wait until data transfer completes or an error occurs. The wait loop (or wait on

semaphore) SHOULD always have a timeout to avoid blocking the task in the

case of an unforeseen hardware malfunction or a software flaw.

LC-10(2) Check if an error occurred. The error status register is decoded to produce the

actual error condition. That is not necessary, strictly, but error counters that

accumulate within the generic driver based upon returned error values may be

useful while debugging a port.

LC-10(3) Return no error. The data has been transferred already to the memory buffer

using DMA.

484

μC/FS Porting Manual

C-12-6 FSDev_SD_Card_BSP_CmdDataWr()

void FSDev_SD_Card_BSP_CmdDataWr (FS_QTY unit_nbr,

 FS_DEV_SD_CARD_CMD *p_cmd,

 void *p_src,

 FS_ERR *p_err);

Write data following a command.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

p_cmd Pointer to command that was started.

p_src Pointer to source buffer.

p_err Pointer to variable that will receive the return error code from this function:

FS_DEV_SD_CARD_ERR_NONE No error.

FS_DEV_SD_CARD_ERR_NO_CARD No card present.

FS_DEV_SD_CARD_ERR_UNKNOWN Unknown or other error.

FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT Timeout in waiting for data.

FS_DEV_SD_CARD_ERR_DATA_UNDERRUN Data underrun.

FS_DEV_SD_CARD_ERR_DATA_CHKSUM Error in data checksum.

FS_DEV_SD_CARD_ERR_DATA_START_BIT Data start bit error.

FS_DEV_SD_CARD_ERR_DATA Other data error.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_WrData() N/A

485

μC/FS Porting Manual

EXAMPLE

The implementation of FSDev_SD_Card_BSP_CmdDataWr() in Listing C-11 is targeted for

the same host controller as the other listings in this chapter; for more information, see

FSDev_SD_Card_BSP_CmdStart().

Listing C-11 FSDev_SD_Card_BSP_CmdDataWr()

void FSDev_SD_Card_BSP_CmdDataWr (FS_QTY unit_nbr,

 FS_DEV_SD_CARD_CMD *p_cmd,

 void *p_src,

 FS_ERR *p_err)

{

 CPU_INT16U interrupt_status;

 CPU_INT16U error_status;

 CPU_INT16U timeout;

 timeout = 0u; /* Wait until data xfer compl. */ (1)

 interrupt_status = REG_INTERRUPT_STATUS;

 while (DEF_BIT_IS_CLR(interrupt_status,BIT_INTERRUPT_STATUS_ERROR |

 BIT_INTERRUPT_STATUS_TRANSFER_COMPLETE) == DEF_YES)) {

 timeout++;

 interrupt_status = REG_INTERRUPT_STATUS;

 if (timeout == TIMEOUT_TRANSFER_MAX) {

 *p_err = FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT;

 return;

 }

 }

 /* Handle error. */ (2)

 if (DEF_BIT_IS_SET(interrupt_status, BIT_INTERRUPT_STATUS_ERROR) == DEF_YES) {

 error_status = REG_ERROR_STATUS;

 if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_END_BIT) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_DATA;

 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_CRC) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_DATA_CRC;

 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_TIMEOUT) == DEF_YES) {

 *p_err = FS_DEV_SD_CARD_ERR_DATA_TIMEOUT;

 } else {

 *p_err = FS_DEV_SD_CARD_ERR_UNKONWN;

 }

 REG_ERROR_STATUS = error_status;

 REG_INTERRUPT_STATUS = interrupt_status;

 return;

 }

 *p_err = FS_DEV_SD_CARD_ERR_NONE; (3)

}

486

μC/FS Porting Manual

LC-11(1) Wait until data transfer completes or an error occurs. The wait loop (or wait on

semaphore) SHOULD always have a timeout to avoid blocking the task in the

case of an unforeseen hardware malfunction or a software flaw.

LC-11(2) Check if an error occurred. The error status register is decoded to produce the

actual error condition. That is not necessary, strictly, but error counters that

accumulate within the generic driver based upon returned error values may be

useful while debugging a port.

LC-11(3) Return no error. The data has been transferred already from the memory buffer

using DMA.

487

μC/FS Porting Manual

C-12-7 FSDev_SD_Card_BSP_GetBlkCntMax()

CPU_INT32U FSDev_SD_Card_BSP_GetBlkCntMax (FS_QTY unit_nbr,

 CPU_INT32U blk_size);

Get maximum number of blocks that can be transferred with a multiple read or multiple

write command.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

blk_size Block size, in octets.

RETURNED VALUE

Maximum number of blocks.

NOTES/WARNINGS

1 The DMA region from which data is read or written may be a limited size. The count

returned by this function should be the maximum number of blocks of size blk_size

that can fit into this region.

2 If the controller is not capable of multiple block reads or writes, 1 should be returned.

3 If the controller has no limit on the number of blocks in a multiple block read or write,

DEF_INT_32U_MAX_VAL should be returned.

4 This function SHOULD always return the same value. If hardware constraints change at

run-time, the device MUST be closed and re-opened for any changes to be effective.

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

488

μC/FS Porting Manual

C-12-8 FSDev_SD_Card_BSP_GetBusWidthMax()

CPU_INT08U FSDev_SD_Card_BSP_GetBusWidthMax (FS_QTY unit_nbr);

Get maximum bus width, in bits.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

RETURNED VALUE

Maximum bus width.

NOTES/WARNINGS

1 Legal values are typically 1, 4 and 8.

2 This function SHOULD always return the same value. If hardware constraints change at

run-time, the device MUST be closed and re-opened for any changes to be effective.

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

489

μC/FS Porting Manual

C-12-9 FSDev_SD_Card_BSP_SetBusWidth()

void FSDev_SD_Card_BSP_SetBusWidth (FS_QTY unit_nbr,

 CPU_INT08U width);

Set bus width.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

width Bus width, in bits.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh(),

FSDev_SD_Card_SetBusWidth()

N/A

490

μC/FS Porting Manual

EXAMPLE

The implementation of FSDev_SD_Card_BSP_SetBusWidth() in Listing C-12 is targeted for

the same host controller as the other listings in this chapter; for more information, see

FSDev_SD_Card_BSP_CmdStart().

Listing C-12 FSDev_SD_Card_BSP_SetBusWidth()

void FSDev_SD_Card_BSP_SetBusWidth (FS_QTY unit_nbr,

 CPU_INT08U width)

{

 if (width == 1u) {

 REG_HOST_CONTROL &= ~BIT_HOST_CONTROL_DATA_TRANSFER_WIDTH;

 } else {

 REG_HOST_CONTROL |= BIT_HOST_CONTROL_DATA_TRANSFER_WIDTH;

 }

}

491

μC/FS Porting Manual

C-12-10 FSDev_SD_Card_BSP_SetClkFreq()

void FSDev_SD_Card_BSP_SetClkFreq (FS_QTY unit_nbr,

 CPU_INT32U freq);

Set clock frequency.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

freq Clock frequency, in Hz.

RETURNED VALUE

None.

NOTES/WARNINGS

The effective clock frequency MUST be no more than freq. If the frequency cannot be

configured equal to freq, it should be configured less than freq.

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

492

μC/FS Porting Manual

C-12-11 FSDev_SD_Card_BSP_SetTimeoutData()

void FSDev_SD_Card_BSP_SetTimeoutData (FS_QTY unit_nbr,

 CPU_INT32U to_clks);

Set data timeout.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

to_clks Timeout, in clocks.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

493

μC/FS Porting Manual

C-12-12 FSDev_SD_Card_BSP_SetTimeoutResp()

void FSDev_SD_Card_BSP_SetTimeoutResp (FS_QTY unit_nbr,

 CPU_INT32U to_ms);

Set data timeout.

ARGUMENTS

unit_nbr Unit number of SD/MMC card.

to_ms Timeout, in milliseconds.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

C-13 SD/MMC SPI mode BSP

SD/MMC card can also be accessed through an SPI bus (also described as the one-wire

mode). Please refer to section C-14 “SPI BSP” on page 494 for the details on how to

implement the software port for your SPI bus.

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

494

μC/FS Porting Manual

C-14 SPI BSP

Among the most common—and simplest—serial interfaces supported by built-in CPU

peripherals is Serial Peripheral Interface (SPI). Four hardware signals connect a defined

master (or host) to each slave (or device): a slave select, a clock, a slave input and a slave

output. Three of these, all except the slave select, may be shared among all slaves, though

hosts often have several SPI controllers to simplify integration and allow simultaneous

access to multiple slaves. Serial flash, serial EEPROM and SD/MMC cards are among the

many devices which use SPI.

Table C-8 SPI signals

No specification exists for SPI, a condition which invites technological divergence. So

though the simplicity of the interface limits variations between implementations, the

required transfer unit length, shift direction, clock frequency and clock polarity and phase

do vary from device to device. Take as an example Figure C-6 which gives the bit form of a

basic command/response exchange on a typical serial flash. The command and response

both divide into 8-bit chunks, the transfer unit for the device. Within these units, the data is

transferred from most significant bit (MSB) to least significant bit (LSB), which is the slave’s

shift direction. Though not evident from the diagram—the horizontal axis being labeled in

clocks rather than time—the slave cannot operate at a frequency higher than 20-MHz.

Finally, the clock signal prior to slave select activation is low (clock polarity or CPOL is 0),

and data is latched on the rising clock edge (clock phase or CPHA is 0). Together, those are

the aspects of SPI communication that may need to be configured:

Signal Description

SSEL (CS) Slave select

SCLK Clock

SO (MISO) Slave output (master input)

SI (MOSI) Slave input (master output)

495

μC/FS Porting Manual

■ Transfer unit length. A transfer unit is the underlying unit of commands, responses and

data. The most common value is eight bits, though slaves commonly require (and

masters commonly support) between 8 and 16 bits.

■ Shift direction. Either the MSB or LSB of each transfer unit can be the first transmitted

on the data line.

■ Clock frequency. Limits are usually imposed upon the frequency of the clock signal. Of

all variable SPI communication parameters, only this one is explicitly set by the device

driver.

■ Clock polarity and phase (CPOL and CPHA). SPI communication takes place in any of

four modes, depending on the clock phase and clock polarity settings:

■ If CPOL = 0, the clock is low when inactive.

If CPOL = 1, the clock is high when inactive.

■ If CPHA = 0, data is “read” on the leading edge of the clock and “changed” on the

following edge.

If CPHA = 1, data is “changed” on the leading edge of the clock and “read” on the

leading edge.

The most commonly-supported settings are {CPOL, CPHA} = {0, 0} and {1, 1}.

■ Slave select polarity. The “active” level of the slave select may be electrically high or

low. Low is ubiquitous, high rare.

496

μC/FS Porting Manual

Figure C-6 Example SPI transaction

A BSP is required that abstracts a CPU’s SPI peripheral. The port includes one code file

named according to the following rubric:

FS_DEV_<dev_name>_BSP.C or FS_DEV_<dev_name>_SPI_BSP.c

This file is generally placed with other BSP files in a directory named according to the

following rubric:

\Micrium\Software\EvalBoards\<manufacturer>\<board_name>

\<compiler>\BSP\

Several example ports are included in the μC/FS distribution in files named according to the

following rubric:

\Micrium\Software\uC-FS\Examples\BSP\Dev\NAND\<manufacturer>\<cpu_name>

\Micrium\Software\uC-FS\Examples\BSP\Dev\NOR\<manufacturer>\<cpu_name>

\Micrium\Software\uC-FS\Examples\BSP\Dev\SD\SPI\<manufacturer>\<cpu_name>

Check all of these directories for ports for a CPU if porting any SPI device; the CPU may be

been used with a different type of device, but the port should support another with none or

few modifications. Each port must implement the functions to be placed into a

FS_DEV_SPI_API structure:

497

μC/FS Porting Manual

The functions which must be implemented are listed and described in Table C-9. SPI is no

more than a physical interconnect. The protocol of command-response interchange the

master follows to control a slave is specified on a per-slave basis. Control of the chip select

(SSEL) is separated from the reading and writing of data to the slave because multiple bus

transactions (e.g., a read then a write then another read) are often performed without

breaking slave selection. Indeed, some slaves require bus transactions (or “empty” clocks)

AFTER the select has been disabled.

Table C-9 SPI port functions

const FS_DEV_SPI_API FSDev_####_BSP_SPI = {

 FSDev_BSP_SPI_Open,

 FSDev_BSP_SPI_Close,

 FSDev_BSP_SPI_Lock,

 FSDev_BSP_SPI_Unlock,

 FSDev_BSP_SPI_Rd,

 FSDev_BSP_SPI_Wr,

 FSDev_BSP_SPI_ChipSelEn,

 FSDev_BSP_SPI_ChipSelDis,

 FSDev_BSP_SPI_SetClkFreq

};

Function Description

Open() Open (initialize) hardware for SPI.

Close() Close (uninitialize) hardware for SPI.

Lock() Acquire SPI bus lock.

Unlock() Release SPI bus lock.

Rd() Read from SPI bus.

Wr() Write to SPI bus.

ChipSelEn() Enable device chip select.

ChipSelDis() Disable device chip select

SetClkFreq() Set SPI clock frequency

498

μC/FS Porting Manual

The first argument of each of these port functions is the device unit number, an identifier

unique to each driver/device type—after all, it is the number in the device name. For

example, “sd:0:” and “nor:0:” both have unit number 1. If two SPI devices are located on the

same SPI bus, either of two approaches can resolve unit number conflicts:

■ Unique unit numbers. All devices on the same bus can use the same SPI BSP if and only

if each device has a unique unit number. For example, the SD/MMC card “sd:0:” and

serial NOR “nor:1:” require only one BSP.

■ Unique SPI BSPs. Devices of different types (e.g., a SD/MMC card and a serial NOR) can

have the same unit number if and only if each device uses a separate BSP. For example,

the SD/MMC card “sd:0:” and serial “nor:0:” require separate BSPs.

499

μC/FS Porting Manual

C-14-1 Open()

CPU_BOOLEAN FSDev_BSP_SPI_Open (FS_QTY unit_nbr);

Open (initialize) hardware for SPI.

ARGUMENTS

unit_nbr Unit number of device.

RETURNED VALUE

DEF_OK, if interface was opened.

DEF_FAIL, otherwise.

NOTES/WARNINGS

1 This function will be called every time the device is opened.

2 Several aspects of SPI communication may need to be configured, including:

a. Transfer unit length

b. Shift direction

c. Clock frequency

d. Clock polarity and phase (CPOL and CPHA)

e. Slave select polarity

3 For a SD/MMC card, the following settings should be used:

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

500

μC/FS Porting Manual

a. Transfer unit length: 8-bits

b. Shift direction: MSB first

c. Clock frequency: 400-kHz (initially)

d. Clock polarity and phase (CPOL and CPHA): CPOL = 0, CPHA = 0

e. Slave select polarity: active low.

4 The slave select (SSEL or CS) MUST be configured as a GPIO output; it should not be

controlled by the CPU’s SPI peripheral. The SPI port’s ChipSelEn() and ChipSelDis()

functions manually enable and disable the SSEL.

501

μC/FS Porting Manual

C-14-2 Close()

void FSDev_BSP_SPI_Close (FS_QTY unit_nbr);

Close (uninitialize) hardware for SPI.

ARGUMENTS

unit_nbr Unit number of device.

RETURNED VALUE

None.

NOTES/WARNINGS

This function will be called every time the device is closed.

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

502

μC/FS Porting Manual

C-14-3 Lock() / Unlock()

void FSDev_BSP_SPI_Lock (FS_QTY unit_nbr);

void FSDev_BSP_SPI_Unlock (FS_QTY unit_nbr);

Acquire/release SPI bus lock.

ARGUMENTS

unit_nbr Unit number of device.

RETURNED VALUE

None.

NOTES/WARNINGS

Lock() will be called before the driver begins to access the SPI. The application should

NOT use the same bus to access another device until the matching call to Unlock() has

been made.

The clock frequency set by the SetClkFreq() function is a parameter of the device, not the

bus. If multiple devices are located on the same bus, those parameters must be saved (in

memory) when set and restored by Lock(). The same should be done for initialization

parameters such as transfer unit size and shift direction that vary from device to device.

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

503

μC/FS Porting Manual

C-14-4 Rd()

void FSDev_BSP_SPI_Rd (FS_QTY unit_nbr,

 void *p_dest,

 CPU_SIZE_T cnt);

Read from SPI bus.

ARGUMENTS

unit_nbr Unit number of device.

p_dest Pointer to destination buffer.

cnt Number of octets to read.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

504

μC/FS Porting Manual

C-14-5 Wr()

void FSDev_BSP_SPI_Wr (FS_QTY unit_nbr,

 void *p_src,

 CPU_SIZE_T cnt);

Write to SPI bus.

ARGUMENTS

unit_nbr Unit number of device.

p_src Pointer to source buffer.

cnt Number of octets to write.

RETURNED VALUE

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

505

μC/FS Porting Manual

C-14-6 ChipSelEn() /ChipSelDis()

void FSDev_BSP_SPI_ChipSelEn (FS_QTY unit_nbr);

void FSDev_BSP_SPI_ChipSelDis (FS_QTY unit_nbr);

Enable/disable device chip select.

ARGUMENTS

unit_nbr Unit number of device.

RETURNED VALUE

None.

NOTES/WARNINGS

The chip select is typically “active low”. To enable the device, the chip select pin should be

cleared; to disable the device, the chip select pin should be set.

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

506

μC/FS Porting Manual

C-14-7 SetClkFreq()

void FSDev_BSP_SPI_SetClkFreq (FS_QTY unit_nbr,

 CPU_INT32U freq);

Set SPI clock frequency.

ARGUMENTS

unit_nbr Unit number of device.

RETURNED VALUE

None.

NOTES/WARNINGS

The effective clock frequency MUST be no more than freq. If the frequency cannot be

configured equal to freq, it should be configured less than freq.

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

507

Appendix

D
μC/FS Types and Structures

Your application may need to access or populate the types and structures described in this

appendix. Each of the user-accessible structures is presented in alphabetical order. The

following information is provided for each entry:

■ A brief description of the type or structure.

■ The definition of the type or structure.

■ The filename of the source code.

■ A description of the meaning of the type or the members of the structure.

■ Specific notes and warnings regarding use of the type.

508

μC/FS Types and Structures

D-1 FS_CFG

typedef struct fs_cfg {

 FS_QTY DevCnt;

 FS_QTY VolCnt;

 FS_QTY FileCnt;

 FS_QTY DirCnt;

 FS_QTY BufCnt;

 FS_QTY DevDrvCnt;

 FS_SEC_SIZE MaxSecSize;

 } FS_CFG;

A pointer to a FS_CFG structure is the argument of FS_Init(). It configures the number of

devices, files and other objects in the file system suite.

MEMBERS

DevCnt The maximum number of devices that can be open simultaneously. MUST be

greater than or equal to 1.

VolCnt The maximum number of volumes that can be open simultaneously. MUST be

greater than or equal to 1.

FileCnt The maximum number of files that can be open simultaneously. MUST be

greater than or equal to 1.

DirCnt Maximum number of directories that can be open simultaneously. If DirCnt is 0,

the directory module functions will be blocked after successful initialization,

and the file system will operate as if compiled with directory support disabled.

If directory support is disabled, DirCnt is ignored; otherwise, if directories will

be used, DirCnt should be greater than or equal to 1.

File Used for

fs.h First argument of FS_Init()

509

μC/FS Types and Structures

BufCnt Maximum number of buffers that can be used successfully. The minimum

necessary BufCnt can be calculated from the number of volumes:

BufCnt >= VolCnt * 2

If FSEntry_Copy() or FSEntry_Rename() is used, then up to one additional

buffer for each volume may be necessary.

DevDrvCnt Maximum number of device drivers that can be added. It MUST be greater than

or equal to 1.

MaxSecSizeMaximum sector size, in octets. It must be 512, 1024, 2048 or 4096. No device

with a sector size larger than MaxSecSize can be opened.

NOTES

None.

510

μC/FS Types and Structures

D-2 FS_DEV_INFO

typedef struct fs_dev_info {

 FS_STATE State;

 FS_SEC_QTY Size;

 FS_SEC_SIZE SecSize;

 CPU_BOOLEAN Fixed;

 } FS_DEV_INFO;

Receives information about a device.

MEMBERS

State The device state:

FS_DEV_STATE_CLOSED Device is closed.

FS_DEV_STATE_CLOSING Device is closing.

FS_DEV_STATE_OPENING Device is opening.

FS_DEV_STATE_OPEN Device is open, but not present.

FS_DEV_STATE_PRESENT Device is present, but not low-level

formatted.

FS_DEV_STATE_LOW_FMT_VALID Device low-level format is valid.

Size The number of sectors on the device.

SecSize The size of each device sector.

Fixed Indicates whether the device is fixed or removable.

NOTES

None.

File Used for

fs_dev.h Second argument of FSDev_Query()

511

μC/FS Types and Structures

D-3 FS_DEV_NAND_CFG

typedef struct fs_dev_nand_cfg {

 CPU_INT32U BlkNbrFirst;

 FS_SEC_SIZE SecSize;

 CPU_INT32U BlkCnt;

 CPU_INT08U RBCnt;

 FS_DEV_NAND_PHY_API *PhyPtr;

 CPU_INT08U BusWidth;

 CPU_INT32U MaxClkFreq;

 } FS_DEV_NAND_CFG;

Configures the properties of a NAND device that will be opened. A pointer to this structure

is passed as the second argument of FSDev_Open() for a NAND device.

MEMBERS

BlkNbrFirst MUST specify which block of the NAND flash memory will be the

first used for the file system data.

SecSize MUST specify the sector size in bytes for the NAND flash (either 512, 1024,

2048 or 4096).

BlkCnt MUST specify the size of the NAND flash in number of blocks.

RBCnt MUST specify the number of replacement blocks that will be used by the

driver.

PhyPtr MUST point to the appropriate physical-layer driver:

FSDev_NAND_0512x08 512-byte page NAND, 8-bit data bus.

FSDev_NAND_2048x08 2048-byte page NAND, 8-bit data bus.

FSDev_NAND_2048x16 2048-byte page NAND, 16-bit data bus.

FSDev_NAND_AT45 Atmel AT45 serial DataFlash

File Used for

fs_dev_nand.h Second argument of FSDev_Open() (when

opening a NAND device)

512

μC/FS Types and Structures

Other User-developed

BusWidth is the bus width, in bits, between the MCU/MPU and each connected device.

MaxClkFreq For a serial flash, the maximum clock frequency is specified via MaxClkFreq.

NOTES

None.

513

μC/FS Types and Structures

D-4 FS_DEV_NOR_CFG

typedef struct fs_dev_nor_cfg {

 CPU_ADDR AddrBase;

 CPU_INT08U RegionNbr;

 CPU_ADDR AddrStart;

 CPU_INT32U DevSize;

 FS_SEC_SIZE SecSize;

 CPU_INT08U PctRsvd;

 CPU_INT16U EraseCntDiffTh;

 FS_DEV_NOR_PHY_API *PhyPtr;

 CPU_INT08U BusWidth;

 CPU_INT08U BusWidthMax;

 CPU_INT08U PhyDevCnt;

 CPU_INT32U MaxClkFreq;

 } FS_DEV_NOR_CFG;

Configures the properties of a NOR device that will be opened. A pointer to this structure is

passed as the second argument of FSDev_Open() for a NOR device.

MEMBERS

AddrBase MUST specify

1. the base address of the NOR flash memory, for a parallel NOR.

2. 0x00000000 for a serial NOR.

RegionNbr MUST specify the block region which will be used for the file system area.

Block regions are enumerated by the physical-layer driver; for more

information, see the physical-layer driver header file. (on monolithic devices,

devices with only one block region, this MUST be 0).

File Used for

fs_dev_nor.h Second argument of FSDev_Open() (when

opening a NOR device)

514

μC/FS Types and Structures

AddrStart MUST specify

1. the absolute start address of the file system area in the NOR flash memory,

for a paralel NOR.

2. the offset of the start of the file system in the NOR flash, for a serial NOR.

The address specified by AddrStart MUST lie within the region RegionNbr.

DevSize MUST specify the number of octets that will belong to the file system area.

SecSize MUST specify the sector size for the NOR flash (either 512, 1024, 2048 or 4096).

PctRsvd MUST specify the percentage of sectors on the NOR flash that will be reserved

for extra-file system storage (to improve efficiency). This value must be

between 5% and 35%, except if 0 is specified whereupon the default will be

used (10%).

EraseCntDiffTh MUST specify the difference between minimum and maximum

erase counts that will trigger passive wear-leveling. This value must

be between 5 and 100, except if 0 is specified whereupon the

default will be used (20).

PhyPtr MUST point to the appropriate physical-layer driver:

FSDev_NOR_AMD_1x08 CFI-compatible parallel NOR implementing

AMD command set, 8-bit data bus.

FSDev_NOR_AMD_1x16 CFI-compatible parallel NOR implementing

AMD command set, 16-bit data bus.

FSDev_NOR_Intel_1x16 CFI-compatible parallel NOR implementing

Intel command set, 16-bit data bus

FSDev_NOR_SST39 SST SST39 Multi-Purpose Flash

FSDev_NOR_STM25 ST M25 serial flash

FSDev_NOR_SST25 SST SST25 serial flash

Other User-developed

515

μC/FS Types and Structures

For a parallel NOR, the bus configuration is specified via BusWidth,

BusWidthMax and PhyDevCnt:

BusWidth is the bus width, in bits, between the

MCU/MPU and each connected device.

BusWidthMax is the maximum width supported by each

connected device.

PhyDevCnt is the number of devices interleaved on the

bus.

For a serial flash, the maximum clock frequency is specified via MaxClkFreq.

NOTES

None.

516

μC/FS Types and Structures

D-5 FS_DEV_RAM_CFG

typedef struct fs_dev_ram_cfg {

 FS_SEC_SIZE SecSize;

 FS_SEC_QTY Size;

 void *DiskPtr;

 } FS_DEV_RAM_CFG;

Configures the properties of a RAM disk that will be opened. A pointer to this structure is

passed as the second argument of FSDev_Open() for a RAM disk.

MEMBERS

SecSize The sector size of RAM disk, either 512, 1024, 2048 or 4096.

Size The size of the RAM disk, in sectors.

DiskPtr The pointer to the RAM disk.

NOTES

None.

File Used for

fs_dev_ramdisk.h Second argument of FSDev_Open() (when

opening a RAM disk)

517

μC/FS Types and Structures

D-6 FS_DIR_ENTRY (struct fs_dirent)

typedef struct fs_dirent {

 CPU_CHAR Name[FS_CFG_MAX_FILE_NAME_LEN + 1u];

 FS_ENTRY_INFO Info;

 } FS_DIR_ENTRY;

Receives information about a directory entry.

MEMBERS

Name The name of the file.

Info Entry information. For more information, see section D-2 “FS_DEV_INFO” on

page 510

NOTES

None.

File Used for

fs_dir.h Second argument of fs_readdir_r() and

FSDir_Rd()

518

μC/FS Types and Structures

D-7 FS_ENTRY_INFO

typedef struct fs_entry_info {

 FS_FLAGS Attrib;

 FS_FILE_SIZE Size;

 CLK_TS_SEC DateTimeCreate;

 CLK_TS_SEC DateAccess;

 CLK_TS_SEC DateTimeWr;

 FS_SEC_QTY BlkCnt;

 FS_SEC_SIZE BlkSize;

 } FS_ENTRY_INFO;

The Info member of FS_DIR_ENTRY (struct fs_dirent)

Receives information about a file or directory.

MEMBERS

Attrib The file or directory attributes (see section 7-2-1 “File and Directory Attributes”

on page 104).

Size The size of the file, in octets.

DateTimeCreate The creation timestamp of the file or directory.

DateAccess The last access date of the file or directory.

DateTimeWr The last write (or modification) timestamp of the file or directory.

BlkCnt The number of blocks allocated to the file. For a FAT file system, this is the

number of clusters occupied by the file data.

BlkSize The size of each block allocated in octets. For a FAT file system, this is the size

of a cluster.

File Used for

fs_entry.h Second argument of FSEntry_Query() and

FSFileQuery();

519

μC/FS Types and Structures

NOTES

None.

520

μC/FS Types and Structures

D-8 FS_FAT_SYS_CFG

typedef struct fs_fat_sys_cfg {

 FS_SEC_QTY ClusSize;

 FS_FAT_SEC_NBR RsvdAreaSize;

 CPU_INT16U RootDirEntryCnt;

 CPU_INT08U FAT_Type;

 CPU_INT08U NbrFATs;

 } FS_FAT_SYS_CFG;

A pointer to a FS_FAT_SYS_CFG structure may be passed as the second argument of

FSVol_Fmt(). It configures the properties of the FAT file system that will be created.

MEMBERS

ClusSize The size of a cluster, in sectors. This should be 1, 2, 4, 8, 16, 32, 64 or 128. The

size of a cluster, in bytes, must be less than or equal to 65536, so some of the

upper values may be invalid for devices with large sector sizes.

RsvdAreaSize The size of the reserved area on the disk, in sectors. For FAT12 and

FAT16 volumes, the reserved should be 1 sector; for FAT32

volumes, 32 sectors.

RootDirEntryCnt The number of entries in the root directory. This applies only to

FAT12 and FAT16 volumes, on which the root directory is a

separate area of the file system and is a fixed size. The root

directory entry count caps the number of files and directories that

can be located in the root directory.

FAT_Type The type of FAT. This should be 12 (for FAT12), 16 for (FAT16) or 32 (for

FAT32). Ths choice of FAT type must observe restrictions on the maximum

number a clusters. A FAT12 file system may have no more than 4085 clusters; a

FAT16 file system, no more than 65525.

File Used for

fs_fat_type.h Second argument of FSVol_Fmt() when opening

a FAT volume (optional)

521

μC/FS Types and Structures

NbrFATs The number of actual FATs (file allocation tables) to create on the disk. The

typical value is 2 (one for primary use, a secondary for backup).

NOTES

Further restrictions on the members of this structure can be found in Chapter 9, “File

Systems: FAT” on page 109.

522

μC/FS Types and Structures

D-9 FS_PARTITION_ENTRY

typedef struct fs_partition_entry {

 FS_SEC_NBR Start;

 FS_SEC_QTY Size;

 CPU_INT08U Type;

 } FS_PARTITION_ENTRY;

Receives information about a partition entry.

MEMBERS

Start The start sector of partition.

Size The size of partition, in sectors.

Type The type of data in the partition.

NOTES

None.

File Used for

fs_partition.h Third argument of FSDev_PartitionFind()

523

μC/FS Types and Structures

D-10 FS_VOL_INFO

typedef struct fs_vol_info {

 FS_STATE State;

 FS_STATE DevState;

 FS_SEC_QTY DevSize;

 FS_SEC_SIZE DevSecSize;

 FS_SEC_QTY PartitionSize;

 FS_SEC_QTY VolBadSecCnt;

 FS_SEC_QTY VolFreeSecCnt;

 FS_SEC_QTY VolUsedSecCnt;

 FS_SEC_QTY VolTotSecCnt;

 } FS_VOL_INFO;

Receives information about a volume.

MEMBERS

State The volume state:

FS_VOL_STATE_CLOSED Volume is closed.

FS_VOL_STATE_CLOSING Volume is closing.

FS_VOL_STATE_OPENING Volume is opening.

FS_VOL_STATE_OPEN Volume is open.

FS_VOL_STATE_PRESENT Volume device is present.

FS_VOL_STATE_MOUNTED Volume is mounted.

DevState The device state:

FS_DEV_STATE_CLOSED Device is closed.

FS_DEV_STATE_CLOSING Device is closing.

FS_DEV_STATE_OPENING Device is opening.

FS_DEV_STATE_OPEN Device is open, but not present.

FS_DEV_STATE_PRESENT Device is present, but not low-level

formatted.

File Used for

fs_vol.h Second argument of FSVol_Query()

524

μC/FS Types and Structures

FS_DEV_STATE_LOW_FMT_VALID Device low-level format is valid.

DevSize The number of sectors on the device.

DevSecSize The size of each device sector.

PartitionSize The number of sectors in the partition.

VolBadSecCnt The number of bad sectors on the volume.

VolFreeSecCnt The number of free sectors on the volume.

VolUsedSecCnt The number of used sectors on the volume.

VolTotSecCnt The total number of sectors on the volume.

NOTES

None.

525

Appendix

E
μC/FS Configuration

μC/FS is configurable at compile time via approximately 30 #defines in an application’s

fs_cfg.h file. μC/FS uses #defines because they allow code and data sizes to be scaled at

compile time based on enabled features. In other words, this allows the ROM and RAM

footprints of μC/FS to be adjusted based on your requirements.

Most of the #defines should be configured with the default configuration values. This leaves

about a dozen or so values that should be configured with values that may deviate from the

default configuration.

526

μC/FS Configuration

E-1 FILE SYSTEM CONFIGURATION

Core file system modules may be selectively disabled.

FS_CFG_SYS_DRV_SEL

FS_CFG_SYS_DRV_SEL selects which file system driver(s) will be included. Currently, there

is only one option. When FS_SYS_DRV_SEL_FAT, the FAT system driver will be included.

FS_CFG_CACHE_EN

FS_CFG_CACHE_EN enables (when set to DEF_ENABLED) or disables (when set to

DEF_DISABLED) code generation of volume cache functions.

Table E-1 Cache function exclusion
These functions are NOT included if FS_CFG_CACHE_EN is DEF_DISABLED

FS_CFG_API_EN

FS_CFG_API_EN enables (when set to DEF_ENABLED) or disables (when set to

DEF_DISABLED) code generation of the POSIX API functions. This API includes functions

like fs_fopen() or fs_opendir() which mirror standard POSIX functions like fopen() or

opendir().

Function File

FSVol_CacheAssign() fs_vol.c

FSVol_CacheFlush() fs_vol.c

FSVol_CacheInvalidate() fs_vol.c

527

μC/FS Configuration

FS_CFG_DIR_EN

FS_CFG_DIR_EN enables (when set to DEF_ENABLED) or disables (when set to

DEF_DISABLED) code generation of directory access functions. When disabled, the functions

in the following table will not be available.

Table E-2 Directory function exclusion
These functions are NOT included if FS_CFG_DIR_EN is DEF_DISABLED

E-2 FEATURE INCLUSION CONFIGURATION

Individual file system features may be selectively disabled.

FS_CFG_FILE_BUF_EN

FS_CFG_BUF_EN enables (when set to DEF_ENABLED) or disables (when set to

DEF_DISABLED) code generation of file buffer functions. When disabled, the functions in the

following table will not be available.

Table E-3 File buffer function exclusion
These functions are NOT included if FS_CFG_FILE_BUF_EN is DEF_DISABLED

Function File

fs_opendir() fs_api.c

fs_closedir() fs_api.c

fs_readdir_r() fs_api.c

FSDir_Open() fs_dir.c

FSDir_Close() fs_dir.c

FSDir_Rd() fs_dir.c

Function File

fs_fflush() fs_api.c

fs_setbuf() fs_api.c

fs_setvbuf() fs_api.c

FSFile_BufAssign() fs_file.c

FSFile_BufFlush() fs_file.c

528

μC/FS Configuration

FS_CFG_FILE_LOCK_EN

FS_CFG_FILE_LOCK_EN enables (when set to DEF_ENABLED) or disables (when set to

DEF_DISABLED) code generation of file lock functions. When enabled, a file can be locked

across several operations; when disabled, a file is only locked during a single operation and

the functions in the following table will not be available.

Table E-4 File lock function exclusion
These functions are NOT included if FS_CFG_FILE_LOCK_EN is DEF_DISABLED

FS_CFG_PARTITION_EN

When FS_CFG_PARTITION_EN is enabled (DEF_ENABLED). volumes can be opened on

secondary partitions and partitions can be created. When it is disabled (DEF_DISABLED),

volumes can be opened only on the first partition and the functions in the following table

will not be available. The function FSDev_PartitionInit(), which initializes the partition

structure on a volume, will be included in both configurations.

Table E-5 Partition function exclusion

These functions are NOT included if FS_CFG_PARTITION_EN is DEF_DISABLED.

Function File

fs_flockfile() fs_api.c

fs_funlockfile() fs_api.c

fs_ftrylockfile() fs_api.c

FSFile_LockGet() fs_file.c

FSFile_LockSet() fs_file.c

FSFile_LockAccept() fs_file.c

Function File

FSDev_GetNbrPartitions() fs_dev.c

FSDev_PartitionAdd() fs_dev.c

FSDev_PartitionFind() fs_dev.c

529

μC/FS Configuration

FS_CFG_WORKING_DIR_EN

When FS_CFG_WORKING_DIR_EN is enabled (DEF_ENABLED), file system operations can be

performed relative to a working directory. When it is disabled (DEF_DISABLED), all file

system operations must be performed on absolute paths and the functions in the following

table will not be available.

Table E-6 Working directory function exclusion
These functions are NOT included if FS_CFG_WORKING_DIR_EN is DEF_DISABLED

FS_CFG_UTF8_EN

FS_CFG_UTF8_EN selects whether file names may be specified in UTF-8. When enabled

(DEF_ENABLED), file names may be specified in UTF-8; when disabled (DEF_DISABLED), file

names must be specified in ASCII.

FS_CFG_CONCURRENT_ENTRIES_ACCESS_EN

FS_CFG_CONCURRENT_ENTRIES_ACCESS_EN selects whether one file can be open multiple

times (in one or more task). When enabled (DEF_ENABLED), files may be open concurrently

mutliple times and without proection. When disabled (DEF_DISABLED), files may be open

concurrently only in read-only mode, but may not be open concurrently in write mode. This

option makes the filesystem safer when disabled.

FS_CFG_RD_ONLY_EN

FS_CFG_RD_ONLY_EN selects whether write access to files, volumes and devices will be

possible. When DEF_ENABLED, files, volumes and devices may only be read—code for write

operations will not be included and the functions in the following table will not be

available.

Function File

fs_chdir() fs_api.c

fs_getcwd() fs_api.c

FS_WorkingDirGet() fs.h

FS_WorkingDirSet() fs.h

Function File

fs_fwrite() fs_api.c

fs_remove() fs_api.c

fs_rename() fs_api.c

530

μC/FS Configuration

Table E-7 Read only function exclusion (continued)
These functions are NOT included if FS_CFG_RD_ONLY_EN is DEF_ENABLED.

E-3 NAME RESTRICTION CONFIGURATION

Individual file system features may be selectively disabled.

FS_CFG_MAX_PATH_NAME_LEN

FS_CFG_MAX_PATH_NAME_LEN configures the maximum path name length, in characters (not

including the final NULL character). The default value is 260 (the maximum path name

length for paths on FAT volumes).

FS_CFG_MAX_FILE_NAME_LEN

FS_CFG_MAX_FILE_NAME_LEN configures the maximum file name length, in characters (not

including the final NULL character). The default value is 255 (the maximum file name length

for FAT long file names).

fs_mkdir() fs_api.c

fs_truncate() fs_api.c

fs_rmdir() fs_api.c

FSDev_PartitionAdd() fs_dev.c

FSDev_PartitionInit() fs_dev.c

FSDev_Wr() fs_dev.c

FSEntry_AttribSet() fs_entry.c

FSEntry_Copy() fs_entry.c

FSEntry_Create() fs_entry.c

FSEntry_TimeSet() fs_entry.c

FSEntry_Del() fs_entry.c

FSEntry_Rename() fs_entry.c

FSFile_Truncate() fs_file.c

FSFile_Wr() fs_file.c

FSVol_Fmt() fs_vol.c

FSVol_LabelSet() fs_vol.c

FSVol_Wr() fs_vol.c

Function File

531

μC/FS Configuration

FS_CFG_MAX_DEV_DRV_NAME_LEN

FS_CFG_MAX_DEV_DRV_NAME_LEN configures the maximum device driver name length, in

characters (not including the final NULL character). The default value is 10.

FS_CFG_MAX_DEV_NAME_LEN

FS_CFG_MAX_DEV_NAME_LEN configures the maximum device name length, in characters

(not including the final NULL character). The default value is 15.

FS_CFG_MAX_VOL_NAME_LEN

FS_CFG_MAX_VOL_NAME_LEN configures the maximum volume name length, in characters

(not including the final NULL character). The default value is 10.

E-4 DEBUG CONFIGURATION

A fair amount of code in μC/FS has been included to simplify debugging. There are several

configuration constants used to aid debugging.

FS_CFG_DBG_MEM_CLR_EN

FS_CFG_DBG_MEM_CLR_EN is used to clear internal file system data structures when allocated

or deallocated. When DEF_ENABLED, internal file system data structures will be cleared.

FS_CFG_DBG_WR_VERIFY_EN

FS_CFG_DBG_WR_VERIFY_EN is used verify writes by reading back data. This is a particularly

convenient feature while debugging a driver.

E-5 ARGUMENT CHECKING CONFIGURATION

Most functions in μC/FS include code to validate arguments that are passed to it.

Specifically, μC/FS checks to see if passed pointers are NULL, if arguments are within valid

ranges, etc. The following constants configure additional argument checking.

FS_CFG_ARG_CHK_EXT_EN

FS_CFG_ARG_CHK_EXT_EN allows code to be generated to check arguments for functions

that can be called by the user and for functions which are internal but receive arguments

from an API that the user can call.

532

μC/FS Configuration

FS_CFG_ARG_CHK_DBG_EN

FS_CFG_ARG_CHK_DBG_EN allows code to be generated which checks to make sure that

pointers passed to functions are not NULL, that arguments are within range, etc.:

E-6 FILE SYSTEM COUNTER CONFIGURATION

μC/FS contains code that increments coutners to keep track of statistics such as the number

of packets received, the number of packets transmitted, etc. Also, μC/FS contains counters

that are incremented when error conditions are detected.

FS_CFG_CTR_STAT_EN

FS_CFG_CTR_STAT_EN determines whether the code and data space used to keep track of

statistics will be included. When DEF_ENABLED, statistics counters will be maintained.

FS_CFG_CTR_ERR_EN

FS_CFG_CTR_STAT_EN determines whether the code and data space used to keep track of

errors will be included. When DEF_ENABLED, error counters will be maintained.

E-7 FAT CONFIGURATION

Configuration constants can be used to enable/disable features within the FAT file system

driver.

FS_FAT_CFG_LFN_EN

FS_FAT_CFG_LFN_EN is used to control whether long file names (LFNs) are supported.

When DEF_DISABLED, all file names must be valid 8.3 short file names.

FS_FAT_CFG_FAT12_EN

FS_FAT_CFG_FAT12_EN is used to control whether FAT12 is supported. When

DEF_DISABLED, FAT12 volumes can not be opened, nor can a device be formatted as a

FAT12 volume.

FS_FAT_CFG_FAT16_EN

FS_FAT_CFG_FAT16_EN is used to control whether FAT16 is supported. When

DEF_DISABLED, FAT16 volumes can not be opened, nor can a device be formatted as a

FAT16 volume.

533

μC/FS Configuration

FS_FAT_CFG_FAT32_EN

FS_FAT_CFG_FAT32_EN is used to control whether FAT32 is supported. When

DEF_DISABLED, FAT32 volumes can not be opened, nor can a device be formatted as a

FAT32 volume.

FS_FAT_CFG_JOURNAL_EN

FS_FAT_CFG_JOURNAL_EN selects whether journaling functions will be present. When

DEF_ENABLED, journaling functions are present; when DEF_DISABLED, journaling functions

are NOT present. If disabled, the functions in Table E-8 will not be available.

Table E-8 Journaling function exclusion
These functions are NOT included if FS_FAT_CFG_JOURNAL_EN is DEF_DISABLED

FS_FAT_CFG_VOL_CHK_EN

FS_FAT_CFG_VOL_CHK_EN selects whether volume check is supported. When DEF_ENABLED,

volume check is supported; when DEF_DISABLED, the function FS_FAT_VolChk() will not

be available.

FS_FAT_CFG_VOL_CHK_MAX_LEVELS

FS_FAT_CFG_VOL_CHK_MAX_LEVELS specifies the maximum number of directory levels that

will be checked by the volume check function. Each level requires an additional 12 bytes

stack space.

E-8 SD/MMC SPI CONFIGURATION

FS_DEV_SD_SPI_CFG_CRC_EN

Data blocks received from the card are accompanied by CRCs, as are the blocks transmitted

to the card. FS_DEV_SD_SPI_CFG_CRC_EN enables CRC validation by the card, as well as the

generation and checking of CRCs. If DEF_ENABLED, CRC generation and checking will be

performed.

Function File

FS_FAT_JournalOpen() fs_fat_journal.c/.h

FS_FAT_JournalClose() fs_fat_journal.c/.h

FS_FAT_JournalStart() fs_fat_journal.c/.h

FS_FAT_JournalEnd() fs_fat_journal.c/.h

534

μC/FS Configuration

E-9 TRACE CONFIGURATION

The file system debug trace is enabled by #define‘ing FS_TRACE_LEVEL in your application’s

app_cfg.h:

#define FS_TRACE_LEVEL TRACE_LEVEL_DBG

The valid trace levels are described in the table below. A trace functions should also be

defined:

#define FS_TRACE printf

This should be a printf-type function that redirects the trace output to some accessible

terminal (for example, the terminal I/O window within your debugger, or a serial port) .

When porting a driver to a new platform, this information can be used to debug the

fledgling port.

Table E-9 Trace Levels

Trace Level Meaning

TRACE_LEVEL_OFF No trace.

TRACE_LEVEL_INFO Basic event information (e.g., volume characteristics).

TRACE_LEVEL_DBG Debug information.

TRACE_LEVEL_LOG Event log.

535

Appendix

F
Shell Commands

The command line interface is a traditional method for accessing the file system on a

remote system, or in a device with a serial port (be that RS-232 or USB). A group of shell

commands, derived from standard UNIX equivalents, are available for μC/FS. These may

simply expedite evaluation of the file system suite, or become part a primary method of

access (or gathering debug information) in your final product.

Figure F-1 μC/FS shell command usage

536

Shell Commands

F-1 FILES AND DIRECTORIES

μC/FS with the shell commands (and μC/Shell) is organized into the directory structure

shown in Figure F-2. The files constituting the shell commands ares outlined in this section;

the generic file-system files, outlined in Chapter 3, “Directories and Files” on page 28, are

also required.

Figure F-2 Directory Structure.

\Micrium\Software\uC-FS\Cmd

fs_shell.* contain the shell commands for μC/FS.

\Micrium\Software\uC-FS\Cmd\Template\Cfg

fs_shell_cfg.h is the template configuration file for the μC/FS shell commands. This

file should be copied to your application directory and modified.

\Micrium\Software\uC-Shell

This directory contains μC/Shell, which is used to process the commands. See the μC/Shell

user manual for more information.

537

Shell Commands

F-2 USING THE SHELL COMMANDS

To use shell commands, four files, in addition to the generic file system files, must be

included in the build:

■ fs_shell.c.

■ fs_ shell.h.

■ shell.c (located in \Micrium\Software\uC-Shell\Source).

■ shell.h (located in \Micrium\Software\uC-Shell\Source).

The file fs_shell.h and shell.h must also be #included in any application or header files

initialize μC/Shell or handle shell commands. The shell command configuration file

(fs_shell_cfg.h) should be copied to your application directory and modified. The

following directories must be on the project include path:

■ \Micrium\Software\uC-FS\Cmd

■ \Micrium\Software\uC-Shell\Source

μC/Shell with the μC/FS shell commands is initialized in Listing F-1. The file system

initialization (FS_Init()) function should have previously been called.

Listing F-1 Initializing μC/Shell

CPU_BOOLEAN App_ShellInit (void)

{

 CPU_BOOLEAN ok;

 ok = Shell_Init();

 if (ok == DEF_FAIL) {

 return (DEF_FAIL);

 }

 ok = FSShell_Init();

 if (ok == DEF_FAIL) {

 return (DEF_FAIL;

 }

 return (DEF_OK);

}

538

Shell Commands

It’s assumed that the application will create a task to receive input from a terminal; this task

should be written as shown in Listing F-2.

void App_ShellTask (void *p_arg)

{

 CPU_CHAR cmd_line[MAX_CMD_LEN];

 SHELL_ERR err;

 SHELL_CMD_PARAM cmd_param;

 CPU_CHAR cwd_path[FS_CFG_FULL_ NAME_LEN + 1u];

 /* Init cmd param (see Note #1). */

 Str_Copy(&cwd_path[0], (CPU_CHAR *)"\\");

 cmd_param.pcur_working_dir = (void *)cwd_path[0];

 cmd_param.pout_opt = (void *)0;

 while (DEF_TRUE) {

 App_ShellIn(cmd_line, MAX_CMD_LEN); /* Rd cmd (see Note #2). */

 /* Exec cmd (see Note #3). */

 Shell_Exec(cmd_line, App_ShellOut, &cmd_param, &err);

 switch (err) {

 case SHELL_ERR_CMD_NOT_FOUND:

 case SHELL_ERR_CMD_SEARCH:

 case SHELL_ERR_ARG_TBL_FULL:

 App_ShellOut("Command not found\r\n", 19, cmd_param.pout_opt);

 break;

 default:

 break;

 }

 }

}

/*

**

* App_ShellIn()

1*****

*/

CPU_INT16S App_ShellIn (CPU_CHAR *pbuf,

 CPU_INT16U buf_len)

{

 /* $$$$ Store line from terminal/command line into ‘pbuf’; return length of line. */

}

539

Shell Commands

Listing F-2 Executing shell commands & handling shell output.

LF-2(1) The SHELL_CMD_PARAM structure that will be passed to Shell_Exec() must be

initialized. The pcur_working_dir member MUST be assigned a pointer to a

string of at least FS_SHELL_CFG_MAX_PATH_LEN characters. This string must

have been initialized to the default working directory path; if the root directory,

“\”.

LF-2(2) The next command, ending with a newline, should be read from the command

line.

LF-2(3) The received command should be executed with Shell_Exec(). If the

command is a valid command, the appropriate command function will be

called. For example, the command “fs_ls” will result in FSShell_ls() in

fs_shell.c being called. FSShell_ls() will then print the entries in the

working directory to the command line with the output function

App_ShellOut(), passed as the second argument of Shell_Exec().

/*

**

* App_ShellOut()

1*****

*/

CPU_INT16S App_ShellOut (CPU_CHAR *pbuf,

 CPU_INT16U buf_len,

 void *popt)

{

 /* $$$$ Output ‘pbuf’ data on terminal/command line; return nbr bytes tx’d. */

}

540

Shell Commands

F-3 COMMANDS

The supported commands, listed in the table below, are equivalent to the standard UNIX

commands of the same names, though the functionality is typically simpler, with few or no

special options.

Table F-1 Commands

Information about each command can be obtained using the help (-h) option:

Figure F-3 Help option output

Command Description

fs_cat Print file contents to the terminal output.

fs_cd Change the working directory.

fs_cp Copy a file.

fs_date Write the date and time to terminal output, or set the system date and time

fs_df Report disk free space.

fs_ls List directory contents.

fs_mkdir Make a directory.

fs_mkfs Format a volume.

fs_mount Mount volume.

fs_mv Move files.

fs_od Dump file contents to terminal output.

fs_pwd Write to terminal output pathname of current working directory.

fs_rm Remove a directory entry.

fs_rmdir Remove a directory.

fs_touch Change file modification time.

fs_umount Unmount volume.

fs_wc Determine the number of newlines, words and bytes in a file.

541

Shell Commands

F-3-1 fs_cat

Print file contents to the terminal output.

USAGES

fs_cat [file]

ARGUMENTS

file Path of file to print to terminal output.

OUTPUT

File contents, in the ASCII character set. Non-printable/non-space characters are transmitted

as full stops (“periods”, character code 46). For a more convenient display of binary files use

fs_od.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_CAT_EN is DEF_ENABLED.

NOTES/WARNINGS

None.

542

Shell Commands

F-3-2 fs_cd

Change the working directory.

USAGES

fs_cd [dir]

ARGUMENTS

dir Absolute directory path.

OR

Path relative to current working directory.

OUTPUT

None.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_CD_EN is DEF_ENABLED.

NOTES/WARNINGS

The new working directory is formed in three steps:

1 If the argument dir begins with the path separator character (slash, ‘\’) or a volume

name, it will be interpreted as an absolute directory path and will become the

preliminary working directory. Otherwise the preliminary working directory path is

formed by the concatenation of the current working directory, a path separator

character and dir.

543

Shell Commands

2 The preliminary working directory path is then refined, from the first to last path

component:

a. If the component is a ‘dot’ component, it is removed

b. If the component is a ‘dot dot’ component, and the preliminary working directory

path is not NULL, the previous path component is removed. In any case, the ‘dot dot’

component is removed.

c. Trailing path separator characters are removed, and multiple path separator

characters are replaced by a single path separator character.

3 The volume is examined to determine whether the preliminary working directory exists.

If it does, it becomes the new working directory. Otherwise, an error is output, and the

working directory is unchanged.

544

Shell Commands

F-3-3 fs_cp

Copy a file.

USAGES

fs_cp [source_file] [dest_file]

fs_cp [source_file] [dest_dir]

ARGUMENTS

source_file Source file path.

dest_file Destination file path.

dest_dir Destination directory path.

OUTPUT

None.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_CP_EN is DEF_ENABLED and FS_CFG_RD_ONLY_EN is

DEF_DISABLED.

NOTES/WARNINGS

In the first form of this command, neither argument may be an existing directory. The

contents of source_file will be copied to a file named dest_file located in the same

directory as source_file.

In the second form of this command, the first argument must not be an existing directory

and the second argument must be an existing directory. The contents of source_file will

be copied to a file with name formed by concatenating dest_dir, a path separator

character and the final component of source_file.

545

Shell Commands

F-3-4 fs_date

Write the date and time to terminal output, or set the system date and time.

USAGES

fs_date

fs_date [time]

ARGUMENTS

time If specified, time to set, in the form mmddhhmmccyy:

where the 1st mm is the month(1-12)

the dd is the day (1-29, 30 or 31)

the hh is the hour (0-23)

the 2nd mm is the minute (0-59)

the ccyy is the year (1900 or larger)

OUTPUT

If no argument, date and time.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_DATE_EN is DEF_ENABLED.

NOTES/WARNINGS

None.

Figure F-4 fs_date output

546

Shell Commands

F-3-5 fs_df

Report disk free space.

USAGES

fs_df

fs_df [vol]

ARGUMENTS

volIf specified, volume on which to report free space. Otherwise, information about all

volumes will be output..

OUTPUT

Name, total space, free space and used space of volumes.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_DF_EN is DEF_ENABLED.

NOTES/WARNINGS

None.

Figure F-5 fs_df Output

547

Shell Commands

F-3-6 fs_ls

List directory contents.

USAGES

fs_ls

ARGUMENTS

None.

OUTPUT

List of directory contents.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_LS_EN is DEF_ENABLED.

NOTES/WARNINGS

The output resembles the output from the standard UNIX command ls -l. See the figure

below.

Figure F-6 fs_ls Output

548

Shell Commands

F-3-7 fs_mkdir

Make a directory.

USAGES

fs_mkdir [dir]

ARGUMENTS

dir Directory path.

OUTPUT

None.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_MKDIR_EN is DEF_ENABLED and FS_CFG_RD_ONLY_EN

is DEF_DISABLED.

NOTES/WARNINGS

None.

549

Shell Commands

F-3-8 fs_mkfs

Format a volume.

USAGES

fs_mkfs [vol]

ARGUMENTS

vol Volume name.

OUTPUT

None.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_MKFS_EN is DEF_ENABLED and FS_CFG_RD_ONLY_EN is

DEF_DISABLED.

NOTES/WARNINGS

None.

550

Shell Commands

F-3-9 fs_mount

Mount volume.

USAGES

fs_mount [dev] [vol]

ARGUMENTS

dev Device to mount.

vol Name which will be given to volume.

OUTPUT

None.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_MOUNT_EN is DEF_ENABLED.

NOTES/WARNINGS

None.

551

Shell Commands

F-3-10 fs_mv

Move files.

USAGES

fs_mv [source_entry] [dest_entry]

fs_mv [source_entry] [dest_dir]

ARGUMENTS

source_entry Source entry path.

dest_entry Destination entry path.

dest_dir Destination directory path.

OUTPUT

None.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_MV_EN is DEF_ENABLED and FS_CFG_RD_ONLY_EN is

DEF_DISABLED.

NOTES/WARNINGS

In the first form of this command, the second argument must not be an existing directory.

The file source_entry will be renamed dest_entry.

In the second form of this command, the second argument must be an existing directory.

source_entry will be renamed to an entry with name formed by concatenating dest_dir,

a path separator character and the final component of source_entry.

In both forms, if source_entry is a directory, the entire directory tree rooted at

source_entry will be copied and then deleted. Additionally, both source_entry and

dest_entry or dest_dir must specify locations on the same volume.

552

Shell Commands

F-3-11 fs_od

Dump file contents to the terminal output.

USAGES

fs_od [file]

ARGUMENTS

file Path of file to dump to terminal output.

OUTPUT

File contents, in hexadecimal form.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_OD_EN is DEF_ENABLED.

NOTES/WARNINGS

None.

Figure F-7 fs_od Output

553

Shell Commands

F-3-12 fs_pwd

Write to terminal output pathname of current working directory.

USAGES

fs_pwd

ARGUMENTS

None.

OUTPUT

Pathname of current working directory..

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_PWD_EN is DEF_ENABLED.

NOTES/WARNINGS

None.

554

Shell Commands

F-3-13 fs_rm

Remove a file.

USAGES

fs_rm [file]

ARGUMENTS

file File path.

OUTPUT

None.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_RM_EN is DEF_ENABLED and FS_CFG_RD_ONLY_EN is

DEF_DISABLED.

NOTES/WARNINGS

None.

555

Shell Commands

F-3-14 fs_rmdir

Remove a directory.

USAGES

fs_rmdir [dir]

ARGUMENTS

dir Directory path.

OUTPUT

None.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_RMDIR_EN is DEF_ENABLED and FS_CFG_RD_ONLY_EN

is DEF_DISABLED.

NOTES/WARNINGS

None.

556

Shell Commands

F-3-15 fs_touch

Change file modification time.

USAGES

fs_touch [file]

ARGUMENTS

file File path.

OUTPUT

None.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_TOUCH_EN is DEF_ENABLED and FS_CFG_RD_ONLY_EN

is DEF_DISABLED.

NOTES/WARNINGS

The file modification time is set to the current time.

557

Shell Commands

F-3-16 fs_umount

Unount volume.

USAGES

fs_umount [vol]

ARGUMENTS

vol Volume to unmount.

OUTPUT

None.

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_UMOUNT_EN is DEF_ENABLED.

NOTES/WARNINGS

None.

558

Shell Commands

F-3-17 fs_wc

Determine the number of newlines, words and bytes in a file.

USAGES

fs_wc [file]

ARGUMENTS

file Path of file to examine.

OUTPUT

Number of newlines, words and bytes; equivalent to:

printf(“%d %d %d %s”, newline_cnt, word_cnt, byte_cnt, file);

REQUIRED CONFIGURATION

Available only if FS_SHELL_CFG_WC_EN is DEF_ENABLED.

NOTES/WARNINGS

None.

Figure F-8 fs_wc Output

559

Shell Commands

F-4 CONFIGURATION

Configuration constants can be used to enable/disable features within the μC/FS shell

commands.

FS_SHELL_CFG_BUF_LEN

FS_FAT_CFG_BUF_LEN defines the length of the buffer, in octets, used to read/write from

files during file access operations. Since this buffer is placed on the task stack, the task stack

must be sized appropraitely.

FS_SHELL_CFG_CMD_####_EN

Each FS_FAT_CFG_CMD_####_EN separately enables/disables a particular fs_####

command:

FS_FAT_CFG_CMD_CAT_EN Enable/disable fs_cat.

FS_FAT_CFG_CMD_CD_EN Enable/disable fs_cd.

FS_FAT_CFG_CMD_CP_EN Enable/disable fs_cp.

FS_FAT_CFG_CMD_DF_EN Enable/disable fs_df.

FS_FAT_CFG_CMD_DATE_EN Enable/disable fs_date.

FS_FAT_CFG_CMD_LS_EN Enable/disable fs_ls.

FS_FAT_CFG_CMD_MKDIR_EN Enable/disable fs_mkdir.

FS_FAT_CFG_CMD_MKFS_EN Enable/disable fs_mkfs.

FS_FAT_CFG_CMD_MOUNT_EN Enable/disable fs_mount.

FS_FAT_CFG_CMD_MV_EN Enable/disable fs_mv.

FS_FAT_CFG_CMD_OD_EN Enable/disable fs_od.

FS_FAT_CFG_CMD_PWD_EN Enable/disable fs_pwd.

FS_FAT_CFG_CMD_RM_EN Enable/disable fs_rm.

560

Shell Commands

FS_FAT_CFG_CMD_RMDIR_EN Enable/disable fs_rmdir.

FS_FAT_CFG_CMD_TOUCH_EN Enable/disable fs_touch.

FS_FAT_CFG_CMD_UMOUNT_EN Enable/disable fs_umount.

FS_FAT_CFG_CMD_WC_EN Enable/disable fs_wc.

561

Appendix

G
Bibliography

Labrosse, Jean J. 2009, μC/OS-III, The Real-Time Kernel, Micrium Press, 2009, ISBN

978-0-98223375-3-0.

Légaré, Christian 2010, μC/TCP-IP, The Embedded Protocol Stack, Micrium Press, 2010, ISBN

978-0-98223375-0-9.

POSIX:2008 The Open Group Base Specifications Issue 7, IEEE Standard 1003.1-2008.

Programming Lauguages -- C, ISO/IEC 9899:1999.

The Motor Industry Software Reliability Association, MISRA-C:2004, Guidelines for the Use of

the C Language in Critical Systems, October 2004. www.misra-c.com.

562

Appendix G

G

563

Appendix

H
μC/FS Licensing Policy

H-1 μC/FS LICENSING

H-1-1 μC/FS SOURCE CODE

This book contains μC/FS precompiled in linkable object form, an evaluation board and

tools (compiler/assembler/linker/debugger). Use μC/FS for free, as long as it is only used

with the evaluation board that accompanies this book. You will need to purchase a license

when using this code in a commercial product, where the intent is to make a profit. Users

do not pay anything beyond the price of the book, evaluation board and tools, as long as

they are used for educational purposes.

You will need to license μC/FS if you intend to use μC/FS in a commercial product where

you intend to make a profit. You need to purchase this license when you make the decision

to use μC/FS in a design, not when you are ready to go to production.

If you are unsure about whether you need to obtain a license for your application, please

contact Micriμm and discuss your use with a sales representative.

Contact Micriμm
Micriμm

1290 Weston Road, Suite 306

Weston, FL 33326

+1 954 217 2036

+1 954 217 2037 (FAX)

E-Mail: sales@Micriμm.com

Website: www.Micriμm.com

564

Appendix H

H

H-1-2 μC/FS MAINTENANCE RENEWAL

Licensing μC/FS provides one year of limited technical support and maintenance and source

code updates. Renew the maintenance agreement for continued support and source code

updates.Contact sales@Micriμm.com for additional information.

H-1-3 μC/FS SOURCE CODE UPDATES

If you are under maintenance, you will be automatically emailed when source code updates

become available. You can then download your available updates from the Micriμm FTP

server. If you are no longer under maintenance, or forget your Micriμm FTP username or

password, please contact sales@Micriμm.com.

H-1-4 μC/FS SUPPORT

Support is available for licensed customers. Please visit the customer support section in

www.Micriμm.com. If you are not a current user, please register to create your account. A

web form will be offered to you to submit your support question,

Licensed customers can also use the following contact:

Contact Micriμm
Micriμm

1290 Weston Road, Suite 306

Weston, FL 33326

+1 954 217 2036

+1 954 217 2037 (FAX)

	Front Page
	Table of Contents
	Chapters
	Introduction
	1-1 What Is a File System?
	1-2 µC/FS
	1-3 Typical Usages
	1-4 Why FAT?
	1-5 Chapter Contents

	μC/FS Architecture
	2-1 Architecture Components
	2-1-1 Your Application
	2-1-2 LIB (Libraries)
	2-1-3 POSIX API Layer
	2-1-4 FS Layer
	2-1-5 File System Driver Layer
	2-1-6 Device Driver Layer
	2-1-7 CPU Layer
	2-1-8 RTOS Layer

	Directories and Files
	3-1 Application Code
	3-2 CPU
	3-3 Board Support Package (BSP)
	3-4 µC/CPU, CPU Specific Source Code
	3-5 µC/LIB, Portable Library Functions
	3-6 µC/Clk, Time/Calendar Management
	3-7 µC/CRC, Checksums and Error Correction Codes
	3-8 µC/FS Platform-Independent Source Code
	3-9 µC/FS FAT Filesystem Source Code
	3-10 µC/FS Memory Device Drivers
	3-11 µC/FS Platform-Specific Source Code
	3-12 µC/FS OS Abstraction Layer
	3-13 Summary

	Miscellaneous
	4-1 Nomenclature
	4-2 μC/FS Device and Volume Names
	4-3 μC/FS File and Directory Names and Paths
	4-4 μC/FS Name Lengths
	4-5 Resource Usage

	Devices and Volumes
	5-1 Device Operations
	5-2 Using Devices
	5-3 Using Removable Devices
	5-4 Partitions
	5-5 Volume Operations
	5-6 Using Volumes
	5-7 Using Volume Cache
	5-7-1 Choosing Cache Parameters
	5-7-2 Other Caching & Buffering Mechanisms

	POSIX API
	6-1 Supported Functions
	6-2 Working Directory Functions
	6-3 File Access Functions
	6-3-1 Opening, Reading & Writing Files
	6-3-2 Getting or Setting the File Position
	6-3-3 Configuring a File Buffer
	6-3-4 Diagnosing a File Error
	6-3-5 Atomic File Operations Using File Lock

	6-4 Directory Access Functions
	6-5 Entry Access Functions

	Files
	7-1 File Access Functions
	7-1-1 Opening Files
	7-1-2 Getting Information About a File
	7-1-3 Configuring a File Buffer
	7-1-4 File Error Functions
	7-1-5 Atomic File Operations Using File Lock

	7-2 Entry Access Functions
	7-2-1 File and Directory Attributes
	7-2-2 Creating New Files and Directories
	7-2-3 Deleting Files and Directories

	Directories
	8-1 Directory Access Functions

	File Systems: FAT
	9-1 FAT Architecture
	9-1-1 FAT12 / FAT16 / FAT32
	9-1-2 Short and Long File Names
	9-1-3 Directories and Directory Entries
	9-1-4 FAT System Driver Architecture

	9-2 Operations
	9-2-1 Formatting
	9-2-2 Disk Check
	9-2-3 Journaling

	Device Drivers
	10-1 Provided Device Drivers
	10-1-1 Driver Characterization

	IDE/CF Driver
	11-1 Files and Directories
	11-2 Using the IDE/CF Driver
	11-2-1 ATA (True IDE) Communication
	11-2-2 IDE BSP Overview

	Logical Device Driver
	MSC Driver
	13-1 Files and Directories
	13-2 Using the MSC Driver

	NAND Flash Driver
	14-1 Files and Directories
	14-2 Driver & Device Characteristics
	14-3 Using a NAND Device (Software ECC)
	14-3-1 Driver Architecture
	14-3-2 Hardware
	14-3-3 NAND BSP Overview

	14-4 Physical-Layer Drivers
	14-4-1 FSDev_NAND_0512x08
	14-4-2 FSDev_NAND_2048x08, FSDev_NAND_2048x16
	14-4-3 FSDev_NAND_AT45

	NOR Flash Driver
	15-1 Files and Directories
	15-2 Driver & Device Characteristics
	15-3 Using a Parallel NOR Device
	15-3-1 Driver Architecture
	15-3-2 Hardware
	15-3-3 NOR BSP Overview

	15-4 Using a Serial NOR Device
	15-4-1 Hardware
	15-4-2 NOR SPI BSP Overview

	15-5 Physical-Layer Drivers
	15-5-1 FSDev_NOR_AMD_1x08, FSDev_NOR_AMD_1x16
	15-5-2 FSDev_NOR_Intel_1x16
	15-5-3 FSDev_NOR_SST39
	15-5-4 FSDev_NOR_STM25
	15-5-5 FSDev_NOR_SST25

	RAM Disk Driver
	16-1 Files and Directories
	16-2 Using the RAM Disk Driver

	SD/MMC Drivers
	17-1 Files and Directories
	17-2 Using the SD/MMC CardMode Driver
	17-2-1 SD/MMC CardMode Communication
	17-2-2 SD/MMC CardMode Communication Debugging
	17-2-3 SD/MMC CardMode BSP Overview

	17-3 Using the SD/MMC SPI Driver
	17-3-1 SD/MMC SPI Communication
	17-3-2 SD/MMC SPI Communication Debugging
	17-3-3 SD/MMC SPI BSP Overview

	Appendices
	μC/FS API Reference Manual
	A-1 General File System Functions
	A-1-1 FS_DevDrvAdd()
	A-1-2 FS_Init()
	A-1-3 FS_VersionGet()
	A-1-4 FS_WorkingDirGet()
	A-1-5 FS_WorkingDirSet()

	A-2 Posix API Functions
	A-2-1 fs_asctime_r()
	A-2-2 fs_chdir()
	A-2-3 fs_clearerr()
	A-2-4 fs_closedir()
	A-2-5 fs_ctime_r()
	A-2-6 fs_fclose()
	A-2-7 fs_feof()
	A-2-8 fs_ferror()
	A-2-9 fs_fflush()
	A-2-10 fs_fgetpos()
	A-2-11 fs_flockfile()
	A-2-12 fs_fopen()
	A-2-13 fs_fread()
	A-2-14 fs_fseek()
	A-2-15 fs_fsetpos()
	A-2-16 fs_ftell()
	A-2-17 fs_ftruncate()
	A-2-18 fs_ftrylockfile()
	A-2-19 fs_funlockfile()
	A-2-20 fs_fwrite()
	A-2-21 fs_getcwd()
	A-2-22 fs_localtime_r()
	A-2-23 fs_mkdir()
	A-2-24 fs_mktime()
	A-2-25 fs_opendir()
	A-2-26 fs_readdir_r()
	A-2-27 fs_remove()
	A-2-28 fs_rename()
	A-2-29 fs_rewind()
	A-2-30 fs_rmdir()
	A-2-31 fs_setbuf()
	A-2-32 fs_setvbuf()

	A-3 Device Functions
	A-3-1 FSDev_Close()
	A-3-2 FSDev_GetDevName()
	A-3-3 FSDev_GetDevCnt()
	A-3-4 FSDev_GetDevCntMax()
	A-3-5 FSDev_GetNbrPartitions()
	A-3-6 FSDev_Open()
	A-3-7 FSDev_PartitionAdd()
	A-3-8 FSDev_PartitionFind()
	A-3-9 FSDev_PartitionInit()
	A-3-10 FSDev_Query()
	A-3-11 FSDev_Rd()
	A-3-12 FSDev_Refresh()
	A-3-13 FSDev_Wr()

	A-4 Directory Access Functions
	A-4-1 FSDir_Close()
	A-4-2 FSDir_IsOpen()
	A-4-3 FSDir_Open()
	A-4-4 FSDir_Rd()

	A-5 Entry Access Functions
	A-5-1 FSEntry_AttribSet()
	A-5-2 FSEntry_Copy()
	A-5-3 FSEntry_Create()
	A-5-4 FSEntry_Del()
	A-5-5 FSEntry_Query()
	A-5-6 FSEntry_Rename()
	A-5-7 FSEntry_TimeSet()

	A-6 File Functions
	A-6-1 FSFile_BufAssign()
	A-6-2 FSFile_BufFlush()
	A-6-3 FSFile_Close()
	A-6-4 FSFile_ClrErr()
	A-6-5 FSFile_IsEOF()
	A-6-6 FSFile_IsErr()
	A-6-7 FSFile_IsOpen()
	A-6-8 FSFile_LockAccept()
	A-6-9 FSFile_LockGet()
	A-6-10 FSFile_LockSet()
	A-6-11 FSFile_Open()
	A-6-12 FSFile_PosGet()
	A-6-13 FSFile_PosSet()
	A-6-14 FSFile_Query()
	A-6-15 FSFile_Rd()
	A-6-16 FSFile_Truncate()
	A-6-17 FSFile_Wr()

	A-7 Volume Functions
	A-7-1 FSVol_Close()
	A-7-2 FSVol_Fmt()
	A-7-3 FSVol_GetDfltVolName()
	A-7-4 FSVol_GetVolCnt()
	A-7-5 FSVol_GetVolCntMax()
	A-7-6 FSVol_GetVolName()
	A-7-7 FSVol_IsDflt()
	A-7-8 FSVol_IsMounted()
	A-7-9 FSVol_LabelGet()
	A-7-10 FSVol_LabelSet()
	A-7-11 FSVol_Open()
	A-7-12 FSVol_Query()
	A-7-13 FSVol_Rd()
	A-7-14 FSVol_Wr()

	A-8 Volume Cache Functions
	A-8-1 FSVol_CacheAssign ()
	A-8-2 FSVol_CacheInvalidate ()
	A-8-3 FSVol_CacheFlush ()

	A-9 NAND Driver Functions
	A-9-1 FSDev_NAND_LowFmt()
	A-9-2 FSDev_NAND_LowMount()
	A-9-3 FSDev_NAND_LowUnmount()
	A-9-4 FSDev_NAND_PhyRdSec()
	A-9-5 FSDev_NAND_PhyWrSec()
	A-9-6 FSDev_NAND_PhyEraseBlk()

	A-10 NOR Driver Functions
	A-10-1 FSDev_NOR_LowFmt()
	A-10-2 FSDev_NOR_LowMount()
	A-10-3 FSDev_NOR_LowUnmount()
	A-10-4 FSDev_NOR_LowCompact()
	A-10-5 FSDev_NOR_LowDefrag()
	A-10-6 FSDev_NOR_PhyRd()
	A-10-7 FSDev_NOR_PhyWr()
	A-10-8 FSDev_NOR_PhyEraseBlk()
	A-10-9 FSDev_NOR_PhyEraseChip()

	A-11 SD/MMC Driver Functions
	A-11-1 FSDev_SD_xxx_QuerySD()
	A-11-2 FSDev_SD_xxx_RdCID()
	A-11-3 FSDev_SD_xxx_RdCSD()

	A-12 FAT System Driver Functions
	A-12-1 FS_FAT_JournalOpen()
	A-12-2 FS_FAT_JournalClose()
	A-12-3 FS_FAT_JournalStart()
	A-12-4 FS_FAT_JournalStop()
	A-12-5 FS_FAT_VolChk()

	μC/FS Error Codes
	B-1 System Error Codes
	B-2 Buffer Error Codes
	B-3 Cache Error Codes
	B-4 Device Error Codes
	B-5 Device Driver Error Codes
	B-6 Directory Error Codes
	B-7 ECC Error Codes
	B-8 Entry Error Codes
	B-9 File Error Codes
	B-10 Name Error Codes
	B-11 Partition Error Codes
	B-12 Pools Error Codes
	B-13 File System Error Codes
	B-14 Volume Error Codes
	B-15 OS Layer Error Codes

	µC/FS Porting Manual
	C-1 Date/Time management
	C-2 CPU Port
	C-3 OS Kernel
	C-4 Device Driver
	C-4-1 NameGet()
	C-4-2 Init()
	C-4-3 Open()
	C-4-4 Close()
	C-4-5 Rd()
	C-4-6 Wr()
	C-4-7 Query()
	C-4-8 IO_Ctrl()

	C-5 IDE/CF Device BSP
	C-5-1 FSDev_IDE_BSP_Open()
	C-5-2 FSDev_IDE_BSP_Close()
	C-5-3 FSDev_IDE_BSP_Lock() / FSDev_IDE_BSP_Unlock()
	C-5-4 FSDev_IDE_BSP_Reset()
	C-5-5 FSDev_IDE_BSP_RegRd()
	C-5-6 FSDev_IDE_BSP_RegWr()
	C-5-7 FSDev_IDE_BSP_CmdWr()
	C-5-8 FSDev_IDE_BSP_DataRd()
	C-5-9 FSDev_IDE_BSP_DataWr()
	C-5-10 FSDev_IDE_BSP_DMA_Start()
	C-5-11 FSDev_IDE_BSP_DMA_End()
	C-5-12 FSDev_IDE_BSP_GetDrvNbr()
	C-5-13 FSDev_IDE_BSP_GetModesSupported()
	C-5-14 FSDev_IDE_BSP_SetMode()
	C-5-15 FSDev_IDE_BSP_Dly400_ns()

	C-6 NAND Flash Physical-Layer Driver
	C-6-1 Open()
	C-6-2 Close()
	C-6-3 RdPage()
	C-6-4 RdSpare()
	C-6-5 WrPage()
	C-6-6 WrSpare()
	C-6-7 CopyBack()
	C-6-8 EraseBlk()
	C-6-9 IO_Ctrl()

	C-7 NAND Flash BSP
	C-7-1 FSDev_NAND_BSP_Open()
	C-7-2 FSDev_NAND_BSP_Close()
	C-7-3 FSDev_NAND_BSP_ChipSelEn()
	C-7-4 FSDev_NAND_BSP_ChipSelDis()
	C-7-5 FSDev_NAND_BSP_RdData()
	C-7-6 FSDev_NAND_BSP_WrAddr()
	C-7-7 FSDev_NAND_BSP_WrCmd()
	C-7-8 FSDev_NAND_BSP_WrData()
	C-7-9 FSDev_NAND_BSP_WaitWhileBusy()

	C-8 NAND Flash SPI BSP
	C-9 NOR Flash Physical-Layer Driver
	C-9-1 Open()
	C-9-2 Close()
	C-9-3 Rd()
	C-9-4 Wr()
	C-9-5 EraseBlk()
	C-9-6 IO_Ctrl()

	C-10 NOR Flash BSP
	C-10-1 FSDev_NOR_BSP_Open()
	C-10-2 FSDev_NOR_BSP_Close()
	C-10-3 FSDev_NOR_BSP_Rd_XX()
	C-10-4 FSDev_NOR_BSP_RdWord_XX()
	C-10-5 FSDev_NOR_BSP_WrWord_XX()
	C-10-6 FSDev_NOR_BSP_WaitWhileBusy()

	C-11 NOR Flash SPI BSP
	C-12 SD/MMC Cardmode BSP
	C-12-1 FSDev_SD_Card_BSP_Open()
	C-12-2 FSDev_SD_Card_BSP_Lock()
	C-12-3 FSDev_SD_Card_BSP_CmdStart()
	C-12-4 FSDev_SD_Card_BSP_CmdWaitEnd()
	C-12-5 FSDev_SD_Card_BSP_CmdDataRd()
	C-12-6 FSDev_SD_Card_BSP_CmdDataWr()
	C-12-7 FSDev_SD_Card_BSP_GetBlkCntMax()
	C-12-8 FSDev_SD_Card_BSP_GetBusWidthMax()
	C-12-9 FSDev_SD_Card_BSP_SetBusWidth()
	C-12-10 FSDev_SD_Card_BSP_SetClkFreq()
	C-12-11 FSDev_SD_Card_BSP_SetTimeoutData()
	C-12-12 FSDev_SD_Card_BSP_SetTimeoutResp()

	C-13 SD/MMC SPI mode BSP
	C-14 SPI BSP
	C-14-1 Open()
	C-14-2 Close()
	C-14-3 Lock() / Unlock()
	C-14-4 Rd()
	C-14-5 Wr()
	C-14-6 ChipSelEn() /ChipSelDis()
	C-14-7 SetClkFreq()

	μC/FS Types and Structures
	D-1 FS_CFG
	D-2 FS_DEV_INFO
	D-3 FS_DEV_NAND_CFG
	D-4 FS_DEV_NOR_CFG
	D-5 FS_DEV_RAM_CFG
	D-6 FS_DIR_ENTRY (struct fs_dirent)
	D-7 FS_ENTRY_INFO
	D-8 FS_FAT_SYS_CFG
	D-9 FS_PARTITION_ENTRY
	D-10 FS_VOL_INFO

	μC/FS Configuration
	E-1 File System Configuration
	E-2 Feature Inclusion Configuration
	E-3 Name Restriction Configuration
	E-4 Debug Configuration
	E-5 Argument Checking Configuration
	E-6 File System Counter Configuration
	E-7 Fat Configuration
	E-8 SD/MMC SPI Configuration
	E-9 Trace Configuration

	Shell Commands
	F-1 Files and Directories
	F-2 Using the Shell Commands
	F-3 Commands
	F-3-1 fs_cat
	F-3-2 fs_cd
	F-3-3 fs_cp
	F-3-4 fs_date
	F-3-5 fs_df
	F-3-6 fs_ls
	F-3-7 fs_mkdir
	F-3-8 fs_mkfs
	F-3-9 fs_mount
	F-3-10 fs_mv
	F-3-11 fs_od
	F-3-12 fs_pwd
	F-3-13 fs_rm
	F-3-14 fs_rmdir
	F-3-15 fs_touch
	F-3-16 fs_umount
	F-3-17 fs_wc

	F-4 Configuration

	Bibliography
	µC/FS Licensing Policy
	H-1 µC/FS Licensing
	H-1-1 µC/FS Source Code
	H-1-2 µC/FS Maintenance Renewal
	H-1-3 µC/FS Source Code Updates
	H-1-4 µC/FS Support

